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Abstract. Let g be a reductive Lie algebra and let V(X) be a tensor product of d
copies of finite-dimensional irreducible g-modules. Choosing d points in C, V(X) acquires
a natural structure of the current algebra g ® C[t]-module. Following a work of Rao [R],
we produce an explicit and complete set of g-module intertwiners of V(X) in terms of the
action of the current algebra.

Introduction

Let g be a finite-dimensional reductive Lie algebra over the complex numbers
C and let A be any commutative C-algebra with identity. Then, g ® A acquires
a natural structure of Lie algebra. Take any g-invariant 6 € [g®k]g, 0=>12t®

K3
rh® - @k, and any Pi,..., Py € A. Then, 0(Py,...,P;) € U(g® A) defined by

O(Py,...,P) = ng(Pl) .z (P,

commutes with g (cf. Lemma 3), where U(g® A) is the enveloping algebra of g® A
and z(P;) denotes % ® Pj € g ® A.

In fact, we show that, via the above construction, we get all of [U(g® A)]° as
0 ranges over [g®k]g and P;’s range over the elements of A (see Proposition 8 for
a more precise result).

Let us take A = C[t] and denote g ® A by g[t]. For any 5 = (p1,...,ps) € C?
and any irreducible g-modules V(\1),...,V(Ag) with highest weights A1,...,Ag
respectively, consider the tensor product g-module

V) :=VA)® @ V(\g), where X = (A1,...,\q).

Then, V(X) acquires the structure of a g[t]-module (called an evaluation module):
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g;(P).(m@...@vd)

d
::ZP(pi)v1®--~®x-vi®-~-®vd for x € g, P € C[t],v; € V(\).
i=1

To emphasize the g[t]-module structure, we denote V(X) by I_/;;(X)

Consider the Casimir element ) € [g®2]g. Then, we calculate the action of
Q(P,Q) on V};(X) for any X = (A1, A2) (cf. Lemma 6).

We assume now that p; are all distinct. In this case Vﬁ(X) is an irreducible
g[t]-module. Decompose Vﬁ(X) into its isotypic components (as a g-module):

Vi(A) = @ Va(N) [,

where we denote by Vﬁ(X) [12] the isotypic component corresponding to the highest
weight p. Lo

Clearly, the action of g commutes with the action of [U(g[t])]® on Vz(X). Thus,
we get an action of g x [U(g[t])]® on I_/;;(X) stabilizing each isotypic component
V(M) [ul-

The following theorem is one of our principal results of the paper (cf. Theorem 9).

Theorem 1. Fach isotypic component Vﬁ(X) [] is an irreducible module for g x
[U(g[t])]*".

In Sections 2, 4 and 5, we determine the spaces [g®k] for g = gl(n),sp(2n) and
s0(n) respectively using the First Fundamental Theorem of Invariant Theory. (In

the last case, for n even, we only determine [g®k]o(n).)

Let V = C™ be the standard representation of g = gl(n). For any positive
integer k, the symmetric group X acts on the tensor product V®* by permuting
the factors. Clearly, this action of ¥; commutes with the tensor product action of
gl(n) on V&%, Thus, we have an algebra homomorphism:

@ : C[Zx] — Endg (VEF),

where Endg(V®k) denotes the space of g-module endomorphisms of V®*. By the
Schur—-Weyl duality, the above map ® is an (algebra) isomorphism. Choose j =
(p1,...,pr) € CF such that p;’s are distinct. There is a surjective algebra homo-
morphism (for g = gl(n))

° : [U(glt))]® — Endg (V) = C[2y,
where the last identification is via ® (cf. proof of Theorem 9). Thus, we get a
surjective algebra homomorphism
E: [U(glth]® — CZ].
We give an explicit preimage of any reflection (i.e., transposition) 7 = (r,s) € X
under = (cf. Proposition 14).

Acknowledgements. 1 thank S. E. Rao for sharing his work [R]. His work and
questions therein led to this work. This work was supported partially by the NSF
grant DMS-1501094.
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1. Intertwining operators — Main results

Let g be a finite-dimensional reductive Lie algebra over the complex numbers C
and let A be any commutative C-algebra with identity. Then, g ® A acquires a
natural structure of Lie algebra:

[2(P),y(Q)] == [z,y](PQ), forz,y € g, P,Q €A,
where z(P) denotes z ® P.

Definition 2. Take any g-invariant (under the adjoint action) 6 € [ ]g 0=
Yrl@ri®---®a, and any Py,..., P, € A. Define 0(P,...,P;) € U(g® A) by

O(Py,..., P Zml P)...xk(Py), (1)

where U(g ® A) denotes the enveloping algebra of g ® A.
Lemma 3. [g,0(P1,...,Py)] =

Proof. Let m: T(g® A) = U(g ® A) be the canonical surjective homomorphism,
where T is the tensor algebra. Consider the element 6(Pi,...,P;) € T(g® A)
defined by

O(Py,...,P) =Y ai(P) @ @a}(P) € T(g® A).

For any y € g,

[y7é(P17"'7 szl Pl [yu J}(P])®..-®$;;?(Pk)

i g=1

=0, since [g,0] =0,

(2)

and g(P) ® - Q@ g(Px) ~g® -+ ®g as g-modules under the adjoint action.
Now, since W(é(Pl, ...y Py)) = 0(Py, ..., P), by the identity (2), the lemma

follows. O

Definition 4 (Evaluation modules). From now on we take A = C[t] and denote

g® A by g[t]. For any p = (p1,...,pa) € C? and any irreducible g-modules

V(A1),...,V(Aqg) with highest weights A1, ..., \q respectively, consider the tensor

product g-module

—

VX)) :=V(A)®---®@V(\g), where X = (A1,...,\q).
Then, V(X) acquires the structure of a g[t]-module:
x(P) .(Ul ®...®Ud)
d
= Z Pp)vi®@ - @z -0, Q- Quq for x € g, P € C[t],v; € V(\).
To emphasize the gt]-module structure, we denote V(X) by Vﬁ(X) and it is called

an evaluation module. It is well known (and easy to prove) that when pq,...,pq
are distinct, then ‘_/;,7()\) is an irreducible g[t]-module.
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Example 5. Take a basis {e;} and the dual basis {¢’} of g under an invariant
non-degenerate symmetric form (, ) on g. Recall the Casimir element

Q::Z@@ei € [g®2}g.

K3

Then, by Lemma 3, for any P,Q € A, Q(P,Q) € [g ® A°.
For any p = (p1,p2) € C?, consider the evaluation module V;;(X), where X =
(A1, A2) is a pair of dominant integral weights. Let
P(p1) = w1, P(p2) =w2
Qp1) = 21, Q(p2) = 2.

Lemma 6. For any v in the g-isotypic component of V(A1) ® V(A2) of highest
weight 1,

w129 + Wa2

AUP.Q)() = (wr210x, +wrzaln, +

(CM - C>\1 - C/\z))v? (3)

where C), denotes the scalar by which Q acts on V().
Proof. For vy € V(A1) and vz € V(A2),
(Y elP)-€@) o)
i
:wlleAl (’Ul ®’02) +U)QZQC)\2(U1 ®’UQ) (4)
+’w1222 e; - U1 ®ei ~v2+wgzlz e U1 K e; - Va.

Taking w; = we = 21 = 29 = 1 in the above, we get

Qv ®v9) = Cy, (v1 ®v2)+Ch, (v1 ®v2)+z ei~v1®ei-v2+z et vy @e;-va. (5)

3 3

Further, it is easy to see that
Zei-v1®ei-vgzz:ei-vl@eimg. (6)
i i

Thus, combining the equations (4) - (6), we get

w122 + Waz1

9 (CM _C/\l —sz))v,

(Z ei(P)- eZ(Q)) U= (w1Z1C,\1 + wa2eCly, +

for v in the g-isotypic component of V(A1) ® V(A2) of highest weight . This
proves the lemma. [
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Example 7. Take any simple Lie algebra g and any
0 [A*(g)]° c [2%4]°,

where we think of A¥(g) as the subspace of ®*g consisting of alternating tensors.
Recall that
[/\.(g)]g = /\(013 ceey 02)3

where £ := rank g and 6, € [/\%J’H(g)]g are primitive generators. Here 1 = b; <
by < .-+ < by are the exponents of g. This gives rise to 8(Py, ..., P) € [U(g ® A]°,
for any Pp,... P, € A.
Similarly,
[$*(9)]° C [@*g],

where we think of S*(g) as the subspace of ®"g consisting of symmetric tensors.
Recall that [S*(g)]® is a polynomial algebra generated by certain homogeneous
elements {J;}1<;j<¢, where §; € [S%*1(g)]*.

Recall that, for any Lie algebra s, there is a canonical surjective algebra homo-
morphism from the tensor algebra to the enveloping algebra 7 : T(s) — U(s)
whose kernel is the two-sided ideal generated by {x @ y —y @ = — [z, y];x,y € s}.

In the following, let O(nq,...,nk) denote G(t™, ... " ).

Proposition 8. For any finite-dimensional reductive Lie algebra g, the subalgebra
[U(g[t])]® is spanned (over C) by {0(ny, ... ,nk)}, where @ runs over a homogeneous
basis of [T(g)]® and, for k = degf, ny < --- < ny, runs over non-negative integers.

Further, the subalgebra [U(g[t])]® is generated (as an algebra) by {0(n1,...,nk)},
where 6 Tuns over a set of homogeneous algebra generators of [T(g)]® and, for
k=deg 0, ny,...,ng runs over non-negative integers.

Proof. As earlier, consider the surjective algebra homomorphism:
m: T(g[t]) — U(glt])- (7)

Now, glt] = @,—, 9(n), where g(n) := g ® t". Hence,

Te) =P P sn)@---@g(n)

E>0n1,...,np€Z4

~ @ @ %% ny,...,nx] as g-modules,

k>0nq,....,np€Z

(®)

where g®%[ny, ..., ny] simply means g®* as a g-module, but as a subset of T'(g[t]),
it is defined to be g(n1) ® - - ® g(ng).
By (7), we get

From (8), we get

T ~D D [6°] .ol

k>0n1,...,n €EZ4
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From this we see that {A(n1,...,n;)} spans (resp. generates) the algebra [T'(g[t])]?,
where 6 runs over a homogeneous basis (resp. homogeneous algebra generators)
of [T'(g)]® and, for k = deg 6, ni,...,n; runs over non-negative integers. (Here
O(ny,...,n) denotes the element in [T'(g[t])]® as in the proof of Lemma 3.) From
the surjectivity of the algebra homomorphism 7, we get that {#(nq,...,n)} spans
in the first case (resp. generates in the second case), where ny,...n, runs over
non-negative integers. Now, we can restrict to 0 < n; < --- < ny in the first case,
which is easily seen from the commutation relation in U(g[t]). O

Let \ = (A1,...,Aq) be any tuple of dominant integral weights and let p =
(p1,-..,pa) be any tuple of distinct points in C. Then, the evaluation module
Vﬁ(X) is an irreducible g[t]-module (cf. Definition 4). Decompose V;;(X) into its
isotypic components (as a g-module):

Vs(X) = @ Vs(N)ul,

where we denote by Vﬁ(X) [12] the isotypic component corresponding to the highest
weight p.

Clearly, the action of g commutes with the action of [U(g[t])]® on V;;(X) Thus,
we get an action of g x [U(g[t])]® on V;;(X) stabilizing each isotypic component
V(N ().

The following theorem is one of our principal results of the paper. In view of
Remark 12, the following theorem in the case of g = gl(n) was stated as an open
problem in [R, Rem. 4.9]. The following result is an instance of general ‘double
centralizer result’, see, e.g., [D, Thm. 9.1.12].

Theorem 9. Let g be a reductive Lie algebra. With the notation as above, each

isotypic component V;;(X) (1] is an irreducible module for g x [U(g[t])]®.

Proof. Choose a Borel subalgebra b of g and let W[u]* be the b-eigen subspace of
W p] := V(X)[u]. Then, [U(g[t])]® acts on W[u]*. We have a ring homomorphism
coming from the representation W := Vﬁ(X)

¢ : U(g[t]) = Endc(W).

Since W is an irreducible g[t]-module, by Burnside’s theorem (cf. [L, Cor. 1,
Chap. XVII, §3]) ¢ is surjective. Taking the g-invariants, we get a surjective ho-
momorphism

% [U(alt)]® — Endg(W) = [ [ Endg (W), (9)

where Endy (W) is the space of g-module endomorphisms of W. On projection to
Endg(Wu]), we get a surjective morphism

o+ [U(glt)]® — Endg (Wu]) ~ Ende(Wu]*).

In particular, W|[u]™ is an irreducible module under the action of [U(g[t])]®. From
this the theorem follows. [
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Remark 10. Since [U(g)]* < [U(g[t])]?, the irreducible [U(g[t])]*-modules W [u]*
are mutually inequivalent as p ranges over the highest weights of the components
of V3(\) by Harish-Chandra’s theorem (cf. [H, Thm. 23.3]).

2. Determination of [U(g[t])]° for g = gl(n)

By Proposition 8, it suffices to determine [T(g)]®.

Let V = C™ with the standard basis {e,...,e,} and the standard representa-
tion of gl(n). Let {e},...,e’} be the dual basis of V*. Recall the isomorphism:

B:V*®V ~EndV = gi(n),

where (B(f ®v)) (w) = f(w)v, for v,w € V, f € V*. Moreover, the tensor product
action of gl(n) on V* ® V corresponds (under the identification 8) to the adjoint
action on gl(n). Thus,

[g®k]g ~[(V*® V)®k]g .
By the tensor version of the First Fundamental Theorem (FFT) (cf. [GW, Thm.
5.3.1]), we get that {0, }ocx, spans [g@“]g, where

—— * *
0= (€5, ., ®e€i) @@ (ef , ®ei,)
1Si1 ..... ikgn
= g Ei gy @+ @ Ejy i, under the isomorphism f,
1<iy,..,ig<n

where E; ; is the n X n-matrix with (i, 7)th entry 1 and all other entries zero.
Thus, as a corollary of Proposition 8, we get:

Corollary 11. Let g = gl(n). Then, [U(g[t])]° is spanned by

Uu U {X Eil,id(l)(nl)...Eik7¢o<k)(nk)}oezk,

k>0 0<n <---<nj  1<i;<n

Remark 12. From the explicit description of the standard generators of the center
of U(gl(n)), the cycle oy, := (1,2,..., k) plays a special role (also see [R, §4.2]). In
this case

O, = Z Eiy iy @ Eiy iy @ - @ By 4y -

1<i;<n

Considering the cycle decomposition of permutations in ¥, it is easy to see (by
the above corollary) that the elements

{05,(n1,...,ng) : 1 <kand nqy,...,n, >0}

generate the algebra [U (g[(n)[t])]g[(n). This provides an affirmative answer to a
question of Rao [R, Probl. 4.5 (1)]. Observe that in the above set of generators,
we take nq,...,ny to vary over Zx>q.

If we take the subset {0y, (n1,...,n%) : 1 < kand 0 <mny <--- < ng}, then it

does not generate the algebra [U(g[(n)[t])]g[(").
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3. Realizing Schur—Weyl duality intertwiners in terms of
current algebras

As in the last section, let V' = C™ be the standard representation of g = gl(n). For
any positive integer k, the symmetric group ¥ acts on the tensor product V®F
by permuting the factors. Clearly, this action of ¥; commutes with the tensor
product action of gl(n) on V®*. Thus, we have an algebra homomorphism:

® : C[%;] — Endg (V®F),
where Endy(V®*) denotes the space of g-module endomorphisms of V¥,
The content of the Schur-Weyl duality is the following result (cf. [GW, §4.2.4]).
Theorem 13. The above map ® is an (algebra) isomorphism.

Choose p = (p1,...,px) € C¥ such that p;’s are distinct. By the proof of
Theorem 9 (see (9)), there is a surjective algebra homomorphism (for g = gl(n))

¢”: [U(a[t)])® — Endg(VE") ~ C[y],

where the last identification is via ®. Thus, we get a surjective algebra homomor-
phism
2 [U(gltD]* - CZk].

The following result is easy to prove using the definition of the map =.

Proposition 14. For any transposition 7 = (r,s) € Xk, r < s, define the polyno-
mials:

Pom(t—pot ) T 2 @ =t pot 1) I

defr (pr — pd) dits

(t — pa)
(ps - pd) ’

Then,
2( Y BuP)-EQ) =T
1<i,j<n
4. Determination of [U(g[t])]® for the symplectic Lie algebra g = sp(2n)

Again we need to determine [g®k]g for g = sp(2n).
Let V = C?" be equipped with the nondegenerate symplectic form { , ) so that

its matrix ((e;, €j>)1<ij<2n in the standard basis {ey, ..., ea,} is given by
B 0o J
=(50)

where J is the anti-diagonal matrix (1,...,1) of size n. Let

Sp(2n) := {g € SL(2n) : g leaves the form (,) invariant}

be the associated symplectic group and sp(2n) its Lie algebra. Thus, Sp(2n)
has defining representation in V. The form ( , ) allows us to identify V ~ V*
(v fo(w) = (v,w) for v,w € V). Then, there is an identification

S*(V) = sp(2n),
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such that the standard action of sp(2n) on the left corresponds to the adjoint
action on the right. Hence, for g = sp(2n),

4" = ¥ (s

By the tensor version of FFT for Sp(2n) (cf. [GW, Thm. 5.3.3]), we get that
[®k(V®2)]5p(2n) is spanned by

{@‘7 = Z (Civay ®€inz)) ® - ® (Ciypyy @ eia@k))} J

L - oEXy,

1<i1,i3,..,i2k—1<2n
where we require e;,;, = s(igj_1)€2nt1-i,;_, for 1 <j <kands:{1,2,...,2n} —
{£1} is the function:
_ 1 if1<i<n,
s(1) = o
-1 if i>n.

The standard symmetrization V%2 — S2(V) gives rise to a surjective map
sp(2n) sp(2n) g
7[RV 7 - [R5 = 0]

Under this identification, we get the element

YO0) =% Y (8(ic())Eiy ey 2nt1-ine, + 8lio@) Ei, ) 2nt1-i0)©

1<i1,13,.. 02k -1 <20
- Q® (S(ia(zk—l))EiU(%),2n+1—ig(2k,1) + S(ia(zk))E¢d<2k,1>,2n+14(,(%)),

where the square matrix E; ; is as defined in Section 2.

Thus, as a corollary of Proposition 8, we get:
Corollary 15. Let g = sp(2n). Then, [U(g[t])]® is spanned by

U U { Z (S(ig(l))Ei(r(Q)72n+17i(r(1)

k>00<n1<--<njp  1<i1,i3,...,52k—1<2n

+ S(?:U(2))Eia(l)127L+1_ia(2) ) (n1)®
- ® (S(iU(Qk_l))Eiu(Zk)72n+1_ia(2k—1)

+ 8(io(2k)) Biy a1y 204 1—i ) ) (”k)}aezm’

where we require €iy; = S(Zgj_1)€27b+1_i2j71 for 1 < j <k, which gives the corres-
ponding constraint on Ep , = ey @ ey

5. Determination of [U(so(n)[t])]°™

Let V = C™ be equipped with the nondegenerate symmetric form ( , ) so that the
standard basis {e1,...,e,} is orthonormal. Let

O(n) := {g € GL(n) : gleaves the form ( , ) invariant}
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be the associated orthogonal group and so(n) its Lie algebra. Thus, O(n) has
defining representation in V. The form ( , ) allows us to identify V ~ V* (v —
fo(w) = (v,w) for v,w € V). Then, there is an identification

A2(V) ~ so(n),

such that the standard action of O(n) on the left corresponds to the adjoint action
on the right. Hence, for g = so(n),

O(n)

[so(m)®] 7" = [@"(A2(V))]

By the tensor version of FFT for O(n) (cf. [GW, Thm. 5.3.3]), we get that the
space [@k(V‘@Q)]O(n) is spanned by

{\I’U = Z (Cipry ®€ipn) ® @ (Eiyiap_yy ® eia(w)}

b
o : [ASPIEA
1<y ig,. iz —1<n

where we require ip; = ig;_1 for 1 < j < k.
The standard anti-symmetrization V®% — /\Q(V) gives rise to a surjective map

5 [®k(v®2)}o(") —» [@k(/\2(V))]O(") o~ [50(71)@’“}0(”).

Under this identification, we get the element

_1 E ) . _F. )
6(\110) -2 (Elo(l)ﬂa(z) Ela(Z)vla(l)) &
1<iy,i3,.. ik —1<N
® (Eia(Qk—l)via(W@) - Eia(zk)yia(zkﬂ)) )

where the square matrix E; ; is as defined in Section 2.
Thus, as a corollary of Proposition 8, we get:

Corollary 16. Let g = so(n). Then, [U(g[t})]o(n) is spanned by

U U { Z (Eia(nﬂ'a(m - Eia@)viau)) (n1)®

k>0 0<n1<--<ng  1<iy,43,..,025 150

- ® (Eio'(Qkfl)aia(Zk) - Eio(2k)7io(2kfl)) (nk)}an%’

where we require ioj = i95—1 for 1 <j < k.

Remark 17. For n odd, observe that

[5o(n)®k}o(n) ~ [so(n)m]go(n).
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