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Abstract

This paper is concerned with the inverse scattering problem which aims
to determine the spatially distributed dielectric constant coefficient of the 2D
Helmholtz equation from multifrequency backscatter data associated with a sin-
gle direction of the incident plane wave. We propose a globally convergent
convexification numerical algorithm to solve this nonlinear and ill-posed inverse
problem. The key advantage of our method over conventional optimization ap-
proaches is that it does not require a good first guess about the solution. First,
we eliminate the coefficient from the Helmholtz equation using a change of vari-
ables. Next, using a truncated expansion with respect to a special Fourier basis,
we approximately reformulate the inverse problem as a system of quasilinear el-
liptic PDEs, which can be numerically solved by a weighted quasi-reversibility
approach. The cost functional for the weighted quasi-reversibility method is con-
structed as a Tikhonov-like functional that involves a Carleman Weight Function.
Our numerical study shows that, using a version of the gradient descent method,
one can find the minimizer of this Tikhonov-like functional without any advanced
a priori knowledge about it.
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1 Introduction

Consider the scattering problem for a penetrable inhomogeneous medium in R?. Be-
low # = (x1,22)7 € R%. We assume that the scattering object, which occupies a
bounded domain in R?, is characterized by the spatially distributed dielectric constant
e-(z) = 1+ a(x), where the function a(x) has a compact support. In this paper we are
particularly interested in the case of a(x) > 0 that typically appears in applications of
non-destructive testing and explosive detection, see for instance [8,19,20] for a simi-
lar assumption. Suppose that the object is illuminated by the downward propagating
incident plane wave wus, (z, k) = exp(ik(diz; + daxs)), where d3 + d3 = 1,dy < 0, the
propagation direction (di,dy)" is fixed, and k is the wavenumber. Then there arises
the scattered wave, and the total wave u(x, k) which is the sum of the incident wave
and the scattered wave is governed by the Helmholtz equation as

Au+k*(1+a(z)u=0, z¢€R? (1)
. 8(“ - Uin) . .
lmlgnoo Vx| (Tﬂ —ik(u — um)> = 0. (2)

The scattered wave u — w;, satisfies the Sommerfeld radiation condition (2), which
guarantees that it behaves like a spherically outgoing wave far away from the scattering
object. It is well known that the scattering problem (1)—(2) has a unique solution u,
see [11]. Now let R > 0 and consider

Q= (—R,R)?* TI'={(x1,22) €Q:29=R}.

Assume that the scatterer as well as the support of the coefficient a(z) are contained in
), and that these objects do not intersect with 9. Let k and k be positive constants
such that k < k. We consider the following inverse problem.

Inverse Problem. Assume that we are given the multi-frequency backscatter
Cauchy data

go(, ) = u(e, k), forz € T,k € [k, 7], 3)
@ k) = 2@ k), forz e Dk e kR @)
8x2

where the total wave u(z, k) is generated by incident plane waves with a fixed propa-
gation direction. Determine the function a(z) in (1) for x € 0, see also Figure 1 for a
schematic diagram of the measurement arrangement in the inverse problem.
Uniqueness theorem for this inverse problem can be currently proven only in the
case when the right hand side of equation (1) does not equal to zero in Q. This can
be done by the so-called Bukhgeim-Klibanov method, which was originated in [8] and



is based on applications of Carleman estimates to coefficient inverse problems, see,
e.g. [5,21,31] for this method. In addition, uniqueness of the approximate problem can
be proven when the truncated Fourier series for (1) is used for that approximation, see,
e.g. Theorem 3.2 in [17].
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Figure 1: Schematic of the inverse scattering from a penetrable bounded object char-
acterized by the function a(x). The incident plane wave propagates downward toward
the scattering object. The backscatter data are measured on the top boundary I' of
the computational domain €.

This inverse problem belongs to a wider class of coefficient inverse scattering prob-
lems which in general aim to recover information about the coefficient a(z) (e.g. its
support and/or its values) from the knowledge of the scattered wave generated by a
number of incident waves. Inverse scattering problems occur in many applications,
including non-destructive testing, explosive detection, medical imaging, radar imag-
ing and geophysical exploration. There is a vast literature about theoretical results
and numerical solution to inverse scattering problems, see for instance [11] and ref-
erences therein. Due to the interest of this paper, we discuss only some numerical
methods. The conventional approach is based on the optimization based methods, see,
e.g. [2,10,13-15]. However, it is well known that these methods may suffer from multi-
ple local minima and ravines and their convergence analysis is also unknown in many
situations. An important attempt in overcoming the drawbacks of the optimization
based methods is the qualitative approach which aims to compute the geometry of the
scattering object or the support of the coefficient a(x). We refer to [9,11,18,36-39] and
references therein for the development of qualitative methods in solving inverse scatter-
ing problems. Although one may be able to avoid local minima or the use of advanced
a priort information of the solution, still only geometrical information of the scatterer
can be reconstructed with qualitative methods. Furthermore, these methods typically
require muti-static data which are sometimes not available in practical applications.



The numerical method proposed in this paper is an extended study from a recent
new approach called globally convergent numerical methods (GCNM) for solving co-
efficient inverse problems. We say that a numerical method for a nonlinear ill-posed
problem converges globally if there is a rigorous guarantee that it delivers points in a suf-
ficiently small neighborhood of the exact solution of this problem without any advanced
knowledge of this neighborhood. The GCNM typically aims to reconstruct a coefficient
in an inverse scattering problem using scattering data either for a single direction of
the incident plane wave, or, most recently, for many locations of the point source but
at a fixed single frequency [17]. An interesting feature of GCNM is that in all cases the
data are non over-determined. The latter means that the number m of free variables
in the data equals the number n of free variables in the unknown coefficient, m = n.
The main advantage of the GCNM is that any version of it avoids the local minimum
problem suffered by optimization based methods. Still, any version of GCNM holds
the above indicated global convergence property. We refer to [5,30,32,40,41] and refer-
ences therein for theoretical results as well as numerical and experimental data study
of the first type of GCNM. This type of GCNM was also applied to the study of scalar
phaseless inverse scattering problems [26,28]. We refer to [12, 16] for some recently
interesting results on coefficient reconstructions in electromagnetic inverse scattering
problems with phaseless data.

The method of this paper is inspired by the second type of the GCNM, which is
called convexification. The development of the convexification has started in 1995 and
1997 by Klibanov [19,20] and continued since then in [6,24,31]. However, those were
mostly analytical works since some obstacles existed at that time on the path to the
numerical implementation, although see some numerical results for the one-dimensional
case in [31]. Fortunately, in 2017 the work [1] has eliminated those obstacles. This
generated a number of more recent publications on the convexification [17,23,25-27,29],
which contain both a rigorous convergence analysis and numerical results. In particular,
publications [26,27] are about the verification of the convexification on experimental
data.

The central idea of the convexification is to construct of a globally convex weighted
Tikhonov-like functional with the Carleman Weight Function in it. The idea of the use
of the Carleman Weight Function is an unexpected consequence of the original idea
of the Bukhgeim-Klibanov method [8], which was originally aimed only for proofs of
uniqueness theorems for coefficient inverse problems. The final step of the convergence
analysis of the convexification consists in the proof of the global convergence of the
gradient projection method to the exact solution, as long as the level of noise in the
data tends to zero. We also refer to another version of the convexification, which
has started in the work [3] and has been continued in [4,7,34]. Carleman Weight
Functions are also a crucial element of these works. The main difference between these
publications and our method is that it is assumed in [3,4,7,34] that the initial condition



in a hyperbolic/parabolic PDE is not vanishing in Q, which unlike our case of the zero
right hand side of equation (1).

As to this present paper, our first step is to eliminate the coefficient from the
Helmholtz equation using a change of variables. Next, using a truncated Fourier ex-
pansion for a function generated by the total wave field, we approximately reformulate
the inverse problem as the Cauchy problem for a system of quasilinear elliptic PDEs.
The Cauchy boundary data are as follows: on a part of the boundary both Dirich-
let and Neumann boundary data are given and no data are given on the rest of the
boundary. We then propose a weighted quasi-reversibility method to solve the prob-
lem. Inspired by the concept of the convexification, the cost functional in that weighted
quasi-reversibility method contains a Carleman Weight Function. This function plays
the decisive role in the numerical performance of the method. A method of gradient
descent type is explored to find the global minimizer of the cost functional without
using any advanced a prior: information about it.

Comparing with the above cited recent works on the convexification, the new fea-
tures of this work are that firstly our algorithm exploits the new Fourier basis in [23]
to solve a multi-dimensional inverse problem for the Helmholtz equation with multi-
frequency data and a single direction of the incident plane wave. The latter is mostly
related to [27] in which, however, only the one-dimensional version of the inverse prob-
lem has been studied. Using the new Fourier basis from [23], the 3D inverse problem for
the Helmholtz equation with data generated by a moving source (at a fixed frequency)
has been also studied in [17]. Secondly, a modification during the iteration of the
gradient descent method is applied to help the cost functional converge faster. More
precisely, we solve the direct problem to update some functions during the iterations of
the gradient descent method. Thirdly, unlike the previous works [17,23,25-27,29], the
reconstruction algorithm proposed in this paper works without using any data comple-
tion process, and the numerical study covers challenging cases of scattering objects of
different shapes which are characterized by different values of the dielectric constant.
We also want to mention that the implementation of the method uses a full H? term
instead of L? or H! terms as in the previous works cited above and does not need any
cut-off and averaging procedures during the iteration in the algorithm.

The paper is structured as follows. The second section is dedicated to the formu-
lation of the inverse problem as an approximate quasilinear elliptic PDE system. The
numerical reconstruction method for solving the inverse problem is proposed in Sec-
tion 3. The implementation and numerical examples of the reconstruction method are
presented in Section 4. Finally, Section 5 contains a summary discussion of this work.



2 An approximate elliptic PDE formulation

In this section we reduce our inverse problem to the Cauchy problem for a system of
quasilinear elliptic PDEs that we will be studying using a quasi-reversibility approach
in the next section. The main ideas for deriving the formulation are using truncated
Fourier expansion in L?(k, k) and eliminating the coefficient a(z) from the scattering
problem. From now on, for the convenience of the calculation, we consider incident
plane wave uj, = exp(—ikay) for the inverse scattering problem. Setting ko = (k+k)/2
we first need the following important Fourier basis of L?(k, k) that was introduced
in [23]
Yn(k) = (K — ko)t % ke (kk), n=12,...

Applying the Gram—Schmidt process to (1) we obtain an orthonormal basis {®,, }
which has the following properties, also, see [23]:

i) ¢, € C®[k, k] for all n =1,2, ...
ii) The matrix D = [d,,,], where m,n =1,..., N and

9]
n=1"

k
k

is invertible with d,,,, = 1 for m = n and d,,,, = 0 for m > n.
Now setting
u(z, k)

p(I, k) = m:

(5)
and substituting in (1) we obtain

Ap(z, k) + k*a(z)p(z, k) — 2ik0,,p(x, k) = 0. (6)
Now suppose that p(z, k) is nonzero for all z € Q, k € [k, k|]. We define v(z, k) as

o k) = 10%09}5+’“>>, (7)

where log is the principal logarithm. We also assume that v(z, k) is continuous and
differentiable for all € Q,k € [k, k]. We refer to [17,25,26] for the definition of the
complex logarithm for a similar change of variables using a high frequency asymptotic
behavior for the total field in R3. Next, this definition was extended in [17] to non high
values of k as long as v(x, k) # 0 for those values. To what we know, that asymptotic
behavior is not established yet for the two-dimensional case. At the same time, in our
numerical studies, we do not see any discontinuity problem with the principal log.
Using (7) we substitute p = exp(k*v) in (6) and rewrite (6) in terms of v(z, k) as
follows
Av(z, k) + E*Vou(z, k) - Vo(z, k) — 2ik0,,v(x, k) + a(z) = 0. (8)
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We now eliminate a(x) by differentiating (8) with respect to k
A(Opv) 4+ 2kVv - V(v + kOpv) — 2i (0p,v + kOpyOrv) = 0. 9)

Let N € N be sufficiently large. We approximate the function v(z, k) in (7) and its
partial derivative Opv(z, k) using the truncated Fourier series as

v(@ k) = v (2)®u(k),  Opv(x,k) =D vn(x)®,(k), (10)

where the coefficients v, (z) are given by

vn(x):/k v(z, k)P, (k)dk. (11)

Using two truncated series (10), we approximate (9) by

> 0 (k) Avy(x) + 2k Y 0> 0 (k) (Du(k) + k) (k) Vo (z) - Voi(z)

n=1 [=1
N

=20 Y (P (k) + k), (k) Dy, vn(z) = 0.

n=1

For each m = 1,..., N, multiplying both sides of the above equation by ®,,(k) and

integrating with respect to k over [k, k|, we obtain

> (/k @m(k)éé(k‘)dk> Av,(z)

n=1

+Y > <2k /k k D, (k) B (k) [®(K) + kP (k)] dk;) Vo, (z) - Vo ()

n=1 [=1

= (2@' / ‘ ., (k) [, (k) + kD, (k)] dk) Dyyun() = 0. (12)

Considering two N x N matrices defined as



and an N x N block matrix B = (B,,,), each block B,,, = (bﬁf)n)l is an N x 1 matrix
defined as

k
bl =2k / O,y (k) Dy, () [@1(k) + kj(k)] dk,
k
we can rewrite (12) as a system of PDEs for the vector valued function V(x) =
[v1(2) va(z) ... vn(2)]T
DAV (x) + B0,V (z) 0.,V (z) + B0,V (x) 0,V (x) + S0,V (z) = 0. (13)
Here the operator e is defined as follows: If P = (P,,) is an N x 1 block matrix, each

block P, is an N-dimensional column vector and V' is an N-dimensional column vector
then P eV is an N-dimensional column vector given by

P -V

PV
PeV = )
Py -V

Defining
Q(V)= DAV + B0,V 0,,V + Bd,,V e,V + Sd,,V,

we are able to approximately reformulate the inverse problem as the Cauchy problem
for the following system of quasilinear elliptic PDEs:

Q(V)=0 inQ, (14)
V= GO on F, (15)
0,V =Gy onl, (16)

where Gy and G can be computed from the given boundary data gy and g; in (3)—(4
using (5), (7) and (11). If we can find V' by solving problem (14)—(16), the coefficient
of interest a(x) can be approximately recovered from (8).

Remark 1 We emphasize that the reconstruction algorithm we study in the next sec-
tion for solving problem (14)—(16) only needs the backscatter data on I'. In contrast,
the convezification method of above cited papers [17, 23, 25-27, 29], one has to artifi-
cially complete the backscatter data on the other boundaries of ) for a better stability of
computations. On the other hand, the forthcoming analytical results that are mentioned
in Introduction for this paper are valid with the Carleman Weight Function (20) only
if the Dirichlet data for the system (14) are known on the entire boundary OS2 rather
than just on its part I', i.e. they are valid for those completed data. Thus, our claim
in the first sentence of this Remark is based only on our numerical observation and is
not supported by the theory. Nevertheless, this numerical observation emphasizes the
stability property of our method.



Remark 2 It is well known that the Cauchy problem for an elliptic equation is unsta-
ble. Thus, we actually construct a reqularization method of solving this problem for our
case. A similar numerical method was constructed in [22] for ill-posed Cauchy prob-
lems for a wide class of single quasilinear PDEs, including the elliptic one. Howewver,
the Carleman Weight Function used in [22] for the elliptic case is inconvenient for the
numerical implementation since it depends on two large parameters, instead of just one
in our case of (20).

3 A numerical reconstruction algorithm

We solve problem (14)—(16) using the weighted quasi-reversibility method. We first
make a change of variables to have homogeneous boundary conditions on I'. Let F
be a vector valued function which satisfies the boundary conditions (15)-(16). We
call F' the data carrier and its construction is detailed in the numerical study section.
Assuming V' is the solution of problem (14)—(16), we define

W=V —-F.
Then W satisfies the homogeneous boundary conditions on I', that is,
W=0,W=0 onl.
Define the function space X as
X ={weHQ", W=09,,W=0onT} (17)

with its associated norm

1
2

Wy = (ZHU}””%{Q(Q)) . where W(z) = [wi(z) we(z) ... wy(x)]".

Let M > 0 be an arbitrary number. Define the ball B(M) C X as
BM)={WeX:|W|,<M}CAX. (18)

Next, we define the weighted Tikhonov-like functional 7 : B(M) — R as
TV = [1007 + P)PGde + Wi +ar [ WPde+as [ |0 de, (19)
0 r r

where
p(z) = e Moo (20)



is a Carleman Weight function and A > 1 and s > R are constants. From our numerical
experience, the regularization terms involving a; and as help us obtain better stability
for the computation although they are not needed in the theory of convexification
methods in previous studies [17,23,25-27,29]. Below we focus on the minimization of
the functional J (W) on the ball B(M) C & defined in (18). As stated in Introduction,
the use of the Carleman Weight Function is inspired by convexification methods whose
different versions are described in the above cited publications. For the Carleman
Weight Function ¢ in (20), a Carleman estimate for the Laplacian has been proved
in [29], where the Dirichlet boundary condition is given on the entire boundary of €2,
which requires an artificial complement of the backscatter data given only on the part
[ of 0€). Actually, assigning the Dirichlet data on the entire boundary 0€2, one provides
an additional stability property to the method. Recall that (see Remark 1) it is our
numerical observation that our algorithm only requires the backscatter data on the top
boundary I' of (2.

An interesting numerical observation is that our algorithm converges and provides
better reconstruction results with the Carleman Weight Function, as compared with
the case when this function is absent in (19), i.e. when A = 0in (20): compare Figure 2
and Figure 3 for numerical results with and without the Carleman Weight Function.
The two parameters A and s along with the regularization parameters p, oy, ag will be
chosen numerically in the implementation of the algorithm. We find the solution W
as the global minimizer of J (W) using a method of gradient descent type. We point
out that even though we can prove the global convergence on B(M) of the gradient
projection method rather than of the gradient descent method, still our numerical
observation is that the latter method has good convergence properties. The same
observation took place in all previous publications about the convexification where
numerical results were presented [17,23,25-27,29]. This is a quite useful observation
since the numerical implementation of the gradient descent method is much simpler
than the one of the gradient projection method.

In the following we describe our numerical algorithm for finding the coefficient a(x)
for the inverse problem in (3)—(4), in which finding the minimizer W of J (W) is one
of the main components of the algorithm.

Remark 3 In this algorithm, we recall that the capital letter notations, for example
W (z) = [w(x) we(z) ... wy(x)]", are vector valued functions whose components are
Fourier coefficients of the corresponding scalar function

w(z, k) =Y w,(x) @, (k)

with the normal letter notations. We also prescribe a tolerance which forces our itera-
tion to stop after the cost functional no longer decreases much. The tolerance will be

10



chosen numerically in the implementation of the algorithm.

The numerical reconstruction algorithm

Step 1. Construct the data carrier F. Set the initial guess V := F then proceed
into the main iteration (Step 2).

Step 2a. Set W, := V, — F, compute the cost functional J(W,) and its gradient
VI (W,).

e If n>1and |J(W,) — T(W,_1)| < tolerance, stop the iteration and move to
Step 3.

e Otherwise proceed to Step 2b.

Step 2b.

e Set Wn = W, — eVJI(W,), where the gradient descent step size ¢ is chosen
numerically.

e Set V,, := W, + F and compute the corresponding scalar function o,,.
e Compute a,(z) from 9, using the real part of (8) with k = k.

e Compute u(z, k) by solving the direct problem (1)—(2) with a(z) := a,(x), and
set upy1(z, k) == u(x, k).

e Compute v, 1(z, k) from u,1(z, k) using (5) and (7), and then compute V,,4;.

e Set n:=n+ 1 and return to Step 2a.

Step 3. Set V := 1V, compute v(z, k) from V and compute a(x) using the real part
of (8) with k = k.

Remark 4 We observe from the numerical performance of the algorithm that solving
the direct problem to update V,, helps the cost functional decrease faster with respect to
iterations. This is important to the algorithm since the cost functional decreases very
slowly after the first iteration without this update.

11



4 Numerical study

In this section, we describe some important details of the numerical implementation
of the above algorithm and present some numerical reconstruction results. The first
step of the algorithm is to construct the data carrier F. Recall that our computational
domain Q2 = (=R, R)%. For 0 < £ < R, define the (),

_ exp(—%), t>—¢
Xo(t) {O, * f< ¢

and then set 0
X(t) = XO :
Xo(t) + Xo(R —t — 2§)
Then x(t) = 0 for —R <t < =&, x(t) = 1 for R— ¢ <t < R, and x is a smooth
transition from 0 to 1 on [—&, R — £]. Set

f(x, k) = [go(w, k) + (z2 — R)g1(x, k)] x(22),

where gy and §; are the Cauchy data for v(z, k), which means v = go on I" and 0,,v = §;
on I'. Obviously, these data can be computed from the data gy and g; in (3)—(4) using
the relation between u and v in (5) and (7). Then the function f satisfies the boundary
conditions f = go on I' and 0,,f = g1 on I'. Thus, the corresponding vector valued
function F(z) = [fi(z) fo(z) ... fn(2)]T containing the Fourier coefficients of f with
respect to that truncated Fourier basis satisfies the boundary conditions (15)—(16).
Actually by the definition of x the function f(z,k) is zero in (—R, —¢|, which means
that we mainly seek for the scattering object in the upper part (—R, R) x [—, R)
of the square €2 since the Cauchy data are given on the top boundary I'. Indeed,
since the Cauchy problem (14)—(16) is unstable, then it is unlikely that even after the
regularization, which we do here, one could image scattering objects well, if they are
located far from the measurement side I'. For the parameter £ we choose £ = R/10 in
the numerical implementation.

For the implementation of the algorithm, we first discretize the computational do-
main € into (N, + 1) x (N, + 1) uniform grid points z;; = (z;,y;),1 <1i,j < N, + 1,
where the mesh size is h,. The wave number interval [k, k] is divided into N uni-
form subintervals, where k1, ko, . .., ky, are the midpoints and hy, is the length of each

k
subinterval. Define the lined up index as follows

m=m(i,jr)=i+(G—-1)No4+1)+(r—1)N,+1)% 1<i,j<N+1, 1<r<N.

In this section, using the lined up index m, we write vector valued functions at grid
points z;; as a column vector without changing notations. For instance, for U(x) =
[u1(z) ug(z) ... un(x)]’, we have

U=[up], 1<m<(N,+1)°N,

12



where
U = Un(ijr) = Ur(Tij)-
Let W = W + F and set W = [wy] and W = [tby]. The weighted Tikhonov-like
functional J in (19) is discretized using finite differences as

2 [71

r=1

N Ny Ng

Wy=h>. > 2.

m=1 j=2 =2

Win(i415r) + Dm(i=1j,r) T Bimj1r) T Denj—1.r) — Hm(ijir))

N
O (- A A .
+ 12 (@i +10) = Wmiiir)) (B j1,9) = B
s=1 z
N bs
+ D75 (G140 = Gngiin) (D149 — i)
s=1 z

2
S

» (Bu(i+1,5r) — wm(z‘,j,r))] e(Tij)

N  Ng+1 Ng+1

+ph222 Z|wm(1jm
m=1 1 =1
v o

DR »

m=1 j=2 i=2

+

W (i+1,5,m) — Wm(i,j,m)

ha

2
Wa(i,j+1,m) — Wm(i,j,m)

.

2

2 2 2
Win(ij+1,m) — 2Wm(ijm) T Wm(ij—1,m) Win(i41,j,m) — 2Wm(i,j,m) + Wm(i—1,j,m)

+

2 2
hCE hx
2
+ 2 ‘wm(”l,ﬂl,m) — Wm(i=1,+1,m) — Wm(it1,j-1,m) T Wm(i=1,j-1,m)
2
h’x
N Np+1 N Moo, w
m(Nz+1737m)_ m(Nz,Jm)
+ aqhy, E E ‘mezH,;m‘ + anhy, E E
m=1 j=1 m=1 j=2

We now describe how to compute VJ (W) for complex valued vector function W.

Recall that if z is a complex variable, z = (21, 22, ..., z)) is a complex vector and h(z)
is a complex valued function then we have (see [33])
0 . 0
i $|z| = &(zz) = Z,
i Db, _[oh on o
' 0z N 821 022 aZM ’



Thus, by the chain rule we have

0, 0 . +— Oh
1 (2) = h(z) 5 (2).

Treating J (W) as a function of (N, + 1)2N complex variables and applying all of

the above to each of its summands, we are able to compute 2Z (W) and thus obtain

VI (W) using (ii7). .

We need a numerical solver for the direct problem (1)—(2) in Step 2b of the recon-
struction algorithm and to generate synthetic scattering data for the numerical study. It
is well known that the direct problem (1)—(2) is equivalent to the Lippmann-Schwinger
integral equation

) = (e )+ 12 [ S bl = yDaly)u(y. F, (21)

where Hél) is the Hankel function of the first kind of order 0, see [11]. We exploit the
numerical method studied in [42] to solve this integral equation to generate the Cauchy
data go(z, k) and g;(z, k) for the inverse problem. Note that the numerical method
studied in [42] assumes smooth coefficients. Its extension to the case of discontinuous
coefficients is studied in [35] which can be adapted to our discontinuous coefficient
examples in this section. We also add an artificial random noise to the data

gj(‘rak) :g](ka)+5||gj||L2~/\/’](ka)7 J=0,1,

where § is the noise level and N are functions taking random complex values and
satisfy ||[Njllzz = 1. We consider 5% noise in the Cauchy backscatter data which
means ¢ = 0.05 in our numerical examples.

In all numerical examples presented in this section the computational domain is
chosen as Q = (—0.8,0.8)%, where N, = 28. This means € is uniformly discretized
into 292 points. The interval of wave numbers is k € [k, k] = [0.5,2], where N, = 50.
We have found that N = 4 in (10) is sufficient for the Fourier series truncation, also,
see [17] for a similar choice. We generate the multifrequency data for the incident plane
wave

um () = e”* 2 k€ 0.5,2].

In the Carleman Weight Function ¢(x) (20), we choose A = 5, s = 1. This means that

o(z) = e~ 5@2—1),

This choice was made by trial and error, so as choices of all other parameters used in
this section. We refer to works on the convexification [17,23,25-27,29] for choices of
smaller A € [1,3]. As to our choice of )\, it seems to give us the optimal results for our
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numerical examples of this section. The step size € of the gradient descent method and
the regularization parameters p, ay, ay were chosen as:

e=a; =102 p=ay; =105

The tolerance number of the iterations is set up to be 1073. It happens in all our
numerical examples that the algorithm stops within 10 iterations. One can observe
in the numerical examples that the value of the minimized functional J (W) does not
change much after 8 or 9 iterations. Since we are interested in a(x) > 0, in the final
iteration we assign a(z) to be zero in the area in which it takes negative values. By
our numerical experience, this area is typically below the reconstructed scatterer.

It is important to mention that the initial guess Wy = 0 for W in all numerical
examples below. This goes along well with our theory (to be published) which guar-
antees that our algorithm converges to the correct solution starting from any point of
the ball B(M) defined in (18), see item 3 in the end of Introduction. This certainly
a significant advantage of our method, compared with locally convergent optimization
approaches, which typically need a strong a prior: knowledge of the scatterer. Such a
knowledge, however, is rarely available in applications.

4.1 Numerical example 1

In this example we consider a single scattering disk characterized by the coefficient a(x)
which equals 3 inside the disk and zero elsewhere. We can see from the reconstruction
result in Figure 2 that the location and and the maximal value of a(z) are well recon-
structed. It seems to us that the shape of the scattering object is not well-reconstructed
because the backscatter data are generated by incident plane waves with a fixed direc-
tion, also, see [25,26,40,41] for similar results. Convergence of the algorithm can be
observed from Figure 2(b). From our numerical experience the cost functional J does
not decrease much after 8 or 9 iterations, see also Figure 2(b).

Now with the numerical result in Figure 3 we want to indicate the importance of
the Carleman Weight Function for our numerical algorithm. The algorithm does not
converge when the cost functional J does not involve the Carleman weight function.
Firstly, the error between the cost functionals at two consecutive iterations is never
smaller than the tolerance number 1072 like what we have when the Carleman Weight
Function is present. Therefore, the iterations do not stop with the chosen tolerance.
Secondly, the cost functional J starts to increase after a certain number of iterations.
Figure 3(a) presents the reconstruction result at the sixth iteration where the cost
functional obtains its smallest value among 20 iterations. However, this result is not as
good as that of Figure 2(c) where the Carleman Weight Function is involved. Indeed,
the artifact in Figure 3(a) is slightly stronger and the reconstructed maximal value is
3.2157 while the maximal value of the reconstruction in Figure 2(c) is 3.0014. Also for
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the next examples, the reconstruction results are always better with the presence of
the Carleman Weight Function in the cost functional.
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Figure 2: Reconstruction of one scattering disk characterized by a(x) = 3.

4.2 Numerical example 2

In this example we consider the case of two scattering disks. In the first case in
Figure 4(a) two similar scattering disks are considered. The reconstruction result in
Figure 4(c) again shows that the algorithm is able to reconstruct very well the location
and the maximal values of a(x) in this case. The cost functional decreases well within
ten iterations, see Figure 4(b). The case of Figure 5(a) is more challenging since the
maximal values of a(x) in each scattering disk are different. However, the algorithm
can provide reasonable reconstruction results in Figures 5(c). One can clearly see the
locations of the scattering disks as well as two different maximal values of a(z) on each
disk. We point out the algorithm in this case can reconstruct the scatterer consisting of
two components without using any a priori knowledge about the number of components
of the scatterer.
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Figure 3: Reconstruction of the scattering disk in Figure 2(a) in which the cost func-
tional does not involve the Carleman Weight Function.

4.3 Numerical example 3

In this example we consider the case of the coefficient a(x) which has different values
in scattering objects of different shapes. This case is thus more challenging than those
of the first two examples. The scatterer in Figure 6(a) consists of a scattering disk in
which a(x) = 2 and a scattering rectangle in which a(x) = 1.5. The reconstruction
result in Figure 6(c) shows that the algorithm again can compute the location of the
scatterer and the maximal values of a(x) in each scattering object. Particularly, we
can also see pretty well a difference between the shape of the disk and the rectangle
in the reconstruction. The scatterer in Figure 7(a) consists of two scattering disks in
which a(z) = 2 and a scattering rectangle in which a(x) = 1.5. The reconstruction
result in Figure 7(c) provides the location and maximal values of the scattering objects.
However, the resolution of the reconstruction in this case is not as good as that of the
case of two objects since three scattering objects are placed quite close to each other.

5 Summary

We have proposed a new version of the convexification numerical reconstruction
method for solving the coefficient inverse scattering problem with multifrequency
backscatter data associated with a single direction of the incident plane wave. This
method relies on an approximate reformulation of the problem as the Cauchy problem
for a system of coupled quasilinear elliptic PDEs. The main ingredients for deriving
this formulation are the elimination of the coefficient from Helmholtz equation and the
use of truncated Fourier expansion for the total field. To solve the quasilinear elliptic
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Figure 4: Reconstruction of two similar scattering disks characterized by the coefficient

a(z) = 2.
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Figure 5: Reconstruction of two scattering disks with different values. The coefficient
a(x) = 2 in the left scattering disk and a(z) = 1.5 in the right scattering disk.
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PDE system, we use a weighted quasi-reversibility method in which a Carleman
Weight Function is included in the weighted Tikhonov-like functional. The numerical
results show that our method is able to efficiently compute the solution without
using any a priori information about it. We have shown that values of the dielectric
constants of scatterers as well as locations of scatterers can be well reconstructed.
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