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Abstract—Edge artificial intelligence (AI) achieves real-time
local data analysis for IoT systems, enabling low-power and
high-speed operation, but comes with privacy-preserving require-
ments. The memristor-based computing system is a promising
solution for edge AI, but it needs a low-cost privacy protection
mechanism due to limited resources. In this article, we pro-
pose a noise distribution normalization (NDN) method to add
Gaussian distributed noise through hardware implementation,
thereby achieving differential privacy in edge AI. Instead of using
traditional algorithmic noise-insertion methods, we take advan-
tage of inherent cycle-to-cycle variations of memristors during
the weight-update process as the noise source, which does not
incur extra software or hardware overhead. In one case study,
the proposed method realizes ultralow-cost differentially private
stochastic gradient descent (DP-SGD) for edge AI in IoT systems,
achieving a 3.5%–15.5% average recognition accuracy improve-
ment under different noise levels, as compared with a baseline
mechanism.

Index Terms—Cycle-to-cycle variation, differential privacy
(DP), learning systems, memristor, neural network, noise
injection.

I. INTRODUCTION

THE Internet of Things (IoT) facilitates novel products
and services by involving billions of edge devices that

are connected to the Internet. With data increasingly gener-
ated by IoT devices, edge computing provides an efficient
solution by processing data locally to significantly reduce the
computing load of the entire system, and save time and energy
cost of data communication, as compared to cloud processing.
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However, edge computing in IoT systems has strict require-
ments. It must be extremely power efficient and high speed,
because the edge usually has limited resources, especially
when it involves real-time scenarios as well as artificial intel-
ligence (AI) tasks for long-term bursts of intense computation
over large data sets.
Memristor-based in-memory processing system is a promis-
ing candidate for edge computing systems. The notion of
memristor was envisioned dozens of years ago, and its phys-
ical realization was demonstrated by Hewlett-Packard Lab in
2008 [1], [2]. A memristor has a simple three-layer struc-
ture whose conductance value can be changed according
to an applied pulse. Different from traditional CMOS-based
hardware, such as field-programmable gate array (FPGA),
application-specific integrated circuit (ASIC), graphics pro-
cessing unit (GPU), and tensor processing unit (TPU), the
memristor-based in-memory computing architecture breaks the
memory wall that results from the Von Neumann architec-
ture, thereby achieving at least a 7×reduction of active power
for implementing a basic neuron function [3]. Also, memris-
tors have better CMOS process compatibility as compared
with emerging technologies, such as quantum computing,
molecular computing, quantum dots, and spin-wave devices.
Furthermore, recent years have witnessed significant progress
in mobile devices and wireless sensor networks, creating
unprecedented opportunities to deploy deep learning for smart
IoT applications. However, deep learning involves a massive
number of calculations due to large data sets and multilayer
network structure, especially in the scenario of online learning
and incremental learning. A memristor-crossbar system can
efficiently perform such operations due to its programmable
and computable analog structure, where computations are
conducted in a parallel manner.
When deep learning algorithms work on the edge for

human-related applications, IoT devices will collect data,
which in some cases may contain quite personal and high-
value user information, therefore raising significant concerns
regarding information privacy. It is thus possible for the pri-
vate data to be misused, or to be hacked by outside attacks.
Therefore, some sort of privacy protection method is required
to guarantee a strong notion of privacy, while preserving
learning accuracy. A traditional privacy protection method is
anonymization or deidentification, which removes attributes
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in the data and returns a sampled data to protect privacy.
However, it is still possible to discern information about
the data sets, which is known as linkage attacks, statistical
inference attacks, generative adversarial networks (GANs)-
based attack, and reidentification attacks [4], [5]. For example,
if we use deep learning for cancer diagnosis, when we
release a learning model, we may unintentionally disseminate
information about the training data set so that a malicious
attacker could identify individuals diagnosed with cancer.
Another privacy protection method is via cryptography such
as homomorphic encryption, but it requires large computa-
tional overhead [6]. Currently, differential privacy [7] is one
of the most popular technologies for privacy-preserving deep
learning, realized by introducing perturbations. Differential
privacy (DP) provides a mathematical constraint for the pri-
vacy loss associated with any data release from a statistical
database. In edge computing, federated learning is a recent
advance in private learning, where the model is trained in
a decentralized manner without sharing the raw data. It pre-
vents a third party from storing personal data as well as
performing learning tasks on that data. Despite such privacy
improvements, local DP is necessary for federated learn-
ing because the weight updates uploaded by individual edge
devices may still reveal private information. Adding noise to
the weights/gradients during training on local data prior to
aggregation by an untrusted server provides greater privacy
protection to users [8]. However, as a result, differentially pri-
vate learning systems not only need to train complex models
but also must perform an additional computation for noise
insertion as a protective mechanism to data sets, models, and
algorithms [9]. Such a high-cost training process undoubt-
edly challenges traditional CMOS-based hardware technology,
and hinders the development of deep learning, especially for
power-sensitive and resource-limited edge computing in IoT
systems. Therefore, a memristor-based differentially private
learning system, with its low computation and storage cost,
is an excellent candidate for edge AI.
As for memristor, some researchers have revealed its non-

ideal properties, including nonlinearity (NL), device-to-device
variation, cycle-to-cycle variation, maximum conductance
variation, and minimum conductance variation [10]–[13].
These nonideal properties negatively influence model precision
of a memristor-based system; however, such variations can
instead be considered as inherent noise, which is necessary
for DP preservation. In this article, we use memristor cycle-
to-cycle variation as an advantage to realize hardware-based
Gaussian noise injection. The proposed methods add crafted
noise to the edge AI system, and avoid introducing com-
putational complexity and extra hardware/algorithmic units,
which greatly improves efficiency and saves cost for a privacy-
preserving edge AI system. Specifically, this article makes the
following contributions, as summarized in Fig. 1.
1)Hardware Solution That Breaks the Limitations of
Traditional Software-Based Noise-Adding Mechanisms
of DP:A memristor-based hardware solution is proposed
for differentially private learning systems that do not
require additional circuitry. In this article, the positive
and negative pulse pair (PN) method is used to generate

Fig. 1. Outline of the proposed method.

adjustable Gaussian noise, satisfying the DP constraint.
The proposed method transforms nonbeneficial cycle-
to-cycle variations into a valuable measure for privacy
protection.

2)Methods That Address Differentially Private
Stochastic Gradient Descent (DP-SGD) by Hardware
Implementation:The clipping method is proposed to
avoid theL2norm calculation of gradient matrices.
A combination of the PN method and clipping method,
called noise distribution normalization (NDN) method,
is proposed to implement the DP mechanism.

3)Privacy Analysis and Performance Evaluation:Privacy
analysis is conducted to verify the effectiveness of
our proposed methods. Furthermore, to illustrate the
performance of each method, a comprehensive suite of
simulations has been conducted.

The remainder of this article is organized as follows. First,
we introduce the related work in Section II. Section III pro-
vides the background on memristor technology and DP used
as the theoretical basis for our work. Then, we analyze the
Gaussian distributed random variable for noise injection in
Section IV. In Section V, we describe the proposed method
as well as its implementation. Section VI details a case study
based on the proposed method, followed by results and pri-
vacy analysis; and we also discuss the NL, scalability, and
endurance of memristor-based crossbar arrays. Finally, we
conclude this article in Section VII.

II. RELATEDWORK

Most differentially private learning systems for IoT
focus on the algorithm-based framework improvement and
optimization. For example, Xuet al.[14] proposed a frame-
work that uses a protection layer to perform noise injec-
tion; and Arachchigeet al.[15] designed a mechanism named
LATENT that adds a randomization layer between the convo-
lutional module and the fully connected module to perturb
data for machine learning services. In [16], the Google secu-
rity and privacy team released a private aggregation via teacher
ensembles (PATEs) framework that achieved private learn-
ing by carefully coordinating the activity of several different
machine learning models. DP-SGD [17] makes fewer assump-
tions about the machine learning task than PATE, but it
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comes at the expense of making modifications to the train-
ing algorithm. Such technologies inevitably need a large cost
of noise-generation computing. Furthermore, all the above
frameworks are software-based privacy protection technologies
that might not be deployable on IoT devices due to resource
constraints.
Other researchers have presented novel hardware-level

solutions. In [18], low-voltage static random-access
memory (SRAM) chips are used to add bit failures as
training data noise. This method can save energy, but the
added noise only followed a uniform distribution, and does
not guarantee DP. In [19] and [20], in order to generate
random numbers with true randomness, dedicated random
number generation modules, such as physical unclonable
function (PUF) and random number generator, are designed.
These modules are accurate, but require additional circuitry.
In [10], an advanced neuromorphic system is implemented
based on memristor arrays, but noise is inserted in training
data to promise strong theoretical privacy guarantees, where
the hardware and software are utilized separately for learning
and privacy protection.
Different from the above approaches, we propose a method

that can achieve differentially private learning in edge AI
with high efficiency and low computing cost by taking advan-
tage of memristor-based hardware variations, which does not
require any additional hardware or software. In this article,
we utilize a 3-layer fully connected network and Modified
National Institute of Standards and Technology (MNIST)
database as an example to verify the proposed method.
However, our proposed method is generic, and can be applied
to other databases and any deep learning models that can be
mapped into a memristor-based crossbar array, as discussed in
Section VI-E.

III. DPANDMEMRISTORTECHNOLOGYBACKGROUND

A. Differential Privacy

DP protection technology is recognized as a rigorous and
robust protection model. The basic idea of this model is to
add specific noise so that inserting or deleting a record in
a data set does not statistically affect any calculated output.
DP provides provable guarantees of privacy, mitigating the risk
of exposing sensitive training data in machine learning [21].
The definition of (ε,δ)-DP is given below [21], [22]. A ran-
domized mechanism,A, satisfies (ε,δ)-DP when any adja-
cent input data sets,dandd, and any output,S,ofA
satisfy

Pr[A(d)=S]=eε·PrAd =S+δ. (1)

In our study, each training data set is a set of image-
label pairs. Given a negligibly small probability,δ, param-
eterεis the privacy budget, which measures the privacy
bound of the randomized mechanism,A, for adjacent data
sets. A smaller value ofεmeans higher indistinguishability,
thus a stronger privacy guarantee. By this definition, pri-
vacy preservation can be calculated and evaluated throughε,
givenδ.

Fig. 2. Outline of DP-SGD [17]. Symbols and parameters: input data set,
weightsθ, loss functionL(θ ), gradientg, learning rateηt, noise scaleσ,
group sizeL, gradient norm boundC, total weight update stepT,andthe
square root of the largest eigenvalue of the matrixgt(xi)∗gt(xi),gt(xi)2,
wheregt(xi)∗denotes the conjugate transpose of gt(xi)2.

B. Differentially Private SGD Algorithm

DP-SGD is a modification of the stochastic gradient
descent (SGD) algorithm that is popular and serves the basis
for many optimizers in machine learning [17]. Models trained
with DP-SGD have provable privacy guarantees in terms of
DP. Instead of working only on final parameters from the
training process, DP-SGD controls the influence of training
data during the training process. Fig. 2 outlines the principles
for training a model with weight parameters,θ, by minimizing
the loss function.
At each step of the DP-SGD, it computes the gradient for a
random subset of examples, clips each gradient, computes the
average, adds noise in order to protect privacy, and takes a step
in the opposite direction of this average noisy gradient. Two
operations are needed to ensure that SGD is a differentially
private algorithm. The first is to clip the gradient computed on
each training image to limit how much each training image can
impact model parameters. The algorithm clips each gradient
by a clipping threshold,C. In this article, we useL2norm
ofgt(xi)to representgt(xi)2, which is explained in Fig. 2.
The second is to sample and add random noise to randomize
the algorithm. Thus, it is statistically impossible to identify
whether a particular sample is included in the training set.
In this article, we achieve the algorithmic essence of

DP-SGD using a memristor-based neural network and our
proposed methods. In doing so, we realize a privacy-
preserving memristor-based learning system without introduc-
ing extra computational processing or noise generation units.

C. On-Chip Training of Memristor-Based Multilayer
Neural Networks

Memristors in a crossbar array structure can carry out
vector–matrix multiplication operations in parallel within the
analog domain, which can yield learning systems with high
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Fig. 3. Hardware implementation of neural networks using memristor cross-
bar.Vi,Gi,j,andIjrepresent the input signal in theith row, the conductance
of the memristor in thejth column andith row, and the output current that
represents the dot product result ofVandG, respectively.

throughput, low energy consumption, and minimal area. On-
chip learning with a memristor crossbar array provides the
learning system with capability for real-time learning [23]. As
shown in Fig. 3 for the hardware implementation of an IoT
system, the edge neural network can be directly mapped onto
a crossbar structure, where the vector–matrix multiplication
can be conducted by applying input voltages to each row and
reading currents from each column. Although many periph-
eral circuits are still required for complete functionality of
the on-chip learning system, the memristor’s desirable prop-
erties support the crossbar circuit to be a promising substitute
technology for traditional ones.

D. Memristors and Cycle-to-Cycle Variation

Memristors can achieve multiple conductance states. In our
learning system, the conductance of each memristor represents
the weight of each synapse. As shown in Fig. 4, positive and
negative input voltage pulses that are larger than the threshold
voltage can switch a memristor gradually fromGmintoGmax
or fromGmaxtoGmin, whereGmin andGmaxrepresent min-
imum conductance and maximum conductance, respectively.
Thus, the conductance/weight increase process is called long-
term potentiation (LTP) and the conductance/weight decrease
process is called long-term depression (LTD) [24].
In the backpropagation phase of the DP-SGD algorithm,

the weight update values (w) will be translated to a number
of LTP or LTD pulses, and applied to the synaptic array. The
amount of conductance change should be linearly proportional
to the number of write pulses; however, this linear change
is broken by memristor variations. Among all variations of
memristors not attributed to manufacturing process, cycle-to-
cycle variation is caused by intrinsically stochastic resistance
switching mechanisms [25]–[28] that can be approximated
as a Gaussian or normal distribution [19], [20], [29]–[33]. It
originates from the random formation and disruption of con-
ducting filaments [27] and the co-existence of multiple subfila-
ments, where the active, current-carrying filament may change
from cycle to cycle [28], [34]. To prove such randomness
introduced by each programming operation, 500 cycles [35]
and 5000 cycles [32] of experimental data are collected.

Cycle-to-cycle variations result in the different updated con-
ductance when the same updating signal in different updating
cycles is applied to a memristor, even when the initial
conductance is the same.

IV. GAUSSIANDISTRIBUTION OFCYCLE-TO-CYCLE
VARIATION

A. Mathematical Expression of Cycle-to-Cycle Variation

As discussed in Section III-D, when a memristor is incented
by an input pulse, its conductance is changed not only by the
designed value,(Gmax−Gmin)/NLevelbut also by cycle-to-
cycle variation,X. Here,Xis modeled as standard normal
distribution,N(0,σ), where the noise scale,σ, is determined
by the pulse width [19], [20], [29]–[33]. When takingninput
pulses as an example, the total conductance variation (Gvar)
generated in one memristor can be represented by

Gvar=X1+X2+···+Xn (2)

X1∼N0,σ
2
1 ,X2∼N0,σ

2
2 ,...,Xn∼N0,σ

2
n (3)

whereX1,X2,...,Xnare cycle-to-cycle variation variables
that are introduced by input pulses from the first pulse to
thenth pulse, respectively; andσ1,σ2,...,σnrepresent the
standard deviation of the noise of each input. Because the
widths of weight updating pulses are the same and applied
independently,X1,X2,...,Xnare independent and identically
distributed random variables, which indicates their means and
variance are identical (σ1=σ2= ··· =σn=σin). Then,
based on probability theory [36], [37], the variableGvarfol-
lows a joint Gaussian distribution that can be represented as
shown in

Gvar∼N0,nσ
2
in (4)

with a probability density function (pdf) shown in

f(Gvar)=
1

σin
√
2nπ
e
−12n

Gvar
σin

2

. (5)

B. Cycle-to-Cycle Variations of Positive and Negative
Pulse Pairs

As discussed above, due to cycle-to-cycle variation, which
is an inherent characteristic of memristors, even in a routine
weight update process, model parameters of a memristor-based
hardware system suffer from random noise addition. An input
pulse introduces cycle-to-cycle variation by changing memris-
tor conductance by(Gmax−Gmin)/NLevel; and as shown in
Fig. 4, a positive pulse and negative pulse make conductance
increase and decrease, respectively. Thus, when the number
of such positive and negative pulses are equal, this is equiv-
alent to adding cycle-to-cycle noise that follows a Gaussian
distribution. For example, when we apply one positive pulse,
the conductance of the memristor changes fromG0toG1,as
shown in

G1=G0+((Gmax−Gmin)/NLevel)×1+X1. (6)

After then applying one negative pulse, it changes fromG1to
G2,asshownin

G2=G1−((Gmax−Gmin)/NLevel)×1+X2 (7)
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Fig. 4. LTP process, LTD process, and cycle-to-cycle variation of a mem-
ristor.NLevelrepresents the number of conductance states of a memristor.

whereX1 ∼ N(0,σ
2
1)andX2 ∼ N(0,σ

2
2). Now add (6)

and (7), and letX1+X2=Gadd,which results in

G2=G0+X1+X2=G0+Gadd. (8)

Finally, letσ21+σ
2

2=σ
2
add, which yields

Gadd∼N0,σ
2
add. (9)

Based on probability theory [36], [37],X1andX2are inde-

pendent random variables. Assuming thatσ21+σ
2

2= σ
2
add,

then after applying a pair of positive and negative pulses,
the effective noise introduced to the target memristor follows
a joint Gaussian distribution,N(0,σ2add). Hence, applyingm
positive/negative PNs to a memristor injects noise that follows
the joint Gaussian distribution,N(0,mσ2add), without requir-
ing additional circuitry. With such a noise injection method,
the scale of injected noise is decided bym, the number of
positive/negative PNs, and their pulse width.
It should be noted that due to the various types of mem-

ristors, when we apply this positive/negative PN method, the
intrinsic characteristics of the specific memristor need to be
considered. For memristors discussed in [38]–[41], the con-
ductance only changes when the amplitude of the input pulse
is larger than the threshold voltage, and its duration is larger
than the switching time, which is the necessary condition for
noise injection. Therefore, for this kind of memristor, the min-
imum noise injection is constrained by its threshold voltage
and switching time. Nevertheless, as for memristors discussed
in [2], [42], and [43], the conductance change and cycle-to-
cycle variation exist whenever any input is applied, so, the
injected noise can be set at a much smaller scale.
In this article, we denote the noise injection method by using

positive/negative PNs as the PN method.

V. NOISEINJECTION INACCORDANCEWITHDP

For a memristor in a learning system, whennpulses are
applied (assumenis a positive integer), the injected noise,
Gvar, regarded as system built-in noise, follows a joint dis-
tributionN(0,nσin

2). However, for different memristors, the
injected noise is not identical, and the independent Gaussian
noise is impractical to be obtained in a trackable form. Hence,
this causes difficulty in tracking the consumed privacy bud-
get and evaluating utility loss. Therefore, this article proposes

a hardware-based NDN method to normalize introduced noise
for all weights (conductance of memristors) in a learning
model. The proposed method transfers nonbeneficial random
noise of cycle-to-cycle variations into a valuable measure for
privacy protection by using the proposed PN method, which
improves the utility of the privacy-preserving neural network
with an excellent privacy guarantee.

A. Noise Distribution Normalization Method

As discussed in Section IV, for each memristor,Gvaris
built-in noise of an AI algorithm.Gaddby PN method is
adjustable noise for implementation of adjustable noise injec-
tion. VariablesGvarandGaddare independent but not identical
Gaussian random variables. Let,Gnoise=Gvar+Gadd, then

Gnoise∼N0,nσ
2
in+mσ

2

add. (10)

We propose the NDN method to achieve DP protection by
hardware implementation. To ensure that every gradient car-
ries noise with the same distribution injected, first we clip
the gradient intonc, which is a constant value. Second, for
one memristor, if the needed pulsesn>=nc,letn=nc;
otherwise, keepnvalue and letm=(nc−n)∗σin

2/σ2add.
Given that the proposed method is hardware-based, where
σis related to actual characteristics of memristors, when
we implement this method,σaddcan be tuned to a value
that ensuresm is an integer. Hence, when the needed

pulses aren≥nc,nσ
2
in+mσ

2

add = ncσ
2
in; and when the

needed pulsesaren<nc,nσ
2
in+mσ

2

add=nσ
2
in+((nc−n)∗

σin
2/σ2add))∗σ

2
add=ncσ

2
in. In so doing, for every memristor

at each weight update,Gnoisefollows aN(0,ncσ
2
in)Gaussian

distribution, with a pdf as shown in the following:

f(Gnoise)=
1

σin
√
2πnc

e
− 1
2nc

Gnoise
σin

2

. (11)

B. Privacy Analysis

To ensure that our design preserves the DP notion, we need
to first guarantee that each gradient descent step is (ε,δ)-
differentially private. For our crafted Gaussian distribution and
pdf withGnoise∼N(0,ncσ

2
in)that we use to sample noise,

by the standard definition in [21, Th. 3.22], one needs to
ensure thatσin

√
nc≥ 2log(1.25/δ)/εandε<1. For the

former inequality, it can be easily satisfied by adjusting the
number of pulses,nc, while the later inequality is selected arti-
ficially at runtime. In light of this, our Gaussian distribution
can guarantee the DP notion for each iteration in Fig. 2.
Next, we need to prove the overall process of running the
DP-SGD algorithm in memristor crossbar for the DP notion,
and theoretically evaluate how much privacy budget costs to
preserve DP. First, since at each iteration we independently
sample random noise from the identical Gaussian distribu-
tionN(0,ncσ

2
in)by applying the same number of pulses to

the memristor crossbar, according to the composition theo-
rem of (ε,δ)-differential privacy [21], the overall process still
preserves the DP notion. Next, based on the privacy ampli-
fication theorem [44], for the process of random sampling
with probabilityL/N, as in Fig. 2, each iteration is technically
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O((εL/N), δL/N)-differentially private. Then, the strong com-
position theorem implies that, for a sufficiently large number
of iterations,T(i.e., we expectT N/Land each sam-
ple is examined multiple times), the overall budget cost is
εtot= ((L/N)Tlog(1/δ)log(T/δ)/σin

√
nc). It is worth not-

ing that [17] developed a moment accountant technique to
obtain a much tighter bound on the accumulated privacy bud-
get, which allows for using a smaller variance value in the
Gaussian distribution. Here, our intention is only to prove and
showcase the preservation of DP and its estimated cost, despite
loose privacy loss. Interested readers are referred to [17] for
the details on the moment accountant analysis.

VI. CASESTUDY ANDDISCUSSION

As discussed in Section V, the proposed memristor-based
NDN method can effectively realize DP by injecting normal-
ized random noise to edge AI in IoT systems. In this section,
based on a hardware machine learning platform that consists of
memristor crossbar array and peripheral circuits, we perform
a case study that implements the DP-SGD algorithm by NDN.

A. Implementation of DP-SGD via Hardware in Edge AI

As illustrated in Fig. 2, two modifications (clip gradient
and add noise) are needed to ensure that the proposed SGD
follows a DP algorithm. For the first modification, in order
to constrain how much each individual training sample can
influence the resulting gradient computation (model parame-
ters), the sensitivity of each gradient needs to be bounded.
For the second modification, it is necessary to randomize the
behavior of the algorithm to make it statistically impossible
to identify whether a particular training sample is included in
the training data set, which can be achieved by adding random
noise to the clipped gradients.
For the first modification, Fig. 2 shows that the gradient clip-

ping process needs to calculate theL2norm of the gradient
matrix. These processes inevitably increase the computational
load of the system. We propose a clipping method that is the
first step of the NDN method to meet the requirement of clip-
ping without matrix calculation. The clipping operation sets
an upper boundary on gradients to bound the influence of
each individual example on gradients. A smaller upper bound-
ary has a stronger limitation of the gradient. When the NDN
clip boundary is small enough, theL2norm of the gradient
is always less than 1. In this circumstance,L2norm comput-
ing is simplified because 1 is always chosen as the maximum
value in the first modification according to the DP-SGD shown
in Fig. 2. As shown in Fig. 5, in our hardware implementa-
tion, this method uses simple hardware units—comparators
to compare the gradient value with a reference gradient value.
When the gradient is clipped, the maximum number of weight
update pulses is fixed. Accordingly, the system saves the cost
of matrix calculation and also ensures that the degree of each
training sample’s impact on model parameters is bounded.
The second modification can be implemented by the PN
method, which is the second step of the NDN method. The
PN method adds random noise by applying extra input PNs
to memristors. As discussed in Section IV, in each step, when

Fig. 5. Workflow of the NDN method, wherenrepresents the number
of pulses that are used to update a weight andmrepresents the number of
positive and negative PNs. (a) Example: after applying the NDN method, for
memristorAn=Nc,m=0; for memristorB,n=j,m=Nc−j. (b) Hardware
implementation flow of the NDN method.

extra PN pairs of input pulses are added to each memristor, the
amount of the designated change in conductance caused by such
positive and negative pulses counteract each other, such that
only random noise is added to the memristor conductance. Since
the weight increase and decrease need different programming
voltage polarities, the weight update process (writing process
for the model parameter) requires two steps with positive and
negative voltages, respectively. Fig. 5(b) shows the hardware
implementation flow of the NDN method. Hence, when using
hardware that combines a memristor array-based learning circuit
along with the NDN method, the DP-SGD can be implemented
using the existing hardware with minimal additions.

B. Results

To verify our proposed methods for edge AI, we adopt the
neural network hardware platform, NeuroSim+ [24]. This is
a memristor-based circuit model of neuro-inspired architec-
tures to emulate the circuit behavior of an online learning
recognition scenario with MNIST [45] data set. The neural
network topology of this simulator includes input layer, hidden
layer, and output layer, with 400 neurons, 100 neurons, and
ten neurons, respectively. The simulator emulates hardware
to train the network with images randomly chosen from the
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Fig. 6. Recognition accuracy of MNIST under various clip boundaries.

training data set MNIST, which includes 60 000 images, and
classify the testing data set with 10 000 images. The training
process has two parts, feedforward propagation and back-
propagation, which includes weighted sum operation, neuron
activation operation, recognition, and deviation calculation.
The deviations are used to update the conductance of memris-
tors using identical positive input pulses or identical negative
input pulses. We integrate our proposed NDN method into
this simulator to train privacy-preserving multilayer neural
networks, such that we can only use hardware that consists
of memristor array and peripheral circuits to realize DP-SGD
behavior.

1) Clipping of NDN:To explore the effect of the clipping
step of NDN, the clipping method is applied to a fully con-
nected neural network without the PN method and without
cycle-to-cycle variation. As discussed in Section VI-A, the
clipping operation limits the scale of gradient, and a smaller
clip boundary has a larger limitation of the gradient. Also,
as each gradient value is clipped, the number of pulses is
also clipped, and the influence of each image is limited. In
our simulation, we use a clip boundary to clip the gradi-
ent of each weight. Then, the number of pulses for each
weight is obtained, wherethe number of Pulse=rounding
(clipping(gradient)*learning_rate*NLevel). The rounding
operation converts the value to its nearest integer number. In
our case, when the clip boundary is less than 0.2, theL2
norm of the gradient is always smaller than 1. Therefore,
the clipping method saves the matrix calculation cost of DP-
SGD-based hardware systems. Fig. 6 shows the recognition
accuracy of MNIST handwriting digits as the clip boundary
value changes. These results indicate that as the clip bound-
ary decreases, the recognition accuracy stays at a high level,
which concludes that the clipping operation does not degrade
performance of the three-layer neural network based on the
DP-SGD algorithm.

2) NDN Method:Since many types of memristors exist,
the proposed methods are explored with various configura-
tions, including the twelve noise levels shown in Table I.
Fig. 7 shows recognition accuracy of MNIST handwriting dig-
its under various noise levels with and without NDN method.
The one without the NDN method is named Original, and
it does not consider cycle-to-cycle variation as noise injec-
tion, but instead adds Gaussian noise via software. As shown

TABLE I
SIGMAPARAMETER OFCYCLE-TO-CYCLEVARIATION

Fig. 7. Recognition accuracy of MNIST handwriting digits under various
noise levels. (a)Nc=1.(b)Nc=2.

in Fig. 7, underNc=1 andNc=2, the average recogni-
tion accuracy of these ten variation circumstances with the
NDN method is improved by 7.4% and 3.5%, respectively, as
compared with the original case. Fig. 8 also provides a recog-
nition accuracy comparison, but with differentNcand different
variation levels (levels from 2 to 8). It shows that the NDN
method has 15.5% higher accuracy on average as compared
to the Original method. This is because for memristor-based
learning system in the Original case, cycle-to-cycle variation
still exists, in addition to the noise added via software, which
leads to prediction accuracy loss. Such loss will be larger than
the case with the NDN method that only considers the inher-
ent cycle-to-cycle variation without additional noise injection
via software. These results support the proposed NDN method
as an effective optimization method that can improve the utility
of a memristor-based differentially private learning model.
In Fig. 9, we show the evolution of accuracy with different
noise levels,σ, as a function of the number of training images.
It shows 90.5%, 75.4%, and 54.4% recognition accuracy when
σequals 3%, 6%, and 12% from Table I, respectively.
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Fig. 8. Recognition accuracy of MNIST handwriting digits under various
noise levels and different number of PNs: (a) using NDN method, where the
x-axis represents the number of PNs,Nc; (b) Original case, where thex-axis
has the same noise scale as (a).

Fig. 9. Recognition accuracy of training process using the NDN method
under three noise levels, whereσfor small noise, medium noise, and large
noise equals 3%, 6%, and 12%, respectively.

C. Comparison With Existing Work

As listed in Table II, as compared with the state of the
art, [10], [18], [20], instead of implementing the DP-SGD
algorithm for privacy preservation by a traditional comput-
ing system, the proposed NDN method adds Gaussian noise
for memristor-based hardware using inherent cycle-to-cycle
variation. Thus, the memristor-based machine learning system
does not require an additional random noise generator. Also,
the scale of injected noise can be adjusted by changing the
number of PN PNs. For the DP-SGD algorithm, the clipping
method of NDN limits the impact of each training data on
model parameters and saves the cost of theL2norm matrix
calculation.

D. Nonlinearity

In general, the amount of conductance change of memris-
tors sometimes is different as the number of pulses increases,
which is attributed to the NL of the weight modulation. In
other words, every pulse results in a different response in the
weight modulation depending on the current weight state [46]
when we apply a pair of positive and negative pulses to a mem-
ristor with the NL consideration, as shown in Fig. 10, where
GX=GX1−GX2, (7) can be rewritten as follows:

G2=G0+GX+Gadd (12)

TABLE II
COMPARISONWITHSTATE OF THEART

Fig. 10. NL effect on conductance modulation of memristors.

TABLE III
RECOGNITIONACCURACYWITHNDN METHOD ANDNL

whereG0+GXhas the same conductance range asG0, which
is fromGmintoGmax. When we map the memristors’ conduc-
tance to the gradient of DP-SGD, bothG0in (8) andG0+GX
in (12) are mapped to the same range, which is from 0 to 1.
Thus, when we consider the NL effect of memristors, the
global sensitivity of gradient remains unchanged, and so will
the noise scale ofGadd(i.e., variance of the Gaussian distri-
bution). Therefore, the NDN method still conforms to the DP
theory.
We conduct experiments to explore the NDN method con-
sidering the NL of memristors. We adopt the NL definition
from [47], where NL ranges from 0 to 1. As shown in
Table III, with NL ranging from 0.05 to 0.25, recognition
accuracy with NDN is still 9.3% on average higher than the
Original case without NDN. This shows the effectiveness of
the proposed method, where the NL is being used as an
advantage instead of degrading accuracy, as already discussed
in Section VI-B2. Although the NL property does degrade
the performance of the memristor-based learning system,
a memristor-based learning system can achieve an acceptable
performance with the NL and the proposed NDN method.
Moreover, researchers have proposed memristors with a small
NL [48] as well as methods to solve the NL issue [12], [13].
Thus, the proposed method is still effective even with the NL
property.
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TABLE IV
TOTALPOWER OFMEMRISTOR-BASEDARRAY INLEARNINGDEVICE

TABLE V
RECOGNITIONACCURACYWITHVARIOUSFAILURERATES

E. Scalability and Endurance

Many applications employing a neural architecture use
memristors in the edge, where our proposed method can be
adopted, including for example, face classification with arti-
ficial neural network (ANN) structure [49], [50], handwritten
digits classification [51] and image processing [52] with con-
volutional neural network (CNN) structure, memristor-based
edge detection [53], and pattern recognition with recurrent
neural network (RNN) [54]. Our proposed method is generic
and can be applied to any memristor-based learning system.
However, the number of neurons and layers in deep learning
neural networks may cause scalability issue for a memristor-
based array. Penget al.[55] solved this issue by using
a chip-level hierarchical architecture that divides large arrays
into groups of synaptic subarrays, and connects each subarray
using an H-tree structure. To further explore network scalabil-
ity, we simulated the learning tasks introduced in Section VI-B
using the various network structures listed in Table IV, which
shows that power increases with the number of neurons, but
accuracy also increases; hence, there is a tradeoff between
power and accuracy. Note that the power of memristor array
is calculated based on wire resistance, reading, and the weight
update writing process.
Another challenge for memristor crossbar arrays is the sneak

path issue, which severely degrades read sensing margin [56].
One solution is to increase the minimum conductance value,
but this degradesON/OFF ratio of memristors. Our exper-
iments utilize a one-transistor one-resistor (1T1R) array to
avoid sneak path current problems [24].
The failure rate, endurance, and aging issues also impact
the performance of memristor-based edge systems. The typi-
cal memristor failure rate is less than 10% [57]. As shown
in Table V, we have conducted learning tasks with up to
10% failure rate, while recognition accuracy shows no obvious
degradation. This indicates that neuromorphic architectures
are more robust to variations because, in the learning pro-
cess, weights updates frequently in each epoch to compensate
for mismatch resulting from variations. Memristors have high
endurance (120 billion cycles) and retention (ten years) even
when they undergo high frequency writing and reading in
learning systems [47], which qualifies them for most edge
computing in IoT applications.
Additionally, the conductance range of memristors may
deviate from the original state over time. As shown in
Table VI, the recognition accuracy decreases by 27.74% when

TABLE VI
RECOGNITIONACCURACYWITHCONDUCTANCEDRIFTING

conductance drifting is 30%, but it does not show a significant
decrease when it is 10% or 20%.

VII. CONCLUSION

In this article, to meet the high-speed, low-power, and
low computing-cost requirements of edge computing in IoT
systems, we propose a universal memristor-based method that
can be used to realize a privacy-preserving learning system.
The proposed NDN method consists of a positive/negative PN
method and a clipping method. The PN method can generate
adjustable Gaussian noise based on cycle-to-cycle variation of
memristors, without extra hardware or a random noise genera-
tor, making it possible to meet the noise-injection requirement
of the DP mechanism. The clipping method that uses com-
parator units can normalize the introduced noise from the PN
method.
In the case study of a memristor-based neural network
hardware platform, we implement the DP-SGD algorithm
via hardware-based NDN method, and at the same time avoid
theL2norm calculation of gradient matrices, thereby reducing
the computational cost. Experimental results indicate a 3.5%
to 15.5% average recognition accuracy improvement using
the proposed NDN method and a 9.3% average improvement
when the NL of memristors is considered, as compared to the
Original case that adds noise via software. Also, the scala-
bility and endurance for the proposed system are considered.
Consequently, the proposed method is an effective technique
that provides a low-cost hardware solution for the notion of
DP in memristor-based learning systems.
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