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Abstract

Red spruce (Picea rubens Sarg.) is a coniferous tree with a highly fragmented range in eastern North American montane
forests. It serves as a foundational species for many locally rare and threatened taxa and has therefore been the focus of
large-scale reforestation efforts aimed at restoring these montane ecosystems, yet genetic input guiding these efforts has been
lacking. To tackle this issue, we took advantage of a common garden experiment and a whole exome sequencing dataset
to investigate the impact of different population genetic parameters on early-life seedling fitness in red spruce. The level of
inbreeding, genetic diversity and genetic load were assessed for 340 mother trees sampled from 65 localities across the spe-
cies range and compared to different fitness traits measured on 5100 of their seedlings grown in a controlled environment.
We identified an overall positive influence of genetic diversity and negative impact of genetic load and population-level
inbreeding on early-life fitness. Those associations were most apparent for the highly fragmented populations in the Central
and Southern Appalachians, where lower genetic diversity and higher inbreeding were associated with lower germination
rate, shorter height and reduced early-life fitness of the seedlings. These results provide unprecedented information that could
be used by field managers aiming to restore red spruce forests and to maximize the success of future plantations.
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Introduction the accumulation of a genetic load of deleterious mutations,

and the degree to which genetic load is expressed through

Identifying factors that induce variation in the fitness of
natural populations is a central question in conservation biol-
ogy. Besides the large influence of environmental stressors
(abiotic and biotic) or the direct impact of human activities
(Anderson 2015; Liu et al. 2013), the intrinsic genetic char-
acteristics of populations, arising from their demographic
and evolutionary histories, are known to play important
roles in driving fitness variation (Allendorf et al. 2010;
Allendorf and Luikart 2006; Frankham et al. 2010; Lande,
1995). Among those factors, the level of genetic diversity,
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inbreeding are especially relevant for small or declining
populations, especially in the context of conservation and
management (Kardos et al. 2016; Latta 2008; Willi et al.
2018).

Inbreeding, either through mating among genetically
related individuals (consanguineous mating) or through
self-reproduction (selfing), increases the rate of population
genetic drift and may incur individual and/or population-
level fitness effects (Angeloni et al. 2011; Mosseler et al.
2000; Reed and Frankham 2003). It is well established
that inbreeding increases the frequency of homozygous
genotypes in an inbred population (Wang et al. 1998). As
a result, there is an increased probability of homozygosity
for lethal alleles as well as increased expression of mildly
deleterious (i.e., non-lethal) alleles across the genome
that are otherwise masked when in the heterozygous state
(Charlesworth and Willis 2009). When the trend is strong
enough it causes a reduction in fitness called inbreeding
depression (Keller and Waller 2002). The accumulation of
deleterious mutations can also occur independently from
inbreeding when the effective population size (N,) is very
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small, for example due to population isolation, decline or a
bottleneck (Lynch et al. 1995). In this context, genetic drift
can be strong enough to impede the effect of purifying
selection and allow an accumulation of deleterious muta-
tions over time (Peischl et al. 2013; 2015). This genetic
load of deleterious mutations can negatively impact fitness
if they drift to high frequencies in populations (Agrawal
and Whitlock 2012). In addition to inbreeding depres-
sion and genetic load, low levels of genetic diversity have
also been identified as one of the genetic threats to small
population persistence (Lande, 1995). Erosion of genetic
diversity can not only increase the likelihood of inbreeding
depression, but also reflects a lowered level of adaptive
potential that could prevent the population from respond-
ing evolutionarily to future changes in the environment
(Markert et al. 2010).

Inbreeding, genetic load, and genetic diversity are
strongly dependent on current patterns of gene flow and pop-
ulation connectivity, as well as historical processes such as
range expansions or contractions in response to past climate
changes. Evidence from fossil pollen suggests that migration
of many tree species occurred towards higher elevations and
more northerly latitudes that supported favorable environ-
mental conditions as the climate changed at the end of the
last ice age (Boisvert-Marsh et al. 2014; Koo et al. 2014;
Schauffler and Jacobson 2002). These migration patterns
often resulted in the establishment of “leading” and “trail-
ing (rear) edge” populations within a species range that can
possess distinct yet complex demographic and genetic his-
tories (Hampe and Petit 2005). The rear range edge of many
species became more fragmented as ranges shifted north-
ward, which may have led to higher levels of inbreeding and
potentially lower fitness than populations in the leading edge
found in more favorable environments (Levin 2011; Willi
et al. 2018). Conversely, rear edge populations may retain
more ancestral genetic diversity, which can be reduced at the
leading edge through founder effects and genetic drift due
to successive migration events (Mosseler et al. 2003; Pluess
2011). For example, a study on holm oak (Quercus ilex L.)
provided evidence that successive long-distance dispersal
events have produced reductions in genetic diversity at the
(northern) leading edge due to founder effects (Hampe et al.
2013). The succession of founder events can also lead to
the accumulation of deleterious mutations in leading-edge
populations (i.e., expansion load), by increasing genetic
drift and lowering the effect of purifying selection (Peischl
et al. 2013). Thus, both current population connectivity and
historic demographic events and range expansion are likely
to leave different patterns of genetic diversity in different
parts of the range. In the context of conservation efforts, the
main goal then becomes understanding the impact of such
patterns on individual and population-level fitness across
the species range.

@ Springer

Red spruce (Picea rubens Sarg.) is a conifer species
endemic to the eastern United States and southeastern Can-
ada. Historically, there is evidence to suggest that the range
of red spruce expanded northward over the Holocene period
in response to climatic changes (Schauffler and Jacobson
2002). Fossil Picea pollen preserved in sediments of lakes
and bogs show that climate change at the end of the last ice
age resulted in dramatic latitudinal and elevational shifts in
abundance, degree of population fragmentation, and genetic
diversity (Davis and Shaw 2001). Probably due to those his-
torical events, the current spatial distribution of red spruce
shows a north—south gradient of range fragmentation (Koo
et al. 2014; Major et al. 2015) associated with three main
genetic clusters (Capblancq et al. 2020). These three genetic
clusters differentiate a population in the main contiguous
portion of the range in the northeastern US and southeastern
Canada (this part of the range is hereafter called the ‘Core’
region) from a population in Pennsylvania where the range
becomes fragmented (hereafter called the ‘Margin’ region)
and finally a low latitude, highly fragmented trailing edge
population in the southern Appalachians (hereafter called
the ‘Edge’ region), where populations occur as mountaintop
“sky islands”. Recently, red spruce populations have also
experienced significant human-caused decline from logging
and fire in the late 1800 to early 1900s, and from atmos-
pheric pollution leading to acid rain (Mathias and Thomas
2018; Rentch et al. 2016). These events likely impacted
genetic diversity, potentially removing many rare genetic
variants when entire forests disappeared but also accentu-
ating population fragmentation, which is known to reduce
gene flow and enhance inbreeding (Leimu et al. 2010; Rat-
nam et al. 2014). The decline of red spruce, by as much as
95% of its original areal extent in the highly fragmented
southern portion of its range (Rentch and Schuler 2009), has
become a major conservation focus among resource manag-
ers and restoration ecologists, which has led to the formation
of multi-partner cooperatives (e.g., the Central and South-
ern Appalachian Spruce Restoration Initiatives; CASRI
and SASRI, respectively) aimed at restoring functional red
spruce ecosystems via large scale restoration plantings and
relevant silvicultural practices. A better assessment of the
associations between red spruce fitness, especially at the
sensitive seedling stage, and genetic diversity or inbreeding
levels is then critical to optimize the success of such restora-
tion effort, for example by helping to select the best mix of
seed sources for a particular planting site.

The purpose of this study is to investigate associations
between early-life fitness traits and estimates of inbreeding,
genetic load, and genetic diversity across the range of red
spruce, and to understand these associations with regard to
the evolutionary and demographic history of the species.
We sampled tissue and seeds from 340 mother trees, germi-
nated and grew 15 seeds per mother tree to measure different
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early-life fitness traits. We focused on early-life traits as
the transition from seed to seedling stage is of significant
importance for the establishment of trees and their long-
term reproductive success in forest ecosystems (Le et al.
2012). By comparing early-life fitness traits with genetic
parameters estimated using data from a recently published
exome-capture sequencing on the same mother trees (Cap-
blancq et al. 2020), we tested for the influence of inbreeding,
genetic load, and genetic diversity in shaping the early-life
performance of red spruce seedlings. Specifically, we test the
predictions that early-life fitness traits should be positively
associated with estimates of genetic diversity and negatively
associated with estimates of inbreeding and genetic load. We
interpret the results in light of the genetic history of range
expansion, population structure, and demographic change
in red spruce to better understand the relationship between
genetic variation and early-life fitness in this species of con-
servation and restoration importance.

Materials and methods
Sampling design

We sampled open-pollinated seeds and needle tissue from
340 individual mother trees of red spruce during the late
summer and fall of 2017. Those 340 mother trees were sam-
pled at 65 sampling locations (also called localities hereaf-
ter) distributed across the entirety of the species range in
eastern North America (Fig. 1 and Supplementary Mate-
rial S1). The sample sizes range from 2 to 11 individu-
als per locality, but most (N =44 locality) included 5 or 6
individuals (Supplementary Material S1). Considering that
red spruce is a wind-pollinated species with a principally
outcrossing mating system, the sampled seeds represented
340 maternal families with a mix of full and potentially
half siblings of different paternal ancestry within each fam-
ily. Most seed were collected from naturally occurring red
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Fig. 1 Map showing the geographic range of red spruce in the eastern
United States. Sampling locations are indicated by shape and color
based on three genetically defined “regions” (Capblancq et al. 2020).

Altitude across the range is indicated by color, with southern edge
localities being predominantly at higher altitudes
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spruce stands with the exception of ‘NBTIC’ (Supplemen-
tary Material S1). This latter locality consisted of open-
pollinated seed collected from six mother trees growing in
ared spruce orchard established by the New Brunswick Tree
Improvement Council. Each NBTIC mother tree was origi-
nally collected from a different natural locality in New Brun-
swick, Canada. We pooled those trees into a single locality
to be able to estimate the different genetic parameters used
for the analyses, and because we wanted to include samples
from this northernmost part of the species range. However,
it is important to recognize that families from NBTIC do
not constitute a local mating population in the same way our
other sampled localities do. We consider this point again in
the Discussion.

Phenotypic seedling trait collection

In order to determine variation in early-life fitness traits,
we germinated 50 seeds and grew 15 seedlings from each
of the 340 maternal families and measured four fitness-
related traits. First, 50 filled seeds per family (N=17,000
seeds total) were weighed in bulk to the nearest milligram
and used to calculate a per-seed average (hereafter ‘Seed
Weight’). The weighed seeds were put into petri dishes con-
taining wetted filter paper and coarse sand and placed in a
germination chamber set to a daily temperature and photo-
period regime of 20 °C for 16 h of dark and 30 °C for 8 h of
light. Germination was scored once the radicle of a seedling
had visibly penetrated the seed coat, and the overall germi-
nation proportion (hereafter ‘Germination’) out of the initial
50 seeds was determined for each family. From the germi-
nating seeds for each family, we transplanted 15 seedlings
individually into 164 ml Ray Leach cone-tainers filled with
ProMix BX potting media. Cone-tainer racks were trans-
ferred to the University of Vermont greenhouse to grow in
the spring of 2018, maintaining temperatures of 21-24 °C
during 16-h light and 15-18 °C during 8-h dark periods.
After 12 weeks of growth in the greenhouse, the height of
each seedling was measured as the stem length containing
live foliage (sensu Butnor et al. 2019) to the nearest 0.1 mm
using calipers (hereafter ‘Height’). Survival for each seed-
ling was also recorded after 12 weeks (hereafter ‘Survival’).
To calculate an overall multiplicative estimate of early-life
fitness for each family (hereafter ‘Early-Life Fitness’), we
multiplied Germination by Height, weighting the average
height per family by its Survival (i.e., dead seedlings con-
tributing height values of 0).

Genetic parameter estimation
We based our estimation of genetic parameters on recently

published exome capture sequencing of each of the 340
maternal trees (Capblancq et al. 2020). Briefly, this consisted
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of designing 80,000 probes based on almost 100 Mbp of
genomic and exomic regions spanning an estimated 38,570
unigenes of the P. glauca genome. Exome-capture librar-
ies were sequenced with Illumina to an average depth of
2.3X, mapped to the WS711 P. glauca reference genome
(Birol et al. 2013). One individual that showed an abundance
of PCR duplicates in the raw sequence data was removed
(YRB_O01), leaving 339 families for further analysis. Link-
age Disequilibrium (LD) decreases very rapidly along the
genome for red spruce (Capblancq et al. 2020) and exome
capture is targeting many small fragments distributed all
along the genome, limiting potential biases due to strong LD
among genetic sites when estimating genomic parameters.

We used the program ANGSD (Analysis of Next Genera-
tion Sequencing Data) (Korneliussen et al. 2014) to iden-
tify single nucleotide polymorphisms (SNPs). This program
is particularly suited to analyze low coverage sequencing
because it takes into account genotypic uncertainty by cal-
culating genotype likelihoods and/or probabilities for each
SNP based on the depth of aligned reads and the associated
mapping and sequencing quality scores (Nielsen et al. 2011).
Genotype likelihoods were estimated using the SAMtools
genotype likelihood model, using only reads having unique
best hits (“-uniqueOnly 1), setting a minimum MapQ score
to keep a read to 20 (“~-minMapQ 20”), a min nucleotide Q
score to consider a site to 20 (“-minQ 20”), a minimum num-
ber of 2 individuals with coverage to keep a site (“~-minInd
2”), a maximum of 17 reads to estimate genotype likelihood
for one individual (“-setMaxDepthInd 17”), a minimum
number of 15 reads across the complete sampling to estimate
genotype likelihoods for a site (“-setMinDepth 15”), keeping
only biallelic sites (“-skipTriallelic 1), performing the base
alignment quality (BAQ: Phred-scaled probability of a read
base being misaligned)(Li 2011) as in SAMtools (“-baq 17).
The resulting genotype probabilities were then used to call
genotypes with a probability threshold of 0.8 (“-doGeno 27,
“-postCutoff 0.8”).

We annotated the resulting SNPs based on best BLAST
hits to the Norway spruce (P. abies) genome annotation
available from congenie.org (Nystedt et al. 2013). Using the
mapped positions of the red spruce SNPs within the Nor-
way spruce reference, we then used SNPeff (Cingolani et al.
2012) to annotate variants to functional class (up- and down-
stream, synonymous, nonsynonymous, intronic or intergenic
sites). ANGSD analyses and the annotations produced by
SnpEff were used to estimate the following parameters of
genetic diversity, inbreeding and genetic load at the sam-
pling locations (Table 1):

Genetic diversity

First, in order to account for a putative positive impact of
genetic diversity on individual survival and growth, we
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Table 1 Summary of the genetic factors calculated and used for analysis in this study with the method applied for calculating values for each

factor and a justification for its use in this study

Variable Method

Purpose

Genetic diversity

Population homozygosity Proportion of loci showing an excess in homozygosity
compared to the expected value in the population

(1-2pq)
Family homozygosity
all the polymorphic sites
Genetic load
their frequencies in the population

Genetic structure
PCA (PC1 & PC2)

Expected heterozygosity in a population (2pq)

Proportion of individual’s homozygote genotypes across

Individuals scores along the first two axes of a genetic

Use as an estimator of genetic diversity within a popula-
tion

Use as a proxy of non-random mating within a population
(Population level inbreeding)

Use as a proxy of alleles identity by descent levels for a
Family (Family level inbreeding)

Mean number of non-synonymous mutation weighted by Estimate the amount of deleterious alleles within a popu-

lation

Integrate the species genetic structure at the Family level

The parameters p and ¢ mentioned represent the frequency of the major and the minor allele in the population, respectively

calculated the expected heterozygosity within each sam-
pling location, as a descriptor of its genetic diversity. For
each polymorphic site, we estimated allele frequencies and
calculate the expected heterozygosity under Hardy—Wein-
berg equilibrium (i.e., 2pq). To avoid bias due to sites under
strong selection in the coding regions of genes, we only used
SNPs in introns or up- and down-stream of genes to estimate
the expected heterozygosity within sampling locations.

Population-level excess of homozygosity

To characterize inbreeding at the population level, we tested
for loci that deviated significantly from Hardy—Weinberg
equilibrium based on comparing the expected heterozygosity
estimated above to the mean observed heterozygosity. We
then identified the proportion out of all SNPs that showed an
excess of homozygosity and used this proportion as a metric
for the magnitude of inbreeding at the population level. Here
again, only SNPs in introns and up- or down-stream of genes
were used.

Family-level homozygosity

We estimated the individual-level inbreeding coefficient by
calculating for each family (i.e., per maternal tree) the pro-
portion of homozygous genotypes within the intronic and
up- and down-stream genes sites.

Genetic load

Effective population size and demographic expansion his-
tory can strongly influence the accumulation of deleteri-
ous alleles in populations (Peischl et al. 2015), negatively
impacting fitness. We estimated genetic load for each sam-
pled locality according to Willi et al. (2018) to approximate
the local abundance and relative frequency of deleterious

alleles. Based on the annotations made with SNPEff, we esti-
mated genetic load as P, f,/Pf,, where P, and P, refers to the
number of polymorphic nonsynonymous and synonymous
sites, respectively, within a focal locality, and f;, and f; simi-
larly refer to the corresponding mean relative frequencies
of nonsynonymous and synonymous sites within the same
locality. Assuming that the majority of the non-synonymous
polymorphisms are deleterious, this ratio provides a proxy of
genetic load at each sampling location that accounts for both
the abundance and mean frequencies of deleterious variants
(Willi et al. 2018).

Genetic structure

To include in our model a potential role for different
genetic backgrounds in explaining fitness traits as a result
of variation in demographic histories, we used the three
genetically-based groups (Core, Margin, and Edge) identi-
fied in Capblancq et al. (2020) as a categorical co-variable
named “Region” (Fig. 1). These groups showed evidence
of unique demographic histories, including separating into
distinct clusters in a principal component analysis (PCA)
based on > 100,000 SNPs, and estimated divergence times
of > 8000 years ago with minimal subsequence gene flow,
based on demographic modeling (Capblancq et al. 2020).

Statistical Analyses
Fitness trait variation

To visualize trait variation across the species range, we first
generated boxplot distributions for the four traits within
each locality. Values of Height and Early-Life Fitness were
corrected for the rack effect before plotting using random
effects ANOVA. Then, we tested the correlation among
traits by running pairwise linear regressions, using the /m
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function of the R package stats (R core team 2018). We also
performed, for each trait, a one-way ANOVA with Region
as the explanatory variable, to test the influence of genetic
background on trait values.

Geographic variation in genetic parameters

To visualize the variation of the different genetic param-
eters across the species range, we performed ordinary krig-
ing using the function krige.conv of the geoR R-package
(Ribeiro and Diggle 2016) and fitting a Gaussian function
model. The predictions obtained were superimposed on spe-
cies range maps.

Association between genetic parameters and fitness traits

We used multivariate linear regression models to investigate
the relative roles of genetic diversity, population- and indi-
vidual-level homozygosity, genetic load, and genetic struc-
ture in driving family-level variation in fitness traits. We
ran separate models for Germination, Survival, Height, and
Early-Life Fitness. To account for potential (non-genetic)

maternal environmental effects due to variation in resource
availability or environment during seed production, we
included Seed Weight as a co-variable in the multivariate
regression for each trait. Interaction terms between the con-
tinuous genetic predictors and Region (as a discrete factor)
were also included to test if the influence of genetic vari-
ables on fitness traits was region-specific. To summarize,
the explanatory variables included in the model for each
trait were: the four genetic parameters, Seed Weight, Region
and the four interactions between Region and the genetic
parameters.

Results
Variation in seedling early-life fitness traits

The distribution of early-life fitness traits (Seed Weight,
Germination, Survival, Height and Early-Life Fitness)
exhibited abundant variation, both among and within
sampled localities (Fig. 2). On average, localities from
the Margin region tended to achieve the highest values for
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Fig.2 Boxplot distribution of early-life fitness traits with respect to
sampling location. Localities are ordered depending on their lati-
tude, with the southernmost locality (WA) on the extreme left and
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most traits. Conversely, the Edge region tended to have
lower trait values as well as more variation among locali-
ties than Core or Margin regions, the latter especially for
Seed Weight and Germination.

Correlations among the individual early-life fitness
traits were generally weak (R? 0.01-0.06; Fig. 3). The
exception was for correlations with Early-Life Fitness,
which was logically strongly correlated with each of its
component variables, but most strongly reflected variation
in Germination (R*=0.75) compared to the other compo-
nents Survival (R*=0.24) and Height (R>=0.19). Inter-
estingly, Seed Weight was significantly associated with
Germination (P <0.001, R*=0.06) and Fitness (P <0.001,
R?=0.05) but not with Survival (P=0.14) and Height
(P=0.28).

Geographic structure in landscape genetic variation

The four different genetic parameters (family homozygo-
sity, population homozygosity, genetic diversity and genetic
load) showed geographic variation across the range but the
patterns were more complex than simple latitudinal clines
(Fig. 4). For example, family homozygosity was maximal in
the southern Edge region, but was also high in the western
part of the Core region in New York and Vermont. In con-
trast, population homozygosity was maximal in the northeast
and moderately high elsewhere, except for Edge sampling
locations in WV and MD and the parts of the Core region in
northern VT. Genetic diversity and genetic load showed a
surprisingly similar distribution, with both parameters high-
est in the northeastern Core and in the Margin regions.
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Fig. 3 Pairs plot showing pairwise simple correlations between all traits. Linear regression lines and confidence intervals were plotted when the
correlation test was significant (P <0.05)
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Fig.4 Red spruce geographic range maps superimposed with the
results of kriging of each of the genetic parameters using a Gaussian
covariance function. Gradient scales range from low (yellow) to high

Genetic drivers of variation in earl- life fitness traits

Multivariate linear models revealed extensive variation
among the different early-life fitness traits in how they
responded to genetic parameters (Fig. 5). The overall model
was significant for Germination (P <0.001) and explained
almost 28% of the variation in germination proportion
among our range-wide sample of seed families (R?=0.279).
Germination was highly influenced by Seed Weight, but also
showed significantly higher values in the Margin region.
In contrast, Survival did not show any significant associa-
tion with the genetic parameters (Overall model P=0.57).
The overall model for mean seedling Height was highly

@ Springer

65°86°W

75°W  70°W

Longitude

80°W
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significant (P <0.001, R*=0.23) driven by a strong positive
association with Seed Weight (estimate =955.35, P=0.004)
but also by positive associations with the Edge region (esti-
mate = 188.79, P=0.04), genetic load (estimate =102.5,
P =0.03) and several interaction effects between genetic
parameters and Region. When looking at these interactions,
we observed that in comparison with the Core region (i.e.,
the intercept), Height of families from the Margin region
was more negatively affected by population homozygosity
(P=0.004) and more positively affected by genetic diver-
sity (P=0.004). Additionally, Height of families from the
Edge region was more negatively affected by genetic load
(P=0.004). Lastly, 25% of variation in Early-Life Fitness
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Fig.5 Summary statistics of multivariate linear models performed
for each phenotypic trait. The overall model P-values, and adjusted
R? values are shown together with the coefficient estimates for

was explained by the full model (P <0.001), which was
strongly influenced by Seed Weight (estimate =3026.08,
P =28.5e-09), but also showed significant interactions effects
with Region. Specifically, Early-Life Fitness in the Edge
region exhibited stronger positive associations with genetic
diversity (P=0.02) and stronger negative associations with
genetic load (P=0.018) (Fig. 6). Population homozygosity
also showed a trend towards a more negative relationship
with Early-Life Fitness in the Edge region (Fig. 6), although
this was on the boundary of statistical significance (Fig. 5).

Dlscussion

Variation in fitness traits and genetic parameters
across the range

By growing thousands of seedlings from 65 different sam-
pling locations in a controlled environment, and pairing
measurements of early-life traits with genomic sequences
from their maternal trees, we uncovered key genetic drivers

each variable included in the models. Values are colored in orange
when significant and include asterisks to note level of significance
(***P<0.001, **0.001 <P <0.01, and *0.01 <P <0.05)

of variation in early-life fitness traits across red spruce’s
range. This variation, associated to some extent with
geographic patterns, gives important information on red
spruce’s capacity to maintain and recover from logging, fire
and acid rains that greatly affected the species in the last two
centuries (Mathias and Thomas 2018; Rentch et al. 2016).
We originally posed two main hypotheses that could
explain variation in early-life fitness traits in association
with genetic parameters across a species range. First, the
edges of a species’ geographic distribution are expected to
present environmental conditions that are less optimal than
the center of the range for the survival and growth of indi-
viduals (a.k.a., the central-marginal hypothesis) (Sagarin
and Gaines 2002). This gradient in suitability is predicted
to lead to smaller population sizes at the range periphery,
where selection is weakened and genetic drift strengthened
(Kimura, 1955, 1957; Wright, 1931). As a result, genetic
diversity is expected to be lower in those populations (Eck-
ert et al. 2008) and deleterious alleles would accumulate
more rapidly, increasing genetic load and decreasing fitness
in comparison with the center of the range (Peischl et al.

Population Homozygosity Family Homozygosity

Genetic Diversity Genetic Load

40

8

Early-Life Fitness

Region

— Core

--- Margin
Edge

0.000 0.005 0.010 0.015 0.80 0.85 0.90 0.95
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Fig.6 Marginal effects estimated from the multivariate linear model for Early-Life Fitness, plotted for each genetic parameter and including

interactions between genetic parameters and Regions
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2015; Willi et al. 2018). Second, past range shifts may have
strongly influenced the distribution of genetic diversity and
genetic load across the species’ range. The post-glacial re-
colonization most species have undergone since the LGM
often resulted in the establishment of “leading” and “trail-
ing (rear) edge” populations (Hampe and Petit 2005; Hewitt
2000). Due to successive bottlenecks during expansion,
leading edge populations are expected to show low genetic
diversity and high levels of genetic load, whereas trailing
edge populations are expected to exhibit low genetic diver-
sity due to fragmentation and population decline, but should
not present high levels of genetic load (Gonzélez-Martinez
et al. 2017; Hampe and Petit 2005).

Based on the observed geographic structure of genetic
variation, none of those patterns are clearly visible across
red spruce range (Fig. 4). In accordance with the central-
marginal hypothesis, the highly fragmented trailing edge
in the south showed a decrease in genetic diversity, while
sampling locations in the northern core of the range showed
some of the highest level of diversity, even though they prob-
ably are the most recently colonized locations. Interestingly,
the degree of genetic load, which should follow an opposite
trend (highest in demographically more marginal localities),
seemed in fact strongly associated with genetic diversity
(Fig. 4). In fact, we observed some of the highest levels of
genetic load in the central part of the range (Margin region),
which neither the leading/trailing edge hypothesis nor the
central-marginal hypothesis would easily explain. Some of
these complexities likely reflect multiple processes at work
over different temporal or spatial scales. For example, past
hybridization in parts of red spruce’s range may contribute
to the genetic patterns we observed. Red spruce is known to
hybridize with its close congener black spruce (P. mariana),
and hybrids have been reported in the far northeast of its
range but also in Pennsylvania (de Lafontaine and Bousquet
2017; De Lafontaine et al. 2015), which coincides with the
Margin region in our exome data. Thus, one hypothesis for
the high diversity observed in the Margin is that it reflects
past introgression with black spruce, which might also influ-
ence our estimate of genetic load by introducing nonsynony-
mous polymorphisms from black spruce as a consequence
of introgression.

Another source of complexity in the genetic patterns we
observed may involve more recent demographic changes.
It is well known that genetic diversity in a population at
demographic equilibrium should closely approximate N,
(effective population size)(Ellegren and Galtier 2016).
However, recent strong bottlenecks over time scales of a
few generations can actually temporarily increase genetic
diversity, when estimated as expected heterozygosity at pol-
ymorphic sites, because loss of rare alleles leads to allele
frequencies that are more even (i.e., less skewed; Luikart
et al. 1998). Lastly, we note that the high level of population
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homozygosity in the northeast primarily reflects the influ-
ence of the NBTIC locality (Fig. 4), which may be caused by
a Wahlund effect of pooling diversity from several different
genetically differentiated sources into a single sample. Alto-
gether, our results suggest a complex demographic-genetic
history for red spruce, whereby populations have probably
undergone a south to north post-glacial expansion but have
also found refuge at higher elevations in the Southern and
Central Appalachians, creating islands of isolated forest that
later faced a dramatic decline (~90%) due to intensive log-
ging, fires and acid rains in the last two centuries (Mathias
and Thomas 2018; Rentch et al. 2016; Rentch and Schuler
2009). Hybridization with black spruce likely contributes as
well, either historically, more recently, or both (Bashalkh-
anov et al. 2013). Thus, the patterns of genetic and phe-
notypic variation in current populations are intrinsically
associated with this complex demographic history, obviat-
ing a simple linking of observations to the straightforward
theories described above.

Factors influencing early-life fitness

Our results confirm the existence of significant variation
among the three genetically determined regions in shaping
the early-life fitness of red spruce seedlings. These regional
groups are derived from the main genetic clusters struc-
turing the genetic background of red spruce populations
(Capblancq et al. 2020), and highlight the importance of
evolutionary history in shaping phenotypic variation and
fitness in natural populations (Miller et al. 2019). For most
of our measured fitness-related traits, sampled localities in
the Margin returned the highest scores, localities in the Core
showed intermediate values, and localities in the Edge the
lowest. Those results suggest that the specific historical,
geographical, and perhaps environmental features associated
with these three different regions have important impacts on
the early-life fitness of spruce seedlings.

We observed a very low germination rate for some of the
Edge sampling locations (e.g., ‘XWS’ and ‘XFS’ <10%),
which could have a negative impact on forest regeneration
in this fragmented part of the range. Eight of the 22 Edge
sampling locations had a germination rate less than 25%,
even when the seeds were germinated in a suitable con-
trolled environment. It could be explained, to some extent,
by particularly poor local conditions for seed production
in the southern Appalachians the year the seeds were col-
lected (2017), but some southern sampling locations show
germination rates superior to 60%, similar to most sampling
locations in the Margin or the Core regions. While it would
be necessary to confirm this trend by extending the experi-
ment to multiple years and seed cohorts (Zhang et al. 2017),
it nonetheless suggests a poor recruitment capacity in those
southern forests, which are already the most threatened ones
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(Nowacki et al. 2010). On a more positive note, once the
seeds have germinated, the survival rate was very high for
most families, with more than 80% of the seedlings sur-
viving the first 12 weeks. When looking at seedling height
after 12 weeks of growth, sampling locations from the Edge
region again exhibited lower growth efficiency than loca-
tions in the Core or the Margin regions. The combination
of poor germination rates and smaller seedling heights led
to a pattern of lower early-life fitness in the Edge region
compared to the Margin and Core regions. Interestingly, it
seemed that the lowest fitness values within the Edge were
found in the Central Appalachians (WV and western MD)
and not further south in NC and TN. It is not currently
known what historic processes (ancient or more recent) led
to Central Appalachian red spruce exhibiting lower seed-
ling fitness, but it may reflect the dramatic losses of spruce
forests in this region to logging and fire in the late 19" and
early 20™ centuries, and later on to atmospheric pollution
as well (Adams and Stephenson 1989; Mathias and Thomas
2018; Rentch et al. 2016).

We also found that average seed weight had a significant
effect on germination, as well as on height and early-life fit-
ness (Fig. 4). Considering the wide range of source environ-
ments represented in our seed collection (Table S1), we used
average seed weight as a covariate when analyzing each trait
under the assumption that seed weight is a good proxy of
maternal resource allocation and thus reflects environmental
conditions during the growing season (Roach and Wulff,
1987). In plants, early-life traits are the most susceptible to
environmental maternal effects, and seed mass in particular
has been shown to vary depending on environmental condi-
tions due to the maternal inheritance of seed tissue that is
distinct from parental genetic factors (Singh et al. 2017).
For example, the climatic harshness (e.g., drought or cold)
of the environment can directly affect the quantity and/or
quality of tissue produced per seed in plants (Baker 1972),
which can in turn directly influence germination proportion
and growth of the offspring (Wahid and Bounoua 2013). Not
taking this effect into account could thus lead to erroneous
conclusions when analyzing the relationship between seed-
ling phenotypes and their genetic characteristics (Wolf and
Wade 2009). Our results confirmed that average seed weight
explained a significant part of the variation in red spruce
germination, height and early-life fitness traits.

Even after accounting for regional genetic backgrounds
and maternal effects using region and average seed weight
as co-variables in the models, we identified a significant
positive influence of genetic diversity on seedling height and
overall fitness, a significant negative association between
those traits and genetic load, and a negative association
between population homozygosity and seedling height. If
not always significant, the trends of co-variation between
genetic parameters and early-life fitness were consistent

with expectations (Fig. 5). Population homozygosity and
genetic load were negatively associated with early-life fit-
ness in all regions except for the Core, where genetic load
returned a slightly positive association. In contrast, genetic
diversity was positively associated with early-life fitness in
all three regions even if more strongly in the Edge and Mar-
gin regions. This confirms for red spruce the pattern largely
found for other species in the conservation literature—
namely, that genetic diversity is usually positively correlated
with fitness traits (Reed and Frankham 2003). Such a trend
was also identified in eastern Canadian red spruce localities
for which genetic diversity had been identified as a positive
factor for growth measured in natural stands (Mosseler et al.
2003). Interestingly, the same study suggested that the pres-
ence of rare deleterious alleles was negatively impacting
growth rate, which is confirmed by the negative influence
of genetic load on height and fitness in our study (Figs. 5
and 6). Finally, population homozygosity was negatively
associated with seedling fitness in our experiment, suggest-
ing a deleterious effect of inbreeding (Angeloni et al. 2011;
Mosseler et al. 2000; Reed and Frankham 2003). Inbreeding
depression has been frequently identified as a major factor
affecting survival in the wild (Keller & Waller 2002), espe-
cially for small and isolated populations (Naish et al. 2013).
Some of our sampled red spruce localities indeed represent
very small and fragmented forest stands where the species
would likely suffer from inbreeding depression, which in
return could also accelerate genetic diversity erosion and
deleterious mutation accumulation in the future (Lynch et al.
1995).

Early-life fitness, genomics and conservation

There is growing attention given to genetic diversity and
its role in adaptation (“‘evolvability”) in conservation or
management plans (Hendricks et al. 2018; Khan et al.
2016; Supple and Shapiro 2018). Maximizing genetic
diversity is often proposed to avoid the deleterious effects
of inbreeding and provides the population the raw genetic
variability required to adapt to changing environmental
conditions (Keller and Waller 2002). The results of this
study confirm the importance of genetic diversity for red
spruce seedling fitness. These findings are then directly
relevant to restoration ecologists and resource managers
aimed at restoring red spruce forests. Lowering the num-
ber of deleterious alleles (genetic load) and maximizing
genetic diversity is especially important in the Central and
Southern Appalachians (Edge region) where the highly
fragmented populations appear more sensitive to varia-
tion in these parameters. We see a great opportunity for
integration of current knowledge on genetic diversity and
genetic load into a seed selection model that identifies
optimal combinations of potential seed sources so as to
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maximize levels of genetic diversity at planting sites while
minimizing the number of deleterious alleles. We believe
that integrating genomic tools to inform restoration pro-
grams could enhance the survival rate of red spruce indi-
viduals in the reforested areas and help decrease levels
of inbreeding and the erosion of genetic diversity in the
highly fragmented southern parts of the species’ range.

Finally, effective population size and degree of gene
flow among populations are known to greatly influence
fitness by mediating levels of inbreeding and genetic diver-
sity (Naish et al. 2013), but some of the variation in seed-
lings traits could also reflect local adaptation to divergent
environments associated with the variety of environments
populations experience across the species range (Butnor
et al. 2019; Marks 2007). Depending on the spatial scale
of local adaptation that may occur in red spruce, selecting
seed sources with the appropriate adaptive alleles may also
be an important consideration. This will require a better
understanding of adaptive genetic variation across the spe-
cies range and the spatial scale at which those differences
manifest, which would allow for more refined predictions
of the optimal genetic composition under future climates
for different reforestation sites (Capblancq et al. 2020).
Future studies aimed at combining our present results on
population genetic diversity, inbreeding, and genetic load,
with knowledge about the influence of local adaptation
will help produce an unprecedented approach to inform
management plans for the conservation of red spruce, with
high value in the current context of climate change.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s10592-021-01378-7).
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