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Abstract
Weintroducenewnotions in elliptic Schubert calculus: the (twisted)Borisov–Libgober
classes of Schubert varieties in general homogeneous spacesG/P .While these classes
do not depend on any choice, they depend on a set of new variables. For the defini-
tion of our classes we calculate multiplicities of some divisors in Schubert varieties,
which were only known for full flag varieties before. Our approach leads to a simple
recursions for the elliptic classes. Comparing this recursion with R-matrix recursions
of the so-called elliptic weight functions of Rimanyi–Tarasov–Varchenko we prove
that weight functions represent elliptic classes of Schubert varieties.

1 Introduction

Schubert calculus is usually considered in ordinary cohomology or in K -theory.
Generalized cohomology theories correspond to formal group laws. Under this cor-
respondence ordinary cohomology and K -theory correspond to the one-dimensional
algebraic groups C and C

∗ respectively. There is another one-dimensional complex
algebraic group, the elliptic curve E = C

∗/qZ, (|q| < 1 fixed). The correspond-
ing cohomology theory is called elliptic. In this paper we study the thus obtained
(equivariant) elliptic Schubert calculus.

A key step in any Schubert calculus is assigning a characteristic class to a Schubert
variety. Traditionally this characteristic class is the fundamental class notion of the
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704 S. Kumar et al.

given cohomology theory. However, it is known that in elliptic cohomology the notion
of fundamental class is not well defined [8], or in other words, the notion depends on
choices. There are important works (e.g. [15,25] and references therein) on elliptic
fundamental classes based on making some natural choices—the choice can be geo-
metric (a resolution) or algebraic (a basis in a Hecke algebra). In this paper we are
suggesting a notion which does not depend on choices. Our class is not the elliptic fun-
damental class (as just discussed, it does not exist); we regard our class as an analogue
of the cohomological Chern–Schwartz–MacPherson (CSM) class, and the K-theoretic
motivic Chern (MC) class. In fact, certain limits of our elliptic class recovers the CSM
and the MC classes.

The CSM and MC characteristic classes are one-parameter deformations of the
fundamental classes in their respective cohomology theories. The parameter is usually
denoted by1 h. At “h = ∞” and h = 1 the CSM and MC classes specialize to
the fundamental class of the theory. Our elliptic class also depends on the extra h
parameter. However, the elliptic analogue has a pole at h = 1, which we regard as
another incarnation of the fact that the notion of fundamental class should not exist in
elliptic cohomology.

Our project—definition of the h-deformed elliptic class of a Schubert variety—has
been carried out for full flag varieties G/B in [34]. Along the way, it was necessary
to introduce further new variables2 μi . The purpose of this paper is to carry out the
same task for general homogeneous spaces G/P . Compared to the case of G/B some
unexpected difficulties need to be handled. The setup of elliptic characteristic classes
has a deeply geometric component which is missing from the setup of both CSM
classes (in H∗

T ) and MC classes (in KT ). Namely, only special kinds of singularities
are allowed (the multiplicities of some divisors of the resolution are constrained) and
the pull-back of a Cartier divisor (involving the canonical divisor and the boundary
divisor) need to be understood. This piece of geometry was not known for general
G/P before.

Hence, in the first part of the paper we study the divisors and their pullbacks on
Schubert varieties of G/P . In the second part, using these results, we define the elliptic
classes of Schubert varieties in G/P and discuss their defining recursions. In the third
part, for G = GLn , we prove that the thus obtained elliptic class can be represented
by an explicit function called elliptic weight function of [32].

Let us describe some recent developments on the frontiers of geometry and represen-
tation theory, which was a guidance of our work, and which may put our construction
in context. In a theory initiated by Okounkov and his coauthors [1,26,28] a new char-
acteristic class is defined under the name of stable envelope (class) (see also works
of Rimányi–Tarasov–Varchenko [30–32]). Stable envelopes have cohomological, K-
theoretic, and elliptic versions. Roughly speaking this class is defined as follows: an
identification is set up between theBethe algebra of certain quantum integrable systems
and the regular representations of certain cohomology, K -theory, elliptic cohomology
algebras. On the physics side of this identification there are two natural bases: the spin

1 Or by� in physics literature, also sometimes by y in K -theory—tomatch the classical notion ofHirzebruch
χy–genus.
2 These extra variables are probably related with the “dynamical variables”, a.k.a. “Kähler variables” of
mathematical physics literature.
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Elliptic classes of Schubert varieties 705

(or coordinate-) basis and the Bethe (or eigen-) basis. The identification matches the
Bethe basis with the fundamental classes of torus fixed points on the geometric side.
The geometric classes matching the spin basis are given the name of stable envelope
classes. The essence of results in [2,3,11,13,33] is that, in Schubert calculus settings,
the cohomological stable envelopes are the CSM classes of Schubert cells, and the
K-theoretic stable envelopes are the MC classes of Schubert cells. Hence, it is natural
to predict that there is an elliptic generalization of the CSM and MC class. Moreover,
that this notion in Schubert calculus matches the elliptic stable envelopes of [1,32].
Exactly this prediction is fulfilled by the results of [34] and the present paper. Let us
emphasize, that although we used the above mentioned works of Okounkov and others
as guidance, our work does not rely on them.

2 Notation

Throughout the paper we will use the following notation.

• G is any semisimple connected, simply-connected complex linear groupwithBorel
subgroup B andmaximal torusT. Its Lie algebra is denoted by t = Hom(C∗,T)⊗
C. The dual of the Lie algebra t∗ = Hom(T, C

∗)⊗C contains the lattice of integral
weights t∗

Z
= Hom(T, C

∗), which are identified with characters.Wewill also need
the fractional weights t∗

Q
= Hom(T, C

∗) ⊗ Q.
• P is a standard parabolic subgroup with the Levi subgroup L containing T, see
[18, Part II,§1.8].

• WP is the Weyl group of P , i.e., the Weyl group of L , W = WG .
• W P denotes the smallest length coset representatives in W/WP .
• We denote the dualizing sheaf of a Cohen–Macaulay Scheme Y by ωY .
• X P

w ⊂ G/P is the Schubert variety BwP/P .
• E xt denotes the sheaf Ext.
• ρ ∈ t∗

Z
is the (standard) half sum of positive roots of G.

• ρL ∈ t∗
Q
is half the sum of positive roots of L .

• Cλ denotes the one dimensional representation of T as well as the trivial line
bundle on X P := G/P with the T-equivariant structure given by Cλ.

• For any character λ of P , L P (λ) denotes the line bundle over X P :

G ×P
C−λ → X P .

• Define ρ̄Lbyρ̄L(α∨
i ) = 1, ifαi is a simple root of L

= 0, otherwise.

Observe that ρ − ρ̄L is a character of P and so is 2ρ − 2ρL . We often identify a
character λ by its derivative λ̇.
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706 S. Kumar et al.

3 The canonical divisor

The dualizing sheaf is the key object of our consideration. If X is a Cohen–Macaulay
scheme then the dualizing complex is concentrated in the degree dim X (or degree
− dim X depending on convention). Hence, up to a shift by dim X , it coincides with
the dualizing sheaf ωX defined in [17, §III.7]. Let j : V → X be the inclusion of an
open subset whose complement is of codimension at least 2. By [23, Lemma 2.7] or
[20, §5] the canonical sheaf is determined by its restriction to V :

ωX = j∗ j−1ωX . (1)

It is easy to see that the dualizing sheaf of the homogeneous space is given by

ωX P = L P (−2ρ + 2ρL), (2)

see, e.g., [18, Part II,§4.2]. Moreover, X P
w is a Cohen–Macaulay variety ([9, Corollary

3.4.4]). Recall that, for any Cohen–Macaulay subvariety Y of a smooth variety X ,

ωY 	 E xtcodim Y
OX

(OY ,OX ) ⊗ ωX . (3)

In particular,

ωX P
w

= E xt
codim X P

w

OX P

(
OX P

w
,OX P

)
⊗ ωX P . (4)

We identify the fixed points of X P under the action of T with the set of shortest
representatives W P ⊂ W . For v,w ∈ (X P )T we write v → w if v < w and
dim X P

v = dim X P
w − 1. Let X̊ P

v ⊂ X P
v denote the Schubert cell. For w ∈ W P ,

let iw : {pt} → X P be the map sending the point to the fixed point w. Then, as
T-equivariant line bundles, i∗wL P (λ) = C−wλ, for any character λ : P → C

∗. Let

ξw := Cρ−wρ̄L ⊗ ωX P
w

⊗ L P (ρ − ρ̄L).

Lemma 3.1 Restricted to X̊ P
w , we have a B-equivariant isomorphism:

(ξw)|X̊ P
w

	 (OX P
w
)|X̊ P

w
.

Proof Since X̊ P
w is smooth isomorphic to an affine space and both sheaves are trivial

of rank one, it is enough to show that i∗wξw is trivial as a T-module. This follows since
by (2) and (4)

ξw = Cρ−wρ̄L ⊗
(
E xt

codim X P
w

OX P
(OX P

w
,OX P ) ⊗ L P (−2ρ + 2ρL)

)
⊗ L P (ρ − ρ̄L)

= Cρ−wρ̄L ⊗ E xt
codim X P

w

OX P
(OX P

w
,OX P ) ⊗ L P (−ρ + 2ρL − ρ̄L)
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Elliptic classes of Schubert varieties 707

and

i∗w
(
E xt

codim X P
w

OX P

(
OX P

w
,OX P

))
	 det

(
Tw(X P )

Tw(X P
w)

)

	 C−(ρ+wρ−2wρL ).

To prove the last equality we proceed as follows: Let R+ (resp. R−) be the set of
positive (resp. negative) roots of g, R−

P the set of negative roots of the Levi subgroup
of P . Then

Tw(X P
w) = Tw(BwP/P) = Tw(w(w−1Bw ∩ B−)P/P) =

⊕
β∈R+∩wR−

gβ ,

Tw(X P ) =
⊕

β∈w(R−\R−
P )

gβ .

Thus,

det

(
Tw(X P )

Tw(X P
w)

)
	 C−w(2ρ−2ρL )−(ρ−wρ) = C−(ρ+wρ−2wρL ) (5)

by [21, Cor. 1.3.22(3)]. The conclusion of the lemma follows since the weight of i∗wξw

is equal to

(ρ − wρ̄L) − (ρ + wρ − 2wρL) − w(−ρ + 2ρL − ρ̄L) = 0 .

��
Let V P

w := X̊ P
w ∪ ⋃

v→w

X̊ P
v . Then, V P

w is a smooth open subset of X P
w . The restriction

ξw|V P
w
is an invertible B-equivariant OV P

w
-module. Hence, by Lemma 3.1,

ξw|
V P
w

	 OX P
w

(
−

∑
v→w

m P
w,v X P

v

)

|
V P
w

, for some m P
w,v ∈ Z.

Lemma 3.2 The coefficients m P
w,v of the restriction of ξw to V P

w are given by the
formula:

m P
w,v := 1 − 〈wρ̄L , β∨〉 ,

where β is the positive root such that v = sβw.

Here the bracket 〈−,−〉 denotes the pairing between weights and coweights.
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Proof Take v ∈ W P with v → w. Then,

i∗v
(
E xtcodim X p

w

OX P

(
OX P

w
,OX P

))
	 det

(
Tv(X P )

Tv(X P
w)

)

	 det

(
Tv(X P )

Tv(X P
v )

)
⊗ det

(
Tv(X P

w)

Tv(X P
v )

)∗

	 C−(ρ+vρ−2vρL )+β, where v = sβw, (6)

by (5). Thus, by (4), (2) and (6),

i∗v ξw = Cρ−wρ̄L ⊗ i∗v
(
E xt

codim X P
w

O X P

(
OX P

w
,OX P

)
⊗ ωX P

)
⊗ i∗vL P (ρ − ρ̄L )

= Cρ−wρ̄L ⊗ i∗v
(
E xt

codim X P
w

O X P

(
OX P

w
,OX P

)
⊗ L P (−2ρ + 2ρL )

)
⊗ i∗vL P (ρ − ρ̄L )

	 Cρ−wρ̄L ⊗ C−(ρ+vρ−2vρL )+β ⊗ Cv(2ρ−2ρL ) ⊗ C−v(ρ−ρ̄L )

	 Cβ(1−〈wρ̄L ,β∨〉), (7)

as the following calculation shows.

ρ − wρ̄L−(ρ + vρ − 2vρL ) + β + v(2ρ − 2ρL ) − v(ρ − ρ̄L ) = vρ̄L + β − wρ̄L

= sβwρ̄L + β − wρ̄L

= −〈wρ̄L , β∨〉β + β

= β(1 − 〈wρ̄L , β∨〉).

Also,

i∗v

(
OX P

w

(
−

∑
u→w

m P
w,u X P

u

))
= det

(
Tv(X P

w)

Tv(X P
v )

)⊗−m P
w,v

= C
⊗−m P

w,v

−β

= Cm P
w,vβ . (8)

Equating (7) and (8), we obtain the lemma. ��

Theorem 3.3 For any w ∈ W , we have a B-equivariant isomorphism:3

ξw 	 OX P
w

(
−

∑
v→w

m P
w,v X P

v

)
,

3 The proof is parallel to that of [22, §10].
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Elliptic classes of Schubert varieties 709

where m P
w,v is as in Lemma 3.2. Thus, the dualizing sheaf ωX P

w
of X P

w isT-equivariantly
isomorphic to

C−ρ+wρ̄L ⊗ OX P
w

(
−

∑
v→w

m P
w,v X P

v

)
⊗ L P (ρ̄L − ρ).

Moreover, the multiplicity m P
w,v is a positive integer.

Proof We first prove the positivity of m P
w,v : We have v < w, β > 0 and sβw = v.

Hence, v−1 < w−1 and w−1sβ = v−1. By [21, Lemma 1.3.13] the root w−1β is
negative. Hence,

m P
w,v = 1 − 〈wρ̄L , β∨〉 = 1 − 〈ρ̄L , w−1β∨〉 ≥ 1 .

Let j : V P
w ↪→ X P

w be the inclusion. Consider the following commutative diagram
with exact rows, where D := ∑

v→w

m P
w,v X P

v is the divisor with m P
w,v as in Lemma 3.2.

0 OX P
w
(−D) OX P

w

	

OD 0

0 j∗ j−1(OX P
w
(−D)) j∗ j−1(OX P

w
) j∗ j−1OD.

The middle vertical arrow is an isomorphism since X P
w is normal and X P

w\V P
w is of

codim ≥ 2 in X P
w . Moreover, the right vertical map is injective since the closure of

D̄ ∩ V P
w coincides with D̄, where D̄ denotes the support of D. Hence, the left vertical

map
OX p

w
(−D) → j∗ j−1(OX P

w
(−D)) (9)

is an isomorphism.
On the other hand, since ξw is a Cohen-Macaulay OX P

w
-module, by (1), we have

ξw
φ1	 j∗ j−1(ξw)

φ2	 j∗ j−1OX P
w
(−D)

φ3	 OX P
w
(−D),

where the isomorphism φ2 follows from Lemma 3.2 and φ3 is an isomorphism by (9).
This proves the theorem. ��

The following corollary will be used in (14) in order to establish the condition
of Assumption 5.1.(1) which makes it possible to define the elliptic class of the pair
(X P

w,
∑

v→w

m P
w,v X P

v ).

Corollary 3.4 Let K X P
w

denote a divisor corresponding to the dualizing sheaf ωX P
w

.
Then,

K X P
w

+
∑
v→w

m P
w,v X P

v
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710 S. Kumar et al.

is a T-equivariant Cartier divisor representing C−ρ+wρ̄L ⊗ L P (ρ̄L − ρ). ��
Further on we need to analyze the pull-back of the divizor K X P

w
+ ∑

v→w

m P
w,v X P

v to

a preferred resolution.

4 Chevalley formula

Let w = s j1 . . . s j� be a reduced decomposition of w ∈ W (W being the Weyl group
of G and s j are simple reflections) and let Zw be the corresponding Bott-Samelson-
Demazure-Hansen resolution

fw : Zw → X B
w ⊂ G/B ,

—which is often called standard resolution, or Bott-Samelson resolution, or for short
BSDH resolution, see, e.g., [9, §2.2.1].

Proposition 4.1 For any integral weight λ ∈ t∗
Z

(not necessarily dominant), we have

f ∗
w(L B(λ)) 	 OZw

(
�∑

i=1

〈λ, γ ∨
i 〉∂i Zw

)
,

where γi := s j�s j�−1 . . . s ji+1α ji , α j is the simple root corresponding to the simple
reflection s j and

∂i Zw := Zs j1 s j2 ...ŝ ji ···s j�
.

Proof Consider the diagram

Zw

πw

fw

X B
w[�] ×G/Pα j�

G/B G/B

Zw[�] fw[�]
X B

w[�] G/Pα j�
,

where Zw[�] corresponds to the word s j1 . . . s j�−1 and X B
w[�] := X B

s j1 ...s j�−1
. By [19, §2,

Lemma 3],

f ∗
w(L B(λ)) 	 π∗

w( f ∗
w[�](L B(s j�λ))) ⊗ OZw

(
〈λ, α∨

j�〉Zw[�]
)

= OZw

(
�−1∑
i=1

〈s j�λ, s j�−1 . . . s ji+1α
∨
ji 〉(∂i Zw)

)
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Elliptic classes of Schubert varieties 711

+ OZw

(
〈λ, α∨

j�〉(∂�Zw)
)

, by induction on l(w)

= OZw

(
�∑

i=1

〈λ, s j�s j�−1 . . . s ji+1α
∨
ji 〉(∂i Zw)

)
.

This proves the proposition. ��
As a corollary of the above proposition and Corollary 3.4, we get the following.

Corollary 4.2

f̄ ∗
w

(
ωX P

w
⊗ OX P

w

( ∑
v→w

m P
w,v X P

v

))
	 ωZw ⊗ OZw

(
�∑

i=1

m P
w,i (∂i Zw)

)
⊗ Cwρ̄L ,

where π P : X B
w → X P

w is the projection, f̄w := π P ◦ fw and

m P
w,i : = 1 − 〈wρ̄L , β∨

i 〉, and βi := s j1 . . . s ji−1α ji

= 1 + 〈ρ̄L , γ ∨
i 〉 ≥ 1.

Proof By Corollary 3.4,

ωX P
w

⊗ OX P
w

( ∑
v→w

m P
w,v X P

v

)
	 C−ρ+wρ̄L ⊗ L P (ρ̄L − ρ). (10)

Further, by [9, Proposition 2.2.2],

ωZw 	 OZw

(
−

�∑
i=1

∂i Zw

)
⊗ f ∗

w(L B(−ρ)) ⊗ C−ρ. (11)

From the equation (10), we obtain

f̄ ∗
w

(
ωX P

w
⊗ OX P

w

( ∑
v→w

m P
w,v X P

v

))
	 f̄ ∗

w

(
L P (ρ̄L − ρ)

)
⊗ C−ρ+wρ̄L

	 f ∗
w(L B(−ρ)) ⊗ f ∗

w

(
L B(ρ̄L)

)
⊗ C−ρ+wρ̄L

	 OZw

(
�∑

i=1

〈ρ̄L , γ ∨
i 〉(∂i Zw)

)
⊗ f ∗

w(L B(−ρ)) ⊗ C−ρ+wρ̄L , by Proposition 4.1
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712 S. Kumar et al.

= OZw

(
�∑

i=1

(
m P

w,i − 1
)

(∂i Zw)

)
⊗ f ∗

w(L B(−ρ)) ⊗ C−ρ+wρ̄L

= OZw

(
�∑

i=1

m P
w,i (∂i Zw)

)
⊗ ωZw ⊗ Cwρ̄L , by (11).

This proves the corollary. ��
Remark 4.3 In the case of P = B the Corollary 3.4 specializes to [34, Theorem
3.2] or [9, Exercise 3.4.E.1]. In this case m B

w,v = 1 for any v → w. Moreover,

in this case,
∑�

i=1 m B
w,i (∂i Zw) = ∂ Zw since each m B

w,i = 0 by definition, where

∂ Zw := ∑�
i=1 ∂i Zw.

5 The Borisov–Libgober elliptic characteristic class

Wewill study theBorisov–Libgober elliptic characteristic class of certain pairs (X ,�).
It is defined in [4–6], and the version we consider is in [34]. Here we recall the main
definitions in a special case (torus-equivariant case with finitely many fixed points),
which is sufficient for the purpose of this paper.

5.1 Smooth case

Fix an elliptic curveC/(Z +τ Z) and let q = e2π iτ . First, let Z be a smooth variety and
D a simple normal crossing divisor. Assume that a torus T acts on Z leaving D stable.
One can consider the elliptic class of (Z , D) either in the T-equivariant K -theory, or
in the T-equivariant elliptic cohomology

Ẽ��(Z , D) ∈ KT(Z)(q, h), Ẽ��E
(Z , D) ∈ EllT(Z)(h).

Here we use elliptic cohomology in its traditional sense: it is a generalized complex-
oriented cohomology theory, see [24]. Because of a lack of a convenient definition of
equivariant elliptic cohomology we rather study the image of the elliptic class in Borel
equivariant cohomology or K -theory, see [27, §3]. In the sense of recent approaches
to EllT, as in [1, Section 2], [12, Section 4], or [32, Section 7], elements of our EllT
are sections of certain line bundles over the elliptic cohomology scheme considered
in those works. The Euler class of a vector bundle is a section of a Thom bundle, see
[16, §7].

Here is the definition of the elliptic class in the special case when |ZT| < ∞. In
this case they are defined by their restrictions to T-fixed points. For a fixed point x we
have
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Elliptic classes of Schubert varieties 713

Ẽ��(Z , D)|x =e(Tx Z)

dim Z∏
k=1

ϑ(χk h1−ak )ϑ ′(1)
ϑ(χk)ϑ(h1−ak )

,

Ẽ��E
(Z , D)|x =eE (Tx Z)

dim Z∏
k=1

ϑ(χk h1−ak )ϑ ′(1)
ϑ(χk)ϑ(h1−ak )

=
dim Z∏
k=1

ϑ(χk h1−ak )ϑ ′(1)
ϑ(h1−ak )

,

where the products are taken with respect to the equivariant coordinates at x and

• χk ∈ KT({x}) = R(T) is the character of the k-th coordinate;
• e(Tx Z) = ∏

(1−χ−1
k ) and eE (Tx Z) = ∏

ϑ(χk) are the equivariant Euler classes
in K -theory and elliptic cohomology;

• ak ∈ Q is the multiplicity of the divisor along the k-th coordinate; and
• ϑ(x) = (x1/2 − x−1/2)

∏
n≥1

(1 − qn x)(1 − qn/x)

is (a version of) the theta function which is considered in [32,34]. Here it is treated
as a formal series in x±1/2. The variable q is treated as a constant.

We have to assume that 1 does not appear among the multiplicities of D, otherwise
we have 0 in the denominator.

It is worth getting rid of the dependence on which cohomology theory we are in,
and work with the elliptic class

E(Z , D) = Ẽ��(Z , D)

e(T Z)
= Ẽ��E

(Z , D)

eE (T Z)
.

Then, using the notation

δ(x, y) = ϑ(xy)ϑ ′(1)
ϑ(x)ϑ(y)

we have

E(Z , D)x := E(Z , D)|x =
dim Z∏
k=1

δ(χk, h1−ak ).

5.2 Singular case

A T-stable singular pair (X ,�) is a singular T-variety X embedded in a smooth
ambientT-variety M with a divisor� such that K X +� isQ-Cartier. TheT-equivariant
elliptic classes of the pair (X ,�) are defined by

Ẽ��(X ,�; M) = f∗Ẽ��(Z , D) ∈ KT(M)(q, h),

Ẽ��E
(X ,�; M) = f∗Ẽ��

E
(Z , D) ∈ EllT(M)(q, h)

123



714 S. Kumar et al.

where f : Z → X is a T-equivariant resolution of singularities and K Z + D =
f ∗(K X + �). If the multiplicities of D are smaller4 than 1, then the definition does
not depend on the resolution, by [5].

Assumption 5.1 To have well defined elliptic class we assume that

(1) K X + � is Q-Cartier,
(2) the coefficients of D = f ∗(K X + �) − K Z are smaller than 1.

Just like in the smooth case, it is worth considering the version

E(X ,�) = Ẽ��(X ,�; M)

e(T M)
= Ẽ��E

(X ,�; M)

eE (T M)
∈ e(T M)−1KT(M)(q, h). (12)

Note that, assuming |MT| < ∞, the Euler class e(T M) is invertible in the localization
S−1KT(M), where S ⊂ KT(pt) = R(T) is the multiplicative system generated by
1−Cλ,λ ∈ t∗

Z
. Assuming that the number of torus fixed points on X and Z are finite, the

restriction of E(X ,�) to a T-fixed point x will be denoted by E(X ,�)x . These latter
classes are elements of the fraction field of KT(pt)(q, h), and are also independent of
the ambient manifold M—that is why we dropped M from the notation.

5.3 Push-forward

In the case we study, i.e., that of finitely many T-fixed points, the push-forward map
f∗ can be described as follows. Let (Z , D) be the resolution of (X ,�) as above and
x a T-fixed point in X . Then, according to Lefschetz–Riemann–Roch, which is the
equivariant localization description of push-forward maps [10, Thm. 5.11.7], we have

E(X ,�)x =
∑

y∈ f −1(x)∩ZT

E(Z , D)y .

6 Elliptic classes of Schubert varieties

Our main object of study is the equivariant elliptic characteristic classes of Schubert
varieties, living in the T-equivariant K -theory or elliptic cohomology of G/P . By the
nature of the definition of elliptic classes (see Sect. 5) we need to consider not the
Schubert varieties or the Schubert cells themselves, but pairs (X P

w,�P
w), where �P

w is
a certain T-stable Q-divisor contained in ∂ X P

w , such that K X P
w

+ �P
w is Q-Cartier.

6.1 The class E(XPw)

Let X P
w be a Schubert variety in G/P , λ a character of P and assume that the line

bundle L P (λ) over X P
w is ample. Let �P

w,λ be the zero divisor of the unique (up to

4 The discrepancy divisor is equal to −D. We do not assume that � is effective.
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scalar multiples) U -invariant section (eigenvector) ofL P (λ)|X P
w
, where U := [B, B]

is the unipotent radical of B. Then, the support of �P
w,λ is precisely equal to ∂ X P

w :=
∪v→w X P

v . Consider the pair

(
X P

w ,
∑
v→w

m P
w,v X P

v − t�P
w,λ

)
, (13)

where the coefficientsm P
w,v are fromLemma3.2.Ourmain object of study is theE class

(see (12)) of this pair. For this to make sense we need to show that the requirements
of such a pair are satisfied.

Remark 6.1 For the case P = B Ganter and Ram [15, §1, item (a)] suggested to
consider the boundary divisor equal to ∂ X B

w − t�P
w,ρ for 0 < t � 1, but in our

approach instead of ρ we allow any weight λ defining a sufficiently ample line bundle
on X P

w .

Fix a reduced word w of w. As earlier, let f̄w : Zw → X P
w be the composition of

the BSDH resolution fw : Zw → X B
w with the quotient map X B

w → X P
w . Let

f̄ ∗
w

(
K X P

w
+

∑
v→w

m P
w,v X P

v − t�P
w,λ

)
= K Zw +

�∑
i=1

ai∂i Zw . (14)

By Corollary 4.2 the coefficients ai < 1 if t � 0, that is, for large t Assumption 5.1
is satisfied; and the E class of (13) is indeed well defined.

Let us rephrase this construction without mentioning t : allowing rational weights
λ, the class

E
(

X P
w,

∑
v→w

m P
w,v X P

v − �P
w,λ

)
(15)

is well defined for λ belonging to a certain open subset of (t∗
Q
)WP . For these λ’s the

dependence of (15) on λ is an explicit meromorphic function in λ (this follows from
the push-forward formalism described in Sect. 5.3). This meromorphic function, now
considered for all λ ∈ (t∗)WP , is our main object: the elliptic class of the Schubert
variety X P

w . We will denote it by E(X P
w), or by E(X P

w, λ) if we want to emphasize the
λ-dependence. In some calculation below we will assume that “λ is large enough” so
that E(X P

w) equals (15); thus obtained formulas then must hold for the meromorphic
function E(X P

w).

6.2 Elliptic classes in the BSDH resolution

Observe that, by Proposition 4.1, Corollary 3.4, 4.2 and Remark 4.3,

f̄ ∗
w(K X P

w
+

∑
v→w

m P
w,v X P

v − �P
w,λ) = K Zw + ∂ Zw − f ∗

w(L B(λ − ρ̄L))

= f ∗
w(K X B

w
+ ∂ X B

w − �B
w,λ−ρ̄L ), (16)

123



716 S. Kumar et al.

where ∂ Zw := ∑�
i=1 ∂i Zw. Note that the bundle L B(ρ̄L) does not come from X P

w .
The class E(X P

w, λ) is obtained from

E(Zw, λ − ρ̄L) := E(Zw , ∂ Zw − f ∗
w(�B

w,λ−ρ̄L ))

using the localization formula in Sect. 5.3.
The class E(Zw, λ − ρ̄L) is determined by its restrictions to the torus fixed points.

TheT-fixed points of Zw are indexed by the subwords of v ⊂ w. From thewell-known
combinatorial description of the BSDH resolution (see [34, §§3.2 and 4.3]), we obtain

Proposition 6.2 Let w ∈ W and let w be a reduced word for w. Then, for any (not
necessarily reduced) subword v of w, we have:

E(Zw, λ − ρ̄L)v =
�∏

i=1

δ(e−v[1,i]α ji , ψ(i)), (17)

where v[1,i] is the product of s jk ’s with k ≤ i appearing in v and

ψ(i) =
{

h if i -th letter of w is not omitted in v

h〈 λ−ρ̄L , γ ∨
i 〉 otherwise ,

where γi is as in Proposition 4.1.

Proof The multiplicity of the divisor f ∗
w(�B

w,λ−ρ̄L ) along ∂i Zw is equal to (using
Proposition 4.1)

〈 λ − ρ̄L , γ ∨
i 〉 .

The tangent weights are the same as in [34, §3.2]. ��
Recall that, by Sect. 5.3, we have the following: for any v,w ∈ W (choosing a

reduced word w for w):

E(X B
w, λ − ρ̄L)v =

∑
v

E(Zw, λ − ρ̄L)v, (18)

where the summation runs over those (not necessarily reduced) subwords v of w for
whichμ(v) = v. Hereμ(v) = si1 . . . si p for the word v = (si1, . . . , si p ). In particular,

E(X B
w, λ − ρ̄L)v = 0, if v � w. (19)

We note that (16) also implies the following corollary.
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Elliptic classes of Schubert varieties 717

Corollary 6.3 Let λ ∈ t∗ be a WP -invariant weight, w ∈ W P . Then, for any v ∈ W P ,

E(X P
w, λ)v =

∑
u∈WP

E(X B
w, λ − ρ̄L)vu .

(In particular, if v � w, then E(X P
w, λ)v = 0 by using the above identity and the

Identity (19).)
Equivalently,

E(X P
w, λ) = π P∗ E(X B

w, λ − ρ̄L) ,

where π P : G/B → G/P is the natural quotient map. ��
In Sect. 8, for G = SLn we will identify the functions E(X P

w, λ)v with some substi-
tutions of well-known special functions called weight functions. Corollary 6.3 seems
to be a new result for those substitutions of weight functions.

6.3 Recursions

The Schubert varieties in G/P are parametrized by cosets in W/WP . Our goal is to
describe the behavior of the elliptic class when we pass from w to sαw for a simple
reflection sα such that dim X P

sαw > dim X P
w . First, we solve the recursion for the

BSDH-variety Zw, which is a resolution of X B
w as well as X P

w , provided w ∈ W P .
Having an explicit formula for E(Zw, λ − ρ̄L)v , we obtain a recursion for the classes
of the BSDH resolution and then we push it down to X P

w . It turns out that the recursion
is well defined for the elliptic classes of Schubert varieties.

Theorem 6.4 Let α be a simple root and w ∈ W P . If dim X P
w < dim X P

sαw (in partic-
ular, sαw ∈ W P ), then, for any coset [v] ∈ W/WP ,

E(X P
sαw, λ)[v] = δ

(
e−α, h〈λ−ρ̄L ,w−1α∨〉) · E(X P

w, λ)[v] + δ
(
eα, h

) · sz
α

[
E(X P

w, λ)[sαv]
]
,

(20)

where sz
α[−] is the action of sα on the equivariant parameters of K -theory.

The notation “sz
α” will be justified below.

Proof We first define, for any two cosets, [u] ≤ [v] if and only if u′ ≤ v′, where u′ is
the smallest length coset representative in [u]. If [v] � [sαw], then so is [sαv] � [w]
(use [21, Corollary 1.3.19]). Thus, both the sides of the equation (20) are zero by
Corollary 6.3.

So, assume that [v] ≤ [sαw]. Let sαw be a reduced word for sαw. Let v be a
subword (not necessarily reduced) of sαw. Let v′ = v ∩w, i.e., v′ = v if the first letter
of sαw is omitted in v and sαv′ = v otherwise. Then, by Proposition 6.2,
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E(Zsαw, λ − ρ̄L )v

=
{

δ(eα, h) sz
α · [E(Zw, λ − ρ̄L )v′ ] if the first letter of sαw is not omitted in v,

δ
(

e−α, h〈λ−ρ̄L ,w−1α∨〉
)

E(Zw, λ − ρ̄L )v′ otherwise .
(21)

To compute E(X P
sαw, λ)[v], by Corollary 6.3 and the Identity (18), we sum up

the contributions coming from E(Zsαw, λ − ρ̄L)v , where v varies over those (not
necessarily reduced) subwords v of sαw such that μ(v) ∈ [v]. Let us examine the first
factor of the product (17), appearing in (21):

• If the first letter of sαw is not omitted in v, then the corresponding factor is equal
to

δ
(
eα, h

)
.

In the remaining factors the variables in the first argument of δ should be changed
by the action of sα .

• If the first letter of sαw is omitted in v, then the corresponding factor is equal to

δ
(

e−α, h〈λ−ρ̄L ,w−1α∨〉) .

The remaining factors are unchanged.

Therefore, we obtain two kinds of summands in the decomposition of E(X P
sαw, λ)[v],

one coming from the subwords v of sαw which do not contain the first letter sα which
contribute to E(X P

w, λ)[v] and the other coming from those subwords v which do
contain the first letter sα and hence contribute to E(X P

w, λ)[sαv]. ��
The following lemma for v �= 1 follows from Corollary 6.3, and for v = 1 it follows
easily from the definition.

Lemma 6.5 For v ∈ W P , we have

E(X P
1 , λ)v =

{
1 if v = 1

0 otherwise.

The recursion with initial condition presented in Theorem 6.4 and Lemma 6.5 is an
effective way of computing the fixed point restrictions of the elliptic classes E(X P

w).
We invite the reader to verify the initial condition and the recursion in the following
examples. In these examples we consider homogeneous spaces for G = SLn . It is
convenient to extend the action to GLn and to have n-dimensional maximal torus. We
use the notation zi = eε∗

i (εi is the standard basis of t = C
n for n = 2, 3, 4), for

more general notation for the natural variables of E(Xw)v for G = GLn see the next
section.

Example 6.6 For G = SL2, P = B, W = {1, s}, we have:
E(X P

1 )1 = 1, E(X P
1 )s = 0,

E(X P
s )1 = δ(z2/z1, μ2/μ1), E(X P

s )s = δ(z1/z2, h) ,
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where λ = (λ1, λ2) and μi = h−λi . Observe the obvious triangularity property
v � w ⇒ E(X P

w)v = 0, and that the ‘diagonal’ restrictions E(X P
w)w = ∏

χ δ(χ, h)

for theweightsχ of Tw X P
w . The off-diagonal restrictionsmay be complicated formulas

in general.

Example 6.7 For G = SL3, P = B, with analogous notation, we have the following
fixed point restrictions.

v = 123 v = 132 v = 213 v = 231 …

E(X P
123)v 1 0 0 0 …

E(X P
132)v δ(

z3
z2

,
μ3
μ2

) δ(
z2
z3

, h) 0 0 …

E(X P
213)v δ(

z2
z1

,
μ2
μ1

) 0 δ(
z1
z2

, h) 0 …

E(X P
231)v δ(

z2
z1

,
μ3
μ1

)δ(
z3
z2

,
μ3
μ2

) δ(
z2
z1

,
μ3
μ1

)δ(
z2
z3

, h) δ(
z3
z1

,
μ3
μ2

)δ(
z1
z2

, h) δ(
z1
z2

, h)δ(
z1
z3

, h) …

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Example 6.8 Let G = SL4 and G/P be the Grassmannian of 2-planes in C
4. The

cells, as well as the fixed points are indexed by the two-element subsets of {1, 2, 3, 4}.
The Weyl group WP ⊂ W = S4 is spanned by two transpositions s1 and s3. Let
μ = μ(λ) = h〈λ,ε2−ε3〉 be the function in λ ∈ (t∗)WP ⊂ (C4)∗ given by the exponent
of the product with the dual rootα∨

2 = ε2−ε3. The restrictions of E(X P
w) are presented

in the table below.

v = 12 v = 13 v = 14 v = 23 . . .

E(X P
12)v 1 0 0 0

E(X P
13)v δ( z3

z2
, μ) δ( z2

z3
, h) 0 0 . . .

E(X P
14)v δ( z3

z4
, h)δ( z4

z2
, μ) + δ( z3

z2
, μ)δ( z4

z3
,

μ
h ) δ( z2

z3
, h)δ( z4

z3
,

μ
h ) δ( z2

z4
, h)δ( z3

z4
, h) 0 . . .

E(X P
23)v δ( z1

z2
, h)δ( z3

z1
, μ) + δ( z2

z1
,

μ
h )δ( z3

z2
, μ) δ( z2

z1
,

μ
h )δ( z2

z3
, h) 0 δ( z1

z2
, h)δ( z1

z3
, h) . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Comparing with the previous example, here the μ-variable and h may appear together
in one argument of δ. This is due to the presence of the component ρ̄L , which for
P = B vanishes.
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Example 6.9 Let G = Sp2 and let G/P = LG(2) be the Lagrangian Grassmannian
of 2-planes in C

4. It is isomorphic to the quadric in P
4. The Weyl group W of G is

generated by the transposition s1 =
(
0 1
1 0

)
and the sign change s2 =

(
1 0
0 −1

)
under

the {ε1, ε2} basis as in [7, Planche III]. The corresponding roots are

α1 = (1,−1), α2 = (0, 2).

With respect to the standard scalar product the coroots are the following

α∨
1 = (1,−1), α∨

2 = (0, 1).

The weight ρ̄L appearing in our computation is equal to (1, 0). The group WP is
generated by s1. There are four cells in LG(2) corresponding to the words

1, s2, s1s2, s2s1s2.

Theweights, which are invariantwith respect toWP are of the form (λ, λ). Letμ = hλ.
The elliptic class of the top dimensional Schubert variety restricted to 1 is equal to

E(X P
s2s1s2)1 = δ

(
1

z22
,
μ

h

)
δ

(
z2
z1

,
μ2

h

)
δ

(
1

z22
, μ

)

+δ
(

z22, h
)

δ

(
1

z1z2
,
μ2

h

)
δ

(
1

z22
, h

)

+δ

(
1

z22
,
μ

h

)
δ

(
z1
z2

, h

)
δ

(
1

z21
, μ

)
. (22)

The first summand corresponds to the empty subword, the second one to s2s2, the third
one to s1. See also Sect. 9.1.

7 Elliptic classes of Schubert varieties in type A

7.1 Notation in type A

Let G = SLn . For convenience we consider the full group of linear transformations
GLn and the maximal torus therein. Denote the standard basis of t = C

n by εi . The
simple roots, following standard convention as in [7, Planche I], areαi = εi −εi+1 (1 ≤
i ≤ n − 1). Fixing the standard scalar product in tQ = Q

n , we identify coroots with
roots, that is αi = α∨

i . The Weyl group W = Sn is identified with the group of
permutations of the set {1, 2, . . . , n}, and also with the group of n × n permutation
matrices. Let {si }1≤i≤n−1 ⊂ W be the set of (simple) reflections corresponding to the
simple roots αi .
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Consider the parabolic subgroup P corresponding to the sequence of positive inte-
gers k = (k1, k2, . . . , km) with

∑
ki = n. The variety G/P is the partial flag variety

parametrizing flags of subspaces (Vi )i=1,...,m with dim Vi/Vi−1 = ki . TheWeyl group
of the Levi factor is

WP = Sk1 × Sk2 × · · · × Skm ⊂ W = Sn .

Set k(s) = ∑s
i=1 ki and k(0) = 0. The simple roots of the Levi factor are those αi such

that {i, i + 1} ⊂ [k(s−1) + 1, k(s)] for some s ∈ [1, m]. The defining condition

〈ρ̄L , α∨
i 〉 =

{
1 if si ∈ WP

0 if si /∈ WP

of ρ̄L translates to the formula ρ̄L = (r1, r2, . . . , rn), where, for 1 ≤ i ≤ n − 1,

ri − ri+1 =
{
1 if ∃s ∈ [1, m] with {i, i + 1} ⊂ [k(s−1) + 1, k(s)]
0 otherwise.

The weight ρ̄L is determined by this condition up to the addition of Z�, where
� := (1, . . . , 1). For example, if (k1, k2, k3) = (2, 3, 1), then ρ̄L = (4, 3, 3, 2, 1, 1)
or equally well we can take ρ̄L = (3, 2, 2, 1, 0, 0).

The number 〈wρ̄L , α∨
i 〉 is crucial for our computations. In type A it is rewritten as

〈ρ̄L , w−1α∨
i 〉 = rw−1(i) − rw−1(i+1). (23)

7.2 The recursion for E(XPw,�) in type A

Let us denote the basis characters T = (C∗)n → C
∗ by zi = eε∗

i . The exponential of
the simple root αi is hence

eαi = zi

zi+1
for i = 1, 2, . . . , n − 1.

Let yi = h−εi . It is treated as a function on t∗ = C
n : for λ = (λ1, λ2, . . . , λn),

yi (λ) = h−〈λ,εi 〉 = h−λi . (24)

With this notation, and using (23), we obtain that the recursion of Theorem 6.4 in
type A takes the following form for v,w ∈ W P and a simple reflection si such that
siw ∈ W P and siw > w:

E(X P
si w

)[v] = δ

⎛
⎝ zi+1

zi
,

h
r
w−1(i+1) yw−1(i+1)

h
r
w−1(i) yw−1(i)

⎞
⎠ · E(X P

w)[v] + δ

(
zi

zi+1
, h

)
· sz

i [E(X P
w)[si v]], (25)
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where sz
i [ f (. . . , zi , zi+1, . . .)] = f (. . . , zi+1, zi , . . .), and the initial condition takes

the form

E(X P
1 , λ)v =

{
1 if v = 1

0 if v �= 1.
(26)

8 Weight functions of [32] represent elliptic characteristic classes

We first introduce a class of special functions called elliptic weight functions. Then,
we show that after a certain shift of variables they represent elliptic classes E(X P

w, λ)

in type An−1.

8.1 Elliptic weight functions

As in Sect. 7.1, we have k = (k1, . . . , km) ∈ Z
m≥1, k(s) = ∑s

i=1 ki and n = k(m) =∑m
i=1 ki . The corresponding partial flag variety SLn /P parametrizes flags of sub-

spaces {Vi }i=1,...,m with dim Vi = k(i). The set of cosets W/WP (in fact, the set W P )
is in natural bijection with the set of partitions I = (I1, . . . , Im) of {1, . . . , n} with
|Ii | = ki . For such an I we use the notation ∪s

i=1 Ii = {i (s)1 < · · · < i (s)
k(s)}.

Consider the set of variables t (s)i for s = 1, . . . , m, i = 1, . . . , k(s), and set t (m)
i =

zi . Following [32] define the elliptic weight function by

wI = 1
∏m−1

s=1
∏k(s)

i=1
∏k(s)

j=1 ϑ(ht (s)j /t (s)i )
· Symt (1) . . . Symt (m−1) (UI ),

where Symt (s) is symmetrization with respect to the t (s)1 , . . . , t (s)
k(s) variables, and

UI =
m−1∏
s=1

k(s)∏
a=1

⎛
⎝

k(s+1)∏
c=1

ψI ,s,a,c(t
(s+1)
c /t (s)a )

k(s)∏
b=a+1

ϑ(ht (s)b /t (s)a )

ϑ(t (s)b /t (s)a )

⎞
⎠ ,

where

ψI ,s,a,c(x) = ϑ(x) ·

⎧⎪⎨
⎪⎩

δ(x, h) if i (s+1)
c < i (s)a

δ(x, h1+pI , j(I ,s,a)(i
(s)
a )−pI ,s+1(i

(s)
a )μa/μb) if i (s+1)

c = i (s)a

1 if i (s+1)
c > i (s)a .

Here μa := h−λa and we used the numerical functions

• j(I , s, a) is defined by i (s)a ∈ I j(I ,s,a);
• pI , j (i) = |I j ∩ {1, . . . , i − 1}|.
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For example, for k = (1, 1) we have (temporarily denoting t = t (1)1 )

w{1},{2} = ϑ(z1t−1hμ2μ
−1
1 )ϑ(z2t−1)

ϑ(hμ2μ
−1
1 )

, w{2},{1} = ϑ(z1t−1h)ϑ(z2t−1μ2μ
−1
1 )

ϑ(h)ϑ(μ2μ
−1
1 )

.

(27)
More important than the actual formula above—we admit that it is terribly compli-

cated at the first sight—is the recursion for the weight functions phrased in the next
two propositions. Recall that the sz

i operator switches the variables zi and zi+1. The
operator si acts on a partition I by replacing the numbers i and i + 1.

Proposition 8.1 (R-matrix recursion for weight functions) Assume that for i ∈ Ia,
i + 1 ∈ Ib we have a < b. Then

wsi (I ) = δ

(
zi+1

zi
,

μbh pI ,a(i)

μah pI ,b(i+1)

)
· wI +δ

(
zi

zi+1
, h

)
· sz

i [wI ]. (28)

Proof This is, in fact, not a new result. Theweight functions defined in [32, Section 2.4]
only differ from ours by some irrelevant power of ϑ(h), and some global factors. For
the weight functions defined there, an R-matrix recursion is proved there in Theorem
2.2(2.18). Applying that formula for σ = 1, renaming I to si (I ), and rearranging, we
arrive at (28). ��

For a function f in the variables t (s)i (e.g. a weight function), and I ∈ W/WP let
f |I be the function obtained from f by substituting

t (s)j �→ z
i (s)j

for s = 1, . . . , m − 1, j = 1, . . . , k(s).

Let I 0 be the “smallest” I , that is I 01 = {1, 2, . . . , k1}, I 02 = {k1 + 1, . . . , k1 + k2},
etc.

Proposition 8.2 We have

wI 0 |J =
{∏

1≤a<b≤m
∏

i∈I 0a

∏
j∈I 0b

ϑ(z j/zi ) if J = I 0

0 if J �= I 0.

Proof The statement follows from [32, Lemmas 2.4, 2.5], or by careful inspection of
the formula for the weight function. (The reader is advised to verify the statement by
substituting t = z1 or t = z2 in the formula W{1},{2} in (27), the general case only
differs by tracing indexes). ��

8.2 Weight functions versus elliptic classes

The variables of the weight function wI are t (s)i , zi , μi , h. The elliptic class E(X P
w, λ)

lives in the T = (C∗)n equivariant K -theory of G/P extended by variables h and y j

(see (24)).

123
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Recall that the partial flag variety G/P parametrizes nested subspaces Vs of dimen-
sion k(s). Let the tautological bundle over G/P whose fiber is Vs be denoted by T s .
Then, T s represents an element in KT(G/P).

Consider the following evaluation of the variables of wI :

t (s)i �→ Grothendieck roots o f T s

zi �→ Grothendieck roots o f the tautological n − bundle over the classi f ying space BT

h �→ h

μs �→ y j · hs−k(s−1)
where j ∈ [k(s−1) + 1, k(s)]. (29)

Note that the last substitution makes sense, since if j, j ′ ∈ [k(s−1) + 1, k(s)] then
y j (λ) = y j ′(λ) for λ ∈ (t∗)WP .

Theorem 8.3 For any I ∈ W P , the evaluation (29) of wI /eE (T (G/P)) represents
E(X P

I , λ).

In other words the evaluation of the weight functionwI is the Ẽ��
E
-class of the pair

(13).

Proof Introducing the notation eI = eE (T (G/P))|I , from the known description of
the tangent space of partial flag varieties we obtain

eI =
∏

1≤a<b≤n

∏
i∈Ia

∏
j∈Ib

ϑ(z j/zi ).

With this notation we need to show that

wI |J

eJ
= E(X P

I , λ)J (30)

for all I and J , which we will prove by induction on the length of I . For I 0 (30)
follows from the comparison of (26) and Proposition 8.2.

Now, assume that for i ∈ Ia , i + 1 ∈ Ib we have a < b. Then, from (28), for all J
we obtain

wsi (I ) |J = δ

(
zi+1

zi
,

μbh pI ,a(i)

μah pI ,b(i+1)

)
· wI |J + δ

(
zi

zi+1
, h

)
· (

sz
i [wI ]

) |J .

Using
(
sz

i [wI ]
) |J = sz

i [wI |si (J )], and temporarily denoting the left hand side of (30)
by E ′(X P

I )J , we can write

E ′(X P
si (I ))J · eJ = δ

(
zi+1

zi
,

μbh pI ,a(i)

μah pI ,b(i+1)

)
· E ′(X P

I )J · eJ

+δ

(
zi

zi+1
, h

)
· sz

i [E ′(X P
I )si (J )]sz

i [esi (J )].
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Remarkably, from the explicit formula for eI we can see that sz
i [esi (J ))] = eJ . Hence,

after division by eJ , we arrive at

E ′(X P
si (I ))J

= δ

(
zi+1

zi
,

μbh pI ,a(i)

μah pI ,b(i+1)

)
· E ′(X P

I )J + δ

(
zi

zi+1
, h

)
· sz

i [E ′(X P
I )si (J )].

(31)

We claim that this recursion is the same as the recursion for E(X P
I )J given in (25),

which will complete our proof. Hence, we only need to identify the coefficient of
E(X I )J in (25) with the coefficient of E ′(X I )J in (31)—after the substitution (29).
That is, we need the combinatorial statement

rw−1(i+1) − rw−1(i) = (b − k(b−1) + pI ,a(i)) − (a − k(a−1) + pI ,b(i + 1)),

or equivalently, that the quantity

pI ,a(i) + rw−1(i) + k(a−1) − a

does not depend on i (a is determined by i via i ∈ Ia). Tracing back the definitions of
these combinatorial functions we see that

• pI ,a(i) + k(a−1) + 1 = w−1(i), and
• a −w−1(i) works for a choice of rw−1(i) (recall from Section 7.1 that r j ’s are only
defined up to a uniform scalar addition).

From these two claims, by cancelling w−1(i), we obtain that pI ,a(i) + k(a−1) +
rw−1(i) − a = −1, that is, a number independent of i . This completes the proof. ��

Example 8.4 Let k = (2, 3, 2), and choose w = [i1, i2, . . . , i7] ∈ W P . For the corre-
sponding I = ({i1, i2}, {i3, i4, i5}, {i6, i7}) the various combinatorial functions

i i1 i2 i3 i4 i5 i6 i7

w−1(i) 1 2 3 4 5 6 7
a 1 1 2 2 2 3 3
rw−1(i) 0 −1 −1 −2 −3 −3 −4

k(a−1) 0 0 2 2 2 5 5
pI ,a(i) 0 1 0 1 2 0 1

illustrate the last, combinatorial, part of the proof above, namely the identity pI ,a(i)+
k(a−1) + rw−1(i) − a = −1.
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9 Remarks

9.1 Transformation properties

Equivariant elliptic cohomology classes of a point can be regarded as sections of certain
line bundles over some products of elliptic curves. Hence, the function E(X P

w)v can
be regarded as a section of a line bundle (depending on G, P, w, v) over a product of
elliptic curves. For example, the function (22) can be regarded as a section of a line
bundle over E4, where E = C

∗/(qZ), q = e2π iτ , and the coordinates of the factors
of E4 are z1, z2, h, μ.

To a product of theta functions we associate a quadratic form as follows: to
ϑ(

∏p
i=1 xri

i ) associate (
∑p

i=1 ri xi )
2, and to a product of ϑ-functions associate the

sum of the quadratic forms of each factor. For a more conceptual explanation see
[12, Section 5]. For example, the quadratic forms associated to the three terms of the
function (22) are (up to the same scalar multiple)

−2z2(μ − h) + (z2 − z1)(2μ − h) + (−2z2)μ,

(−z1 − z2)(2μ − h) and − 2z2(μ − h) + (z1 − z2)h + (−2z1)μ.

The reader can trivially verify that these three quadratic forms are all equal.
The general fact that the different summands of E(X P

w)v must have the same trans-
formation property (i.e., the same associated quadratic form) is a useful practical
reality check in calculations.

9.2 Axiomatic characterization

The fact that characteristic classes of Schubert (or other geometrically relevant)
varieties can be described by axioms turned out useful in several parts of enu-
merative geometry. Such axiomatic characterizations were initially known for the
cohomological fundamental class [29], but, after Okounkov’s works, such axiomatic
characterizations are proved for the cohomological CSM classes and for the K -
theoretic MC classes as well [11,13,14,33].

It can be shown that the elliptic classes of Schubert varieties studied in this paper
have an axiomatic characterization, too. However, no argument in this paper relies on
such characterization, and, in fact, even phrasing the axioms precisely would be rather
technical. Hence, here we only sketch the axiomatic characterization briefly.
The E(X P

w)v functions satisfy:

(1) (GKMaxiom)Letα : T → C
∗ be a root ofG (not necessarily simple). If v1 = v2sα

then

(
E(X P

w)v1 − E(X P
w)v2

)
| ker(α)×(t∗)WP = 0 .

Here the restriction of the elliptic class is considered as a function on t × (t∗)WP .
(2) (support axiom) In the appropriate sense, the class E(X P

w) is supported on the
union of the conormal spaces of Schubert cells X P

v for v ≤ w. To make sense of
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this condition, first one needs to interpret E(X P
w) as an element of the K -theory

or elliptic cohomology of the cotangent bundle of G/P (using h as the first Chern
class of an extra C

∗ action scaling the fibers). Then, the support condition means
that the class E(X P

w) restricted to the complement of the named union is 0. Amore
practical interpretation (which can be phrased without involving the cotangent
bundle) is that the local classes E(X P

w)v satisfy certain divisibility properties. (For
an argument reducing the support condition to a set of divisibility conditions see
[32, Proof of Thm 5.1].)

(3) (normalization axiom) The ‘diagonal’ local classes are E(X P
w)w = ∏

δ(χ, h) for
the weights χ of Tw(X P

w).

The axiomatic characterization theorem for the E(X P
w) classes states that if a collection

of functions fw,v satisfy the three listed conditions, as well as the transformation
property of fw,v are the same as those of E(X P

w)v , then fw,v = E(X P
w)v . For analogous

arguments see [1, 3.3.5], [32, Sec.7.8].
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