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Abstract. Let g be a reductive Lie algebra and let V⃗ (λ⃗) be a tensor product of d

copies of finite-dimensional irreducible g-modules. Choosing d points in C, V⃗ (λ⃗) acquires
a natural structure of the current algebra g⊗ C[t]-module. Following a work of Rao [R],

we produce an explicit and complete set of g-module intertwiners of V⃗ (λ⃗) in terms of the
action of the current algebra.

Introduction

Let g be a finite-dimensional reductive Lie algebra over the complex numbers
C and let A be any commutative C-algebra with identity. Then, g ⊗ A acquires
a natural structure of Lie algebra. Take any g-invariant θ ∈

[
g⊗k

]g
, θ =

∑
i

xi
1 ⊗

xi
2 ⊗ · · · ⊗ xi

k, and any P1, . . . , Pk ∈ A. Then, θ(P1, . . . , Pk) ∈ U(g⊗A) defined by

θ(P1, . . . , Pk) :=
∑
i

xi
1(P1) . . . x

i
k(Pk),

commutes with g (cf. Lemma 3), where U(g⊗A) is the enveloping algebra of g⊗A
and xi

j(Pj) denotes x
i
j ⊗ Pj ∈ g⊗A.

In fact, we show that, via the above construction, we get all of [U (g⊗A)]
g
as

θ ranges over
[
g⊗k

]g
and Pi’s range over the elements of A (see Proposition 8 for

a more precise result).
Let us take A = C[t] and denote g ⊗ A by g[t]. For any p⃗ = (p1, . . . , pd) ∈ Cd

and any irreducible g-modules V (λ1), . . . , V (λd) with highest weights λ1, . . . , λd

respectively, consider the tensor product g-module

V⃗ (λ⃗) := V (λ1)⊗ · · · ⊗ V (λd), where λ⃗ = (λ1, . . . , λd).

Then, V⃗ (λ⃗) acquires the structure of a g[t]-module (called an evaluation module):
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x(P ) · (v1 ⊗ · · · ⊗ vd)

:=
d∑

i=1

P (pi)v1 ⊗ · · · ⊗ x · vi ⊗ · · · ⊗ vd for x ∈ g, P ∈ C[t], vi ∈ V (λi).

To emphasize the g[t]-module structure, we denote V⃗ (λ⃗) by V⃗p⃗(λ⃗).

Consider the Casimir element Ω ∈
[
g⊗2

]g
. Then, we calculate the action of

Ω(P,Q) on V⃗p⃗(λ⃗) for any λ⃗ = (λ1, λ2) (cf. Lemma 6).

We assume now that pi are all distinct. In this case V⃗p⃗(λ⃗) is an irreducible

g[t]-module. Decompose V⃗p⃗(λ⃗) into its isotypic components (as a g-module):

V⃗p⃗(λ⃗) =
⊕

V⃗p⃗(λ⃗)[µ],

where we denote by V⃗p⃗(λ⃗)[µ] the isotypic component corresponding to the highest
weight µ.

Clearly, the action of g commutes with the action of [U (g[t])]
g
on V⃗p⃗(λ⃗). Thus,

we get an action of g × [U(g[t])]
g
on V⃗p⃗(λ⃗) stabilizing each isotypic component

V⃗p⃗(λ⃗)[µ].
The following theorem is one of our principal results of the paper (cf. Theorem 9).

Theorem 1. Each isotypic component V⃗p⃗(λ⃗)[µ] is an irreducible module for g ×
[U(g[t])]

g
.

In Sections 2, 4 and 5, we determine the spaces
[
g⊗k

]g
for g = gl(n), sp(2n) and

so(n) respectively using the First Fundamental Theorem of Invariant Theory. (In

the last case, for n even, we only determine
[
g⊗k

]O(n)
.)

Let V = Cn be the standard representation of g = gl(n). For any positive
integer k, the symmetric group Σk acts on the tensor product V ⊗k by permuting
the factors. Clearly, this action of Σk commutes with the tensor product action of
gl(n) on V ⊗k. Thus, we have an algebra homomorphism:

Φ : C[Σk] → Endg(V
⊗k),

where Endg(V
⊗k) denotes the space of g-module endomorphisms of V ⊗k. By the

Schur–Weyl duality, the above map Φ is an (algebra) isomorphism. Choose p⃗ =
(p1, . . . , pk) ∈ Ck such that pi’s are distinct. There is a surjective algebra homo-
morphism (for g = gl(n))

φo : [U(g[t])]
g � Endg(V

⊗k) ≃ C[Σk],

where the last identification is via Φ (cf. proof of Theorem 9). Thus, we get a
surjective algebra homomorphism

Ξ : [U(g[t])]
g � C[Σk].

We give an explicit preimage of any reflection (i.e., transposition) τ = (r, s) ∈ Σk

under Ξ (cf. Proposition 14).

Acknowledgements. I thank S. E. Rao for sharing his work [R]. His work and
questions therein led to this work. This work was supported partially by the NSF
grant DMS-1501094.
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A COMPLETE SET OF INTERTWINERS

1. Intertwining operators—Main results

Let g be a finite-dimensional reductive Lie algebra over the complex numbers C
and let A be any commutative C-algebra with identity. Then, g ⊗ A acquires a
natural structure of Lie algebra:

[x(P ), y(Q)] := [x, y](PQ), for x, y ∈ g, P,Q ∈ A,

where x(P ) denotes x⊗ P .

Definition 2. Take any g-invariant (under the adjoint action) θ ∈
[
g⊗k

]g
, θ =∑

i

xi
1 ⊗xi

2 ⊗ · · ·⊗xi
k, and any P1, . . . , Pk ∈ A. Define θ(P1, . . . , Pk) ∈ U(g⊗A) by

θ(P1, . . . , Pk) :=
∑
i

xi
1(P1) . . . x

i
k(Pk), (1)

where U(g⊗A) denotes the enveloping algebra of g⊗A.

Lemma 3. [g, θ(P1, . . . , Pk)] = 0.

Proof. Let π : T (g ⊗ A) � U(g ⊗ A) be the canonical surjective homomorphism,

where T is the tensor algebra. Consider the element θ̂(P1, . . . , Pk) ∈ T (g ⊗ A)
defined by

θ̂(P1, . . . , Pk) =
∑
i

xi
1(P1)⊗ · · · ⊗ xi

k(Pk) ∈ T (g⊗A).

For any y ∈ g,

[y, θ̂(P1, . . . , Pk)] =
∑
i

k∑
j=1

xi
1(P1)⊗ · · · ⊗ [y, xi

j ](Pj)⊗ · · · ⊗ xi
k(Pk)

= 0, since [g, θ] = 0,

(2)

and g(P1)⊗ · · · ⊗ g(Pk) ≃ g⊗ · · · ⊗ g as g-modules under the adjoint action.

Now, since π(θ̂(P1, . . . , Pk)) = θ(P1, . . . , Pk), by the identity (2), the lemma
follows. �
Definition 4 (Evaluation modules). From now on we take A = C[t] and denote
g ⊗ A by g[t]. For any p⃗ = (p1, . . . , pd) ∈ Cd and any irreducible g-modules
V (λ1), . . . , V (λd) with highest weights λ1, . . . , λd respectively, consider the tensor
product g-module

V⃗ (λ⃗) := V (λ1)⊗ · · · ⊗ V (λd), where λ⃗ = (λ1, . . . , λd).

Then, V⃗ (λ⃗) acquires the structure of a g[t]-module:

x(P ) · (v1 ⊗ · · · ⊗ vd)

:=

d∑
i=1

P (pi)v1 ⊗ · · · ⊗ x · vi ⊗ · · · ⊗ vd for x ∈ g, P ∈ C[t], vi ∈ V (λi).

To emphasize the g[t]-module structure, we denote V⃗ (λ⃗) by V⃗p⃗(λ⃗) and it is called
an evaluation module. It is well known (and easy to prove) that when p1, . . . , pd
are distinct, then V⃗p⃗(λ⃗) is an irreducible g[t]-module.
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Example 5. Take a basis {ei} and the dual basis {ei} of g under an invariant
non-degenerate symmetric form ⟨ , ⟩ on g. Recall the Casimir element

Ω :=
∑
i

ei ⊗ ei ∈
[
g⊗2

]g
.

Then, by Lemma 3, for any P,Q ∈ A, Ω(P,Q) ∈ [g⊗A]g.

For any p⃗ = (p1, p2) ∈ C2, consider the evaluation module V⃗p⃗(λ⃗), where λ⃗ =
(λ1, λ2) is a pair of dominant integral weights. Let

P (p1) = w1, P (p2) = w2

Q(p1) = z1, Q(p2) = z2.

Lemma 6. For any v in the g-isotypic component of V (λ1) ⊗ V (λ2) of highest
weight µ,

Ω(P,Q)(v) =
(
w1z1Cλ1

+ w2z2Cλ2
+

w1z2 + w2z1
2

(Cµ − Cλ1
− Cλ2

)
)
v, (3)

where Cµ denotes the scalar by which Ω acts on V (µ).

Proof. For v1 ∈ V (λ1) and v2 ∈ V (λ2),(∑
i

ei(P ) · ei(Q)
)
· (v1 ⊗ v2)

=w1z1Cλ1(v1 ⊗ v2) + w2z2Cλ2(v1 ⊗ v2)

+ w1z2
∑
i

ei · v1 ⊗ ei · v2 + w2z1
∑
i

ei · v1 ⊗ ei · v2.
(4)

Taking w1 = w2 = z1 = z2 = 1 in the above, we get

Ω(v1⊗v2) = Cλ1
(v1⊗v2)+Cλ2

(v1⊗v2)+
∑
i

ei ·v1⊗ei ·v2+
∑
i

ei ·v1⊗ei ·v2. (5)

Further, it is easy to see that∑
i

ei · v1 ⊗ ei · v2 =
∑
i

ei · v1 ⊗ ei · v2. (6)

Thus, combining the equations (4) - (6), we get(∑
i

ei(P ) · ei(Q)
)
· v =

(
w1z1Cλ1

+w2z2Cλ2
+

w1z2 + w2z1
2

(Cµ −Cλ1
−Cλ2

)
)
v,

for v in the g-isotypic component of V (λ1) ⊗ V (λ2) of highest weight µ. This
proves the lemma. �
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Example 7. Take any simple Lie algebra g and any

θ ∈
[∧k(g)

]g ⊂
[
⊗kg

]g
,

where we think of ∧k(g) as the subspace of ⊗kg consisting of alternating tensors.
Recall that

[∧•(g)]
g ≃ ∧(θ1, . . . , θℓ),

where ℓ := rank g and θj ∈
[∧2bj+1(g)

]g
are primitive generators. Here 1 = b1 <

b2 ≤ · · · ≤ bℓ are the exponents of g. This gives rise to θ(P1, . . . , Pk) ∈ [U(g⊗A]
g
,

for any P1, . . . Pk ∈ A.
Similarly, [

Sk(g)
]g ⊂

[
⊗kg

]g
,

where we think of Sk(g) as the subspace of ⊗kg consisting of symmetric tensors.
Recall that [S•(g)]

g
is a polynomial algebra generated by certain homogeneous

elements {δj}1≤j≤ℓ, where δj ∈
[
Sbj+1(g)

]g
.

Recall that, for any Lie algebra s, there is a canonical surjective algebra homo-
morphism from the tensor algebra to the enveloping algebra π : T (s) → U(s)
whose kernel is the two-sided ideal generated by {x⊗ y − y ⊗ x− [x, y];x, y ∈ s}.

In the following, let θ(n1, . . . , nk) denote θ(tn1 , . . . , tnk).

Proposition 8. For any finite-dimensional reductive Lie algebra g, the subalgebra
[U(g[t])]

g
is spanned (over C) by {θ(n1, . . . , nk)}, where θ runs over a homogeneous

basis of [T (g)]
g
and, for k = deg θ, n1 ≤ · · · ≤ nk runs over non-negative integers.

Further, the subalgebra [U(g[t])]
g
is generated (as an algebra) by {θ(n1, . . . , nk)},

where θ runs over a set of homogeneous algebra generators of [T (g)]
g
and, for

k = deg θ, n1, . . . , nk runs over non-negative integers.

Proof. As earlier, consider the surjective algebra homomorphism:

π : T (g[t]) � U(g[t]). (7)

Now, g[t] =
⊕∞

n=0 g(n), where g(n) := g⊗ tn. Hence,

T (g[t]) =
⊕
k≥0

⊕
n1,...,nk∈Z+

g(n1)⊗ · · · ⊗ g(nk)

≃
⊕
k≥0

⊕
n1,...,nk∈Z+

g⊗k[n1, . . . , nk] as g-modules,
(8)

where g⊗k[n1, . . . , nk] simply means g⊗k as a g-module, but as a subset of T (g[t]),
it is defined to be g(n1)⊗ · · · ⊗ g(nk).

By (7), we get
[T (g[t])]

g � [U(g[t])]
g
.

From (8), we get

[T (g[t])]
g ≃

⊕
k≥0

⊕
n1,...,nk∈Z+

[
g⊗k

]g
[n1, . . . , nk].

119



SHRAWAN KUMAR

From this we see that {θ̂(n1, . . . , nk)} spans (resp. generates) the algebra [T (g[t])]g,
where θ runs over a homogeneous basis (resp. homogeneous algebra generators)
of [T (g)]

g
and, for k = deg θ, n1, . . . , nk runs over non-negative integers. (Here

θ̂(n1, . . . , nk) denotes the element in [T (g[t])]
g
as in the proof of Lemma 3.) From

the surjectivity of the algebra homomorphism π, we get that {θ(n1, . . . , nk)} spans
in the first case (resp. generates in the second case), where n1, . . . nk runs over
non-negative integers. Now, we can restrict to 0 ≤ n1 ≤ · · · ≤ nk in the first case,
which is easily seen from the commutation relation in U(g[t]). �

Let λ⃗ = (λ1, . . . , λd) be any tuple of dominant integral weights and let p⃗ =
(p1, . . . , pd) be any tuple of distinct points in C. Then, the evaluation module

V⃗p⃗(λ⃗) is an irreducible g[t]-module (cf. Definition 4). Decompose V⃗p⃗(λ⃗) into its
isotypic components (as a g-module):

V⃗p⃗(λ⃗) =
⊕

V⃗p⃗(λ⃗)[µ],

where we denote by V⃗p⃗(λ⃗)[µ] the isotypic component corresponding to the highest
weight µ.

Clearly, the action of g commutes with the action of [U (g[t])]
g
on V⃗p⃗(λ⃗). Thus,

we get an action of g × [U(g[t])]
g
on V⃗p⃗(λ⃗) stabilizing each isotypic component

V⃗p⃗(λ⃗)[µ].
The following theorem is one of our principal results of the paper. In view of

Remark 12, the following theorem in the case of g = gl(n) was stated as an open
problem in [R, Rem. 4.9]. The following result is an instance of general ‘double
centralizer result’, see, e.g., [D, Thm. 9.1.12].

Theorem 9. Let g be a reductive Lie algebra. With the notation as above, each
isotypic component V⃗p⃗(λ⃗)[µ] is an irreducible module for g× [U(g[t])]

g
.

Proof. Choose a Borel subalgebra b of g and let W [µ]+ be the b-eigen subspace of

W [µ] := V⃗p⃗(λ⃗)[µ]. Then, [U(g[t])]
g
acts on W [µ]+. We have a ring homomorphism

coming from the representation W := V⃗p⃗(λ⃗):

φ : U(g[t]) → EndC(W ).

Since W is an irreducible g[t]-module, by Burnside’s theorem (cf. [L, Cor. 1,
Chap. XVII, §3]) φ is surjective. Taking the g-invariants, we get a surjective ho-
momorphism

φo : [U(g[t])]
g � Endg(W ) ≃

∏
µ

Endg(W [µ]), (9)

where Endg(W ) is the space of g-module endomorphisms of W . On projection to
Endg(W [µ]), we get a surjective morphism

φo
µ : [U(g[t])]

g � Endg(W [µ]) ≃ EndC(W [µ]+).

In particular, W [µ]+ is an irreducible module under the action of [U(g[t])]
g
. From

this the theorem follows. �
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Remark 10. Since [U(g)]
g ⊂ [U(g[t])]

g
, the irreducible [U(g[t])]

g
-modules W [µ]+

are mutually inequivalent as µ ranges over the highest weights of the components
of V⃗p⃗(λ⃗) by Harish-Chandra’s theorem (cf. [H, Thm. 23.3]).

2. Determination of [U(g[t])]
g
for g = gl(n)

By Proposition 8, it suffices to determine [T (g)]
g
.

Let V = Cn with the standard basis {e1, . . . , en} and the standard representa-
tion of gl(n). Let {e∗1, . . . , e∗n} be the dual basis of V ∗. Recall the isomorphism:

β : V ∗ ⊗ V ≃ EndV = gl(n),

where (β(f ⊗ v)) (w) = f(w)v, for v, w ∈ V, f ∈ V ∗. Moreover, the tensor product
action of gl(n) on V ∗ ⊗ V corresponds (under the identification β) to the adjoint
action on gl(n). Thus, [

g⊗k
]g ≃

[
(V ∗ ⊗ V )⊗k

]g
.

By the tensor version of the First Fundamental Theorem (FFT) (cf. [GW, Thm.
5.3.1]), we get that {θσ}σ∈Σk

spans
[
g⊗k

]g
, where

θσ :=
∑

1≤i1,...,ik≤n

(e∗iσ(1)
⊗ ei1)⊗ · · · ⊗ (e∗iσ(k)

⊗ eik)

=
∑

1≤i1,...,ik≤n

Ei1,iσ(1)
⊗ · · · ⊗ Eik,iσ(k)

under the isomorphism β,

where Ei,j is the n× n-matrix with (i, j)th entry 1 and all other entries zero.
Thus, as a corollary of Proposition 8, we get:

Corollary 11. Let g = gl(n). Then, [U(g[t])]
g
is spanned by∪

k≥0

∪
0≤n1≤···≤nk

{ ∑
1≤ij≤n

Ei1,iσ(1)
(n1) . . . Eik,iσ(k)

(nk)
}
σ∈Σk

.

Remark 12. From the explicit description of the standard generators of the center
of U(gl(n)), the cycle σk := (1, 2, . . . , k) plays a special role (also see [R, §4.2]). In
this case

θσk
=

∑
1≤ij≤n

Ei1,i2 ⊗ Ei2,i3 ⊗ · · · ⊗ Eik,i1 .

Considering the cycle decomposition of permutations in Σk, it is easy to see (by
the above corollary) that the elements

{θσk
(n1, . . . , nk) : 1 ≤ k and n1, . . . , nk ≥ 0}

generate the algebra [U(gl(n)[t])]
gl(n)

. This provides an affirmative answer to a
question of Rao [R, Probl. 4.5 (1)]. Observe that in the above set of generators,
we take n1, . . . , nk to vary over Z≥0.

If we take the subset {θσk
(n1, . . . , nk) : 1 ≤ k and 0 ≤ n1 ≤ · · · ≤ nk}, then it

does not generate the algebra [U (gl(n)[t])]
gl(n)

.
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3. Realizing Schur–Weyl duality intertwiners in terms of
current algebras

As in the last section, let V = Cn be the standard representation of g = gl(n). For
any positive integer k, the symmetric group Σk acts on the tensor product V ⊗k

by permuting the factors. Clearly, this action of Σk commutes with the tensor
product action of gl(n) on V ⊗k. Thus, we have an algebra homomorphism:

Φ : C[Σk] → Endg(V
⊗k),

where Endg(V
⊗k) denotes the space of g-module endomorphisms of V ⊗k.

The content of the Schur–Weyl duality is the following result (cf. [GW, §4.2.4]).

Theorem 13. The above map Φ is an (algebra) isomorphism.

Choose p⃗ = (p1, . . . , pk) ∈ Ck such that pi’s are distinct. By the proof of
Theorem 9 (see (9)), there is a surjective algebra homomorphism (for g = gl(n))

φo : [U(g[t])]
g � Endg(V

⊗k) ≃ C[Σk],

where the last identification is via Φ. Thus, we get a surjective algebra homomor-
phism

Ξ : [U(g[t])]
g � C[Σk].

The following result is easy to prove using the definition of the map Ξ.

Proposition 14. For any transposition τ = (r, s) ∈ Σk, r < s, define the polyno-
mials:

Pτ = (t− pr + 1) ·
∏
d ̸=r

(t− pd)

(pr − pd)
, Qτ = (t− ps + 1) ·

∏
d̸=s

(t− pd)

(ps − pd)
.

Then,

Ξ
( ∑

1≤i,j≤n

Ei,j(Pτ ) · Ej,i(Qτ )
)
= τ.

4. Determination of [U(g[t])]
g
for the symplectic Lie algebra g = sp(2n)

Again we need to determine
[
g⊗k

]g
for g = sp(2n).

Let V = C2n be equipped with the nondegenerate symplectic form ⟨ , ⟩ so that
its matrix

(
⟨ei, ej⟩

)
1≤i,j≤2n

in the standard basis {e1, . . . , e2n} is given by

Ĵ =

(
0 J
−J 0

)
,

where J is the anti-diagonal matrix (1, . . . , 1) of size n. Let

Sp(2n) := {g ∈ SL(2n) : g leaves the form ⟨ , ⟩ invariant}

be the associated symplectic group and sp(2n) its Lie algebra. Thus, Sp(2n)
has defining representation in V . The form ⟨ , ⟩ allows us to identify V ≃ V ∗

(v 7→ fv(w) = ⟨v, w⟩ for v, w ∈ V ). Then, there is an identification

S2(V ) ≃ sp(2n),
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such that the standard action of sp(2n) on the left corresponds to the adjoint
action on the right. Hence, for g = sp(2n),[

g⊗k
]g ≃

[
⊗k(S2(V ))

]sp(2n)
.

By the tensor version of FFT for Sp(2n) (cf. [GW, Thm. 5.3.3]), we get that[
⊗k(V ⊗2)

]sp(2n)
is spanned by{

Θσ :=
∑

1≤i1,i3,...,i2k−1≤2n

(eiσ(1)
⊗ eiσ(2)

)⊗ · · · ⊗ (eiσ(2k−1)
⊗ eiσ(2k)

)
}
σ∈Σ2k

,

where we require ei2j = s(i2j−1)e2n+1−i2j−1
for 1 ≤ j ≤ k and s : {1, 2, . . . , 2n} →

{±1} is the function:

s(i) =

{
1 if 1 ≤ i ≤ n,

−1 if i > n.

The standard symmetrization V ⊗2 → S2(V ) gives rise to a surjective map

γ :
[
⊗k(V ⊗2)

]sp(2n) � [
⊗k(S2(V ))

]sp(2n) ≃ [
g⊗k

]g
.

Under this identification, we get the element

γ(Θσ) =
1
2

∑
1≤i1,i3,...,i2k−1≤2n

(
s(iσ(1))Eiσ(2),2n+1−iσ(1)

+ s(iσ(2))Eiσ(1),2n+1−iσ(2)

)
⊗

· · · ⊗
(
s(iσ(2k−1))Eiσ(2k),2n+1−iσ(2k−1)

+ s(iσ(2k))Eiσ(2k−1),2n+1−iσ(2k)

)
,

where the square matrix Ei,j is as defined in Section 2.
Thus, as a corollary of Proposition 8, we get:

Corollary 15. Let g = sp(2n). Then, [U(g[t])]
g
is spanned by∪

k≥0

∪
0≤n1≤···≤nk

{ ∑
1≤i1,i3,...,i2k−1≤2n

(
s(iσ(1))Eiσ(2),2n+1−iσ(1)

+ s(iσ(2))Eiσ(1),2n+1−iσ(2)

)
(n1)⊗

· · · ⊗
(
s(iσ(2k−1))Eiσ(2k),2n+1−iσ(2k−1)

+ s(iσ(2k))Eiσ(2k−1),2n+1−iσ(2k)

)
(nk)

}
σ∈Σ2k

,

where we require ei2j = s(i2j−1)e2n+1−i2j−1
for 1 ≤ j ≤ k, which gives the corres-

ponding constraint on Ep,q = e∗q ⊗ ep.

5. Determination of [U(so(n)[t])]
O(n)

Let V = Cn be equipped with the nondegenerate symmetric form ⟨ , ⟩ so that the
standard basis {e1, . . . , en} is orthonormal. Let

O(n) := {g ∈ GL(n) : g leaves the form ⟨ , ⟩ invariant}
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be the associated orthogonal group and so(n) its Lie algebra. Thus, O(n) has
defining representation in V . The form ⟨ , ⟩ allows us to identify V ≃ V ∗ (v 7→
fv(w) = ⟨v, w⟩ for v, w ∈ V ). Then, there is an identification

∧2(V ) ≃ so(n),

such that the standard action of O(n) on the left corresponds to the adjoint action
on the right. Hence, for g = so(n),

[
so(n)⊗k

]O(n) ≃
[⊗k

(∧2(V ))
]O(n)

.

By the tensor version of FFT for O(n) (cf. [GW, Thm. 5.3.3]), we get that the

space
[
⊗k(V ⊗2)

]O(n)
is spanned by{

Ψσ :=
∑

1≤i1,i3,...,i2k−1≤n

(eiσ(1)
⊗ eiσ(2)

)⊗ · · · ⊗ (eiσ(2k−1)
⊗ eiσ(2k)

)
}
σ∈Σ2k

,

where we require i2j = i2j−1 for 1 ≤ j ≤ k.
The standard anti-symmetrization V ⊗2 → ∧2(V ) gives rise to a surjective map

δ :
[
⊗k(V ⊗2)

]O(n) �
[
⊗k(∧2(V ))

]O(n) ≃
[
so(n)⊗k

]O(n)
.

Under this identification, we get the element

δ(Ψσ) =
1
2

∑
1≤i1,i3,...,i2k−1≤n

(
Eiσ(1),iσ(2)

− Eiσ(2),iσ(1)

)
⊗

· · · ⊗
(
Eiσ(2k−1),iσ(2k)

− Eiσ(2k),iσ(2k−1)

)
,

where the square matrix Ei,j is as defined in Section 2.
Thus, as a corollary of Proposition 8, we get:

Corollary 16. Let g = so(n). Then, [U(g[t])]
O(n)

is spanned by∪
k≥0

∪
0≤n1≤···≤nk

{ ∑
1≤i1,i3,...,i2k−1≤n

(
Eiσ(1),iσ(2)

− Eiσ(2),iσ(1)

)
(n1)⊗

· · · ⊗
(
Eiσ(2k−1),iσ(2k)

− Eiσ(2k),iσ(2k−1)

)
(nk)

}
σ∈Σ2k

,

where we require i2j = i2j−1 for 1 ≤ j ≤ k.

Remark 17. For n odd, observe that[
so(n)⊗k

]O(n) ≃
[
so(n)⊗k

]so(n)
.
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