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ABSTRACT: Identifying an entanglement island requires exquisite control over the en-
tropy of quantum fields, which is available only in toy models. Here we present a set
of sufficient conditions that guarantee the existence of an island and place an upper
bound on the entropy computed by the island rule. This is enough to derive the main
features of the Page curve for an evaporating black hole in any spacetime dimension.
Our argument makes use of Wall’s maximin formulation and the Quantum Focusing
Conjecture. As a corollary, we derive a novel entropy bound.
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1 Introduction

1.1 Entanglement Wedges and Islands

The quantum-corrected [1], covariant [2] Ryu-Takayanagi [3] (RT) prescription com-
putes the CFT entropy of a boundary region in terms of a dual asymptotically AdS
bulk spacetime. Originally an ad hoc proposal, it follows under certain assumptions
from a Euclidean gravitational path integral [4-8]. This derivation implies that the RT
prescription is not tied to the AdS/CFT correspondence but can be evaluated in any
spacetime M.

Indeed, RT yields the Page curve [9] for the entropy of the bulk radiation emitted
by a black hole [10, 11]. The bulk state and geometry are treated semiclassically. In
this approximation, the radiation is thermal [12], and its von Neumann entropy S(R)
increases monotonically, implying information loss [13]. Using the same semiclassical
solution, the RT proposal computes the radiation entropy differently, as the generalized



entropy! of the entanglement wedge of the radiation, E(R):
S(R) = Sgen|E(R)] . (1.1)

The bold-face notation [15] distinguishes the (presumably correct) entropy computed
by RT from the entropy S(R) computed directly from the semiclassical radiation state
(See [16, 17] for a proposal to reconcile the bold and unbold states.)

The original RT prescription defines an entanglement wedge for regions on the
conformal boundary of AdS. In the present context, R is a bulk system, and the en-
tanglement wedge must be defined as follows [17]:

1. E(R) =I1UR, where I C M;
2. Sgen(I U R) is stationary under any local variations of the boundary surface 01
3. among all such regions globally, I yields the smallest Sgen( U R).

The above definitions apply if R is a nongravitating system external to M; in
asymptotically AdS geometries the radiation can be extracted into such a system [10,
11]. We now turn to the case where R is a weakly gravitating region inside the space-
time. For example, R may be a distant region occupied by Hawking radiation in an
asymptotically flat or AdS spacetime (see Ref. [16] for a detailed setup).

Physically, one expects the RT prescription for a weakly gravitating region to reduce
to that for a nongravitating system, Eq. (1.1), and we shall assume this here. R
resides in a weakly gravitating region far from any potential island I, so 0I N R = @,
where an overbar denotes topological closure. As before, stationarity of Seey is required
only under variations of 91, not of OR. (This can be implemented in a path integral
derivation [18].) Thus, the definition of E(R) is essentially unchanged.

However, in the presence of gravity, it is simplest to work with the generalized
entropy of the region R (a cutoff-independent quantity), so we add its boundary area
to both sides of Eq. (1.1):

Sgen(R) = Sgen[E(R)] . (1'2)

It is easy to derive the Page curve, at least approximately, if one ignores condition
2. We will now summarize this incomplete argument, before discussing how it can be
completed.

'For a partial Cauchy surface X C M, Sgen(X) = Area[0X]/4Gh + S(X), where O denotes the
boundary of a set, and S(X) is the renormalized von Neumann entropy of the density operator of the
quantum field theory state reduced to X. See the appendix in Ref. [14] for a detailed discussion of
this quantity.
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Figure 1. Left: evaporating black hole; right: its Page curve. After the Page time, the
semiclassical entropy S(R) of the Hawking radiation in the asymptotic region R exceeds the
Bekenstein-Hawking entropy of the black hole, Aj/4Gh. The “Hawking partners” in the
black hole interior purify R. (Dashed lines indicate entanglement.) Therefore, adjoining I
to R decreases the generalized entropy Sgen. However, islands must have stationary Sgen.
Solving for this condition exceeds present analytic control over the entropy. The island finder
presented here sidesteps this obstruction.

The Page time tp,g is defined as the time when the black hole and radiation
entropies are equal in the semiclassical analysis:

_ An(trage)

S[R(tpage)] = —Ch (1.3)

Let I(t) be the black hole interior at time ¢ (see Fig. 1). The Hawking “partners” in

A

I(t) purify the radiation R(t) emitted so far; hence

An(t)
e

SeenlI(t) U R] ~ (1.4)
Before the Page time, this is greater than S(R) by definition, so I is not a viable island
candidate; one finds that I(t) = @, E(R) = R, and S(R) = S(R). This corresponds

to the rising part of the Page curve, where it agrees with Hawking’s curve. But after

~

the Page time, Seen[I(t) UR] < S(R) by Egs. (1.3) and (1.4). Thus, the inclusion of an
island I(t) ~ I(t) # @ is favored, and we have S(R) = S(I U R) ~ A,/4Gh. As the
black hole evaporates and its horizon shinks, this yields the decaying part of the Page
curve required by unitarity.



The Page curve result has been extended to asymptotically flat spacetimes [19, 20],
settings with two layers of holography [21, 22], and eternal black holes [15]. Entan-
glement islands can also appear in cosmology, where their significance is less obvi-
ous [23, 24].

1.2 Summary and Outline

Our brief summary of the Page curve result has a major gap. We explained why
condition 3 (global minimization of Sge,) favors inclusion of the black hole interior
I(t) in E(R) after the Page time. However, we did not show that condition 2 (local
extremality) can be satisfied by some deformation of I(¢) small enough to preserve
condition 3.

One way to fill this gap is to find I(¢) exactly, and to verify condition 2. However,
explicit solutions of the quantum extremality condition have been found only in 1+ 1
bulk dimensions [11, 15, 21}, or in toy models of higher-dimensional black holes [10].
The difficulty lies in computing the von Neumann entropy S(/ U R). This depends on
the detailed state of the dynamics of the radiation fields, including modes with nonzero
angular momentum, and their interactions. Even free fields scatter nontrivially in a
black hole background, placing an exact calculation out of reach.

In Sec. 2, we develop an alternative way to ensure that condition 2 holds. We show
that the existence of a suitable island I follows from simple sufficient conditions that are
easy to verify:® Let I' be a region that (i) satisfies condition 1, Sgen(I'UR) < S(R), and
suppose that (ii) the generalized entropy of I' U R increases under any small outward
deformation of I, or decreases under any such deformation. Then there exists an island,
I # @; and moreover

S(R) = Sgen(I UR) < Sgen(I' UR) . (1.5)

We will illustrate in a number of examples that finding a suitable I’ is not difficult;
in particular, it suffices to understand the scaling of corrections to simple models of
the entropy. Moreover, the upper bound (1.5) is powerful enough to establish the main
features of the Page curve for an evaporating black hole.

In Sec. 3, we consider a different but related problem that yields to a similar
analysis. We consider a spacetime and (internal or external) reference system R in a
pure state. We show that the true entropy S(R) cannot exceed the generalized entropy
of appropriate bulk regions. For example, if R is external, and M is an evaporating

2Ref. [10] presents an elegant existence argument that establishes an island in the setting of an
evaporating black hole. It makes use of properties of the event horizon and is inequivalent to the more
general argument presented here.



Figure 2. Island finder. Suppose that I’ U R is quantum normal (top) or anti-normal
(bottom). Then the generalized entropy of I’ U R decreases along the dashed lines to I'cy.
An island I with even smaller generalized entropy Sgen(/ U R) must exist on the maximin
Cauchy slice X. If Sgen(I’ U R) < S(R), the island cannot be empty.

black hole spacetime, an upper bound on S(R) is furnished by the generalized entropy of
the bulk region that can be probed by an asymptotic observer (the black hole exterior).

2 Sufficient Conditions for Islands

In this section we identify sufficient conditions for the existence of an island. In Sec. 2.1
we begin with the case of an external reference system, R N M = @. In Sec. 2.2 we
allow R to intersect with M. In Sec. 2.3 we consider various examples in which our
conditions easily establish the presence of islands; in particular, we show that they
suffice to derive the Page curve.

2.1 External Reference System

Let M be a semiclassical spacetime which together with a reference system R is in a
pure state. We take R to be external to M. For definiteness, we assume that R is
nongravitating; otherwise, simply substitute S — Sgen When the argument contains R.

Suppose there exists a partial Cauchy surface I’ C M satisfying the following



conditions:

(i) Sgen(I'UR) < S(R) ; (2.1)
KO,['UR] >0, ("O,[I'UR] <0 ;

(17) or (2.2)
kO,['UR] <0, (*0,['UR] >0,

where © is the quantum expansion one-form [1, 14| and k and ¢ are the outward and
inward future-directed null vectors normal to dI’. Thus, for example, kO ,[I' U R, y]
is the rate of change of Sgen, per unit transverse area and unit affine parameter length,
as I' U R is deformed outward along the future-directed null geodesic orthogonal to I’
at y. We drop the argument y when an equation holds for all y.

The first condition states that adjoining I’ to R decreases the entropy, even as the
Bekenstein-Hawking entropy of I’ is included. The second, Eq. (2.2), says that I’ U R
is quantum normal (its generalized entropy does not decrease under any small outward
deformation of I') or quantum anti-normal (the opposite).

We will now show that these conditions imply the existence of a non-empty island
region I. Our proof uses the maximin construction of the HRT surface [25], which
we assume extends to a quantum maximin prescription [26]: on every Cauchy surface
of M, one finds the region /” that minimizes Sge,(I” U R). (Note that I” may be the
empty set.) One then maximizes the same quantity over all Cauchy surfaces of M. The
island [ is defined to be the region I” that achieves this maximum. (This is expected
to exist [25, 26].)

Note that we define I as an achronal region; hence it is non-unique. Similarly, the
maximin Cauchy slice ¥ is non-unique. The relevant unique object is the domain of
dependence D(I). (We ignore the degenerate case where there are two islands with
identical generalized entropy but different D.) Any other Cauchy slice of D(I) will be
an island if [ is, though not every Cauchy slice of D(I) will be part of a maximin slice
3.

Our goal is to show that / # @. In the normal case, k*O,[I' U R] > 0, we define

I'=D(I')ny, (2.3)

as the representative of I’ on ¥. In the anti-normal case, k#©,[I' U R] < 0, we define
the representative instead as

I'=JI)ny, (2.4)

where J denotes all points that can be reached from I’ along a causal curve (the future
and past of I'). In either case, note that I’ is obtained from I” by deforming along



an orthogonal null congruence with initially negative quantum expansion. We assume
the Quantum Focussing Conjecture (QFC) [14], that the quantum expansion cannot
increase along a null shape deformation. This implies that

Sgen(I' UR) < Syen(I'UR) . (2.5)
Since X is the maximin Cauchy slice,

Sgen(I' UR) > Sgen(IUR) . (2.6)
Combined with Eq. (2.5), this implies®

Sgen(I' UR) > Sgen(I U R) . (2.7)
Using the assumption in Eq. (2.1), we get

Sgen(I U R) < Syen(R) . (2.8)

Therefore, we conclude that I # &.

2.2 Distant Reference System

In Section 2.1, the reference system R was external to the spacetime M. We will now
allow a system that is wholly or partially inside the spacetime: RN M # &.

In order to generalize our island finder to this setting, we shall require that there
exists a partial Cauchy slice Iy spacelike to R such that Iy U R is a quantum normal
region with respect to deformations at 0ly. That is, we require

Iyc M- JR), (2.9)
k"O,[IyUR] >0, (2.10)
"Iy UR] <O0. (2.11)

where as before an overbar denotes closure. As before, ©,[/y U R] is the quantum
expansion one-form, and k* and ¢* are future-directed null vectors fields in the normal
bundle of 0l in the outward and inward directions respectively.

For example, these conditions will be satisfied when I is the interior of a sufficiently
large, approximately round sphere in an asymptotically flat spacetime; and R is the

3This intermediate result is closely related to corollary 16b of [25]. A simple application of our
argument to asymptotically AdS spacetimes yields the following result: given a partial Cauchy slice
A on the asymptotic boundary of AdS, let X be the RT surface associated to A with homology slice
H. Now, consider another surface X’, homologous to A with homology slice H'. If H' is a quantum
normal or anti-normal region, then Sgen(H) < Sgen(H').



exterior of a slightly larger sphere concentric with the first, or any subsystem thereof
(such as the Hawking radiation emitted by a black hole). Note that we do not require
that R be weakly gravitating, but in many examples of interest this will be the case.
Also, we do not require that Egs. (2.10) and (2.11) hold at OR.

Now, suppose there exists a partial Cauchy slice I’ C D(Iy) satisfying the conditions
(2.1) and (2.2). That is, I' U R is quantum normal or anti-normal, and adjoining I’
to R reduces the generalized entropy of R. Then there exists a non-empty quantum
extremal region I C D(Iy) satisfying Syen(1 U R) < Sgen(R).

Note that this conclusion is weaker than in Sec. 2.1: I need not globally minimize
Sgen(I U R) among all eligible regions, since we are restricting our search to a subset of
M. However, the true entanglement wedge can only have lower entropy, so Sgen(f UR)
provides an upper bound. Note also that when I’ U R is quantum normal, we can set
Iy = I, so there is no need to identify a larger I, region.

Proof, part I The proof strategy is similar to that in Section 2.1, except that we
wish to restrict our search to the closed set D([).* We will first assume strict version
of conditions (2.10) and (2.11):

kO ,[I,UR] >0, (2.12)
"O,[I,UR] <0 , (2.13)

Later, we will demonstrate how to relax this assumption back to conditions (2.10) and
(2.11).

Let I be the maximin region of D(I;)UR, and let X be a Cauchy surface of D(I) on
which / minimizes the generalized entropy of IUR among all subregions of 3. Without
loss of generality, we may take I C ¥ since any Cauchy surface of D(f ) is an equally
good maximin region, we set I — XN D(I). As in Ref. [25], we assume that I is stable:
any nearby Cauchy surface ¥’ obtained by infinitesimal deformation of ¥ contains a
locally minimal region I infinitesimally close to [ with Sgen(I' U R) < Syen(I U R).

It immediately follows from the analysis of Sec. 2.1 that

Sgen(I U R) < Syen(R) . (2.14)

We will now show that 81 N dD(Iy) = @. This precludes the (unwanted) possibility
that I U R is maximin but not locally stationary. It follows that I U R is a quantum
extremal region [25].

4A maximin procedure restricted to entanglement wedges of AdS without reflecting boundary
conditions was considered in [27]. See also Appendix B of [28] for a related discussion.



0D(Iy) is the disjoint union of three sets: 0ly, and two null hypersurfaces N, and
N_j that lie in the future and past of I respectively. The latter sets are generated by
future and past-directed null geodesics orthogonal to 01; in the inward direction which
end at caustics or self-intersections [29]. Let ¢ (k*) be the normal vector field to N,
(N_i) obtained by parallel propagation of ¢#|y;, (k*|az,)-

Let ¥ be a Cauchy surface of M that intersects each null generator of N,, and
N_j at most at one point. Let Xy = ¥ N D(ly). By Egs. (2.12), (2.13), and the
QFC [14],

KO, ENUR;pl >0 forallpe N_,naoly; (2.15)
'O, [ENyUR;pl <0 forall pe Nyynoly, (2.16)

Suppose for contradiction that there exists a point ¢ € 0D (1) N dI. The generator
of 0D(Iy) that contains ¢, and hence its tangent vector ¢ or k*, will be normal to oI
at q. (If ¢ € 0Iy, this statement holds for either generator emanating from ¢.) Since
Ny (N_y) is nowhere to the past (future) of I, theorem 1 in Ref. [30] implies

kO [IUR;q >0 forqe NNl ; (2.17)
W@M[f UR;q) <0 forqge Nynoly . (2.18)

Suppose first that ¢ € 9l. In this case the above expansions imply that a small
inward deformation of I will decrease the generalized entropy, in contradiction with the
minimality of Sgen(f U R) among all subregions of the maximin Cauchy surface X.

We will now demonstrate this rigorously, using the notion of a surface-orthogonal
exponential map [29],

expg : NK =M, (p,v) = (1), (2.19)

which takes a vector v in the normal bundle N K of a smooth submanifold K at the point
p to the point at affine distance 1 along the unique geodesic through p with tangent
vector v. We will use exp to denote an exponential map in which the submanifold X
plays the role of M in the above definition.

Let #*(p) be a smooth inward-directed vector field in the normal bundle to 91,
viewed as a submanifold of . We define the continuous one-parameter family of
inward deformations of I as the regions

I(€) = int{exp,;(p, €0"(p)) : p € DI} . (2.20)
Similarly, in the manifold M we define

i(e) = I NInt{exp,;(p, ev"(p)) : p € DI} , (2.21)



where v is the push-forward of v under the embedding map of ¥ into M, and Int X
denotes the spacetime region spacelike and interior to X. For sufficiently small €, both
families are well-defined. Moreover,

Syen[I(€) U R] = Syenli(€) U R] + O(€?) . (2.22)
In M, the deformation profile v* € N dI can be decomposed as
vt = —ak? + bl* | (2.23)

where a and b are positive definite functions. Hence

d enj 7
S [d@ VRl /d:c\/ﬁ e, UR], (2.24)
€ e=0
where h refers to the intrinsic metric of &I. We now choose & = 0 outside a 6-

neighborhood of ¢ in @I. For small enough &, v*©,[I U R] < 0 in the entire 4-
neighborhood, by Egs. (2.17) and (2.18) and continuity. Hence,

dSyenlI(€) U R]
de

dSgenli(€) U R|
de

<0. (2.25)
e=0

e=0

Hence, I does not minimize the generalized entropy on Y. This contradicts our as-
sumption that [ is a maximin region. Therefore, no such point ¢ € 9I N dly can
exist:

dINdIy =@ . (2.26)

Suppose instead that ¢ € dD(Iy) — dly. In this case, minimality of Sye,(I U R) on
¥, together with Eq. (2.17) or (2.18), implies that a small deformation of 3 into the
interior of D(Iy) near ¢ will produce a Cauchy surface of I, whose minimal-Sye, region
(together with R) has greater generalized entropy than I U R. But this is impossible
if I was constructed by the maximin procedure. Again we will now aim to make this
argument rigorous.

For definiteness, we assume that ¢ € No,. (If instead ¢ € N_j, the time reverse of
our argument applies.) In any open neighborhood O(g), ¥ (and hence I) must enter
the interior, O(q) N X Nint[D(1y)] # @, or else Eq. (2.18) would violate the minimality
of Sgen(] U R) on Y. Hence the inward-directed vector field ¢ orthogonal to dI and
tangent to Iis spacelike in an open neighborhood of ¢ on dI. Moreover, ¥ must contain
the null generator segment of N, connecting 0I; to ¢, or 3 would fail to be achronal.

Let the achronal hypersurfaces ¥(€) be a smooth one parameter deformation of ¥
such that () agrees with ¥ outside a é-neighborhood of ¢ (and everywhere for € = 0).

— 10 —



D(Iy) - D(Iy) .~

4
7’ .
.

Figure 3. Maximin restricted to the domain of dependence (“wedge”) D(Ij) returns a region
I on a maximin slice . If IpUR is quantum normal, then I cannot intersect dD(I) (dashed).
Left: if I NAIy # &, then Sgen(I(€) U R) < Sgen(I U R), contradicting the min of maximin.
Right: if INAD(Iy) — Iy then Sgen(I(€)UR) > Sgen(IUR) on the deformed slice ¥(¢) violates
the max of maximin.

We also require that ¥(eq) is nowhere to the future of ¥(e;) if €; < eo. The stability

A~

assumption guarantees the existence of a smooth one-parameter family of regions I(e),

each of which locally minimizes Seen[I(€) U R] on the corresponding (e). By the max
step of maximin,

~

dSgen|1(€) U R] <

de -

For small enough ¢, there exists an infinitesimal vector field w* in the normal bundle
of &I in a neighborhood of ¢ such that

0. (2.27)

91 (€) = {exp,;(p, ew" (p) + O(e?)) : p € DI} . (2.28)
We have .
d en I 7
& [d(e) VR _ /dxﬁ w'©,[[ UR] . (2.29)
€
Since t* is spacelike, it is linearly independent of ¢, so there exists a unique decompo-
sition
wh = ctht +d(—0") . (2.30)
with ¢ and d nonnegative functions on dI that vanish outside an open neighborhood of
q. Hence R
1 ]
w = /d:r;\/ﬁ [ct'O, +d(—")0,] . (2.31)

- 11 -



The first term is positive-definite by the minimality of Sgen[f U R] on ¥; the second is
positive by Eq. (2.18). Hence

A

Seen[{ U R|

I >0, (2.32)
which contradicts Eq. (2.27). Therefore,
OINN, =, (2.33)
and a time-reversed argument implies
AINN_, = . (2.34)
Together with Eq. (2.26) this establishes that
I C int[D(Iy)] ; (2.35)

hence I is locally quantum extremal.

Proof, part II We will now discuss what happens if we relax the conditions (2.12)
and (2.13) to their non-strict versions (2.10) and (2.11). We will argue that while in
this case I might not be contained in int[D(Iy)], an island candidate still exists, i.e.,
there exists I C D(Iy) such that [ U R is quantum extremal and Sge,(1UR) < Syen(R).

Let us start with the case where there exists at least a point p € 01, where k0O ,,[1oU
R;p] > 0 and a point ¢ (p = ¢ is allowed) where ¢#©,,[Iy U R;p] < 0. Then, dI cannot
be a cross section of N_j (N,,) because then by the QFC there would be a point
r in the cross section, along the same generator as p (q), where k“@ﬂ[f UR;r] >0
(0r0,[I U R; 7] < 0). As discussed above, this contradicts maximin.

It oI only partially coincides with dD(Iy) then there must exist a point r in the
boundary of the intersection set such that in any sufficiently small neighborhood of it
dI and N_; (N,,) do not coincide. In the i — 0 limit, Lemma B of [30] implies that
there exists a point s in a neighborhood of 7 such that k#8,[I;s] > 0 (£40,[1;s] < 0).
Here, we will assume that the Lemma B of [30] continues to hold when we replace
the classical expansion with the quantum expansion.” We will then conclude that
k*0,[01 U R;s] > 0 (#0,[01 U R;s] < 0). However, s € int[D(Iy)], so a non-zero
quantum expansion at s is not allowed by maximin.

Next, we consider the case where (#©,[IyUR] = 0 (The case with k and ¢ exchanged
is similar by time-reflection symmetry). By the previous arguments, dI cannot intersect

50ur assumption is motivated by the semiclassical generalization of many similar conditions on
the classical expansion [14]. Note that if the von Neumann entropy term in the quantum expansion
is O(GHh) while the classical expansion is O(1), Lemma B trivially generalizes to the version with
quantum expansions.

- 12 —



N_j. Also, by the quantum version of Lemma B, dI cannot intersect N, only in part.
We will therefore focus on discussing the case where 01 is a cross section of N,.
Associated with any cross section L of N,,, we can define a partial Cauchy slice
Y, of D(Iy) which intersects N., at L. Let L; be the latest cross section of N,
such that any other cross section L in the past of L satisfies #0,[X;, U R] = 0.5 By
the QFC, any cross section L which is partly in the future of L; needs to contain at
least a point r at which ¢#0,[X;, U R;r| < 0. Hence, OI must be a cross section in
the past of L;. Furthermore, a maximin Cauchy slice ¥ corresponding to I cannot
intersect the future of L; as it would violate the minimality of Sgen(f U R). ¥ then
has to leave N,, in the past of L; or on L. Let Ly be the cross section at which
¥ leaves Nyy. Then, k#O,[X., U R] < 0 or else the min condition is violated. Since
k*©,[Iy U R] > 0, we expect that there exists a cross section Ls between 01 and Lo
such that k#©,[X., U R] = 0. In the classical limit in particular, we expect that the
results of [31] showing a similar existence on spacelike Cauchy surfaces can be applied
here by taking a limit of spatial Cauchy surfaces that approach N,,. Together with
stationarity along N.,, this would imply that ¥, U R is quantum extremal.

2.3 Examples

We will now present some examples where the above sufficient conditions (i) and (ii)
provide an efficient diagnostic for the existence of islands. We will require no detailed
calculations of matter entropy and its derivatives, nor will we be forced to assume
special symmetries, low dimensions of spacetime, or adopt other toy models. Our
sufficient conditions establish the existence of an island and its key properties, at the
cost of not exactly locating the island.

In a final example, we show that neither of the two sufficient conditions can be
eliminated.

Evaporating black hole after the Page time For concreteness, we pick asymptot-
ically flat boundary conditions, though our conclusion will not depend on this choice.
We furthermore assume that the black hole mostly radiates massless particles, as will
be the case if its initial mass is sufficiently large.

We consider an evaporating black hole formed in a pure state. At late times, the
spacetime will be approximately spherically symmetric. Let 7 = (A/47)'/? be the area

61f such L, does not exists, then N, is a semi-infinite stationary null hypersurface which, at least
classically, by the no-hair theorem needs to be a semi-infinite portion of the horizon of a Kerr-Newman
black hole. And since k#©,[ly U R] > 0, 0l needs to lie fully in the past of the bifurcation surface
which provides us with a classical extremal surface on N4 ,. We then expect to find a quantum extremal
region I U R such that 81 is either on or near this classical extremal surface.

— 13 —



Figure 4. Evaporating black hole after the Page time. Hawking radiation has accumulated
in R. As shown on the left, the boundary of the past of R, denoted by ro(v), intersects the
stretched horizon (shown in purple) at the sphere Ay, which together with the Aj sphere on
the event horizons reside at retarded time vs. We consider candidate regions I’ with boundary
OI' on a causal horizon spacelike to R (grey regions). The generalized second law implies that
Sgen(I' U R) increases under future outward deformations. For future inward deformations,
quantum normalcy follows from the (trivial) classical normalcy in the dark grey subregion,
which is chosen to keep quantum corrections to the expansion small. The I’ that minimizes
Sgen(I" U R) subject to these restrictions is shown in pink. Its boundary is located a Av =
rslogcy to the future of Ay, as shown on the right. We show that it provides an extremely
tight upper bound on the true entropy S(R) = Sgen(I UR) < Sgen (I’ UR) = A /AGh+ O(1).

radius of spheres. Near the horizon, the metric is well-approximated by

ds* = — (1 - Tsfj})) dv? + 2dv dr + r?d9? (2.36)
Due to evaporation, 74(v) decreases slowly with retarded time v: dry/dv ~ —O(Gh/r?).
For r > r,, the metric is well-approximated instead by the outgoing Vaidya metric [32],
but this will not be important in our analysis.

Let u be retarded time on £, and let R be the portion of .#* given by u < wy;
see Fig. 4. R is a reservoir that contains the Hawking radiation emitted until the time
up. The boundary of the past of R is given by u = uy. We will be interested in the
behavior of the metric only near the retarded time when this surface intersects the
stretched horizon r,, so it will be sufficient to set r; to that value and neglect its v-
dependence from here on. Let A, = 4772 be the area of the stretched horizon where it
meets the past of R. Let A, = 4mr} be the area of the event horizon where it intersects
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the future of A,; the areas satisfy
As = A, + O(Gh) . (2.37)

We choose v late enough so that S(R) > A, /4Gh + log c1, where log ¢; will be small
in a sense made precise below. That is, R extends to after the Page time, with a little
room to spare. We seek an I’ that satisfies our sufficient conditions while placing a
tight bound on the entropy S(R).

Let I'(r,v) be a Cauchy slice of the interior of the sphere (r,v). Since Sgen(I’ U R)
is well-defined only for achronal I’ U R, we require I'(r,v) C M — J~(R), or u > ug. In
the ingoing coordinates of Eq. (2.36), u = ug corresponds to a function r(v), defined
implicitly by v = ug + 2r.(ro), where r.(r) = r 4+ rylog(;- — 1). Near the horizon, this
satisfies

Arg(v) = ro(v) — 1, = 1 €Xp (U;T:O - 1) : (2.38)

We thus require r < ry(v) for the boundary of I'.

Quantum normalcy of I’ U R requires that the generalized entropy grows along
both of the null directions away from I’. Any future outward light-cone outside the
horizon is a null surface of constant u that reaches .#*. Hence it is a causal horizon.
The generalized second law of thermodynamics [33, 34] applies to all causal horizons.
It implies that the future outward quantum expansion at I’ is positive if 91’ is outside
the horizon. (In more general settings that are not exactly spherically symmetric, we
can accomplish the same goal by choosing 91’ to be a cut of a causal horizon.) We thus
require 7 > 1p,.

The past outward classical expansion is trivially positive: 9,4 = 8zrr. Quantum
normalcy follows if the quantum correction, 4Gh 0,.S(I'UR), is negligible, i.e., if 9,5 (1'U
R) < r/Gh. Let ¥ be a global Cauchy slice containing I’'UR and define I, = ¥—(I'UR).
By purity of the global quantum state, S(I' U R) = S(1}).

Dimensional analysis dictates that the leading divergence in the renormalized en-
tropy scales as

9,5(1) ~ O(1/p) , (2.39)

where p = 1o — r and we may assume p < r9. To see this, suppose first that the
only available scales are r and p. Terms stronger than Eq. (2.39) would be of the
form 9,S(I’) ~ r"/p" ™ with n > 0 and positive coefficient. Such a term would imply
that at fixed p, dS/dr < 0, which is not physically sensible. In the presence of an
additional mass scale m ~ h/A, an enhancement of Eq. (2.39) would have to take the
form 9,S(I’) ~ A"/p"*' n > 0. Formally, this is an enhancement for p < X, but
physically, a mass scale cannot have any physical effect in this UV regime.
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Hence, quantum normalcy is assured if we require
ro—r>012, c1>1. (2.40)
To summarize, we may consider any I’ whose boundary is in the range
rhgrgro(v)—kcl% , aa>1. (2.41)

We now minimize Sgen(I’ U R) over this range. By purity, Seen(I’ U R) = 4mr? +
4GhS(I.). Along any ingoing light-cone, the classical area decreases rapidly and Ar
only increases as we go to smaller r, so we are driven to the smallest r in the search
space, the event horizon. Scanning in the other null direction, along the event horizon,
Sgen (1) will decrease towards the past, by the GSL.

Hence we obtain the tightest upper bound on S(R) by choosing I’ to be the interior
of the event horizon, as early as is possible while maintaining Eq. (2.40). With the
boundary of I” on the event horizon, r—ry = Arg o< exp(v/2r,) by Eq. (2.38). Moreover,
at Ay, we have ro = rg and hence Arg ~ O(Gh/ry). To grow this by the factor of ¢;
demanded in Eq. (2.40), we must choose v = vs + 1 log ¢1, where vy is the v-coordinate
of A, and Aj,.

To summarize, the optimal choice of I’ is
(r,v) = (rn,vs +rploger) , > 1. (2.42)

The true entropy S(R) is upper bounded by

2

Syen(I' U R) = % +S(I) = 4% +O(logey) . (2.43)
Note that the O(Gh) area difference between the event horizon and the stretched hori-
zon is negligible. The O(logc;) term captures both the (negative) correction to the
horizon area due to evaporation since Ay, and the (positive, and larger) correction due
to the von Neumann entropy of S(I7).

We stress that this upper bound is quite tight. The correct S(R) is given by
Eq. (2.43) with O(log¢;) replaced by O(1). Recall that ¢; should be large enough to
overcome any O(1) coefficients that might enhance the von Neumann entropy in an
exact calculation. But it is itself O(1) in that sense, and logc; is even smaller. In
particular, we can always choose log ¢; < loglog(Ay,/Gh) in the semiclassical limit.

We also emphasize that exact spherical symmetry is not crucial; our argument only
relies on the scaling behavior of the relevant terms.
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Figure 5. Spatially flat radiation-dominated universe with negative cosmological constant,
purified by a reference universe (thermal Minkowski space, right). If we choose a large enough
reference region R at tyfin = 0, then the region I’ at the turnaround time ¢ = 0 satisfies our
sufficient conditions. Therefore an island I must exist.

Recollapsing flat universe Our next example was studied in detail in Ref. [24].”
Consider a radiation-dominated, spatially flat Friedmann-Robertson-Walker (FRW)
universe M with cosmological constant A, purified by a thermal state on a Minkowski
background Mg without gravity. The metric of M and Mg is

ds? = —dt* + a(t)*(dr* + r*dQ?) | (2.44)
dsyy, = —dty, + dr, + 15, d%, . (2.45)

"Ref. [24] considered a different but related question to ours: given a region I in the cosmology,
can one find a region R in the reference spacetime such that I is an island with respect to R. By
contrast, we specify a reference region R and use our sufficient conditions to establish the existence of
an island for it.
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Without loss of generality, one can set the scale factor a(0) = 1 at the turnaround time
t = 0, when da/dt = 0 and hence —A/87G = praq. A thermofield double (TFD) state
is constructed at t =0, tg = 0.

A simple implication of the TFD state suffices for the purposes of our analysis.
Consider two spatial regions, one in M at t = 0 and the other in My at tg = 0. The
von Neumann entropy of their union vanishes approximately, if they have the same
spatial coordinates. If the regions are unequal, then the von Neumann entropy of their
union will be given by the sum of the thermal entropy of the nonoverlap portions:

S = s10a(V + Vi) | (2.46)

where V and Vj are the volumes of the nonoverlap portions in M and in Mg, and the
entropy density is S;aq ~ pfﬁ. These statements receive corrections on scales below the
thermal length scale, A ~ pr_ag/ *

Now choose R C Mp to be a ball of radius rg at tg = 0, and I’ C M a ball of
radius r < rgr at t = 0. By time symmetry around ¢t = tg = 0, the region I’ U R will be

quantum normal or anti-normal. We have

72 AT Spaq 3

Seen(I' UR) — S(R) = — — ———1° . 2.47
oI UR) = S(R) = T — o, (2.47)
To satisfy our second condition, this must be negative, so we require

(2.48)

This condition on I’ can be satisfied, and hence an island I C M must exist, for a
sufficiently large reference region, rg > repit.

Going beyond spherical symmetry, we can choose R to be any convex reference
region of arbitrary shape in Mpg, and let I’ be the identical coordinate region in M.
Then I’ U R will be normal or anti-normal by convexity and time symmetry. Moreover,

AloI]
4Gh

Seen(I'UR) = S(R) = S — (Vi + O(AJORIN)) 51aa (2.49)
will be negative for any sufficiently large region of fixed shape. Any such references
region must have an island 1.

Note that I will not be the identical coordinate region to R, because of the
O(A[OI'|\) corrections to the von Neumann entropy. Moreover, in the nonspherical
case, minimization of the area term will favor a more round shape for I than for R.
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Figure 6. A time-symmetric Cauchy slice of a bag-of-gold geometry. The bag has large
entropy (grey) compared to the area of its throat, and it purifies the reference system R.
Then it is easy to find a (classically and quantum) anti-normal region I’ (pink) such that
Seen(I' UR) < S(R). Hence, there must exist an island I. I is expected to be approximately
the interior of the classically minimal surface labelled 7.

Bag of gold Next, we discuss a time-symmetric slice of a “bag-of-gold” geometry [35],
shown in Fig. 6. Its defining feature is the existence of an arbitrarily large volume of
space behind a throat (a minimal area surface) of fixed area. To construct it, we glue
the interior of a sphere of radius r; of a closed FRW universe, at the time of recollapse,
da/dt = 0, to the exterior of a sphere of the same size behind the bifurcation surface in
a maximally extended Schwarzschild spacetime [36]. The corresponding spatial metrics

are:
ds? = a(dx® + sin® xdQ?) , 0<x<x1; (2.50)

1
dS(Z)ut = <1 — %0) dr? 4+ r2dQ? | ro <r<rg, (2.51)

where in the second line we omitted the portion of the Schwarzschild metric outside of
the bifurcation surface as it will not be needed for the analysis below.

Let rg be the radius of the throat, and let y be the angle at which the metrics are
glued. The gravitational constraints imply x; > 7/2 and

asiny; =rn , (2.52)
asin®y; =g . (2.53)
The Friedmann equation implies that the energy density in the bag is

1

P = rCa (2.54)
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Figure 7. Collapse of a spherical star that is maximally entangled with a distant reservoir
R. I’ (pink) is the interior of a sphere surrounding the star at a time close to the singularity.
Hence OI' has a small area, and condition (i) can be satisfied by an arbitrarily large margin.
But I’ is quantum trapped and so fails to satisfy condition (ii). Indeed, R does not possess
any island in this spacetime.

Now suppose that the bag contains thermal photon radiation purified by a external
reference system R. The entropy density in the bag is s ~ p**, and hence

S(R) ~ (Gh)™3/4a*? . (2.55)
Let I’ be the interior of some sphere r’ between the edge of the bag, r1, and the throat,
ro; hence
"UR) ~ L 2.56
en( ~ . )

By time reversal symmetry, I’ U R is quantum normal or anti-normal. Moreover,
we can achieve S(R) > Sgen(I’ U R), by an arbitrarily large margin, by taking a large
while holding " and ry fixed. (This will only increase r1.) Hence, our conditions are
satisfied, and a nontrivial island I C M must exist.

Importantly, this construction is insensitive to the spherical symmetry that we
assumed for simplicity. It is also insensitive to the addition of perturbative matter
near the throat. Such modifications can affect the precise position of the island, which
may be very hard to determine. But so long as they are small enough, our sufficient
conditions will hold, and they guarantee the existence of an island.

Collapsing star (an example without islands) To illustrate the importance of
condition (ii), let us discuss a case for which condition (i), Eq. (2.1), is satisfied, but
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condition (ii), Eq. (2.2), is violated. Consider an Oppenheimer—Snyder spacetime: a
black hole formed by the collapse of a “star,” modeled as a spherical, homogeneous ball
of dust.

Suppose that the star is in a maximally mixed state with entropy Sg., and let
R be an early portion of #* which contains only a purification of the star (and no
Hawking radiation), giving S(R) = Sstar- We choose I’ to be the interior of a sphere just
outside of the star and very close to the singularity (see Fig. 7). Then Seen(I’ U R) =~
A(0I")/AGh. Picking Sgtar large with A(0I') held fixed, we can arrange for

1 € Sgen(I"UR) < S(R) . (2.57)

The first inequality ensures semiclassical control at 9I’. The second states that condi-
tion (i) is satisfied (by an arbitrarily large margin).

However, 01’ is a classically trapped surface, i.e. 0, < 0,0, < 0. And since 01’ is
not close to 0J~(R), we expect quantum corrections to be small: ©, = 0, + O(Gh).
Condition (ii) is therefore violated.

Indeed, there are no islands associated to R in this spacetime. To see this, note that
there are no classically extremal spheres. As in the previous example, near 9J~ (R),
quantum corrections to , can become large; but 0J~ (R) stays far from the horizon
and so has large classical (and quantum) expansion everywhere.

This example shows that condition (ii) is essential. So is condition (i), of course.
For example, suppose we chose R to be a later portion of .#*. As before, R contains
only the purification of the star, but no Hawking radiation. Since 0J~(R) gets close
to the horizon, where ©, can vanish, there will be a quantum extremal region I with
©,=0. However, this region fails to be an island because Syen(I U R) > S(R).

3 New Entropy Bound

In this section, we will show that in a globally pure state, the entropy of a reference
system R cannot exceed the generalized entropy of suitable asymptotic regions. We
consider an external reference system in Sec. 3.1, and we generalize to R C M in
Sec. 3.2. We discuss examples in Sec. 3.3.

3.1 External Reference System

Given an external reference system R, an island I C M in a semiclassical spacetime M
is defined as a region that is quantum extremal and homologous to R (i.e., 9] C M),
such that Sge,(/ U R) is minimal among all such regions. In section 2.1 we identified
sufficient conditions for I # @.
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We will now employ similar techniques to derive an entropy bound on the exact
entropy of the reference system, S(R), assuming that this is computed by the “island
formula”:

S(R) = Syen(IUR) . (3.1)

Following Ref. [21], we denote R in boldface when referring to the exact (nonperturba-
tively computed) state of the region. We write R when referring to the semiclassically
computed state. For simplicity, we will assume that the global quantum state is pure,

S(RUM) =0, (3.2)

though generalizations can easily be considered.
Let Il € M be any partial Cauchy slice of M that is quantum normal or anti-
normal:
O, >0, 0,[1] <0
or (3-3)
KO <0, '0,[1]] =0,

where k and ¢ are the future-directed null vector fields orthogonal to 9I.. We also
require that I’ is “asymptotic,” though only in the weak sense that in the conformally
compactified spacetime,

ox. C alI. , (3.4)

where ¥ is a Cauchy slice of M. That is, I, must contain the asymptotic region of M,
but it may extend deep into the interior of M. A simple example of a region I’ that
satisfies Eqs. (3.3) and (3.4) is the exterior of a sufficiently large approximately round
sphere.

Let I” be the complement of I, on some global Cauchy slice of M. By Egs. (3.2)
and (3.3), I’ U R will be anti-normal or normal. By Eq. (3.4), I’ is homologous to R.
Our notation reflects the fact that I’ shares these properties with the region denoted
I' in Sec. 2.1.

However, here we do not assume the inequality Sgen(I’ U R) < S(R), and hence
we will not be guaranteed the existence of an island I # &. This does not affect the
maximin analysis performed in Sec. 2.1: (anti-)normalcy of I’ U R implies that the true
island [ satisfies

Suen(IUR) < Sl I'UR) , (3.5)

regardless of whether I is the empty set or not. Using Egs. (3.1) and (3.2), we thus
find the entropy bound
S(R) < Syun(T1) (3.6)
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3.2 Distant Reference System

The bound (3.6) generalizes to the case where R C M, subject to appropriate modi-
fications. (It is easy to generalize further to the case where R is partly internal to M
and partly an external system.) We shall assume that gravity is negligible in R, so
that the notion of an exact state of R can be made precise. The island rule can then
be adapted to compute the generalized entropy of R:

Sgen(R) = Sgen({ UR) , (3.7)

where I is an island (possibly the empty set), as described above. The relevant ho-

mology rule is I C int[M — J(R)], where J denotes the union of the causal past and
future.

We again assume global purity, S(M) = 0. To obtain a bound on Sg,(R), we
consider a spatial region I/ that satisfies the following conditions (see Fig. 8):

e For I’ to be of the correct homology type, without directly referring to I',® we re-
quire that I/ is adjacent to R in M; and in the conformally compactified spacetime
M, I! contains any conformal boundary portions not covered by R:

oI' > 9(X — R) , (3.8)
where ¥ O R is a Cauchy slice of M, and R denotes the closure of R in M.

e /! is quantum normal or anti-normal under shape deformations of its inner bound-
ary in M, i.e., at (OI. —OR)NM .

e I/ contains a region /. that is quantum anti-normal at 0y, — OR. (Normal is
not allowed in this criterion.)

Global purity implies that I’ U R will be quantum normal or anti-normal at dI’. It
also guarantees quantum normalcy of Iy U R, where Iy = ¥ — [ .— R and ¥ is a Cauchy
surface that contains I . and R. By Sec. 2.2, the maximin procedure restricted to the
wedge D(I,) will return a region I C int[D(Iy)] that satisfies the homology rule and
has stationary Sgen(l U R) under shape deformations at al.

Note that [ may be empty; and Syen(/ U R) need not be globally minimal, since
the true island I may not be contained in D(ly). However, we have

Syen(IUR) < Syen(IUR) , (3.9)

80Qur goal is to formulate a bound in terms of quantities that are accessible to an asymptotic
observer.
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Figure 8. The entropy S(R) of an external or distant reference system R must be less than
the generalized entropy of any region I, that is normal or anti-normal (blue).

The quantum (anti-)normalcy of I” implies
Sgen(I U R) < Sgen(I' UR) . (3.10)
Using Eqgs. (3.7) and global purity, we thus find the entropy bound
Sgen(R) < Sgen (1)) . (3.11)

Recall that 0I/ D OR, so in any situation where the generalized entropy can be
separated into a regularized entropy and Bekenstein-Hawking term, the area terms
associated with OR will cancel, and Eq. (3.11) reduces to Eq. (3.6).

3.3 Examples and Discussion

The bound (3.11), and its external R version (3.6), are powerful and versatile. They
require knowledge only of R and I/, but not of the rest of the spacetime M. The only
nontrivial condition, Eq. (3.3), can be easily verified. Often the quantum expansion is
dominated by the classical expansion, so that it is easy to check whether I’ is quantum
(anti-)normal; yet the bound remains nontrivial.

For example, by the generalized second law, causal wedges of a boundary region
must be quantum anti-normal.® This follows both for asymptotically anti-de Sitter and
flat spacetimes. When R is disjoint from the conformal completion of M, this ensures
the quantum anti-normalcy of 1.

The requirement that R and I’ be spacelike separated prevents the application of
the GSL when R is part of the conformal completion of M. For instance, suppose
that R is a subset of .. The GSL can still be applied to any future causal horizon
associated to . regions including R, guaranteeing k*©, > 0. However, all past

9Note that the causal wedge is not in general a domain of dependence. The region that is always
quantum normal is the maximal Cauchy evolution of the causal wedge.
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Figure 9. Not a Schwarzschild black hole. This could be a highly dynamical spacetime far
from a stationary black hole solution. I/ is is quantum anti-normal, so S(R) < Sgen(f.). In
the left example, R is on the conformal boundary. Quantum anti-normalcy follows from the
GSL (future null congruence), and from the classical area theorem (past null congruence) if
quantum corrections are small. In the right example, R is inside the spacetime. Quantum
anti-normalcy follows by the area theorem and smallness of corrections if 9I] stays far enough
from the horizon.

horizons will intersect the past of R, blocking the application of the GSL to I/ along
them. To establish that ¢#0O, < 0, we can use the classical area law on past horizons,
so long as quantum corrections to /0, is negligible (see Fig. 9, left).

More generally, when R is a subset of M, the classical area law ensures condition
(3.3) if the quantum corrections to both expansions are suppressed (see right Fig. 9).
This causal wedge method for finding I/ suggests a nice physical interpretation of I] as
a region that can be explored geometrically by asymptotic observers.

The bound thus tells us that S(R) cannot be greater than the generalized entropy
of any causal wedge region (subject to quantum effects on the expansion remaining
negligible). If I’ is a whole Cauchy surface ¥ of M, this reduces to the trivial statement
that S(R) < S(X). (In this case, by purity, equality must hold.) But if I/ has a
boundary in M, the bound is nontrivial. Indeed, a quantum anti-normal causal wedge
can reach very close (O[(GR)Y/?] distance) to a black hole horizon. For a black hole
after the Page time, this means that bound becomes nearly saturated. The bound then
implies the nontrivial statement of unitarity.

The bound simplifies if I contains little matter entropy, so that

, A
Sgen( C) 4Gh Y (312)
In this case,
A
<
S(R) S o - (3.13)
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The entropy deliverable to an asymptotic observer by a spacetime causally explored to
an inner boundary of area A cannot be greater than A/4Gh.
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