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15 Abstract

16 Most biological functional systems are complex, and this complexity is a fundamental driver of
7 diversity. Since input parameters interact in complex ways, a holistic understanding of func-
18 tional systems is key to understanding how natural selection produces diversity. We present
19 uncertainty quantification (UQ) as a quantitative analysis tool on computational models to
20 study the interplay of complex systems and diversity. We investigate peristaltic pumping in
21 a racetrack circulatory system using a computational model and analyze the impact of three
2 input parameters (Womersley number, compression frequency, compression ratio) on flow and
23 the energetic costs of circulation. We employed two models of peristalsis (one that allows elastic
24 interactions between the heart tube and fluid and one that does not), to investigate the role
25 of elastic interactions on model output. A computationally cheaper surrogate of the input pa-
26 rameter space was created with generalized polynomial chaos expansion to save computational
27 resources. Sobol indices were then calculated based the gPC expansion and model output. We
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found that all flow metrics were highly sensitive to changes in compression ratio and insensi-
tive to Womersley number and compression frequency, consistent across models of peristalsis.
Elastic interactions changed the patterns of parameter sensitivity for energetic costs between
the two models, revealing that elastic interactions are likely a key physical metric of peristalsis.
The UQ analysis created two hypotheses regarding diversity: favoring high flow rates (where
compression ratio is large and highly conserved) and minimizing energetic costs (which avoids

combinations of high compression ratios, high frequencies, and low Womersley numbers).

Keywords: valveless tubular hearts, immersed boundary method, tunicate, evolution

Introduction

Computational Modeling and Biodiversity

Most biological functional systems are complex. In these systems, variation in morphology and
behavior leads to differences in performance at a variety of tasks, influencing individual fitness.
Because functional systems are complex, variation in these input parameters do not have linear
consequences to functional performance or fitness. Complexity often results in mechanical equiva-
lence, or “many-to-one mapping,” in which different combinations of parameters lead to the same
or similar values of performance [1, 2]. In these ways, complexity may be a fundamental driver of
morphological diversity [1, 3].

Therefore, understanding the connection between morphological and kinematic (input param-
eters) variation and functional performance (output) is key to understanding the evolution and
diversity of complex functional systems [1, 4, 5]. Performance could be highly sensitive to variation
in input parameters, meaning small changes in input could lead to disproportionately large changes
in performance. On the other hand, performance could be insensitive to variation, leading to little
change. Additionally, parameters rarely act independently, so understanding the system as a whole
is important.

Computational modeling provides a solution to this problem. Complexity can be examined with
models by decoupling parameters. Modeling can create structures and kinematics not naturally
possible to isolate and control in biological systems, giving us a greater ability to test hypotheses of
function. They can also explore variation by sampling a greater parameter space than what exists
naturally in morphological diversity, providing a way to create full performance landscapes. Models
can examine many-to-one mapping, genetic drift, and other synergies through output analysis in

ways that traditional experimentation and morphometrics cannot [6-9].
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However, many computational models are limited by qualitative analysis techniques [e.g. 10].
The difficulty in analyzing multi-parameter, multi-variable computational models curtails our abil-
ity to understand the practical implications of changing one parameter over another since qualitative
analyses cannot directly compare the relative contribution of parameters to system performance.
Typical analyses involve qualitative measures of performance by changing over only one variable
(parameter sweeping), which can neglect effects of many-to-one mapping and synergy between
parameters.

As a step towards connecting modeling and diversity of form, we apply a quantitative sensitivity
analysis through uncertainty quantification (UQ) of a computational fluid dynamic (CFD) model of
functional performance. UQ can help resolve these issues and broaden the impact of computational
modeling on studies of evolution. Quantitative sensitivity analyses can improve our understanding
of: 1) the effects of biologically important variation on the system, and 2) the relative importance
of parameters that should be closely assessed. In addition, UQ can be used to make conclusions
about the variation in existing morphological diversity (based on sensitivity analyses) and validate

and improve models when compared to real measurements.

Uncertainty Quantification

Uncertainty quantification (UQ) studies the uncertainty in the deterministic modeling process of
a physical system, and therefore makes it possible to provide more accurate, precise, and reliable
model predictions. UQ accomplishes this by analyzing the effects of known variation of input
parameters on the model’s output.

Uncertainty in a model’s input is normally represented using probability measures and un-
certainty quantification frameworks that have been well established based on probability theory.
Probability distribution functions (PDFs) represent the uncertainty in input parameters based on
measured value ranges. Then the uncertainty in the model output can be quantified using its
distribution or statistics instead of relying on a single deterministic value.

A common way to obtain this mathematical representation of uncertainty output is by using
Monte Carlo (MC) method, which draws samples from a distribution of the deterministic model’s
input parameters, implements the simulations at the drawn samples, and then provides the corre-
sponding samples (consequently the empirical distribution) of the model output. MC method is
easy to implement and straightforward to understand. However, it can be computationally expen-
sive since it may require a large number of full simulations to achieve a desired accuracy due to its
slow convergence.

To represent the uncertainty in the output more efficiently than other techniques (i.e. Monte
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Carlo), , one may construct a computationally cheaper surrogate of the input parameter space to
approximate the full CFD model output. Generalized polynomial chaos (gPC) expansion method
is an efficient way to construct this approximation. The gPC method expands the square integrable
random functions in terms of orthogonal polynomials of the random variables. Hermite polynomials
are first used to represent Gaussian processes based on the homogeneous chaos theory [11], then
extended to the Askey scheme with different types of orthogonal polynomials for different random
functions/processes [12]. By corresponding the PDF of random variables to the weighting function
of the orthogonal polynomials from the Askey scheme, the gPC method reaches fast convergence
for smooth functions.

Compared to Monte Carlo method, the gPC method requires far fewer model simulations to
reach the same accuracy, and its efficiency can be orders of magnitude higher [13, 14]. Because of
the computational demands of CFD modeling, the gPC method represents a huge improvement in
our ability to study these complex systems. Therefore, the gPC method is adopted in our current
work.

Based on the gPC expansion, global sensitivity analysis using Sobol indices can be implemented
[15]. Sensitivity analysis studies the impact of different stochastic input variables on the quantity
of interest, which helps to understand the important factors in functional performance and possibly
reduce the complexity of the physical system [16]. The Sobol index (SI) is an important sensitive
measure based on analysis of variance (ANOVA) decomposition [15, 17, 18]. It is defined as the
ratio of the variance in the sub-dimensional problem to the total variance of the full-dimensional
problem. The higher the SI ratio is, the more important the set of input parameters in that
sub-dimensional space is.

In this study, we begin with a relatively simple model of a complex, biological system as proof of
principle: peristaltic pumping in a simple racetrack circulatory system. We use the gPC expansion
method to construct a surrogate of the input parameter space of peristaltic pumping and implement

sensitivity analysis to determine how input variation in parameters impacts functional performance.

Driving Circulatory Flow with Peristalsis

Driving fluid with contractions of valveless tubes is widespread in animals and serves a variety of
purposes, including pumping lymph and other fluids [19-22], driving fluid exchange in respiratory
systems [23-26], and driving circulatory systems [27, 28]. Within the Chordata, valveless, tubular
pumps (hearts) drive blood flow within circulatory systems in tunicates, cephalochordates, and
embryonic vertebrates [28, 29]. In vertebrate embryos, a valveless, tubular heart is the first organ

to function and the flow it generates impacts the development of all other organs [30].
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Broadly, peristaltic pumps are classified as valveless, tubular pumps. Valveless, tubular pumps
in animals are hollow, muscular tubes that produce flow through contractions of the walls. Such
contractions reduce the diameter of the tube that drives fluid inside the lumen of the tube. Valveless,
tubular pumps can be driven by peristalsis (rhythmic contractions of muscles within the walls of
the tube that are propagated down the length of the tube) or Liebau pumping (where contractions
at certain points on the tube travel in passive waves dictated by the material properties of the tube
itself) [31, 32]. The direction of the flow inside the tube is controlled only by aspects of the pumping
kinematics (e.g. the direction of the contracting wave), not by any physical means (e.g. one-way
valves).

There is some debate as to whether the pumping mechanisms of tubular, valveless hearts in
animals best fits with the definition of peristalsis or Liebau pumping (for a recent discussion,
see [31, 33]). Recent work has suggested that peristalsis or some peristalsis-like mechanism bests
fits the available data and theoretical understanding of each mechanism [32, 34-36]. Here, we
simplify the situation by focusing exclusively on peristaltic pumping by tubular hearts.

Despite their simple outward appearance, pumping by peristaltic hearts is a complicated func-

tional system. This mechanical system has a variety of parameters, including:

e Morphology of the heart. Parameters associated with morphology which possibly influence
flow include the tube’s relative resting diameter and length [32], the mechanical properties of
the myocardium and surrounding structures [34, 37, 38|, and the resistivity of the circulatory
system. These morphological features show variation among animals within the Chordata

[27, 28], but the role of such features in functional performance is not well understood.

o Kinematics of tube compression. The frequency of compressions can have a complicated,
non-linear relationship with flow speeds [32, 39]. Compression ratio, the percent occlusion
of the tube, can affect flow speeds in non-linear ways [32, 37]. Feedback between the action

potentials and mechanical properties of the myocardium also impact flow features [34, 35, 37].

e Size and scaling. Fluid flow undergoes a critical transition between small sizes and speeds,
where the viscosity of fluid damps out unsteady effects, to large sizes and speeds, where
inertia is relatively more influential to the character of fluid flow than viscosity and unsteady
effects are important. For pulsatile flow, a ratio between inertial and viscous forces is called

the Womersley number Wo help to define the transition (at Wo ~ 1):

Wo=d Q, (1)

1
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where f is the frequency of the pulse, d is the resting diameter of the tube, u is fluid dynamic
viscosity, and p is fluid density. Embryonic vertebrates possess circulatory systems that grow
through this transitional range with tubular hearts that transform into chambered hearts
with valves during development. Other groups of animals explore size through evolutionary

time, retaining a tubular heart throughout their lives.

Performance of hearts can be assessed in several ways. Volume flow rate may be an impor-
tant performance output, as flow produced by the heart transports key nutrients and waste [40].
However, this fluid transport comes at a cost, as work must be done by the myocardium to force
viscous fluid through a resistive circulatory system. It is likely that performance trade-offs exist in
this system, and these trade offs are inevitably mediated by variation in input parameters.

Analytical models and approximations of peristalsis have been used to describe many aspects
of peristaltic transport, including the average flow as a function of the wave speed and contraction
amplitude [41-44]. These models typically assume contraction amplitudes are small, inertia is
negligible, there is no flow in the radial direction, and/or any effects of elastic storage are negligible.
Furthermore, metrics such as the cost of transport and the amount of mixing are not readily
obtainable. Few, if any, studies have examined this flow in the context of resistive circulatory
systems, a key evolutionary development in vertebrate circulation.

Computational modeling of flow produced by valveless, tubular hearts has improved our un-
derstanding of biological pumps, since many of the assumptions made in analytical models are not
required and metrics such as the cost of transport and mixing dynamics can be readily quanti-
fied. These models have also helped clarify the mechanism of pumping of hearts such as those of
vertebrate embryos [32-36], as well as our understanding of other important developmental mor-
phological changes including the development of cardiac cushions, the presence of trabeculae, and
the presence of blood cells [33, 45-47].

Study Objectives

In the current work, we implement UQ techniques to explore peristalsis in a circulatory system
driven by peristalsis using the immerse boundary method, a computational fluid dynamics (CFD)
model. We present two mechanisms of peristalsis in this work: peristalsis driven by opposing sine
waves and peristalsis driven by opposing sharp, Gaussian peaks. Our aims are to (1) demonstrate
the effectiveness of the UQ method for assessing the impact of input variation on a functional
system modeled computationally; (2) assess the impacts of elastic interactions using two models of

peristalsis; and (3) use the results and sensitivity analyses to make prediction of morphology and
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kinematic combinations that make especially effective pumps.

We constructed two-dimensional models of peristalsis in a heart tube which drive flow through
a closed racetrack circulatory system. We then constructed a surrogate to replace the full input
space of the CFD model using gPC expansion. Using sensitivity analysis, we explore the interactive
effects on performance outputs (flow in the system, work, and cost of transport) of morphology,
kinematics, and size through three input parameters: the dimensionless Womersley number Wo,
compression ratio of the tube CR, and compression frequency f with constant wave speed. Based
on these results, we make conclusions about the diversity of these parameters in extant groups of

animals with peristaltically driven circulatory flow.

Materials and Methods

Computational Model of Peristalsis
Immersed Boundary Method

The models of peristalsis (presented in [32]) were implemented using the immersed boundary
method (IBM) and with the C++ library Immersed Boundary with Adaptive Mesh Refinement
(IBAMR) [48]. IBM allows a direct, numerical simulation of the Navier-Stokes equations of fluid
flow interacting with flexible boundaries moving either freely or with preferred motion. IBAMR
incorporates adaptive mesh refinement, which allows the Fulerian grid on which the Navier-Stokes
equations are solved to be rougher away from the boundaries and finer close to boundaries to save
computational resources (Fig. 1). Additional details of the IBM are located in the supplemental
information to this paper.

The circulatory model consisted of a racetrack that was effectively made rigid through the use
of tether points with an inner lumen, two straight sections connected by two curved regions, and
a moving region at the bottom of the racetrack, representing the heart tube that moved with a
preferred motion (see Figs. 1 and 2). The racetrack design was used to stay consistent with past
designs for easier comparison to other analyses [32, 34, 38, 49].

The elastic region had a 4:1 length:diameter ratio with the inner 3/4 of the tube length consisting
of points tethered to target points, which drove the preferred peristaltic motion (Fig. 1). The rest
of the racetrack were tethered to target points which remained still throughout the simulations.
Target point stiffness (kqrg) was chosen as 30.0 to remain consistent with the model in [32]. Table 1

summarizes parameter values of the models.
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The force equation used to drive peristalsis in the model is:
£(r,t) = Ktarg(Y (r,t) — X(r, 1)) (2)

where Y (r,t) is the preferred position of the boundary. Only the preferred motion of the boundary

in each model of peristalsis differed. Each model of driving peristalsis is described below.

Opposing sine-wave peristalsis model

The sine-wave model defines the motion of the boundary as two opposing sine waves:
Ytop,bot = Riopbot T Asin(2m ft + 2mcxy) (3)

where f is the compression frequency, ¢ is the compression-wave speed (held constant throughout
the study at a non-dimensional speed of 3.0), A is the amplitude of the contraction, and x; is the
horizontal distance from the beginning of the prescribed motion section. The compression ratio
gives the percent occlusion and is equal to 2A. The peristaltic waves created by Eq. 3 propagated
from left to right, therefore driving fluid flow counter-clockwise in the lumen of the racetrack. The
stiffness of the boundary and target point stiffness (k0 = 30.0) allowed for very little independent
elastic motion in the peristaltic region of the tube.

For additional details on the opposing sine-wave peristalsis model, see [32].

Opposing Gaussian-peak peristalsis model

The pinch model defines the motion of the boundary as two sharp, Gaussian peaks, with the

remainder of the boundary being free to flex with little restriction by the target points:

Ytop,bot = Rtop,bot + AeXp((—0-5(37t - 7)/0)2) (4)

Where 7 is the position of the pinch on the x-axis of the center of the tube and ¢ is the width of the
pinch. The pinch was advanced by altering v depending on the time step of the simulation. For the
points within the region of the Gaussian wave, the target point stiffness was chosen to be extremely
stiff (Ktarg = 2500) so that the target points adhered closely to the programmed waveform. Outside
the peak region, the target points were tethered very loosely (ktqrg = 0.7) with a spring constant
about two orders of magnitude stiffer to allow for elastic interactions between fluid and the heart
tube.
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Analysis of Flow and Pressure Fields

Several calculations of non-dimensional fluid flow and pressure were made for each simulation in
Vislt 2.9.1 [50] and R [51], similar to the analyses in [32]. Positive flow speeds indicate fluid
motion in the counter-clockwise direction in the racetrack, the same direction as the traveling
peristaltic wave. All values presented in the analysis are dimensionless, and more information
about nondimensionalizing values can be found in the supplemental information to this paper.

At each time step in the simulation, the magnitude of dimensionless fluid velocity was recorded
and then spatially averaged across each area indicated in Fig. 2A to find |u| across four rigid
sections of the racetrack: the upper position, a connecting vertical position, the inflow region (vena
cava) and outflow region (aorta). The mean speeds |u’| were then temporally averaged to find the
average flow speed across each simulation (Ugyg). The maximum value of flow speed, uj,,, was also
taken at each time step, and the maximum of these in a simulation represents the peak flow speed
(Upeak)- Fig. 3A and B reports |0'|, uy,, Uayg, and Upeqr for a sample simulation.

Non-dimensional pressure was also recorded for each time step of the simulation and spatially
averaged at each time step near the inflow area (vena cava position) and the outflow area (aorta
position) of the elastic region (see Fig. 2A for positions). For each simulation, the vena cava and
aorta positions’ pressures were averaged temporally to find p;, and poy, respectively. (See Fig. 3C
and D for sample simulation.) Each inflow pressure was subtracted from the outflow pressure at
each time step to find their difference, and these differences were averaged over simulation time to
find AP.

Volume flow rate was calculated using the velocity profile across the upper position of the
racetrack for each simulation. At each time step during a simulation, the velocities were sampled
across the diameter of the tube to create a velocity profile across the tube. Each value was then
used to calculate the volume of a concentric ring of fluid that passed through the tube during the
time step based on the velocity at that position in the tube. These rings were then summed to find
the volume flow rate at that time step, then these volume flow rates were averaged temporally to

find the average volume flow rate of the simulation, Q.

Cost of Transport

The cost of transport was computed in the following manner:

tube
Ui

, (5)

11
CoT = — [y
N Uy 2= |

Ne
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where NN is the total number of time points analyzed, Uy is the mean flow speed, }Fit“be‘ is the
average force magnitude at each Lagrangian point in the peristaltic tube at time point ¢, and
\Uf“bel is the average peristaltic contraction velocity magnitude of the tube at time point i. The

contraction velocity was computed using two successive timepoints’ Lagrangian positions, e.g.,

’Utube — HX?%I?@ B X;Zb—el ‘ |
it At ’

(6)

where At is the time between successive time points, not time-steps, and X?fibe is the position of
the j* Lagrangian point along the peristaltic contraction region of the tube at the i*" time point.
The quantity ‘Uf“be‘ is the average of all of the magnitude of velocities along the tube at time point

i.

Parameter Selection

Parameters of interest were selected based on potential effects on functional performance, the
ability of the parameter to vary in animals with valveless, tubular hearts, and their representation
in the model. Compression ratio (CR), a measure of the percent occlusion of the tube during a
compression event, varied from 0.4 (reduction of 40% of the tube’s diameter) to 0.95 (reduction of
95% of the tube’s diameter). Compression ratio was varied by changing the amplitude (A) of Eq. 3.
Compression frequency (f) of Eq. 3 reflects the number of compression events per unit time and was
varied between 0.5 and 2.0, reflective of a range of values seen in tunicates and other animals with
valveless, tubular hearts. Compression wave speed was chosen to be constant and decoupled from
compression wave frequency because this is reflective of the speed at which muscle can contract,
which typically does not vary in individual animals at a constant temperature. Finally, Womersley
number (Wo) was allowed to vary between 0.1 and 10 by changing v in Eq. 1, which reflects roughly

the fluid regime of many tubular hearts.

All other model parameters were kept constant throughout the study. A list of these parameters
and their values in this study can be found in Table 1. The target point stiffness kl’mm, bending
stiffness kj_,;, and the spring constant k' were kept constant because in the previous study these
were found not to meaningfully affect flow in this model given that the heart walls move with
preferred kinematics [32]. The length and resting diameter of the contracting region of the tube,
although they can vary in animals, were chosen to remain constant for convenience in comparing

this analysis to the previous study.

10
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Generalized Polynomial Chaos Expansion

In the current work, we assume that uncertainty is due to the inherent random nature of the
system and consequently can be represented using random parameters of interest: compression
ratio C'R, compression frequency f, and Womersley number Wo. With the assumption of the
uniform distributions for the uncertain inputs, generalized Polynomial Chaos (gPC) expansion
method is implemented for stochastic uncertainty propagation to quantify the uncertainty in the
model output (e.g., Usvg, Upear). The exact model output ¢(§) (with & denoting the input) is

approximated by a gPC expansion as

0(€) = Z 3:Pi(€), (7)

Where p is the polynomial order, ®;s are the Legendre polynomials, ¢;s are gPC coefficients to be
determined in the algorithm. N is the number of terms. Details for gPC expansion for a similar
CFD model is detailed in Waldrop et al. [7] and more details are located in the supplementary
information to this paper.

The three input parameters with uniform distributions have the ranges: Womersley number
Wo = [0.1,10], Compression ratio CR = [0.4,0.95], Compression frequency f = [0.5,2]. The pa-
rameter space based on gPC expansion consisted of M = 681 combinations of the three parameters
which were run as separate simulations. To determine the gPC coefficients, we run 681 full simula-

tions and extract a set of quantities of interest corresponding to the inputs as {E(j ), ql )}J]Vi 1, then

solve the Least Squares problems for the coefficient vector q = [q1, q2, - .., qN] as
N-1
q=argmin | 3 3:2:(€) — a(¢)ll2 (8)
i=0
where q = [go, q1,---,qn] is an arbitrary gPC coefficient vector which converges to the desired

coefficient vector q through the minimization. With the gPC expansion of the model output g,
one can efficiently obtain the empirical distribution or statistics for the quantify of interest and

consequently quantify its uncertainty.

Sensitivity Analysis

As mentioned earlier, sensitivity analysis studies the impact of different stochastic input variables on
the quantity of interest, which helps to understand the important factors in functional performance
and possibly reduce the complexity of the physical system. In the current work, we consider global

sensitivity analysis and calculate the Sobol indices [15, 17, 18]. Here are the formulas.

11
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We first introduce ANOVA (analysis of variance) decomposition of a function ¢(£), based on

which the Sobol sensitivity indices are calculated [17, 18]

0&) =q+ Y @)+ ai(& &)+ +a €&, )

i<j
where
Ja©de=a. [ a@mesds = a0+ ).
/Q(E)Hk7éi,jd§k = qo+ (&) +q;(&) + a5(8,&),

and so on.

From Eq. 9, the so called variance of each sub-function g;, 4,,... i, is defined as

r

_ 2 o .
D117127--~7'L7‘ _/qil,ig,...,irdgll7127“-’@7“7

and the total variance is

D:/ PO~ a5 =" Y Divireir:

r=111<...<ir

Following that, the global sensitivity indices are calculated as the ratio of variances
Sivizeiz = Dinin,.ovin/ D-
Take r = 1, the first order Sobol indices are

SZ‘:DZ'/D, ,izl,...,n,

which measure the sensitivity of the quantity of interest to each single variable &; alone.

(9)

(11)

(12)

We calculate the Sobol indices more efficiently based on gPC expansion in the current work

[16]. Additional details of Sobol index calculations can be found in the supplemental information

to this paper. With the calculated Sobol indices (SI), one can analyze how sensitive the quantity

of interest is with respect to the variation of individual parameters and their interactions, and also

rank the importance of the uncertain parameters. SI’s across a single output value will sum to 1,

and higher values of SI indicate greater sensitivity of the output value to the specific parameter or

combination of parameters. Fig. 4 gives a graphical overview of the UQ and SA analysis problem

from raw data to SI for volume flow rate @) for the sine-wave model.
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Data Accessibility Statement

The immersed boundary code for this study can be found publicly at https://github.com/lindsay

waldrop /peri-gPC-git for the opposing sine wave model and at https://github.com/lindsaywaldrop/peri-

gPC-pinch for the opposing Gaussian peak model. The raw simulation data produced by the code
can be found at the following locations: Visualization Data for Pinch model: [52, 53|; Hierarchy
Data for Pinch model: [54, 55]; Visualization Data for Sine-wave model: [56, 57]; and Hierarchy
Data for Sine-wave model: [58, 59]. The analyzed data of this paper can be found publicly at [60]

the pinch model and [61] for the sine-wave model.

Results

Flow produced by peristalsis models

Across flow output measurements, there were large ranges of values indicating a substantial poten-
tial for differential performance with input parameter variation. Average dimensionless flow speeds
(Uawg) at all positions in the circulatory system ranged between 0.0816 and 3.30 diameters per beat
for sine-wave and 0.0840 and 2.45 diameters per beat for pinch model, 36- and 29-fold ranges in
speeds between simulations, respectively. Dimensionless volume flow rates (@) also ranged broadly,
from 0.144 to 5.52 for the sine-wave (Fig. 4) and 0.180 and 4.22 for the pinch model (Fig. 5 top
row), representing 24- and 38-fold differences between simulations, respectively.

All measures of flow speed (Uavg, Upeak; @) are highly sensitive to compression ratio C'R; higher
values of C'R lead to higher flow rates (Fig. 6A, B, D, respectively). Sobol indices (Fig. 6A, B)
illustrate the outsized impact of C'R to flow speed at all positions on the racetrack.

In contrast, measures of flow speed were largely insensitive to the other parameters in this study,
Wo and f (Fig. 6A, B, D). Note that although it may be surprising that the frequency did not
affect the flow speed, recall that the wave speed is held constant such that the change in frequency
simply affects the shape of the waveform. All three measures have very small SI’s for Wo (SI’s
< 0.05) and slightly higher values for f (SI’s < 0.10). Flow speeds were generally insensitive to the
influence of parameter interactions (SI’s < 0.05).

There were few differences in flow produced by the two pumping mechanisms (sine-wave and
pinch peristalsis). Values of volume flow rates @ were slightly higher for sine-wave peristalsis
(maximum of 5.52) versus pinch peristalsis (maximum of 4.22). Peak flow speeds (Upeqr) were up
to 20% higher for sine-wave peristalsis than pinch peristalsis, but the differences in average flow

speeds (Ugyg) were small between the two mechanisms.
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Pressures, Work and Cost of Transport produced by peristalsis models

In addition to flow metrics, the large ranges in pressures, cost of transport, and work metrics existed
across simulations. Dimensionless pressures (pin, Pout) varied in the circulatory system from -1140
to 1370 for both mechanisms, with values of non-dimensional instant difference of pressure AP
varying between 10.4 and 6,000 (Fig. 7). Cost of transport varied between 1.25 x 10° to 2.67 x 105
for sine-wave peristalsis and 4.37 x 10° to 6.87 x 10° for pinch peristalsis, representing 21- and
16-fold differences, respectively. The range for work done to produce flow were similar; 183 to
3,550 for the sine-wave model, and 930 to 19,000 for the pinch model, both representing a 20-fold

range.

Non-dimensional pressure within the system was very sensitive to f at both the vena cava
and aorta positions with C'R playing a smaller role (Fig. 6C). Pressures tended to increase with
increasing values of f for both peristalsis mechanisms. Pressures were generally insensitive to Wo,

with the exception of the aorta pressure py,: (SI: 0.093).

The pressure differential between the aorta and vena cava positions AP reflects the pressure
required to drive fluid through the resistive racetrack circulatory system. AP is highly sensitive to
Wo (SI sine-wave: 0.77, SI pinch: 0.39), with C'R showing a small influence for sine-wave peristalsis
(SI sine-wave: 0.097) and a much larger sensitivity for pinch peristalsis (SI pinch: 0.39). For very
small values of Wo, values AP are very high, indicating the increased resistance to flow due to size

and/or viscosity. Other parameters and interactions are less influential on AP (SI's < 0.06).

Similar to pressure, the cost of transport of fluid within the racetrack circulatory system is
strongly influenced by f and Wo (Fig. 9). Cost of transport was sensitive to f (SI sine: 0.54, SI
pinch: 0.59) and Wo (SI sine: 0.26, SI pinch: 0.23) and not sensitive to C'R (SI sine: 0.05, SI
pinch: 0.04). Cost of transport was somewhat sensitive to the interaction between Wo and f (SI

sine: 0.14, SI pinch: 0.13), and not sensitive to other interactions (SIs < 0.01).

Work done on the tube during pumping diverged substantially between the two models in terms
of sensitivity. For the sine-wave model of peristalsis, work was sensitive to f (SI: 0.39) and CR (SI:
0.34) and to a lesser extent Wo (SI: 0.18), with no sensitivity for interactions (SI’s < 0.05). For the
pinch peristalsis model, work was sensitive to Wo (SI: 0.41) and to a lesser extent CR (SI: 0.15)
and the interaction between Wo and f (SI: 0.10). Work was not sensitive to other interactions (SIs
< 0.04).
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Discussion

Flow and costs associated with peristalsis

In this study, we used uncertainty quantification on a computational model of fluid flow to quantify
the sensitivity of performance to three parameters associated with peristaltic pumps: Womers-
ley number Wo (eq. 1), compression ratio C'R, and compression frequency f. Performance was
quantified as various aspects of fluid flow (average flow speed, peak flow speed, volume flow rate,

pressures) and the energetic costs of driving flow (work and cost of transport).

CR stands out as the dominating feature of driving flow in peristaltic systems. Our results are
consistent with previous research on experimental and analytical studies of peristalsis [44, 62, 63].
These studies found that back flow from low C'R reduced the flow speed downstream of a pump
driving flow with sine-wave peristalsis. The result from our analysis shows that the sensitivity of
flow to compression ratio is independent of f, size and scaling (through Wo), and the mechanism

of peristalsis used to drive flow.

Non-dimensional measures of flow speed were insensitive to the other parameters chosen for
this study (Fig. 6A, B, D). f is commonly understood to be highly influential to flow speeds
and volume flow rates in systems with tubular hearts [39], except when compression frequency
is decoupled from the speed of the compression wave [32]. This study employs the latter, since

compression-wave speed and frequency are not explicitly coupled in animal hearts.

Driving flow is costly for animals. Higher relative viscosity of the fluid (lower Wo) and higher
pumping frequencies (f) within the circulatory system require the contracting region of the tube
to generate larger pressure differentials. The cost of transport (COT) and work done on the
contracting regions of the tube are a reflection of the energy required to drive fluid through the
racetrack circulatory system. C'OT and work were both sensitive to f and Wo and the interaction
of these two parameters, attaining their highest values at combinations of low Wo and high f
(Fig. 5 bottom row).

The two mechanisms of peristalsis used to drive flow in each models represent peristalsis where
elastic interactions were allowed (pinch model) and not allowed (sine-wave peristalsis). Although
these models produces extremely similar flows, their COT and work deviated sharply (Fig. 8).
Sensitivity analysis between the two models show that elastic interactions fundamentally alter the
effects of input parameters (Fig. 9), indicating that material properties may be a fundamental

feature of assessing the costs of peristaltic transport.
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Predictions of Morphological Diversity based on Parameter Sensitivity

Evolution has tested the performance of biological functional systems over millions of years. Evo-
lution has had ample time to explore the combined parameter space of many functional systems,
and its diversity, in part, reflects its own sensitivity analysis of the functional system on that space
[3, 7, 64].

If a model of a biological system is accurate in the most important components of the functional
system, UQ analysis can be used in two ways to better understand that system. First, the out-
put surrogate provides a way to estimate the performance landscape associated with the system,
identifying possible adaptive peaks and valleys and providing output estimates for animals that
fall within the space. Second, a sensitivity analysis on the model can inform our understanding of
biological diversity and the mechanistic function of the system.

For our models of peristalsis, UQ analyses create two hypotheses of selective pressures: flow
speeds (Ugvg, Upeaks Q) (Fig. 5 top row) and measures of energetic costs (AP, COT, Work) (Fig. 5

bottom row).

1. Flow is highly sensitive to CR. The highest flow speeds, and therefore the best perfor-
mance, occur at high compression ratios. C'R should then be both of large values to maximize
flow (Fig. 5 top row) and highly constrained, exhibiting very low variability amongst species
compared to other morphological or kinematic measurements. In contrast, flow was insensi-
tive to changes in Wo, a proxy for body size (eq. 1), and f. Wide variation in these parameters
does little to affect flow speeds, therefore these parameters should exhibit a wide variation in

extant animals.

2. Energetic costs exhibit a complicated relationship with input parameters. Costs
incurred by the contracting section of tube were sensitive to both CR, Wo, and f and their
interactions in different combinations (Figs. 6 & 9). Low values of Wo and high f lead to
extreme values of work and cost of transport (Figs. 8 and 5 bottom row), and high values of
CR lead to very high values of work. Since energetic measures have a complicated relationship
with each parameter, it is likely that patterns of variation would also be complicated, although
parameter combinations mostly likely avoid areas that combine high f, low Wo, and very

high or very low C'R.

Ultimately, these predictions can be tested using the distribution of animals with peristaltic pumps

in the three-dimensional input space of the model.
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Model Limitations and Improvements

There are several potentially influential parameters that our study did not take into consideration,
two prominent ones being the length to width ratio of the heart tube and the resistivity of the
attached circulatory system. These are likely influential for the characteristics of fluid flow produced
by peristalsis, considering long-wave approximations [32, 42, 44, 63]. Additionally, increases in
pressure may be required to drive fluid through a more resistive circulatory system. Since pressure
is sensitive to compression frequency and the pressure differential is highly sensitive to Wo, these
parameters may have substantial interactive effects when a more resistive circulatory system is
added.

In addition, fluid flow and cost of transport are not the only performance outputs that could be
the focus natural selection. Circulatory flow is a means for mass transport, and circulatory struc-
tures also rely on diffusion, mass transport is likely not captured by fluid motion alone. Addition
of a diffusion component to the model to quantify the effects of flow on mass transport will further

clarify the performance of the system.
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s« Tables

Parameter Sine-wave . P.’inch .
Guassian peak region Non-peak regions

Maximum time step (dt) 1x107° 1x107° 1x107°
Minimum Eulerian spatial step (dx) 0.020 0.020 0.020
Lagrangian spatial step (ds) 9.8 x 107 9.8 x 107 9.8 x 107
Refinement ratio 4:1 4:1 4:1
Domain size 10 x 10 10 x 10 10 x 10
Resting diameter of tube (d) 1.0 1.0 1.0
Length of pumping section (Lyype) 4.0 4.0 4.0
Wave speed 3.0 3.0 3.0
Spring constant (k') 30 510 6.8
Target point stiffness (ktarg) 30 2500 0.68
Bending stiffness (k},,,;) 0.30 0.8 0.8
Contraction Frequency (f)** 0.5-20 0.5-2.0 0.5-2.0
Womersley number (Wo)** 0.1-10 0.1-10 0.1 -10
Compression ratio (C'R)** 0.4-0.95 0.4 -0.95 0.4 -0.95

Table 1: Summary table of parameters used for the numerical simulations, all values are non-

dimensional. ** indicates input parameters of interest.

o Figures

Figure 1: Racetrack model showing adaptive meshing. Full racetrack showing the R;,, and
Rpot used to generate prescribed motion in red and adaptive meshing of domain: roughest mesh
(32 x 32 grid) in dark blue, intermediate mesh (16 x 16 grid) in teal, and finest mesh (8 x 8 grid)
in gold, black box highlights inset a. Inset a: close up of region including part of the tube and
racetrack showing meshes, black box highlights inset b. Inset b: close up of tube showing relation

of finest mesh and target points of the racetrack.
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Figure 2: Racetrack model of peristalsis with two pumping mechanisms. Initial conditions
(A) and snapshots of a sample simulation (CR = 0.675, Wo = 0.35, f = 1.25) for two peristalsis
mechanisms: opposing sine waves (B) and pinch (C,D). Background color is magnitude of velocity,
scale on right top indicates values in non-dimensional speed for B and scale on right bottom indicates
values of non-dimensional speed for C and D. Black dots are passive markers that indicate the
pumping region in A. A: Initial conditions of racetrack circulatory system with prescribed motion
peristalsis. Transparent boxes indicate areas where measurements were recorded. B: sine-wave
simulation at ¢’ = 0.5, C: pinch simulation at ¢’ = 0.5, D: simulation at # = 1.5. Arrows indicted

direction of wave propagation.

Figure 3: Non-dimensional speeds and pressures during a sample simulation (CR =
0.675, Wo = 0.35, f = 1.25) for both pumping models. A: Non-dimensional flow speeds for
sine-wave peristalsis, B: non-dimensional flow speeds for pinch peristalsis, non-dimensional pressure
for C: sine-wave peristalsis and D: pinch peristalsis at two positions (aorta, vena cava). Ugyg (solid,
black lines) and Upeqi (solid, red lines) and the mean of U,y (dashed, black line) and the maximum
value of Upeqr, (dashed, red lines) were for the simulation used in the sensitivity analysis. Pressure
is reported at two positions: vena cava (VC, solid, blue lines) and aorta (solid, orange lines). The

mean of pressure values (pin, Pout) used in the sensitivity analysis are dashed for each position.

Figure 4 (following page): UQ study of volume flow rate (@) and three parameters. Top:
Simulation results showing volume flow rate as color on a 3D plot of parameter space (Womersley
number (Wo), Compression Frequency (f), and Compression ratio (CR)) for sine-wave model of
peristalsis; left - values from the 681 simulation set created by generalized polynomial chaos; and
right - surrogate produced from UQ analysis. Gray slices at CR = 0.7 and f = 1.25 are represented
as 2D graphs in the middle row, left and right respectively. Bottom: Sobol indices calculated for
volume flow rate of the sine-wave model for each parameter and their interactions. Color bar

indicates scale in non-dimensional units of volume flow rate for all panels.

Figure 5: Non-dimensional volume flow rate (@, top) and cost of transport (COT,
bottom). Left: three-dimensional surrogates; middle: two-dimensional slice of each surrogate at

Wo = 1; right: two-dimensional slice of each surrogate at Wo = 9.
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Figure 6: Sobol Indices for flow and three parameters. Womersley number Wo, Compres-
sion ratio C'R, and Compression frequency f and their interactions at four positions in the tube
(Aorta=gray, Connecting = gold, Upper = blue, Vena Cava = green) for mean non-dimensional
speed Uy (A), peak non-dimensional speed Upeqr (B), pressure pi, ,pout (C), and volume flow
rate @ (D). Darker colors represent sine-wave peristalsis values and lighter colors indicate pinch

peristalsis values.

Figure 7: Non-dimensional values of change in pressure (AP) for two positions in the
circulatory system and two pumping mechanisms. Non-dimensional pressure versus com-
pression frequency (Wo) and compression ratio (CR) for two pumping mechanisms (A: sine-wave

peristalsis; B: pinch peristalsis). Color enhances the z-axis values.

Figure 8: Non-dimensional cost of transport and work. Cost of transport (A, B) and work
(C, D) values calculated from each simulation against relevant input parameters for the sine-wave

(A, C) and pinch (B, D) models of peristalsis. Color highlights values of z-axis.

Figure 9: Sobol Indices for energetic costs. Sobol indices against three parameters (Womer-
sley number Wo, Compression ratio CR, and Compression frequency f) and their interactions at
across the contracting region of the tube for cost of transport (COT) and work for each pumping

mechanism.
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