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ANNSs in Edge Computing
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Abstract—Energy efficiency and delay time in the Internet of Things (loT) system are becoming increasingly significant, especially for
the emerging memristor-based crossbar arrays for smart edge computing. This article aims to find a solution for increasing energy
efficiency and reducing the delay time, thereby improving the performance of ANNs in edge computing systems. The Number of Pulses
Compression (NPC) method is proposed to optimize pulse distribution, energy consumption, and latency by compressing the number
of pulses in every weight update step. The NPC method is implemented and verified in a memristor-based hardware simulator based
on the MNIST and CIFAR-10 dataset under different circumstances of variations, failure rates, aging effects, architectures, and
algorithms. The experimental results show that the NPC method can not only alleviate the uneven distribution of writing pulses but also
save the writing energy of the crossbar array by 7.7-26.9 percent and reduce the writing latency by 30.0-50.0 percent. Additionally, the

timing regularity of the system is enhanced by the NPC method.

Index Terms—Atrtificial neural networks (ANNs), memristor, weight update, energy consumption, latency, compression, edge computing,

Internet of Things (loT)

1 INTRODUCTION

NDER the explosive development of the internet of things

(IoT), the edge computing is facing unprecedented chal-
lenges including the limited energy budget, large system
latency, and shortage of storage and computing resource.
Especially for the edge AI (Artificial Intelligence), the required
real-time response and online-learning in various scenarios
are translated to urgent demands on high-speed and power-
efficiency hardware components [1], [2].

As complementary metal-oxide semiconductor transistor
(CMOS) technology approaches the end of process scaling,
the issues of the energy consumption and speed impact the
development of the IoT [3], [4]. Memristor device is a prom-
ising candidate to complement and/or replace traditional
CMOS (at least in some applications) due to advantages
including read /write latencies in the order of 1’s to 100’s of
nanoseconds, and energy dissipation of few p]J per bit [5],
[6], [7]. Memristors were theoretically postulated by Chua
in 1971 [8] and later were physically manufactured by Hew-
lett-Packard in 2008 [9]. A memristor is a device with three
simple layers that can not only achieve desirable device
properties such as sub-10 nm feature sizes, sub-nanosecond
switching speed long write-erase endurance, and nano
amperes programming energy, but also exploit multilevel
conductance states by external incentive [8], [9], [10], [11],
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[12]. Because of these metrics, memristors are suitable for
biologically inspired computing [13], [14] - neuromorphic
computing, for example, where programmable memristive
crossbar arrays have been considered as a critical enabler to
achieve a small area footprint and high-density structure in
different types of neural networks in the edge Al, such as
convolutional neural network (CNN) and deep learning
neural network (DNN) [10], [11], [12]. Memristive crossbar
arrays could break the bottleneck of the speed and energy
efficiency in vector-matrix multiplication which is very
resource-consuming and satisfy the high desire for IoT
applications by achieving orders-of-magnitude improve-
ment in energy efficiency and performance [1], [2], [3], [10],
[11], [12].

Similar to CMOS circuits, the high-performance function-
ality of a memristive crossbar array that is utilized in neural
network translates into high power densities, high operat-
ing temperatures, and low reliability [10], [12], [15], [16]. If
the memristive crossbar array runs at the edge for an IoT
system, overpower and overheat will reduce the effective-
ness and lifespan of components. Furthermore, learning
algorithms, usually routinely considering accuracy nowa-
days, rarely pay attention to energy efficiency and latency.
In fact, uneven weight updates for different memristors
caused by algorithms inevitably leads to local overlarge
energy consumption. Also, the writing process of a memris-
tor generates much more energy than the reading process.
Therefore, most of the energy during the training process of
a memristive crossbar array comes from the writing for the
weight update [17]. Consequently, the energy consumption
becomes a significant contributor to decline system reliabil-
ity, deteriorates memristors’ retention and endurance, and
causes severe timing uncertainty [18], [19], [20]. Therefore,
investigating the weight update patterns and the related
energy consumption in the memristor arrays is critical to
ensure high performance in the edge computing.
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Recently, researchers proposed several techniques to
improve energy efficiency and system latency from different
levels. Dual-element memristors are used to achieve low-
power memory design [21]. A memristor-based predictor is
designed to reduce the energy consumption comparing to the
digital counterpart [22]. The hybrid crossbar architecture for
improving the performance of energy efficiency and system
latency is studied in [23]. In [24], the error correcting code is
proposed to relax the Bit Error Rate requirement of a single
memory to improve the write energy consumption and
latency for both the CMOS based and cross-point based mem-
ristor resistive random-access memory (ReRAM) designs.

In this paper, we focus on improving the energy efficiency
and system latency for the memristor arrays in multilayer per-
ceptron (MLP) and convolutional neural network (CNN) by
compressing pulses number for weight updates. An overview
of the pulse distribution of the memristor-based crossbar
array and their relation to the energy consumption is pro-
vided. We propose a method that reduces the energy con-
sumption during the memristors” weight updating process,
reduces the writing latency, and improves timing regularity,
thereby enhancing the performance of the edge computing in
IoT systems. Specifically, this paper makes the following
contributions:

1) A low cost method to reduce the writing energy in
the memristor-based online learning for the edge
computing: An effective hardware-based method is
proposed that we call Number of Pulses Compres-
sion (NPC) with low circuit overhead. The proposed
method will compress the number of pulses during
updating the conductance of a memristor.

2) A mechanism for smoothing learning process, thereby
avoiding extra energy consumption and writing
latency in the edge computing: By applying the NPC
method, the weight updating fluctuation is reduced.
The writing latency that is decided by the maximum
number of the pulses is drastically reduced by the
compressing mechanism of the NPC. Additionally,
the timing regularity of the system is improved.

3) The nonlinearity and variations analysis: To investi-
gate the effectiveness of the NPC method based on
the actual memristive devices, the nonlinear prop-
erty of memristor and four variations that include
device-to-device variation, cycle-to-cycle variation,
maximum/minimum conductance variation, and
on/off ratio variation are considered in experiments.

4) Thorough evaluation: We evaluate the proposed
method based on the standard image classification
tasks [25] and the hardware-based online learning
simulator, NeuroSim+ [26], enabling a model under
three failure rates, different network architecture,
and aging effect.

2 BACKGROUND

2.1 ANNs and Weight Update

ANNEs transform inputs to desired outputs by feedforward
neural networks that comprise many layers. Each node in the
network is a neuron that takes a weighted sum of the outputs
of the prior layer, and then transmits the sum to the next layer.
The main work of a training ANN is to learn the feature that is
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Fig. 1. Hardware implementation of neural networks using memristor
crossbar. V;, Gy, and |; represent the input signal in ith row, the conduc-
tance of the memristor in jth column and tth row, and the output current
that represent the dot product result of V and G, respectively. Conduc-
tance of memristor is regulated with the number of pulses. The LTP/LTD
is triggered by positive/negative pulses [28].

represented by weight from a large volume of training data.
During the training process, weight is updated in each itera-
tion by weight change that is calculated based on an algorithm.

2.2 Memristive Crossbar Array

The property of the memristive device enables it to imple-
ment ANNSs [9], [27]. Memristive crossbar array carries out
the vector-matrix multiplication and learns the feature of
data by updating each memristor’s conductance [13], as
shown in Fig. 1. Every row gets input voltage signal which
is the vector. Each conductance of a memristor in every
cross point composes the matrix. Every column transmits
an output current which is the sum of the product by the
input signal and conductance in the same column. Due to
the efficient implementations on vector-matrix multiplica-
tion operations, memristive crossbar array is suitable and
efficient hardware for ANNSs in edges.

The conductance of a memristor with multilevel as
shown in Fig. 1 [28], is increased by supplying a positive
pulse until the conductance gets to the maximum. This
increasing process is long-term potentiation (LTP). Con-
versely, long-term depression (LTD) is the process of
decreasing the conductance by supplying a negative pulse
until the conductance gets to the minimum. Simultaneously,
the memristor can store the information even when the
power supply is turned off, because of its non-volatile prop-
erty. The memristor, therefore, is a device that combines
learning, storage, and computing, making it essential in
hardware for ANNSs, especially for edges with the limited
resource, but real-time response in IoT systems.

3 METHODOLOGY

As for the conventional method to update the conductance of a
memristor, according to the value of weight change that is cal-
culated by the algorithm, the control circuit will generate corre-
sponding signals to control the pulse generator and update
time for producing positive/negative pulses and tuning the
conductance of the memristor. Note that a memristor has the
characteristics of the finite conductance states, specific switch-
ing time, and fixed threshold voltage. Thus, some small delta
weights cannot be converted to pulses. Therefore, the precision
of conductance during the update process is limited. Besides,
the drastic change occurs in conductance by these positive or
negative pulses at the beginning stage of the training process,
which causes more energy consumption in corresponding
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Fig. 2. Circuit level design of the NPC method. Each cell includes one
selection transistor forming the one-transistor one-memristor (1T1M)
array to avoid sneak path current problems.

memristors. Because specific features are various for different
given training data, and only corresponding conductance of
memristors will be updated to record feature in one iteration,
inevitably, this will lead to uneven pulse distribution in a
crossbar array. Additionally, the maximum number of the
pulses determines the writing latency of the update stage in
one iteration as a critical path. Note that, such maximum num-
ber for updating weight in different iterations are different due
to the presence of the different training data and status of the
current conductance.

In a system using multilevel memristor, to save energy,
reduce writing latency, and organize the update timing, we
propose a universal NPC method in this paper. The tradi-
tional system originally has writing pulses whose widths are
appropriate, on the one side, to regulate the conductance of a
memristor, on the other side, not to damage the device. Simul-
taneously, each writing pulse is identical during different
update processes. The proposed NPC method, instead of
updating the weight by the number of the pulses that are
directly converted from the value of weight change in each
iteration, only applies the minimum number of the pulses and
keeps the original width of writing pulses, as shown in Fig. 2.
The decoder gets a signal from an arithmetic logic unit (ALU)
for selecting one row to update. At the same time, the registers
get the values of weight change that are calculated by an ALU.
Then these values are transmitted to multiplexers as control
signals. Multiplexers select the minimum number of writing
pulses that come from a pulse generator as output when con-
trol signals are enabled. The enabled signal means the corre-
sponding memristor needs to be updated. The minimum
number of writing pulses is determined by the system that
has a minimum number of pulses to change the conductance
(update conductance). For instance, in the simulator (Sec-
tion 4.2), one writing pulse with a certain width and ampli-
tude is enough to change a conductance of a memristor.
Therefore, the minimum number of writing pulses is one for
this work. Some other systems with different types of analog
memristor need at least more than one writing pulse (for
example: two) to make the conductance change, such a mini-
mum number (two) of pulses is specified and can be applied
by the NPC method. Thus, NPC compresses all updating
number of the pulses to the minimum, so that the update time
in different iterations are the same.

For the system with the NPC method, the system reduces
the number of pulses to one at every single update. Some
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weights need to be updated for several times to reach the cer-
tain value during entire training process according to a global
minimum of loss function that is calculated by algorithm.
Thus, multiple pulses and updates are implemented at entire
train process rather than within once update. Such necessary
multiple updates consume indispensable energy. Thus, the
energy saving is limited. But as for latency, because NPC
method reduces the number of pulses to one at every single
update, although sometimes several updates are needed for a
memristor, each update can be parallel with the update for the
other memristor in the same row, which is actually all memris-
tors in a row shared the update time without additional
latency. Therefore, the latency reduction is more notable.

This NPC method reduces energy consumption by com-
pressing the number of pulses, especially at several begin-
ning iterations that have a dramatic change of weight, and
effectively reduces the writing latency by reorganizing the
update timing. Additionally, the NPC method is a general
method. Besides the edge AI in IoT systems, it can be
adapted to any other pulse incentive multilevel memristor-
based ANNSs for online learning systems.

4 APPLICATION ON DIGITS-IMAGE RECOGNITION

In order to verify the effectiveness of the proposed NPC
method in the edge Al, the MLP simulator is used to emulate
the learning classification scenario with the Modified National
Institute of Standards and Technology (MNIST) handwritten
dataset [29]. The memristive crossbar has energy efficiency
and areas superiority compared with CMOS synapses in the
very large scale integrated (VLSI) circuit in online learning
and can be necessary to overcome the effect of device variabil-
ity and alternate current paths [30]. The crossbar array archi-
tecture with memristors had been proposed for on-chip
implementation of weighted sum and weight update in the
training process of learning algorithms [29]. We adopt the
online learning hardware platform, NeuroSim+ [26], [29],
which is based on a ReRAM with Silver (Ag) and Silicon (Si)
as active layer [14], that needs to constantly write the crossbar
array to perform handwriting recognition. The networks in
this simulator contain a three-layer with 400 neurons, 100 neu-
rons, and 10 neurons, respectively and base on memristors
that can tune the conductance by voltage pulse stimulus [29].
Since edges of the images are not the most informative, one
handwritten digit is cropped into 20 x 20. The recognitions of
networks are ten digits. Thus, the input layer is 400 neurons
and the output layer is 10 neurons. Note that, the availability
of the NPC method is not constrained by the number of hid-
den layers and the dimensions of each hidden layer and there-
fore can be adapt to any architecture and dimension in a given
network and realize performance improvement. Parameters
that are set in the simulator come from the results of the real
memristor measurement [14]. Therefore, this MLP simulator
is a standalone functional simulator that is able to evaluate the
learning accuracy and device-level performance during the
learning process.

41 Algorithms

The Stochastic Gradient Descent (SGD) algorithm is one
possible solution to accelerate the gradient descent process
to use approximate methods that goes through the data in
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samples composed of random examples drawn from the
original dataset [31], which is the major algorithm used in
this simulator. In fact, SGD is a rough approximation, pro-
ducing a non-smooth convergence. Because of that, variants
were proposed to compensate, such as the Momentum,
Adaptive Gradient (AdaGrad), Root Mean Square Prop
(RMSProp), and Adaptive Moment Estimation (Adam) [31],
which are included in this simulator.

4.2 Hardware Structure

In this simulator, each simulation trains up to 125 epochs
including 1000000 images, and every epoch randomly
selects 8000 images from 60000 training images. The testing
dataset has 10000 images and the system runs test after each
training epoch. The networks will continually learn the fea-
ture of input data after 125 epochs since this simulator is
online learning network [29]. The metrics are evaluated
with 125 epochs in this work. As for the flow of the training
and testing, firstly, at the beginning of the training process,
all weights are initialized to simulate the conductance of
untrained memristors. Secondly, the system randomly
selects one image from the dataset and follows the ANN
algorithms to process forward propagation and backpropa-
gation. Thirdly, the system gets delta weight that will be
converted to the number of the pulses to be applied for
weight updating. Fourthly, the NPC method is applied to
compress the number of the pulses to one in this system.
Using one pulse that is processed by the NPC method to
update the corresponding conductance of a memristor.
Fifthly, the second to fourth steps are repeated until the sys-
tem trains 8000 images and the system runs the test process.
Finally, the above procedures except for the first step will
repeat 125 times.

Specifically, the hardware implementation block dia-
gram of the NPC method for one image training is shown in
Fig. 3. The system follows ANN algorithms by forwarding
propagation to get recognition results, which includes vec-
tor-matrix multiplication operations. The “label” data of the
training dataset is involved by backpropagation to get
delta-weight for each memristor that is the value of weight
needs to be updated, as shown in Fig. 3. Then the NPC
method is implemented to compress the number of pulses.
In our case, the system compresses the number of pulses to
one. Therefore, when the delta-weight is larger than that
corresponding to one pulse, the multiplexer will generate
the signal that selects only one pulse to update the memris-
tor, as shown in Fig. 2. The basic peripheral and internal cir-
cuits that are included in this platform such as MUX,
Adder, and MUL and so on are explained in [26] and [29].

4.3 Metrics Estimation

In the simulation, the reading voltage is 0.5 V and the reading
pulse’s width is 5 ns. For the writing process, the voltage of
the LTPand LTDis3.2V,-2.8 V, respectively. The pulse width
of writing is 300 us for both LTP and LTD [14], [26]. Reading
and writing energy are determined by both the operations of
the periphery circuit and the reading/writing within the
crossbar array. In terms of the reading energy, it includes the
operation energy of the periphery circuit - decoder, multi-
plexer, register, and analog-to-digital converter, etc., and the
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energy within the crossbar array - word lines, bit lines, and
memristors. As for writing energy, it includes the operation
energy of the periphery circuit — decoder, pre-charger, etc.,
and the energy within the crossbar array - word lines, bit lines,
and memristors that are selected to update [26].

As for the training process, the latency of the memristor-
based crossbar array includes reading and writing latency
that is determined by both the operations of the periphery
circuit and the reading/writing within the crossbar array.
In terms of the reading latency, it includes the operation
latency of the periphery circuit - decoder, multiplexer, regis-
ter, and analog-to-digital converter, etc., and the latency
within the crossbar array that is the width of the reading
pulse. As for writing latency, it includes the operation
latency of the periphery - decoder and pre-charger circuit,
etc., and the latency within the crossbar array - both in the
LTP and LTD that is calculated by multiplication of the
number of update pulses and width of pulses. Note that, for
each row, the latency of the writing is determined by both
the latency of the maximum LTP process and the maximum
LTD process, as shown in:

n

L= Wpulse * Z(ma‘m(plv p2, - -pm) + mGI.’IZ‘(dl, d23 cee dm))7
1

1

where L is the latency of the writing within the whole cross-
bar array at a certain iteration, w,. is the width of writing
pulse, n is the number of rows, p is a latency of the LTP pro-
cess for one memristor, d is a latency of the LTD process in
one memristor, and m is the number of the corresponding
columns [26].

5 RESULTS AND DISCUSSION

A comprehensive suite of the digit recognition simulations
has been conducted to explore the proposed NPC method
for performance improvement in a hardware implementa-
tion as the edge Al We perform five groups of simulations
to explore the NPC method with five different algorithms,
where the number of pulses is compressed to one.

5.1 Energy Consumption

As for memristive crossbar array, reading energy and writ-
ing energy constitute the total energy consumption, as listed
in Table 1. The reading energy for different algorithms is
determined by the size of the crossbar array and the number
of the total iterations. According to the process of a vector-
matrix multiplication in a given memristive crossbar array
including 41000 memristors in our experiments, the reading
energy is always the same - 0.4 nJ for each iteration. How-
ever, the reading energy is much smaller than writing
energy, this is because 1) voltage of reading pulse is lower
than the voltage of writing pulse [17], as mentioned in Sec-
tion 4.3; and 2) the number of the pulses for the reading is
usually much less than the writing. As shown in Fig. 4, the
writing energy for crossbar array changes with the number
of epochs without and with the NPC method. It demon-
strates the system consumes less writing energy with the
NPC method than that without the NPC method, and the
energy-saving is increased with the increased number of
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Fig. 3. Hardware implementation block diagram of the NPC method. The
gation and weight update.

epochs. Furthermore, the details of numerical writing
energy are shown in Fig. 5. The red and blue bars represent
the writing energy after 125 epochs without and with the
NPC method with five algorithms. Because less pulse is
used in weight updating following the NPC method, the
writing energy saving is from 7.7 percent to 26.9 percent.
Furthermore, the AdaGrad consumes the least writing
energy in five algorithms that is respectively 3.9 mJ and 3.6
m] without and with the NPC method, which realizes 7.7
percent writing energy saving. Meanwhile, as listed in
Table 1, the total energy of the AdaGrad is respectively 4.3
mJ and 4.0 m] without and with the NPC method, which
realizes 7.0 percent total energy saving. Additionally, the
RMSProp consumes the largest energy in five algorithms. It
consumes respectively 17.1 mJ and 12.5 m] writing energy
without and with the NPC method, which realizes 26.9 per-
cent writing energy saving. The total energy is respectively
17.5 mJ] and 12.9 mJ] without and with the NPC method,
which realizes 26.3 percent total energy saving. Such energy
saving makes the proposed NPC method especially suitable
for the edge AI in IoT systems with the serious energy
constrain.

Table 2 shows the recognition accuracy of the five algo-
rithms after the first image, first epoch, and 125" epoch train-
ing, respectively. All accuracy is higher than 92.3 percent after
125 epochs training. The difference without and with the NPC
method is smaller than 1.0 percent. Additionally, the accuracy
is limited by the number of bits of input data and hardware

TABLE 1
Total Energy and Saving Percentage of Neural Network
With/Without NPC Method With Five Algorithms

Algorithm Without With Energy
NPC (m]) NPC Saved (%)
(m])

Total Energy SGD 6.6 5.8 12.1
Momentum 6.7 5.7 14.9
AdaGrad 4.3 4.0 7.0
RMSProp 17.5 12.9 26.3
Adam 12.2 9.8 19.7

red path is forward propagation and prediction. The blue path is backpropa-

based constraint that includes ADC precision and circuit noise
in this platform [26]. Therefore, the NPC method does not
much hurt recognition accuracy.

In addition, the NPC method effectively produces a
smoother convergence of the training process, which
reduces the excessive fluctuation of the recognition accu-
racy. Taking SGD as an example, Fig. 6 shows the recogni-
tion accuracy with increasing epochs. The regressions are
carried out by the Nelder model to fit the experimental data
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6F 22222
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(3) S ........7...--":""' . ) SGD
0 25 50 75 100 125
6F 72222
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Fig. 4. Writing energy as a function of epoch with five algorithms. Red
and blue lines represent without and with the NPC method.
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Fig. 5. Writing energy with five algorithms. The red and blue bars repre-
sent the writing energy after 125 epochs without and with the NPC
method.
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TABLE 2
Recognition Accuracy of Neural Network
With Different Training Stage (%)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 8, AUGUST 2021

Algorithm  1%image  1%'epoch 125" epoch Fluctuation
without/  without/  without/  (after 125
with NPC  with NPC  with NPC epoch)

SGD 14.8/14.8 704/71.8 92.7/92.8 +0.1

Momentum 14.8 / 14.8 76.9/72.4  93.1/93.7 +0.6

AdaGrad 12.9/14.7 70.1/84.0 93.3/92.3 -1.0

RMSProp  11.3/14.7 79.8/83.0  93.6/94.5 +0.9

Adam 125/14.8 83.4/83.4 94.2/947 +0.5

of the simulation without and with the NPC method. The
Reduced Chi-Sqr with the NPC method, 0.4, is higher than
that without one, 0.2, which demonstrates that the fluctua-
tion of the recognition accuracy is reduced by the NPC
method [32]. Therefore, a smooth convergence of the train-
ing process is another reason that the total writing energy is
lower than that without the NPC method. Although the
NPC method makes the system learn slowly at the begin-
ning of the first epoch, this disadvantage disappears after
1250 images learning as shown in the inset of Fig. 6. There-
fore, the drawback of the NPC method can be neglected for
the whole system.

Finally, we calculate the sum of the number of the
updating pulses required for 125 epochs, taking SGD as an
example, without and with the NPC method as shown in
Table 3. Note that the power (energy/latency) with the
NPC method is higher than that without the NPC method.
The reason is that the saved latency with the NPC method
is more significant than the saved energy with the NPC
method. However, the total number of the pulses is saved
46.6 percent and 37.8 percent for weight 1 and weight 2
layer, respectively. The fewer pulses are utilized, the less
energy is consumed by the pulse generator. Those results
further prove that the proposed method can effectively
reduce energy consumption during the training process in
ANN.

5.2 Pulse Distribution

The energy of the pulses in the reading and writing process
will generate thermal power. The more pulses are generated
for updating conductance, the more heat crossbar array

95
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90
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Fig. 6. Nelder model fit without and with the NPC method.

TABLE 3
Number of the Pulses and Power Consumption
for Weight Update
Layer Pulse number Pulse number Pulse saved (%)
without NPC with NPC
Weight 1 70250859 37498805 46.6%
Weight 2 16541627 10283640 37.8%
Power (nW) Without NPC With NPC
354 586

generates. Since the reading pulse is evenly distributed,
now we only analyze the writing pulse distribution. Addi-
tionally, the accuracy of the recognition at the beginning
stage is very low since the weight is randomly initialized
before training. Therefore, the weight change is larger at the
beginning stage than later, which can be reflected by the dif-
ference of accuracies, as shown in Table 2 after training of
the first image and first epoch without and with the NPC
method in five algorithms. All the accuracies are lower than
15.0 percent after training of the first image and higher than
70.0 percent after training of the first epoch. The increment
of the accuracy is more than 55.0 percent. Thereby, it indi-
cates to need more pulses at the beginning stage of the train-
ing for large weight updating.

Because of more writing pulses at the beginning stage of
the training, we extracted weight update’s pulse distribu-
tion at the 1st and 1,000th iteration at the first epoch with
the AdaGrad algorithm as an example. Each iteration will
update weight 1 and 2 layers. Figs. 7a and 7c represent the
weight 1 layer with 400 input and 100 output for the 1st and
1,000th iteration, and Figs. 7b and 7d represent the weight 2
layer with 100 input and 10 output for the 1st and 1,000th
iteration. The Z-axis is the number of the pulses for weight
update that includes LTP and LTD. As shown in Figs. 7a
and 7b, for the 1st iteration without the NPC method, in the
weight 1 layer, the maximum number of the pulses is 52
that is in the 91st column covering the related 125 rows; in
the weight 2 layer, the maximum number of the pulses is 30
that is in the 60st row 6th column and the 91th row 6th col-
umn. Similarly, as shown in Figs. 7c and 7d, for the 1,000th
iteration without the NPC method, in the weight 1 layer, the
maximum number of the pulses is 5 that is in the 75th col-
umn covering the related 90 rows; in the weight 2 layer, the
maximum number of the pulses is 10 that is in the 2nd col-
umn covering 7 rows. With the increasing iterations, the
weight is closer to the global minimum. Therefore, the num-
ber of the pulses decreases with an increasing number of
iterations. It is concluded that without the NPC method,
extremely uneven heat distribution is caused by pulses
uneven distribution. Figs. 7a’, 7b’, 7¢’, and 7d’ show the dis-
tribution of the pulses with the NPC method at the same
update stage. All of the numbers of the pulses are com-
pressed to one. Note that, the position of the pulses that are
used to update at 1,000th iteration in Figs. 7c and 7¢” are dif-
ferent, and pulse distribution in Fig. 7¢’ cannot be obtained
directly by compressing all pulses in Fig. 7c to one. The rea-
son is that after weight updating based on the first image
without and with the NPC method, the following weight
updating between both of that is totally different since the
current pulse distribution in Figs. 7c and 7c” only bases on
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Fig. 7. Pulse distribution of crossbar array in 15t and 1 000™ iteration without and with the NPC method.

the present image and current weight. It is the same reason
for different pulses distribution in Figs. 7d and 7d’. For fur-
ther analysis, Table 4 shows the mean and standard devia-
tion of those number of update pulses without and with the
NPC method. With the NPC method, the mean of the num-
ber of the pulses decreases by 18.8, 9.5, 1.6, and 4.5 for
weight layers at 1°* and 1,000 iteration, respectively. All
the standard deviation of the number of update pulses with
the NPC method is 0, but that is 20.0, 11.2, 1.6, and 3.6 with-
out the NPC method, respectively. Thus, it is verified that
even pulse distribution is achieved using the NPC method
in the ANN system.

5.3 Latency

For a given ANN structure in edges, every iteration has sta-
ble reading latency since the process of a vector-matrix mul-
tiplication is executed using a parallel reading strategy.
However, the system updates its weight row by row, which
indicates a parallel writing strategy cannot be implemented
for all rows at the same time. Each row’s writing latency is
determined by the maximum number of writing pulses as a
critical path. Thereby, the main latency for crossbar array is
writing latency that strongly depends on the maximum
update pulses of each row. For example, as shown in Fig. 8,
suppose the writing latency is four pulses without the NPC
method for the selected row, but it is only one pulse with
the NPC method, reducing the latency of the pulses by 75.0
percent. In some extreme cases, suppose the one change

TABLE 4
Statistics of Number of the Pulses With Different Iteration®

1%¢ iteration without/ 1000 iteration

with NPC without/with NPC
M of weight 1 19.8 /1.0 26/1.0
M of weight 2 105/ 1.0 55/1.0
SD of weight 1 20.0 /0 1.6 /0
SD of weight 2 112/0 36/0

@ M represents mean. SD represents standard deviation.

#Pulse
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is from the minimum conductance to the maximum conduc-
tance, which has 100 levels (default in simulator [26]), theo-
retically, the maximum number of the needed writing
pulses without the NPC method is 100. However, with the
NPC method, the maximum number of the writing pulses is
still one, since the number of the writing pulses is com-
pressed to one, reducing the latency of the pulses by up to
99.0 percent. Therefore, with the NPC method, Equation (1)
can be improved to:

L = wpuse % (( NO. of p )+ ( NO. of d ), @

where L is the latency of the writing within the whole crossbar
array at a certain iteration, wy,s is the width of writing
pulse, NO. of p and NO. of d are the total number of rows
that are selected for LTP and LTD process. Latency schematic
diagram of writing process is reduced by the NPC method as
shown in Fig. 9. In each iteration, the system will read memris-
tor that is forward propagation, then calculate delta weights
that include backpropagation, and finally write memristor.
When applying the NPC method, the time of writing will be
decreased to minimum by compressing to one pulse.

Indeed, the NPC method theoretically impacts the learn-
ing speed, but this impact only occurs at the beginning of
the first epoch, which can be neglected comparing 125
epochs, as shown in the inserted figure in Fig. 6. Only before
the cross point - 1250, the accuracy without the NPC
method is higher than that with the NPC method.

Writing pulses Writing pulses
" e 1 I I
< / / &
@b ©
9 &
> i
P pES

(a) (b)

Fig. 8. Weight update by pulse signal in selected row. (a) without the
NPC method and (b) with the NPC method.
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Fig. 9. Latency schematic diagram. (a) The latency of write stage is
reduced by the NPC method compared to original system. (b) Latency
diagram of original system. The latency of write stage may different,
which depends on the max number of pulses for LTP and LTD
processes.

Fig. 10 shows the total writing latency that is normalized
after 125 epochs without and with the NPC method. The
total writing latency is decreased by 30.0 percent-50.0 per-
cent for five algorithms, respectively. Therefore, the NPC
method extremely effective in reducing writing latency,
which is preferred by the edge Al with real-time require-
ments. Additionally, because of the NPC method, every
iteration has the same number of the writing pules, the tim-
ing regularity of the system and the reliability of the system
is greatly improved.

5.4 Nonlinear Property of Memristors

Ideally, when LTP or LTD occurs, the change in the conduc-
tance of an ideal synapse device is proportional to the num-
ber of writing pulses. However, in reality, such change
mismatches the writing pulses due to the nonlinearity of
memristors [33], [34], [35]. In our simulation, the actual con-
ductance curve is labeled with a nonlinearity value from +3
to -3 [33], [34], which represents the extent to the curve devi-
ates from the ideal linear device.

Taking the AdaGrad algorithm as an example, Table 5
shows the total writing energy without and with the NPC
method, under the significant nonlinear property. The rec-
ognition accuracy does not have significant fluctuation. The
accuracy recovery is done by piecewise linear method [33]
that regains accuracy over 90 percent under 3/-3 circum-
stance. All of the total writing energy with the NPC method
is lower than without the NPC method. Energy saved is
from 7.7 percent to 13.0 percent, respectively. Thus, the
NPC method is proved to effectively reduce writing energy
even with the nonlinear property of a memristor.

8 Without NPC BNPC

(Normalized)
) ¢ S o
c v kB o

Writing Latency
(= (=]

N\
B
N\
.
.

SGD  Momentum AdaGrad RMSProp  Adam

Fig. 10. Writing latency of crossbar array without and with the NPC
method.
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TABLE 5
Writing Energy and Recognition Accuracy of
Neural Network with Nonlinearity

a Writing energy .

NL' without NPC Wrmng energy  Energy saved

(LTP/LTD) with NPC (mJ) (%)
(mJ))

0/0 39 3.6 7.7

1/-1 4.6 4.0 13.0

2/-2 4.6 42 8.7

3/-3 4.7 4.1 12.8

NL Recognition accuracy Recognition accuracy
(LTP/LTD) without NPC (%) with NPC (%)

0/0 933 92.3

1/-1 922 92.0

2/-2 89.1 88.3

3/-3 84.6 86.7

@ NL represents the value of nonlinearity.

5.5 Variations of Memristors

Because of physical limitations of a memristor, minimum
conductance variation (G,,;,,), maximum conductance varia-
tion (Guqay), ON/OFF ratio variation (Giuex/ Gmin), cycle-to-
cycle variation (CtoC), and device-to-device variation
(DtoD) [13] exist in the application of memristor-based
hardware implementation, as shown in Fig. 11. To explore
the effectiveness of the NPC method, we take AdaGrad
algorithm as an example and investigate these variations
following standard /Gaussian distribution N (i, o) into con-
sideration. In our experiments, minimum conductance sub-
jects to N (Gin, 0XGyip), and maximum conductance
subjects to N (Gax, 0XGpax). Device-to-device variation
subjects to N (NL, o) distribution. Cycle-to-cycle variation
that subjects to N (0, X (Goax-Gomin)?) represents conduc-
tance deviations in each weight update [34].

Above, NL, Gmax, and Gmin are fixed parameters for each
simulation. ON/OFF ratios are configured as 17 in variation 1
and 15 in variation 2. For Variations 1 and 2 in Table 6, we set
o of the minimum conductance, maximum conductance,
device-to-device, and cycle-to-cycle variation as 5.0 percent,
5.0 percent, 0.5, 1.0 percent, and 15.0 percent, 15.0 percent, 1.4,
2.5 percent, respectively [33], [34]. Table 6 shows the result of
simulations under different circumstances.

In Table 6, for different circumstances without the NPC
method, the total writing energy is 3.9 mJ and 3.8 mJ. After
utilizing the NPC method, the total writing energy is saved

DtoD v arg‘lion, = T

Conductance

Pulse number

Fig. 11. Variations of memristor. DtoD, CtoC, Gmax and Gmin represent
device to deice, cycle to cycle, maximum conductance, and minimum
conductance, respectively [26].
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TABLE 6

Experimental Results of Neural Network With Variations

Variation 1

Variation 2

without/with NPC without/with NPC
Writing Energy (mJ) 39/35 38/32
Recognition accuracy (%) 91.9/90.6 86.1/82.4
Writing Latency (normal- 1/07 1/06

TABLE 7

1307

Recognition Accuracy and Standard Deviation
With Different Failure Rates

ized)

by 10.4 percent and 15.3 percent, respectively. Additionally,
recognition accuracy does not have big degradation, and
writing latency is reduced by 30.0 percent and 40.0 percent.
Thus, even with many variations, the NPC method is still
efficient to reduce energy consumption and writing latency
of the crossbar array.

5.6 Failure Rate, Endurance, and Aging

A typical manufacturing process typically seeks a failure
rate of <10 percent [36]. To evaluate the influence of failure
rate in a crossbar array for the edge Al, 5 percent, 10 per-
cent, and 15 percent of the fault in the crossbar array are
simulated, as shown in Fig. 12 [37]. The random positions of
the fault memristors are chosen in the crossbar array. The
ratio of the stuck at 0 and 1 is 1: 5.2 [36]. Taking the SGD
algorithm as an example, Table 7 shows the accuracy under
the influence of the failure rate in this network. The neural
network with the NPC method still has accuracy improve-
ment as compared to that without the NPC method accord-
ing to results of the mean and standard deviation that are
obtained from 500 random cases of each failure rate. When
the failure rate is 15 percent, the accuracies of the neural net-
work without and with the NPC method both reduce about
3 percent.

Memristors can only be programmed reliably for a given
number of times. Afterward, the conductance tunability of
the memristor deviates from the initial state, which is called
aging, and it limits the lifetime of memristor-based cross-
bars in the edge computing system [38]. The conductance is
assumed to drift towards different final states, or randomly
drift, based on different various drift rates, which are equiv-
alent to conductance drift different amounts over 10 years,
respectively [39]. Taking the SGD algorithm as an example,
Fig. 13 shows the accuracies under the influence of the aging

Weight | Weight 2

400 = 100/
/

Failure Mean® Standard deviation®
rate

Without With Without With

NPC NPC NPC NPC

5% 91.7% 92.0% 0.0050 0.0039

10% 91.0% 91.4% 0.0058 0.0044

15% 88.5% 89.6% 0.0071 0.0047

@ Mean and Standard deviation are obtained including 500 random cases of
each failure rate.

S95F

=t

g85r —=— With NPC

3 i —— Without NPC

<75t 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4

Conductance drift rate

Fig. 13. Recognition accuracy with different conductance drift ratios that
are 0.02, 0.06, 0.10, 0.20, 0.30, and 0.40.

in this network. The precision, recall, and F1 score are
shown in Table 8. The restoration of accuracy can be com-
pleted by retaining and remapping method [40]. The NPC
method is still effective by comparing to the accuracy that is
without the NPC method.

In addition, the endurance of a memristor is one limita-
tion for high frequency writing in an ANN system [14], [41].
The NPC method extremely saves the number of writing
pulses, as shown in Table 3. Therefore, this method is still
effective with failure and aging circumstances and benefits
the cycling endurance performance of a memristor.

5.7 NPC Method With Different Architecture and
Database

To verify the NPC method in different architecture, differ-

ent hidden layers are simulated as shown in Fig. 14. As

expected, the recognition accuracy for using the NPC

method is higher than that without the NPC method.

2 200 /& sol
I~ /) &
2/ .
/eigl /
Weight 2
100 =/
z  F
)
4
0 & 3 ol b — -
0 50 100 010 0 10
Column Column Column

TABLE 8
Classification Report®

Class Without NPC method With NPC method

P R F1 P R F1
0 0.742 0956 0836 0.812 0945 0.874
1 0.628 0.990 0.768 0.753 0990 0.856
2 0.727 0.806 0765 0.740 0.850 0.791
3 0.805 0.784 0.794 0.781 0.665 0.719
4 0.630 0.764 0.690 0.811 0.797 0.804
5 0.840 0577 0684 0.789 0.609 0.687
6 0.770 0.863 0.814 0.923 0.864 0.893
7 0.890 0.714 0.792 0.832 0.791 0.811
8 0.887 0.507 0.645 0.843 0.633 0.723
9 0.810 0449 0578 0.757 0.798 0.777
Micro_avg 0.773 0.741 0.737 0.804 0.794 0.793

Fig. 12. Random positions of the failure memristors in crossbar array
with 5 percent failure rate.

2 The result with 0.4 conductance drift ratios. P, R, and F1 represent precision,
recall, and F1-score, respectively.
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Fig. 14. Leakage power with different number of neurons of hidden layer.
Recognition accuracy with different number of neurons of hidden layer.

However, the leakage power is increasing when increasing
the neurons of the hidden layer as shown in Fig. 14. The
leakage power with the NPC method is a little higher (<10
percent) than that without the NPC method because multi-
plexors are added. Thus, the NPC method is effective with
different architecture.

Furthermore, the NPC method in VGG-8 with memris-
tive crossbar array architecture and CIFAR-10 database are
evaluated as shown in Table 9. The accuracy difference
without and with the NPC method is smaller than 1.0 per-
cent. Therefore, the NPC method does not much hurt recog-
nition accuracy. Additionally, the accuracy is limited by the
hardware based setting that includes variations and nonlin-
earity in this platform [42]. As expected, the NPC method
respectively reduces latency by 46.00 percent and energy
consumption by 16.67 percent in the system.

5.8 NPC Method and Other Works
PRCoder as an algorithm was proposed for different RRAM
applications [15]. The cycle-rehabilitate technique was used
to alleviate thermal crosstalk [16]. At the same time, increas-
ing the size of insulator or utilizing new materials with
higher thermal conductivity for improving performance
were proposed in [43], [44]. A new structure, thermal-house,
was presented to optimize the thermal management [45].
However, those new algorithm or new material/structure
of device based solutions inevitably increase the complexity
of peripheral circuit or the difficulty of manufacture pro-
cess, even increasing the latency.

The NPC method is a simple and feasible method for the
edge computing in IoT systems. As shown in Table 10, as com-
pared with the state-of-art, the NPC method does not need to

TABLE 9
Experimental Results of Neural Network
with VGG-8 and CIFAR-10

Accuracy Latency® Energy
With NPC method 90.3% 0.54 02517
Without NPC method 91.1% 1.00 0.30J
Difference 0.88% 46.00% 16.67%

@ Latency values are normalized.
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TABLE 10
Comparison of the State-of-the-art
[34] This work
Energy consumption 6.7 m] 6.2 mJ
Write latency (Normalized) 1 0.62
This
[15] [16] [43] [44] [45] work
Without new
material or v v X X X \
structure
Without add-
ing extra algo- x x y y y y
rithm

use special structure and material. Simultaneously, it does not
need to add an extra algorithm to alleviate uneven pulse dis-
tribution. What's more, with the NPC method, the energy con-
sumption is effectively reduced by 7.5 percent and the writing
latency is averagely reduced 38.0 percent.

6 CONCLUSION

In this paper, we propose the Number of Pulses Compression
(NPC) method to reduce energy consumption, decrease writ-
ing latency, and improve timing regularity of memristor-based
smart edge computing in IoT systems. The NPC method is ver-
ified to be effective based on devices to algorithms architec-
tures. Instead of modifying the traditional algorithm-based
technology, the NPC method that only needs to add a multi-
plexer circuit before every writing operation in the weight-
updating process, to optimize the performance of the system.
ANN:s in five algorithms with nonlinearity from (0/0) to (3/-
3), different failure rates (5 percent, 10 percent, and 15 percent),
two variations conditions, different architectures, and aging
effect have been evaluated to investigate the effectiveness of
the NPC method in the edge computing. The results indicate
that it saves the writing energy of crossbar array by 7.7 per-
cent-26.9 percent and reduces the writing latency by 30.0 per-
cent-50.0 percent. It concludes: 1) The proposed NPC method
enables low energy consumption and even pulse distribution
to reduce the heat resulted from intensive pulses. 2) Because
the number of the pulses for weight update is compressed to
one, the NPC method effectively reduces the writing latency
and improves timing regularity. 3) The NPC method is still
effective under different nonlinearity, failure rates, aged devi-
ces, architectures, and variation circumstances in memristor-
based ANN for paving the way for the further development of
the edge computing in IoT systems.
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