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Abstract— Shared autonomy provides a framework where
a human and an automated system, such as a robot, jointly
control the system’s behavior, enabling an effective solution
for various applications, including human-robot interaction.
However, a challenging problem in shared autonomy is safety
because the human input may be unknown and unpredictable,
which affects the robot’s safety constraints. If the human input
is a force applied through physical contact with the robot, it
also alters the robot’s behavior to maintain safety. We address
the safety issue of shared autonomy in real-time applications
by proposing a two-layer control framework. In the first layer,
we use the history of human input measurements to infer what
the human wants the robot to do and define the robot’s safety
constraints according to that inference. In the second layer,
we formulate a rapidly-exploring random tree of barrier pairs,
with each barrier pair composed of a barrier function and a
controller. Using the controllers in these barrier pairs, the robot
is able to maintain its safe operation under the intervention
from the human input. This proposed control framework allows
the robot to assist the human while preventing them from en-
countering safety issues. We demonstrate the proposed control
framework on a simulation of a two-linkage manipulator robot.

I. INTRODUCTION

Unlike full robot autonomy, shared autonomy allows a
robot to leverage the perceptual and decision making ca-
pabilities of operators while helping them to work more
efficiently and accurately [1]. Across different fields, such
as brain-computer interfaces [2], autonomous driving [3],
and teleoperation [4], shared autonomy helps us to improve
our productivity without completely removing the human
from the task at hand. However, safety becomes critical
with shared autonomy, especially when operators and robots
interact through physical contact. On the one hand, the
human’s objective is not directly measurable but can be
inferred based on the robot’s sensing of human inputs such
as contact forces. The robot needs this inference of the
human’s objective to figure out how to assist the human and
prevent them from potential accidents. On the other hand,
human inputs can alter the robot’s current path resulting in
additional safety concerns. Therefore in a shared autonomy
task, the robot faces a conflict between inferring the human’s
objectives and maintaining safety under the interaction with
human inputs.

For a nonlinear dynamical system such as a robot, safety
is usually verified through barrier functions [5]. Just like
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Lyapunov functions for stability verification, barrier func-
tions provide sufficient conditions for safety verification. But
barrier functions relax the global convergence requirement
of Lyapunov functions and only need to be decreasing at
the safety bounds. Various methods create barrier functions
with controllers to enforce safety constraint satisfaction.
For state-space constraints, controllers can be synthesized
simultaneously with barrier functions using back-stepping [6]
or quadratic programming methods [7], [8]. Input constraints
can also be enforced using semi-definite programming meth-
ods [9], [10]. By incorporating sampling-based methods into
the synthesis of barrier functions and controllers [11], robots
can also guarantee safe operation with non-convex state-
space constraints.

While the above methods aim to resolve the safety prob-
lem for a robot alone, it is a more challenging problem
to guarantee safety for a robot that has physical contact
with a person. This is because humans represent an un-
certain dynamical sub-system when physically interacting
with robots. The internal states of the human dynamics
are usually immeasurable. Robust control strategies [12],
[13] can address the uncertain human dynamics and achieve
complementary stability for human-robot coupled system.
However, this kind of strategy usually considers the robot
as a strict follower of the human’s trajectory and hence,
relies on the human to obey safety constraints. In human-
robot shared autonomy, the robot needs to enforce safety
constraints in relation to the human’s objective such that it
can prevent them from potential accidents.

In this paper, we address the safety problem during shared
autonomy using a two-layer control framework. In the first
layer, we define the robot’s safety constraints based on the
inference of the human’s objective. In order to understand the
human’s objective, we propose an intent inference method
that integrates the history of human’s input, obtained through
the sensor readings, to generate a probability distribution
over a set of candidate objectives. In particular, the proposed
method employs a Boltzmann model of rationality [14], [15]
to characterize the probability of receiving a particular sensor
reading at the robot’s end-effector based on the human’s
objective. Using this Boltzmann model, the robot keeps track
of a probability distribution, called belief, over the candidate
objectives and updates it using a Bayesian method. Then,
the belief is handed to a safety controller in the second layer
so that the robot can safely move toward the most probable
human objective.

In the second layer, we use the barrier pair rapidly-
exploring random tree method [11] to generate sequences of
barrier pairs given different human objectives. Each barrier



pair comprises a quadratic barrier function and a state feed-
back controller. We synthesize the state feedback controllers
in these barrier pairs using a robust control strategy so
that the robot can satisfy the safety constraints for different
human objectives and reject the human input interventions.
Based on the human intention inference formulated from the
first layer, the robot can execute these barrier pair sequences
accordingly and help the human to safely accomplish the
objective. We demonstrate this two-layer control framework
on a simulation of a two-linkage manipulator robot, where
a human operator uses a keyboard to control a simulated
human force exerted on the end-effector of the manipulator
robot.

II. PRELIMINARIES

In this section, we first overview the basics of multi-body
robot dynamics and barrier pair rapidly-exploring random
trees. Then, we present the formal problem statement. ai is
defined as a polytopic region in the workspace of a robot.
For convenience, xai

is defined as the geometric center for
the region of ai and āi , Rn r ai is defined as a workspace
region excluding the set for ai.

A. Multi-Body Robot Dynamics

The Lagrangian dynamics of an n-DOF robot can be
expressed as

M(q) · q̈ + C(q, q̇) · q̇ = u + J>(q) ·w (1)

where M(q) is the matrix of inertia, C(q, q̇) is the coeffi-
cient matrix of Coriolis and centrifugal effects, J(q) is the
matrix of Jacobian, q , [q1, · · · , qn]> is the vector of joint
positions with q̇ and q̈ defined as its first and second order
time derivatives, u , [u1, · · · , un]> is the vector of joint
torques and w , [w1, · · · , wn]> is the vector of external
forces exerted by the human. An n-dimensional workspace
position vector x , [x1, · · · , xn]> can be calculated from
the joint position vector using

x = F(q) (2)

where F(·) represents the forward kinematics. By linearizing
(1) and (2) around an equilibrium point [q>e , ~0

>]>, we
obtain the state-space form[

˙̃q
¨̃q

]
=

[
0 I

0 M−1(qe) ·C(qe, ~0)

] [
q̃
˙̃q

]
+

[
0

M−1(qe)

]
u

+

[
0

M−1(qe) · J>(qe)

]
w (3)

x̃ =
[
J(qe) 0

] [q̃
˙̃q

]
(4)

where q̃ , q − qe and x̃ , x − xe with xe = F(qe). The
partial derivative of F(q) with respect to q is the Jacobian
matrix J(q).

Algorithm 1 G← BPRRT(a0, af , ā1, · · · , āno ,Z0,U, ε)

Input: Initial region a0, goal region af , constraints associ-

ated with undesirable regions ā1, · · · , āno
, state space

constraint Z0, input constraint U, scalar ε (0 < ε ≤ 1)

Output: BP-RRT graph G

1: (Qf , Kf)← BP(xaf , af , ā1, · · · , āno
, Z0, U)

2: G.AddVertex(xf), G.AddBP((Qf , Kf))

3: (Qnew, Knew)← (Qf , Kf), xnew ← xf

4: while x0 /∈ Enew(ε) do

5: qrand ← RandomConfiguration(
⋂no

i=1 āi)

6: Enear(ε)← NearestBP(qrand, G, ε)

7: qnew ← NewEquilibrium(qrand, Enear(ε))

8: xnew ← F(qnew)

9: (Qnew, Knew)← BP(xnew, ∅, ā1, · · · , āno
,Z0,U)

10: G.AddVertex(xnew), G.AddBP((Qnew, Knew)),

G.AddEdge((xnear, xnew))

11: end while

12: (Q0, K0)← BP(xa0 , a0, ā1, · · · , āno
, Z0, U)

13: G.AddVertex(x0), G.AddBP((Q0, K0)),

G.AddEdge((xnew, x0))

B. Barrier Pair Rapidly-Exploring Random Trees

Definition 1 [10]: A barrier pair is a pair consisting of a
barrier function and a controller (B, k) with the following
properties
(a) −1 < B(q̃, ˙̃q) ≤ 0,u = k(q̃, ˙̃q) =⇒ Ḃ(q̃, ˙̃q) < 0,
(b) B(q̃, ˙̃q) ≤ 0 =⇒ [q̃>, ˙̃q>]> ∈ Z, k(q̃, ˙̃q) ∈ U,

where [q̃>, ˙̃q>]> ∈ Z and u ∈ U are the state and input
constraints.

If we define the barrier pair as

B =

[
q̃
˙̃q

]>
Q−1

[
q̃
˙̃q

]
− 1, k = K

[
q̃
˙̃q

]
(5)

where B is a quadratic barrier function with a positive
definite matrix Q and k is a full state feedback controller,
the barrier pair synthesis becomes a linear matrix inequality
(LMI) optimization problem [10].

For convenience, we use (Q,K) to represent a barrier pair
(B,k) in the form of (5) and define E(ε) , {[q̃>, ˙̃q>]> |
[q̃>, ˙̃q>]Q−1[q̃>, ˙̃q>]> ≤ ε2} as the sub-level set of B
corresponding to a value ε2 − 1. Based on Definition 1, the
zero sub-level set E(1) of the barrier function B needs to
satisfy all constraints defined by Z and U.

In [11], a barrier pair rapidly-exploring random tree
(BP-RRT) method is introduced which leverages rapidly-



exploring random trees (RRT) to combine a number of
barrier pairs into a sequence that connects two polytopic
regions in the reachable workspace. Compared RRT, the BP-
RRT adds a barrier pair to each vertex in a graph providing
additional robustness and safety guarantees for trajectory
execution.

Algorithm 1 shows the procedure for creating a BP-RRT
graph. Instead of applying a fixed incremental distance as
RRT does in each iteration, a new robot configuration qnew

is added to the graph by projecting a random configuration
qrand to the hyper-surface of the sub-level set Enear(ε) of
the nearest barrier pair (for 0 < ε ≤ 1). Therefore, qnew is
guaranteed to be inside the zero sub-level set of previously
created barrier pairs. The algorithm terminates if there exists
a new barrier pair (Q0,K0) in the BP-RRT graph whose
zero sub-level set E0(1) contains the entire region of a0.
Then, a sequence of barrier pairs that connects a0 and af
can be extracted from the BP-RRT graph.

C. Problem Statement

In this paper, we consider a robot operating around multi-
ple different polytopic regions defined in the workspace of its
end-effector and a human operator that applies a norm-bound
interaction force to the robot’s end-effector intermittently.

Problem: During real-time human-robot shared autonomy
operation, we aim to infer the operator’s target region from
a time series of intermittent human force measurements and
create a sequence of barrier pairs such that the robot’s end-
effector can safely move to the target region without passing
through all other regions.

III. BARRIER PAIR SYNTHESIS

Similar to [11], our process of barrier pair synthesis starts
by linearizing the robot’s dynamics in (3) and (4) such that
a norm-bound linear differential inclusion (LDI) model can
be formulated. Then, a LMI optimization problem can be
created for synthesizing barrier pairs subject to predefined
state space and input constraints. In particular, we formulate
a LMI constraint in the barrier pair synthesis problem for
enforcing the robot’s stability and the convergence of the
barrier function under the influence of the norm-bound force
input w from the human.

A. Norm-Bound Linear Differential Inclusion Model

Our barrier pair synthesis relies on solving an LMI opti-
mization problem formulated based on a linear model of the
robot dynamics. However, the linearized state space equa-
tions in (3) and (4) become inaccurate if the state [q>, q̇>]>

deviates from the equilibrium. In order to address this issue,
we use a norm-bound LDI to represent the robot dynamics.
First, we can express the norm-bound uncertainties of the
linearized robot dynamical model in (3) and (4) as

M−1(q) ·C(q, q̇) ∈ {A1 + A2∆A3 : ‖∆‖ ≤ 1} (6)

M−1(q) · J>(q) ∈ {Bw
1 + Bw

2 ∆Bw
3 : ‖∆‖ ≤ 1} (7)

M−1(q) ∈ {Bu
1 + Bu

2 ∆Bu
3 : ‖∆‖ ≤ 1} (8)

J(q) ∈ { J1 + J2∆J3 : ‖∆‖ ≤ 1} (9)

for all state [q>, q̇>]> in the constrained state space Z
around the equilibrium. Then, a norm-bound LDI [16] that
is valid for all states in Z can be expressed as[

˙̃q
¨̃q

]
=

[
0 I
0 A1 + A2∆A3

] [
q̃
˙̃q

]
+

[
0

Bu
1 + Bu

2 ∆Bu
3

]
u

+

[
0

Bw
1 + Bw

2 ∆Bw
3

]
w (10)

x̃ =
[
J1 + J2∆J3 0

] [q̃
˙̃q

]
. (11)

We can formulate a norm-bound LDI by calculating M−1(q)·
C(q, q̇), M−1(q) · J>(q, q̇), M−1(q) and J(q) from a
number of sample states in Z and using quadric inclusion
programs [17] to fit an inclusion model.

The constrained state space region for the norm-bound
LDI is defined as Z , Zsafe ∩ Z0. Based on the inequality
constraints |aix̃| < āi associated with the undesirable regions
a1, a2, · · · , ano , a local convex state space region Zsafe can
be defined as

Zsafe , {[q̃>, ˙̃q>]> : |ai(J1 + J2∆J3) q̃| < āi,

‖∆‖ ≤ 1, i = 1, · · · , no},
(12)

where ai for i = 1, · · · , no are row vectors with no as the
number of undesirable regions. However, the norm-bound
uncertainty in Zsafe can be too large for the barrier pair
sub-problem to be solved. So we also need to consider an
additional constrained state space Z0 defined as

Z0 , {[q̃>, ˙̃q>]> : |bi(J1 + J2∆J3) q̃| < x̄i, |bi
˙̃q| < ¯̇qi,

‖∆‖ ≤ 1, i = 1, · · · , n},
(13)

where bi for i = 1, · · · , n are the standard basis (row)
vectors of the n-dimensional Euclidean space.

Similar to (12) and (13), a constrained input space region
U and a constrained external input space region W can be
formulated as

U , {u : |biu| < ūi, i = 1, · · · , n}. (14)

W , {w : ‖w‖ < w̄}. (15)

B. Barrier Pair Synthesis Sub-Problems

Based on the norm bound LDI model expressed in (10) and
(11), we can formulate the LMIs for creating our barrier pair
synthesis problem. In order to ensure that the ellipsoidal sub-
level set E(1) of a barrier pair contains a desired polytopic
region ad, we sample a number of points from all edges of
ad and let E(1) contain the joint space projections of these
Cartesian space samples using the following set of LMIs[

1 ?
R(xi)− qe S1QS>1

]
� 0, ∀ i = 1, . . . , np (16)

where np is the number of sampled workspace points at
the edge of ad, ad = Co{x1, · · · , xp}, R(·) is an inverse
kinematics operator and S1 , [In×n, 0n×n].
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Fig. 1. By projecting a random joint space position qrand to the hyper-
surface of Enear(ε1) of the nearest barrier pair, a new equilibrium of
BP-RRT is created. The residue set Enew(ε0) of the new barrier pair is
designed to be strictly inside the zero sub-level set Enear(1) of the nearest
barrier pair. Notice that even if the undesirable regions of the workspace
are polytopic, their joint space projections are not guaranteed to be also
polytopic. The numbers indicate 1 the residue set Enear(ε0), 2 the hyper-
surface of Enear(ε1), and 3 the zero sub-level set Enear(1).

Similar to [11], the constraints Zsafe, Z0 and U in (12),
(13) and (14) can be transformed into LMIs

ā2
i Q ? ? ?
0 γiI ? ?

aiJ1S1Q γiaiJ2 1 ?

J3S1Q 0 ~0 γiI

 � 0, ∀ i = 1, . . . , no (17)


x̄ 2

i Q ? ? ?
0 µiI ? ?

biJ1S1Q µibiJ2 1 ?

J3S1Q 0 ~0 µiI

 � 0, ∀ i = 1, . . . , n (18)

[
Q ?

biS2Q ¯̇q2
i

]
� 0, ∀ i = 1, . . . , n (19)[

Q ?
biY ū2

i

]
� 0, ∀ i = 1, . . . , n (20)

where γi for i = 1, . . . , no and µi for i = 1, . . . , n are posi-
tive real scalar variables, S2 , [0n×n, In×n] and Y , KQ.

By the following proposition, the robot’s Lyapunov stabil-
ity can be enforced under the impact of norm-bound human
input w.

Proposition 1: For a robot starting from a state in the
zero sub-level set E(1) of the barrier pair (B,K), the robot
state converges to a residue set E(ε0) with an exponential
convergence rate no less than α

2 if[
X11 ?
X21 X22

]
� 0, (21)

where

X11 =

Ā1Q + QĀ>1 + B̄u
1Y + Y>B̄u>

1 + αQ B̄w
1

B̄w>
1 −α ε

2
0

w̄2
I



+

[
Ā2 B̄u

2 B̄w
2

0 0 0

]µxI 0 0
0 µuI 0
0 0 µwI

[Ā2 B̄u
2 B̄w

2

0 0 0

]>
(22)

X21 =

Ā3Q 0
Bu

3Y 0
0 Bw

3

 (23)

X22 =

−µxI 0 0
0 −µuI 0
0 0 −µwI

 (24)

Ā1 = S>1 S2 + S>2 A1S2, Ā2 = S>2 A2, Ā3 = A3S2, (25)
B̄u

1 = S>2 B
u
1 , B̄u

2 = S>2 B
u
2 , (26)

B̄w
1 = S>2 B

w
1 , B̄w

2 = S>2 B
w
2 , (27)

and µx, µu and µw are positive real scalar variables.
Proof: See Appendix A.

Finally, the volume of the ellipsoid E(1) is maximized
through the cost function of the log of the determinant of
Q [16]. A barrier pair synthesis sub-problem (B, k) =
BP(xe, ad, ā1, · · · , āno , Z0, U, W) can be expressed as

maximize
Q,Y

log(det(Q))

subject to Q � 0,

(16), (17), (18), (19), (20), (21)

(28)

for finding a sub-level set E(1) that contains the de-
sired region ad and excludes the undesirable regions
a1, a2, · · · , ano .

IV. HUMAN-ROBOT SHARED AUTONOMY

Based on the barrier pairs synthesized from the LMI
problem formulated in (28), we propose a two-layer control
framework for addressing the interaction problem defined in
Section II.C. In the first layer, we employ the history of
human input measurements to infer what the human wants
the robot to do and define the robot’s safety constraints based
on it. In the second layer, we use the BP-RRT method [11]
to generate sequences of barrier pairs that safely move the
robot’s end-effector to different desired regions. Based on the
human intention inference performed in the first layer, the
robot can execute these barrier pair sequences accordingly
and help to accomplish the human’s objective.

A. Barrier Pair Sampling

Although Algorithm 1 provides us the steps for creating
a BP-RRT graph, it cannot be used directly to solve the
interaction problem because of the additional human input w.
Therefore, we need to formulate a new barrier pair sampling
algorithm for creating a barrier pair sequence that moves
the robot’s end-effector safely to a human desired region ad
under the human input intervention.

We extend our BP-RRT method to a robot under a human
force input w, as outlined in Algorithm 2. The algorithm
initializes the BP-RRT graph by creating a barrier pair at
af in line 1-3, expands it by sampling new barrier pairs in



Algorithm 2 G← BPRRT(a0, af , ā1, · · · , āno ,Z0,U,W, ε0, ε1)

Input: Initial region a0, goal region af , constraints associ-

ated with undesirable regions ā1, · · · , āno
, state space

constraint Z0, robot input constraint U, human input

constraint W, scalar ε0 (0 < ε0 ≤ 1), scalar ε1 (0 <

ε1 ≤ 1)

Output: BP-RRT graph G

1: (Qf , Kf)← BP(xaf , af , ā1, · · · , āno , Z0, U,W, ε0)

2: G.AddVertex(xf), G.AddBP((Qf , Kf))

3: (Qnew, Knew)← (Qf , Kf), xnew ← xf

4: while x0 /∈ Enew(ε1) do

5: qrand ← RandomConfiguration(
⋂no

i=1 āi)

6: Enear(ε1)← NearestBP(qrand, G, ε1)

7: qatt ← NewEquilibrium(qrand, Enear(ε1))

8: xatt ← F(qatt)

9: (Qatt, Katt)← BP(xatt, ∅, ā1, · · · , āno ,Z0,U,W, ε0)

10: ε2 ←
√

[q>near − q>att, ~0>]> Q−1
att [q>near − q>att, ~0>]

11: if Qatt � (1−ε1)2

ε20
·Qnear and Qnear � (1−ε2)2

ε20
·Qatt then

12: (Qnew, Knew)← (Qatt, Katt), xnew ← xatt

13: G.AddVertex(xnew), G.AddBP((Qnew, Knew)),

G.AddEdge((xnear, xnew))

14: end if

15: end while

16: (Q0, K0)← BP(xa0 , a0, ā1, · · · , āno
, Z0, U,W, ε0)

17: G.AddVertex(x0), G.AddBP((Q0, K0)),

G.AddEdge((xnew, x0))

line 4-14, and completes it by creating a barrier pair at a0
in line 15-16.

Different from Algorithm 1, Algorithm 2 considers two
scalar inputs ε0 and ε1 (Fig. 1). The first scalar input
ε0, previously introduced in (22), defines the residue set
E(ε0) of a barrier pair. Similar to the scalar input ε in
Algorithm 1, the second scalar input ε1 defines a hyper-
surface of sub-level set Enear(ε1) of the nearest barrier pair
found in line 6 such that a new equilibrium qatt can be
obtained by projecting a random configuration qrand sampled
in line 5 to this hyper-surface.

In order to enforce the robot’s safe transition between two
barrier pairs of an edge in the graph, the residue set Eatt(ε0)
of the newly sampled barrier pair created in line 9 needs to
be completely inside the zero sub-level set Enear(1) of the
nearest barrier pair found in line 6. We can check this safety
requirement through the condition stated in the following

proposition.
Proposition 2: Suppose (Q1,K1) and (Q2,K2) repre-

sent two barrier pairs forming an edge in a BP-RRT graph.
Let z1 , [q>1 , ~0

>]> and z2 , [q>2 , ~0
>]> be the equilibrium

points of (Q1,K1) and (Q2,K2) located at the hyper-
surface of E2(ε2) and E1(ε1), respectively. Let E1(ε0) and
E2(ε0) be the residue sets of (Q1,K1) and (Q2,K2). The
robot can safely transit between the zero sub-level sets E1(1)

and E2(1) of these two barrier pairs if Q1 � (1−ε2)2

ε2
0
·Q2

and Q2 � (1−ε1)2

ε2
0
·Q1.

Proof: See Appendix B.
Line 11 in Algorithm 2 checks the condition in Propo-

sition 2. Notice that this condition guarantees the safe
transition between (Qnear,Knear) and (Qatt,Katt) in both
directions. Therefore, although the graph is initialized from
af and expanded toward a0, we can finally extract a sequence
of barrier pairs which plan safe robot trajectories from a0 to
af and from af to a0.

B. Human Intention Inference

Based on the concept of Boltzmann rationality [14], [15],
we propose our human intent inference method for interpret-
ing the human input w in the shared autonomy. Boltzmann
rationality formalizes intent according to a variable that
quantifies the value of the human’s actions. In particular, it
states that a rational human takes an action with probability
proportional to the exponentiated value of that human action.
Therefore, an action with higher value is more probable to
be chosen by the human.

In the setting of robotic manipulation considered in this
paper, we define the value of the human’s action based on
how well the human force w aligns with the direction toward
the human’s goal. Let a denote the human’s goal, xt denote
the position of the robot’s end-effector at time t, and wt

denote the human force exerted at time t. Recall that xai

is the center of a polytopic region ai in the workspace.
We define the likelihood function of exerting the force wt

conditioned on the true human’s goal a as

p(wt | a = ai) = β0 · exp(β1 · 〈wt, xai − xt〉), (29)

where β0 > 0, β1 > 0, and the value of the human’s action is
captured by the inner product of wt and the direction toward
the target region xai

− xt. The value of this inner product
indicates how well the exerted force is correlated with the
direction toward the target region. β0 is a partition function
defined as

β−1
0 =

w

w∈W

exp(β1 · 〈wt, xai
− xt〉) dw, (30)

where W is the domain of feasible human force input defined
in (15). β1 is the rationality parameter representing the
degree of human’s rationality.

Now, using the likelihood function, we can compute and
update the robot’s belief over the human’s intended target



region. Let us define the robot’s belief as

bt(ai) = p(a = ai | w0, . . . , wt) (31)

which denotes the probability of the target region being ai

given the history of human’s inputs. Initially, the system
starts with a uniform belief, i.e., b0 ∼ unif{1, no}. Then,
we can update the belief using the Bayes’ theorem

bt(ai) =
bt−1(ai) · p(wt | a = ai)∑no

j=1 bt−1(aj) · p(wt | a = aj)
, (32)

where p(wt | a = ai) is computed according to (29).
At time t, the robot’s belief is used to select the sequence

of barrier pairs that carry out the task of safely going to the
estimated target region â(t) calculated as

â(t) = arg max
i∈{1,2,...,no}

bt(ai), (33)

which has the highest probability of being the human’s
intended goal.

V. EXAMPLE

In this section, we demonstrate the proposed control
framework through a simulation of a 2-link manipulator
robot with an equal length of 0.75 m for each link, a mass
of 2.5 kg located at the distal end of each link, and a torque
limit of 25 N ·m for each joint. Fig. 2 shows the polytopic
regions in the workspace of the robot end effector, where
a1, a2, and a3 represent the desired task regions, a4, a5, and
a6 represent obstacle regions, and a7 represents the region
where the robot’s base is located.

The manipulator robot starts from an end-effector position
in a1. A human operator decides whether to apply a 1 N
force to the end-effector during the simulation. The human
operator chooses the direction of the 1 N force from 8
different possible directions through a keyboard.

A. Barrier Pair Synthesis

We use Algorithm 2 to build barrier pair sequences which
connect between a1, a2, and a3 (Fig. 4.a-c). Barrier pairs c1,
c2, and c3 are in the middle of the sequences from a2 to a3,
from a3 to a1, and from a1 to a2, respectively. Sometimes,
the inference of the human target region may change and
result in the barrier pair sequence currently executed by the
robot to be invalid. Therefore, we also use Algorithm 2 to
connect between c1, c2, and c3 (Fig. 4.d-f) such that the robot
can freely switch between the correct barrier pair sequences
without going through any undesired regions. Fig. 3 shows
the transitions between a1, a2, a3, c1, c2, and c3.

B. Simulation

The video of this simulation is available at https://
youtu.be/xTprU0jMT8w.

The simulated manipulator robot uses the measurement
of the 1 N force to infer the human operator’s desired
goal region. As the video shows, the initial force input
from the human operator is sometimes ambiguous because
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Fig. 3. A finite state machine indicates the possible transitions between
a1, a2, a3, c1, c2, and c3.

it can point to multiple potential goal regions. However,
the proposed human intention inference method is able to
successfully recover the intended goal fast enough such that
the manipulator robot does not move its end-effector to an
incorrect goal region.

VI. DISCUSSION

In [11], the transition between two barrier pairs in a BP-
RRT graph is unidirectional, so it is hard for the robot to
return to its former location or switch between different
barrier pair sequences. In this paper, we resolve this issue
by enforcing the condition in Proposition 2. This condition
is checked after the barrier pair synthesis because Qnear �
(1−ε2)2

ε2
0
·Qatt in line 11 of Algorithm 2 is a non-convex LMI

constraint and cannot be included in the convex optimization
problem defined in (28). However, this also means Qatt �
(1−ε1)2

ε2
0
· Qnear in line 11 of Algorithm 2 is a convex LMI

constraint which can be potentially added to our barrier pair
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synthesis problem.
In the provided example, we create three additional barrier

pair sequences (Fig. 4.d-f) to connect the midway barrier
pairs c1, c2, and c3 such that the robot’s end-effector
can safely switch between the three original barrier pair
sequences (Fig. 4.a-c). But this strategy also creates more
barrier pair sequences than necessary. The number of barrier
pair sequences will increase dramatically if we consider
more polytopic regions in Fig. 2 as the possible human
desired regions. A potential approach to resolve this issue is
considering all possible human desired regions in one barrier
pair sampling algorithm and creating a roadmap [18] instead
of just one sequence of barrier pairs.

APPENDIX

A. Proof of Proposition 1

Let us define z , [q̃>, ˙̃q>]>. Based on the matrices
defined in (25), (26) and (27), (10) can be expressed as

ż = Ā1z + B̄u
1u + B̄w

1 w + Ā2pz + B̄u
2pu + B̄w

2 pw (34)

where

pz = ∆qz, qz = Ā3z, (35)
pu = ∆qu, qu = Bu

3u, (36)
pw = ∆qw, qw = Bw

3 w. (37)

For barrier function B = z>Pz−1 with controller u = Kz,
the time derivative of B is

Ḃ =


z
w
pz
pu
pw


>


(Ā1 + B̄

u
1 K)

>
P + P(Ā1 + B̄

u
1 K) ? ? ? ?

B̄
w>
1 P 0 ? ? ?

Ā
>
2 P 0 0 ? ?

B̄
u>
2 P 0 0 0 ?

B̄
w>
2 P 0 0 0 0




z
w
pz
pu
pw

 .

(38)
In addition, we have

w>w ≤ w̄2, (39)

z>Pz ≤ ε2
0, (40)

for the norm-bound human input w and the residue set {z |
B ≤ ε2

0 − 1} of the barrier function.

Using the S-procedure, we can combine (35), (36), (37),



(39), (40), and Ḃ ≤ 0 intoX̃11 ? ?

X̃21 X̃22 ?
0 0 −αε2

0 + αww̄2

 � 0. (41)

where

X̃11 =

[
(Ā1 + B̄u

1K)>P + P(Ā1 + B̄u
1K) + αP PB̄w

1

B̄w>
1 P −αwI

]

+

 Ā3 0
Bu

3K 0
0 Bw

3

> λxI 0 0
0 λuI 0
0 0 λwI

 Ā3 0
Bu

3K 0
0 Bw

3


(42)

X̃21 =

 Ā>2 P 0
B̄u>

2 P 0
B̄w>

2 P 0

 (43)

X̃22 =

−λxI 0 0
0 −λuI 0
0 0 −λwI

 (44)

Without loss of generality, we can let αw = α
ε2

0

w̄2 such that
(41) becomes [

X̃11 ?

X̃21 X̃22

]
� 0 (45)

which is equivalent to (21) for µx = 1
λx

, µu = 1
λu

, µw =
1
λw

, and Q = P−1.

B. Proof of Proposition 2

Let us can define a vector norm function

‖?‖Q1 ,
√
?>Q−1

1 ? (46)

based on the quadratic part in the barrier function of
(Q1,K1). Because equilibrium z2 of (Q2,K2) is on hyper-
surface of E1(ε1), we have

‖z2 − z1‖Q1 = ε1. (47)

Suppose z′1 is a point on the hyper-surface of E1(1), we
have

‖z′1 − z2‖Q1 + ‖z2 − z1‖Q1 ≥ ‖z′1 − z1‖Q1 = 1 (48)

because of the triangle inequality of ‖?‖Q1
. Based on (47)

and (48), we have

‖z′1 − z2‖Q1
≥ 1− ε1 (49)

which is equivalent to

{z | (z− z2)>Q−1
1 (z− z2) ≤ (1− ε1)2} ⊆ E1(1). (50)

If Q1 � (1−ε2)2

ε2
0
·Q2, we have

E2(ε0) ⊆ {z | (z− z2)>Q−1
1 (z− z2) ≤ (1− ε1)2}. (51)

Combining (50) and (51), we have E2(ε0) ⊆ E1(1). If the
robot starts from any states in E2(1), it safely converges to
a state in E1(1) using barrier pair (Q2,K2).

Similarly, we have E1(ε0) ⊆ E2(1) if Q2 � (1−ε1)2

ε2
0
·Q1.
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