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Abstract15

Most biological functional systems are complex, and this complexity is a fundamental driver of16

diversity. Since input parameters interact in complex ways, a holistic understanding of func-17

tional systems is key to understanding how natural selection produces diversity. We present18

uncertainty quantification (UQ) as a quantitative analysis tool on computational models to19

study the interplay of complex systems and diversity. We investigate peristaltic pumping in20

a racetrack circulatory system using a computational model and analyze the impact of three21

input parameters (Womersley number, compression frequency, compression ratio) on flow and22

the energetic costs of circulation. We employed two models of peristalsis (one that allows elastic23

interactions between the heart tube and fluid and one that does not), to investigate the role24

of elastic interactions on model output. A computationally cheaper surrogate of the input pa-25

rameter space was created with generalized polynomial chaos expansion to save computational26

resources. Sobol indices were then calculated based the gPC expansion and model output. We27
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found that all flow metrics were highly sensitive to changes in compression ratio and insensi-28

tive to Womersley number and compression frequency, consistent across models of peristalsis.29

Elastic interactions changed the patterns of parameter sensitivity for energetic costs between30

the two models, revealing that elastic interactions are likely a key physical metric of peristalsis.31

The UQ analysis created two hypotheses regarding diversity: favoring high flow rates (where32

compression ratio is large and highly conserved) and minimizing energetic costs (which avoids33

combinations of high compression ratios, high frequencies, and low Womersley numbers).34

35
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Introduction37

Computational Modeling and Biodiversity38

Most biological functional systems are complex. In these systems, variation in morphology and39

behavior leads to differences in performance at a variety of tasks, influencing individual fitness.40

Because functional systems are complex, variation in these input parameters do not have linear41

consequences to functional performance or fitness. Complexity often results in mechanical equiva-42

lence, or “many-to-one mapping,” in which different combinations of parameters lead to the same43

or similar values of performance [1, 2]. In these ways, complexity may be a fundamental driver of44

morphological diversity [1, 3].45

Therefore, understanding the connection between morphological and kinematic (input param-46

eters) variation and functional performance (output) is key to understanding the evolution and47

diversity of complex functional systems [1, 4, 5]. Performance could be highly sensitive to variation48

in input parameters, meaning small changes in input could lead to disproportionately large changes49

in performance. On the other hand, performance could be insensitive to variation, leading to little50

change. Additionally, parameters rarely act independently, so understanding the system as a whole51

is important.52

Computational modeling provides a solution to this problem. Complexity can be examined with53

models by decoupling parameters. Modeling can create structures and kinematics not naturally54

possible to isolate and control in biological systems, giving us a greater ability to test hypotheses of55

function. They can also explore variation by sampling a greater parameter space than what exists56

naturally in morphological diversity, providing a way to create full performance landscapes. Models57

can examine many-to-one mapping, genetic drift, and other synergies through output analysis in58

ways that traditional experimentation and morphometrics cannot [6–9].59



However, many computational models are limited by qualitative analysis techniques [e.g. 10].60

The difficulty in analyzing multi-parameter, multi-variable computational models curtails our abil-61

ity to understand the practical implications of changing one parameter over another since qualitative62

analyses cannot directly compare the relative contribution of parameters to system performance.63

Typical analyses involve qualitative measures of performance by changing over only one variable64

(parameter sweeping), which can neglect effects of many-to-one mapping and synergy between65

parameters.66

As a step towards connecting modeling and diversity of form, we apply a quantitative sensitivity67

analysis through uncertainty quantification (UQ) of a computational fluid dynamic (CFD) model of68

functional performance. UQ can help resolve these issues and broaden the impact of computational69

modeling on studies of evolution. Quantitative sensitivity analyses can improve our understanding70

of: 1) the effects of biologically important variation on the system, and 2) the relative importance71

of parameters that should be closely assessed. In addition, UQ can be used to make conclusions72

about the variation in existing morphological diversity (based on sensitivity analyses) and validate73

and improve models when compared to real measurements.74

Uncertainty Quantification75

Uncertainty quantification (UQ) studies the uncertainty in the deterministic modeling process of76

a physical system, and therefore makes it possible to provide more accurate, precise, and reliable77

model predictions. UQ accomplishes this by analyzing the effects of known variation of input78

parameters on the model’s output.79

Uncertainty in a model’s input is normally represented using probability measures and un-80

certainty quantification frameworks that have been well established based on probability theory.81

Probability distribution functions (PDFs) represent the uncertainty in input parameters based on82

measured value ranges. Then the uncertainty in the model output can be quantified using its83

distribution or statistics instead of relying on a single deterministic value.84

A common way to obtain this mathematical representation of uncertainty output is by using85

Monte Carlo (MC) method, which draws samples from a distribution of the deterministic model’s86

input parameters, implements the simulations at the drawn samples, and then provides the corre-87

sponding samples (consequently the empirical distribution) of the model output. MC method is88

easy to implement and straightforward to understand. However, it can be computationally expen-89

sive since it may require a large number of full simulations to achieve a desired accuracy due to its90

slow convergence.91

To represent the uncertainty in the output more efficiently than other techniques (i.e. Monte92
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Carlo), , one may construct a computationally cheaper surrogate of the input parameter space to93

approximate the full CFD model output. Generalized polynomial chaos (gPC) expansion method94

is an efficient way to construct this approximation. The gPC method expands the square integrable95

random functions in terms of orthogonal polynomials of the random variables. Hermite polynomials96

are first used to represent Gaussian processes based on the homogeneous chaos theory [11], then97

extended to the Askey scheme with different types of orthogonal polynomials for different random98

functions/processes [12]. By corresponding the PDF of random variables to the weighting function99

of the orthogonal polynomials from the Askey scheme, the gPC method reaches fast convergence100

for smooth functions.101

Compared to Monte Carlo method, the gPC method requires far fewer model simulations to102

reach the same accuracy, and its efficiency can be orders of magnitude higher [13, 14]. Because of103

the computational demands of CFD modeling, the gPC method represents a huge improvement in104

our ability to study these complex systems. Therefore, the gPC method is adopted in our current105

work.106

Based on the gPC expansion, global sensitivity analysis using Sobol indices can be implemented107

[15]. Sensitivity analysis studies the impact of different stochastic input variables on the quantity108

of interest, which helps to understand the important factors in functional performance and possibly109

reduce the complexity of the physical system [16]. The Sobol index (SI) is an important sensitive110

measure based on analysis of variance (ANOVA) decomposition [15, 17, 18]. It is defined as the111

ratio of the variance in the sub-dimensional problem to the total variance of the full-dimensional112

problem. The higher the SI ratio is, the more important the set of input parameters in that113

sub-dimensional space is.114

In this study, we begin with a relatively simple model of a complex, biological system as proof of115

principle: peristaltic pumping in a simple racetrack circulatory system. We use the gPC expansion116

method to construct a surrogate of the input parameter space of peristaltic pumping and implement117

sensitivity analysis to determine how input variation in parameters impacts functional performance.118

Driving Circulatory Flow with Peristalsis119

Driving fluid with contractions of valveless tubes is widespread in animals and serves a variety of120

purposes, including pumping lymph and other fluids [19–22], driving fluid exchange in respiratory121

systems [23–26], and driving circulatory systems [27, 28]. Within the Chordata, valveless, tubular122

pumps (hearts) drive blood flow within circulatory systems in tunicates, cephalochordates, and123

embryonic vertebrates [28, 29]. In vertebrate embryos, a valveless, tubular heart is the first organ124

to function and the flow it generates impacts the development of all other organs [30].125
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Broadly, peristaltic pumps are classified as valveless, tubular pumps. Valveless, tubular pumps126

in animals are hollow, muscular tubes that produce flow through contractions of the walls. Such127

contractions reduce the diameter of the tube that drives fluid inside the lumen of the tube. Valveless,128

tubular pumps can be driven by peristalsis (rhythmic contractions of muscles within the walls of129

the tube that are propagated down the length of the tube) or Liebau pumping (where contractions130

at certain points on the tube travel in passive waves dictated by the material properties of the tube131

itself) [31, 32]. The direction of the flow inside the tube is controlled only by aspects of the pumping132

kinematics (e.g. the direction of the contracting wave), not by any physical means (e.g. one-way133

valves).134

There is some debate as to whether the pumping mechanisms of tubular, valveless hearts in135

animals best fits with the definition of peristalsis or Liebau pumping (for a recent discussion,136

see [31, 33]). Recent work has suggested that peristalsis or some peristalsis-like mechanism bests137

fits the available data and theoretical understanding of each mechanism [32, 34–36]. Here, we138

simplify the situation by focusing exclusively on peristaltic pumping by tubular hearts.139

Despite their simple outward appearance, pumping by peristaltic hearts is a complicated func-140

tional system. This mechanical system has a variety of parameters, including:141

• Morphology of the heart. Parameters associated with morphology which possibly influence142

flow include the tube’s relative resting diameter and length [32], the mechanical properties of143

the myocardium and surrounding structures [34, 37, 38], and the resistivity of the circulatory144

system. These morphological features show variation among animals within the Chordata145

[27, 28], but the role of such features in functional performance is not well understood.146

• Kinematics of tube compression. The frequency of compressions can have a complicated,147

non-linear relationship with flow speeds [32, 39]. Compression ratio, the percent occlusion148

of the tube, can affect flow speeds in non-linear ways [32, 37]. Feedback between the action149

potentials and mechanical properties of the myocardium also impact flow features [34, 35, 37].150

• Size and scaling. Fluid flow undergoes a critical transition between small sizes and speeds,151

where the viscosity of fluid damps out unsteady effects, to large sizes and speeds, where152

inertia is relatively more influential to the character of fluid flow than viscosity and unsteady153

effects are important. For pulsatile flow, a ratio between inertial and viscous forces is called154

the Womersley number Wo help to define the transition (at Wo ≈ 1):155

Wo = d

√
fρ

µ
, (1)
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where f is the frequency of the pulse, d is the resting diameter of the tube, µ is fluid dynamic156

viscosity, and ρ is fluid density. Embryonic vertebrates possess circulatory systems that grow157

through this transitional range with tubular hearts that transform into chambered hearts158

with valves during development. Other groups of animals explore size through evolutionary159

time, retaining a tubular heart throughout their lives.160

Performance of hearts can be assessed in several ways. Volume flow rate may be an impor-161

tant performance output, as flow produced by the heart transports key nutrients and waste [40].162

However, this fluid transport comes at a cost, as work must be done by the myocardium to force163

viscous fluid through a resistive circulatory system. It is likely that performance trade-offs exist in164

this system, and these trade offs are inevitably mediated by variation in input parameters.165

Analytical models and approximations of peristalsis have been used to describe many aspects166

of peristaltic transport, including the average flow as a function of the wave speed and contraction167

amplitude [41–44]. These models typically assume contraction amplitudes are small, inertia is168

negligible, there is no flow in the radial direction, and/or any effects of elastic storage are negligible.169

Furthermore, metrics such as the cost of transport and the amount of mixing are not readily170

obtainable. Few, if any, studies have examined this flow in the context of resistive circulatory171

systems, a key evolutionary development in vertebrate circulation.172

Computational modeling of flow produced by valveless, tubular hearts has improved our un-173

derstanding of biological pumps, since many of the assumptions made in analytical models are not174

required and metrics such as the cost of transport and mixing dynamics can be readily quanti-175

fied. These models have also helped clarify the mechanism of pumping of hearts such as those of176

vertebrate embryos [32–36], as well as our understanding of other important developmental mor-177

phological changes including the development of cardiac cushions, the presence of trabeculae, and178

the presence of blood cells [33, 45–47].179

Study Objectives180

In the current work, we implement UQ techniques to explore peristalsis in a circulatory system181

driven by peristalsis using the immerse boundary method, a computational fluid dynamics (CFD)182

model. We present two mechanisms of peristalsis in this work: peristalsis driven by opposing sine183

waves and peristalsis driven by opposing sharp, Gaussian peaks. Our aims are to (1) demonstrate184

the effectiveness of the UQ method for assessing the impact of input variation on a functional185

system modeled computationally; (2) assess the impacts of elastic interactions using two models of186

peristalsis; and (3) use the results and sensitivity analyses to make prediction of morphology and187
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kinematic combinations that make especially effective pumps.188

We constructed two-dimensional models of peristalsis in a heart tube which drive flow through189

a closed racetrack circulatory system. We then constructed a surrogate to replace the full input190

space of the CFD model using gPC expansion. Using sensitivity analysis, we explore the interactive191

effects on performance outputs (flow in the system, work, and cost of transport) of morphology,192

kinematics, and size through three input parameters: the dimensionless Womersley number Wo,193

compression ratio of the tube CR, and compression frequency f with constant wave speed. Based194

on these results, we make conclusions about the diversity of these parameters in extant groups of195

animals with peristaltically driven circulatory flow.196

Materials and Methods197

Computational Model of Peristalsis198

Immersed Boundary Method199

The models of peristalsis (presented in [32]) were implemented using the immersed boundary200

method (IBM) and with the C++ library Immersed Boundary with Adaptive Mesh Refinement201

(IBAMR) [48]. IBM allows a direct, numerical simulation of the Navier-Stokes equations of fluid202

flow interacting with flexible boundaries moving either freely or with preferred motion. IBAMR203

incorporates adaptive mesh refinement, which allows the Eulerian grid on which the Navier-Stokes204

equations are solved to be rougher away from the boundaries and finer close to boundaries to save205

computational resources (Fig. 1). Additional details of the IBM are located in the supplemental206

information to this paper.207

The circulatory model consisted of a racetrack that was effectively made rigid through the use208

of tether points with an inner lumen, two straight sections connected by two curved regions, and209

a moving region at the bottom of the racetrack, representing the heart tube that moved with a210

preferred motion (see Figs. 1 and 2). The racetrack design was used to stay consistent with past211

designs for easier comparison to other analyses [32, 34, 38, 49].212

The elastic region had a 4:1 length:diameter ratio with the inner 3/4 of the tube length consisting213

of points tethered to target points, which drove the preferred peristaltic motion (Fig. 1). The rest214

of the racetrack were tethered to target points which remained still throughout the simulations.215

Target point stiffness (ktarg) was chosen as 30.0 to remain consistent with the model in [32]. Table 1216

summarizes parameter values of the models.217
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The force equation used to drive peristalsis in the model is:218

f(r, t) = ktarg(Y(r, t)−X(r, t)) (2)

where Y(r, t) is the preferred position of the boundary. Only the preferred motion of the boundary219

in each model of peristalsis differed. Each model of driving peristalsis is described below.220

Opposing sine-wave peristalsis model221

The sine-wave model defines the motion of the boundary as two opposing sine waves:222

ytop,bot = Rtop,bot ±A sin(2πft+ 2πcxt) (3)

where f is the compression frequency, c is the compression-wave speed (held constant throughout223

the study at a non-dimensional speed of 3.0), A is the amplitude of the contraction, and xt is the224

horizontal distance from the beginning of the prescribed motion section. The compression ratio225

gives the percent occlusion and is equal to 2A. The peristaltic waves created by Eq. 3 propagated226

from left to right, therefore driving fluid flow counter-clockwise in the lumen of the racetrack. The227

stiffness of the boundary and target point stiffness (ktarg = 30.0) allowed for very little independent228

elastic motion in the peristaltic region of the tube.229

For additional details on the opposing sine-wave peristalsis model, see [32].230

Opposing Gaussian-peak peristalsis model231

The pinch model defines the motion of the boundary as two sharp, Gaussian peaks, with the232

remainder of the boundary being free to flex with little restriction by the target points:233

ytop,bot = Rtop,bot ±A exp((−0.5(xt − γ)/σ)2) (4)

Where γ is the position of the pinch on the x-axis of the center of the tube and σ is the width of the234

pinch. The pinch was advanced by altering γ depending on the time step of the simulation. For the235

points within the region of the Gaussian wave, the target point stiffness was chosen to be extremely236

stiff (ktarg = 2500) so that the target points adhered closely to the programmed waveform. Outside237

the peak region, the target points were tethered very loosely (ktarg = 0.7) with a spring constant238

about two orders of magnitude stiffer to allow for elastic interactions between fluid and the heart239

tube.240
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Analysis of Flow and Pressure Fields241

Several calculations of non-dimensional fluid flow and pressure were made for each simulation in242

VisIt 2.9.1 [50] and R [51], similar to the analyses in [32]. Positive flow speeds indicate fluid243

motion in the counter-clockwise direction in the racetrack, the same direction as the traveling244

peristaltic wave. All values presented in the analysis are dimensionless, and more information245

about nondimensionalizing values can be found in the supplemental information to this paper.246

At each time step in the simulation, the magnitude of dimensionless fluid velocity was recorded247

and then spatially averaged across each area indicated in Fig. 2A to find |u′| across four rigid248

sections of the racetrack: the upper position, a connecting vertical position, the inflow region (vena249

cava) and outflow region (aorta). The mean speeds |u′| were then temporally averaged to find the250

average flow speed across each simulation (Uavg). The maximum value of flow speed, u′m, was also251

taken at each time step, and the maximum of these in a simulation represents the peak flow speed252

(Upeak). Fig. 3A and B reports |u′|, u′m, Uavg, and Upeak for a sample simulation.253

Non-dimensional pressure was also recorded for each time step of the simulation and spatially254

averaged at each time step near the inflow area (vena cava position) and the outflow area (aorta255

position) of the elastic region (see Fig. 2A for positions). For each simulation, the vena cava and256

aorta positions’ pressures were averaged temporally to find pin and pout, respectively. (See Fig. 3C257

and D for sample simulation.) Each inflow pressure was subtracted from the outflow pressure at258

each time step to find their difference, and these differences were averaged over simulation time to259

find ∆P .260

Volume flow rate was calculated using the velocity profile across the upper position of the261

racetrack for each simulation. At each time step during a simulation, the velocities were sampled262

across the diameter of the tube to create a velocity profile across the tube. Each value was then263

used to calculate the volume of a concentric ring of fluid that passed through the tube during the264

time step based on the velocity at that position in the tube. These rings were then summed to find265

the volume flow rate at that time step, then these volume flow rates were averaged temporally to266

find the average volume flow rate of the simulation, Q.267

Cost of Transport268

The cost of transport was computed in the following manner:269

COT =
1

N

1

Uavg

N∑
i=1

∣∣∣F tube
i

∣∣∣ ∣∣∣U tube
i

∣∣∣ , (5)
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where N is the total number of time points analyzed, Uavg is the mean flow speed,
∣∣F tube

i

∣∣ is the270

average force magnitude at each Lagrangian point in the peristaltic tube at time point i, and271

|U tube
i | is the average peristaltic contraction velocity magnitude of the tube at time point i. The272

contraction velocity was computed using two successive timepoints’ Lagrangian positions, e.g.,273

∣∣∣U tube
j,i

∣∣∣ =

∣∣∣∣Xtube
j,i −Xtube

j,i−1
∣∣∣∣

∆t
, (6)

where ∆t is the time between successive time points, not time-steps, and Xtube
j,i is the position of274

the jth Lagrangian point along the peristaltic contraction region of the tube at the ith time point.275

The quantity
∣∣U tube

i

∣∣ is the average of all of the magnitude of velocities along the tube at time point276

i.277

Parameter Selection278

Parameters of interest were selected based on potential effects on functional performance, the279

ability of the parameter to vary in animals with valveless, tubular hearts, and their representation280

in the model. Compression ratio (CR), a measure of the percent occlusion of the tube during a281

compression event, varied from 0.4 (reduction of 40% of the tube’s diameter) to 0.95 (reduction of282

95% of the tube’s diameter). Compression ratio was varied by changing the amplitude (A) of Eq. 3.283

Compression frequency (f) of Eq. 3 reflects the number of compression events per unit time and was284

varied between 0.5 and 2.0, reflective of a range of values seen in tunicates and other animals with285

valveless, tubular hearts. Compression wave speed was chosen to be constant and decoupled from286

compression wave frequency because this is reflective of the speed at which muscle can contract,287

which typically does not vary in individual animals at a constant temperature. Finally, Womersley288

number (Wo) was allowed to vary between 0.1 and 10 by changing ν in Eq. 1, which reflects roughly289

the fluid regime of many tubular hearts.290

All other model parameters were kept constant throughout the study. A list of these parameters291

and their values in this study can be found in Table 1. The target point stiffness k′targ, bending292

stiffness k′bend, and the spring constant k′ were kept constant because in the previous study these293

were found not to meaningfully affect flow in this model given that the heart walls move with294

preferred kinematics [32]. The length and resting diameter of the contracting region of the tube,295

although they can vary in animals, were chosen to remain constant for convenience in comparing296

this analysis to the previous study.297
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Generalized Polynomial Chaos Expansion298

In the current work, we assume that uncertainty is due to the inherent random nature of the299

system and consequently can be represented using random parameters of interest: compression300

ratio CR, compression frequency f , and Womersley number Wo. With the assumption of the301

uniform distributions for the uncertain inputs, generalized Polynomial Chaos (gPC) expansion302

method is implemented for stochastic uncertainty propagation to quantify the uncertainty in the303

model output (e.g., Uavg, Upeak). The exact model output q(ξ) (with ξ denoting the input) is304

approximated by a gPC expansion as305

qp(ξ) =
N−1∑
i=0

qiΦi(ξ), (7)

Where p is the polynomial order, Φis are the Legendre polynomials, qis are gPC coefficients to be306

determined in the algorithm. N is the number of terms. Details for gPC expansion for a similar307

CFD model is detailed in Waldrop et al. [7] and more details are located in the supplementary308

information to this paper.309

The three input parameters with uniform distributions have the ranges: Womersley number310

Wo = [0.1, 10], Compression ratio CR = [0.4, 0.95], Compression frequency f = [0.5, 2]. The pa-311

rameter space based on gPC expansion consisted of M = 681 combinations of the three parameters312

which were run as separate simulations. To determine the gPC coefficients, we run 681 full simula-313

tions and extract a set of quantities of interest corresponding to the inputs as {ξ(j), q(j)}Mj=1, then314

solve the Least Squares problems for the coefficient vector q = [q1, q2, . . . , qN ] as315

q = arg min
q̃
‖
N−1∑
i=0

q̃iΦi(ξ)− q(ξ)‖2 (8)

where q̃ = [q̃0, q̃1, . . . , q̃N ] is an arbitrary gPC coefficient vector which converges to the desired316

coefficient vector q through the minimization. With the gPC expansion of the model output qp,317

one can efficiently obtain the empirical distribution or statistics for the quantify of interest and318

consequently quantify its uncertainty.319

Sensitivity Analysis320

As mentioned earlier, sensitivity analysis studies the impact of different stochastic input variables on321

the quantity of interest, which helps to understand the important factors in functional performance322

and possibly reduce the complexity of the physical system. In the current work, we consider global323

sensitivity analysis and calculate the Sobol indices [15, 17, 18]. Here are the formulas.324
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We first introduce ANOVA (analysis of variance) decomposition of a function q(ξ), based on325

which the Sobol sensitivity indices are calculated [17, 18]326

q(ξ) = q0 +
∑
i

qi(ξi) +
∑
i<j

qij(ξi, ξj) + . . .+ q1,...,n(ξ1, ξ2, . . . , ξn). (9)

where327 ∫
q(ξ)dξ = q0,

∫
q(ξ)Πk 6=idξk = q0 + qi(ξi),∫

q(ξ)Πk 6=i,jdξk = q0 + qi(ξi) + qj(ξj) + qi,j(ξi, ξj),

and so on.328

From Eq. 9, the so called variance of each sub-function qi1,i2,...,ir is defined as329

Di1,i2,...,ir =

∫
q2i1,i2,...,irdξi1,i2,...,ir ,

and the total variance is330

D =

∫
q2(ξ)dξ − q20 =

n∑
r=1

n∑
i1<...<ir

Di1,i2,...,ir . (10)

Following that, the global sensitivity indices are calculated as the ratio of variances331

Si1,i2,...,ir = Di1,i2,...,ir/D. (11)

Take r = 1, the first order Sobol indices are332

Si = Di/D, , i = 1, . . . , n, (12)

which measure the sensitivity of the quantity of interest to each single variable ξi alone.333

We calculate the Sobol indices more efficiently based on gPC expansion in the current work334

[16]. Additional details of Sobol index calculations can be found in the supplemental information335

to this paper. With the calculated Sobol indices (SI), one can analyze how sensitive the quantity336

of interest is with respect to the variation of individual parameters and their interactions, and also337

rank the importance of the uncertain parameters. SI’s across a single output value will sum to 1,338

and higher values of SI indicate greater sensitivity of the output value to the specific parameter or339

combination of parameters. Fig. 4 gives a graphical overview of the UQ and SA analysis problem340

from raw data to SI for volume flow rate Q for the sine-wave model.341
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Data Accessibility Statement342

The immersed boundary code for this study can be found publicly at https://github.com/lindsay343

waldrop/peri-gPC-git for the opposing sine wave model and at https://github.com/lindsaywaldrop/peri-344

gPC-pinch for the opposing Gaussian peak model. The raw simulation data produced by the code345

can be found at the following locations: Visualization Data for Pinch model: [52, 53]; Hierarchy346

Data for Pinch model: [54, 55]; Visualization Data for Sine-wave model: [56, 57]; and Hierarchy347

Data for Sine-wave model: [58, 59]. The analyzed data of this paper can be found publicly at [60]348

the pinch model and [61] for the sine-wave model.349

Results350

Flow produced by peristalsis models351

Across flow output measurements, there were large ranges of values indicating a substantial poten-352

tial for differential performance with input parameter variation. Average dimensionless flow speeds353

(Uavg) at all positions in the circulatory system ranged between 0.0816 and 3.30 diameters per beat354

for sine-wave and 0.0840 and 2.45 diameters per beat for pinch model, 36- and 29-fold ranges in355

speeds between simulations, respectively. Dimensionless volume flow rates (Q) also ranged broadly,356

from 0.144 to 5.52 for the sine-wave (Fig. 4) and 0.180 and 4.22 for the pinch model (Fig. 5 top357

row), representing 24- and 38-fold differences between simulations, respectively.358

All measures of flow speed (Uavg, Upeak, Q) are highly sensitive to compression ratio CR; higher359

values of CR lead to higher flow rates (Fig. 6A, B, D, respectively). Sobol indices (Fig. 6A, B)360

illustrate the outsized impact of CR to flow speed at all positions on the racetrack.361

In contrast, measures of flow speed were largely insensitive to the other parameters in this study,362

Wo and f (Fig. 6A, B, D). Note that although it may be surprising that the frequency did not363

affect the flow speed, recall that the wave speed is held constant such that the change in frequency364

simply affects the shape of the waveform. All three measures have very small SI’s for Wo (SI’s365

< 0.05) and slightly higher values for f (SI’s < 0.10). Flow speeds were generally insensitive to the366

influence of parameter interactions (SI’s < 0.05).367

There were few differences in flow produced by the two pumping mechanisms (sine-wave and368

pinch peristalsis). Values of volume flow rates Q were slightly higher for sine-wave peristalsis369

(maximum of 5.52) versus pinch peristalsis (maximum of 4.22). Peak flow speeds (Upeak) were up370

to 20% higher for sine-wave peristalsis than pinch peristalsis, but the differences in average flow371

speeds (Uavg) were small between the two mechanisms.372
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Pressures, Work and Cost of Transport produced by peristalsis models373

In addition to flow metrics, the large ranges in pressures, cost of transport, and work metrics existed374

across simulations. Dimensionless pressures (pin, pout) varied in the circulatory system from -1140375

to 1370 for both mechanisms, with values of non-dimensional instant difference of pressure ∆P376

varying between 10.4 and 6,000 (Fig. 7). Cost of transport varied between 1.25× 105 to 2.67× 106377

for sine-wave peristalsis and 4.37 × 105 to 6.87 × 106 for pinch peristalsis, representing 21- and378

16-fold differences, respectively. The range for work done to produce flow were similar; 183 to379

3,550 for the sine-wave model, and 930 to 19,000 for the pinch model, both representing a 20-fold380

range.381

Non-dimensional pressure within the system was very sensitive to f at both the vena cava382

and aorta positions with CR playing a smaller role (Fig. 6C). Pressures tended to increase with383

increasing values of f for both peristalsis mechanisms. Pressures were generally insensitive to Wo,384

with the exception of the aorta pressure pout (SI: 0.093).385

The pressure differential between the aorta and vena cava positions ∆P reflects the pressure386

required to drive fluid through the resistive racetrack circulatory system. ∆P is highly sensitive to387

Wo (SI sine-wave: 0.77, SI pinch: 0.39), with CR showing a small influence for sine-wave peristalsis388

(SI sine-wave: 0.097) and a much larger sensitivity for pinch peristalsis (SI pinch: 0.39). For very389

small values of Wo, values ∆P are very high, indicating the increased resistance to flow due to size390

and/or viscosity. Other parameters and interactions are less influential on ∆P (SI’s < 0.06).391

Similar to pressure, the cost of transport of fluid within the racetrack circulatory system is392

strongly influenced by f and Wo (Fig. 9). Cost of transport was sensitive to f (SI sine: 0.54, SI393

pinch: 0.59) and Wo (SI sine: 0.26, SI pinch: 0.23) and not sensitive to CR (SI sine: 0.05, SI394

pinch: 0.04). Cost of transport was somewhat sensitive to the interaction between Wo and f (SI395

sine: 0.14, SI pinch: 0.13), and not sensitive to other interactions (SIs < 0.01).396

Work done on the tube during pumping diverged substantially between the two models in terms397

of sensitivity. For the sine-wave model of peristalsis, work was sensitive to f (SI: 0.39) and CR (SI:398

0.34) and to a lesser extent Wo (SI: 0.18), with no sensitivity for interactions (SI’s < 0.05). For the399

pinch peristalsis model, work was sensitive to Wo (SI: 0.41) and to a lesser extent CR (SI: 0.15)400

and the interaction between Wo and f (SI: 0.10). Work was not sensitive to other interactions (SIs401

< 0.04).402
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Discussion403

Flow and costs associated with peristalsis404

In this study, we used uncertainty quantification on a computational model of fluid flow to quantify405

the sensitivity of performance to three parameters associated with peristaltic pumps: Womers-406

ley number Wo (eq. 1), compression ratio CR, and compression frequency f . Performance was407

quantified as various aspects of fluid flow (average flow speed, peak flow speed, volume flow rate,408

pressures) and the energetic costs of driving flow (work and cost of transport).409

CR stands out as the dominating feature of driving flow in peristaltic systems. Our results are410

consistent with previous research on experimental and analytical studies of peristalsis [44, 62, 63].411

These studies found that back flow from low CR reduced the flow speed downstream of a pump412

driving flow with sine-wave peristalsis. The result from our analysis shows that the sensitivity of413

flow to compression ratio is independent of f , size and scaling (through Wo), and the mechanism414

of peristalsis used to drive flow.415

Non-dimensional measures of flow speed were insensitive to the other parameters chosen for416

this study (Fig. 6A, B, D). f is commonly understood to be highly influential to flow speeds417

and volume flow rates in systems with tubular hearts [39], except when compression frequency418

is decoupled from the speed of the compression wave [32]. This study employs the latter, since419

compression-wave speed and frequency are not explicitly coupled in animal hearts.420

Driving flow is costly for animals. Higher relative viscosity of the fluid (lower Wo) and higher421

pumping frequencies (f) within the circulatory system require the contracting region of the tube422

to generate larger pressure differentials. The cost of transport (COT ) and work done on the423

contracting regions of the tube are a reflection of the energy required to drive fluid through the424

racetrack circulatory system. COT and work were both sensitive to f and Wo and the interaction425

of these two parameters, attaining their highest values at combinations of low Wo and high f426

(Fig. 5 bottom row).427

The two mechanisms of peristalsis used to drive flow in each models represent peristalsis where428

elastic interactions were allowed (pinch model) and not allowed (sine-wave peristalsis). Although429

these models produces extremely similar flows, their COT and work deviated sharply (Fig. 8).430

Sensitivity analysis between the two models show that elastic interactions fundamentally alter the431

effects of input parameters (Fig. 9), indicating that material properties may be a fundamental432

feature of assessing the costs of peristaltic transport.433
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Predictions of Morphological Diversity based on Parameter Sensitivity434

Evolution has tested the performance of biological functional systems over millions of years. Evo-435

lution has had ample time to explore the combined parameter space of many functional systems,436

and its diversity, in part, reflects its own sensitivity analysis of the functional system on that space437

[3, 7, 64].438

If a model of a biological system is accurate in the most important components of the functional439

system, UQ analysis can be used in two ways to better understand that system. First, the out-440

put surrogate provides a way to estimate the performance landscape associated with the system,441

identifying possible adaptive peaks and valleys and providing output estimates for animals that442

fall within the space. Second, a sensitivity analysis on the model can inform our understanding of443

biological diversity and the mechanistic function of the system.444

For our models of peristalsis, UQ analyses create two hypotheses of selective pressures: flow445

speeds (Uavg, Upeak, Q) (Fig. 5 top row) and measures of energetic costs (∆P, COT, Work) (Fig. 5446

bottom row).447

1. Flow is highly sensitive to CR. The highest flow speeds, and therefore the best perfor-448

mance, occur at high compression ratios. CR should then be both of large values to maximize449

flow (Fig. 5 top row) and highly constrained, exhibiting very low variability amongst species450

compared to other morphological or kinematic measurements. In contrast, flow was insensi-451

tive to changes in Wo, a proxy for body size (eq. 1), and f . Wide variation in these parameters452

does little to affect flow speeds, therefore these parameters should exhibit a wide variation in453

extant animals.454

2. Energetic costs exhibit a complicated relationship with input parameters. Costs455

incurred by the contracting section of tube were sensitive to both CR, Wo, and f and their456

interactions in different combinations (Figs. 6 & 9). Low values of Wo and high f lead to457

extreme values of work and cost of transport (Figs. 8 and 5 bottom row), and high values of458

CR lead to very high values of work. Since energetic measures have a complicated relationship459

with each parameter, it is likely that patterns of variation would also be complicated, although460

parameter combinations mostly likely avoid areas that combine high f , low Wo, and very461

high or very low CR.462

Ultimately, these predictions can be tested using the distribution of animals with peristaltic pumps463

in the three-dimensional input space of the model.464
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Model Limitations and Improvements465

There are several potentially influential parameters that our study did not take into consideration,466

two prominent ones being the length to width ratio of the heart tube and the resistivity of the467

attached circulatory system. These are likely influential for the characteristics of fluid flow produced468

by peristalsis, considering long-wave approximations [32, 42, 44, 63]. Additionally, increases in469

pressure may be required to drive fluid through a more resistive circulatory system. Since pressure470

is sensitive to compression frequency and the pressure differential is highly sensitive to Wo, these471

parameters may have substantial interactive effects when a more resistive circulatory system is472

added.473

In addition, fluid flow and cost of transport are not the only performance outputs that could be474

the focus natural selection. Circulatory flow is a means for mass transport, and circulatory struc-475

tures also rely on diffusion, mass transport is likely not captured by fluid motion alone. Addition476

of a diffusion component to the model to quantify the effects of flow on mass transport will further477

clarify the performance of the system.478
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Tables634

Parameter Sine-wave
Pinch

Guassian peak region Non-peak regions

Maximum time step (dt) 1 × 10−5 1× 10−5 1× 10−5

Minimum Eulerian spatial step (dx) 0.020 0.020 0.020

Lagrangian spatial step (ds) 9.8× 10−5 9.8× 10−5 9.8× 10−5

Refinement ratio 4:1 4:1 4:1

Domain size 10× 10 10× 10 10× 10

Resting diameter of tube (d) 1.0 1.0 1.0

Length of pumping section (Ltube) 4.0 4.0 4.0

Wave speed 3.0 3.0 3.0

Spring constant (k′) 30 510 6.8

Target point stiffness (ktarg) 30 2500 0.68

Bending stiffness (k′bend) 0.30 0.8 0.8

Contraction Frequency (f)** 0.5 – 2.0 0.5 – 2.0 0.5 – 2.0

Womersley number (Wo)** 0.1 – 10 0.1 – 10 0.1 – 10

Compression ratio (CR)** 0.4 – 0.95 0.4 – 0.95 0.4 – 0.95

Table 1: Summary table of parameters used for the numerical simulations, all values are non-

dimensional. ** indicates input parameters of interest.

Figures635

Figure 1: Racetrack model showing adaptive meshing. Full racetrack showing the Rtop and

Rbot used to generate prescribed motion in red and adaptive meshing of domain: roughest mesh

(32× 32 grid) in dark blue, intermediate mesh (16 × 16 grid) in teal, and finest mesh (8 × 8 grid)

in gold, black box highlights inset a. Inset a: close up of region including part of the tube and

racetrack showing meshes, black box highlights inset b. Inset b: close up of tube showing relation

of finest mesh and target points of the racetrack.
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Figure 2: Racetrack model of peristalsis with two pumping mechanisms. Initial conditions

(A) and snapshots of a sample simulation (CR = 0.675, Wo = 0.35, f = 1.25) for two peristalsis

mechanisms: opposing sine waves (B) and pinch (C,D). Background color is magnitude of velocity,

scale on right top indicates values in non-dimensional speed for B and scale on right bottom indicates

values of non-dimensional speed for C and D. Black dots are passive markers that indicate the

pumping region in A. A: Initial conditions of racetrack circulatory system with prescribed motion

peristalsis. Transparent boxes indicate areas where measurements were recorded. B: sine-wave

simulation at t′ = 0.5, C: pinch simulation at t′ = 0.5, D: simulation at t′ = 1.5. Arrows indicted

direction of wave propagation.

Figure 3: Non-dimensional speeds and pressures during a sample simulation (CR =

0.675, Wo = 0.35, f = 1.25) for both pumping models. A: Non-dimensional flow speeds for

sine-wave peristalsis, B: non-dimensional flow speeds for pinch peristalsis, non-dimensional pressure

for C: sine-wave peristalsis and D: pinch peristalsis at two positions (aorta, vena cava). Uavg (solid,

black lines) and Upeak (solid, red lines) and the mean of Uavg (dashed, black line) and the maximum

value of Upeak (dashed, red lines) were for the simulation used in the sensitivity analysis. Pressure

is reported at two positions: vena cava (VC, solid, blue lines) and aorta (solid, orange lines). The

mean of pressure values (pin, pout) used in the sensitivity analysis are dashed for each position.

Figure 4 (following page): UQ study of volume flow rate (Q) and three parameters. Top:

Simulation results showing volume flow rate as color on a 3D plot of parameter space (Womersley

number (Wo), Compression Frequency (f), and Compression ratio (CR)) for sine-wave model of

peristalsis; left - values from the 681 simulation set created by generalized polynomial chaos; and

right - surrogate produced from UQ analysis. Gray slices at CR = 0.7 and f = 1.25 are represented

as 2D graphs in the middle row, left and right respectively. Bottom: Sobol indices calculated for

volume flow rate of the sine-wave model for each parameter and their interactions. Color bar

indicates scale in non-dimensional units of volume flow rate for all panels.

Figure 5: Non-dimensional volume flow rate (Q, top) and cost of transport (COT ,

bottom). Left: three-dimensional surrogates; middle: two-dimensional slice of each surrogate at

Wo = 1; right: two-dimensional slice of each surrogate at Wo = 9.
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Figure 6: Sobol Indices for flow and three parameters. Womersley number Wo, Compres-

sion ratio CR, and Compression frequency f and their interactions at four positions in the tube

(Aorta=gray, Connecting = gold, Upper = blue, Vena Cava = green) for mean non-dimensional

speed Uavg (A), peak non-dimensional speed Upeak (B), pressure pin , pout (C), and volume flow

rate Q (D). Darker colors represent sine-wave peristalsis values and lighter colors indicate pinch

peristalsis values.

Figure 7: Non-dimensional values of change in pressure (∆P ) for two positions in the

circulatory system and two pumping mechanisms. Non-dimensional pressure versus com-

pression frequency (Wo) and compression ratio (CR) for two pumping mechanisms (A: sine-wave

peristalsis; B: pinch peristalsis). Color enhances the z-axis values.

Figure 8: Non-dimensional cost of transport and work. Cost of transport (A, B) and work

(C, D) values calculated from each simulation against relevant input parameters for the sine-wave

(A, C) and pinch (B, D) models of peristalsis. Color highlights values of z-axis.

Figure 9: Sobol Indices for energetic costs. Sobol indices against three parameters (Womer-

sley number Wo, Compression ratio CR, and Compression frequency f) and their interactions at

across the contracting region of the tube for cost of transport (COT) and work for each pumping

mechanism.
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