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Simulated randomized benchmarking of a dynamically corrected cross-resonance gate
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We theoretically consider a cross-resonance (CR) gate implemented by pulse sequences proposed by
Calderon-Vargas and Kestner [Phys. Rev. Lett. 118, 150502 (2017)]. These sequences mitigate systematic error
to first order, but their effectiveness is limited by one-qubit gate imperfections. Using additional microwave
control pulses, it is possible to tune the effective CR Hamiltonian into a regime where these sequences operate
optimally. This improves the overall feasibility of these sequences by reducing the one-qubit operations required
for error correction. We illustrate this by simulating randomized benchmarking for a system of weakly coupled
transmons and show that while this pulse sequence does not offer an advantage with the current state of the art
in transmons, it does improve the scaling of CR gate infidelity with one-qubit gate infidelity.
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I. INTRODUCTION

The ability to implement high-fidelity gates is a neces-
sary requirement for creating a fully functional quantum
information processor. To this end, fixed-frequency supercon-
ducting transmons [1] show great promise [2,3], as they have
been used to theoretically and experimentally demonstrate
one-qubit gates [4–8] with fidelities as high as 99.97% [8].
However, generating two-qubit entangling operations with
similarly high fidelities remains a challenge. A standard ap-
proach to entangling fixed-frequency transmons is through
the cross-resonance (CR) effect [9–12]. The CR effect can
be observed in a system of two off-resonant fixed-frequency
transmons with a small static coupling (e.g., through a quan-
tum bus [13]). By irradiating one transmon at the transition
frequency of the other, the coupling is modified by a factor
whose magnitude is roughly proportional to the ratio of the
microwave drive amplitude and the interqubit detuning.

Theoretical considerations have shown that the CR gate is
significantly affected by systematic errors attributed to high-
energy excitations of the weakly anharmonic transmon and to
crosstalk induced by the CR microwave drive [14,15]. These
processes give rise to unwanted terms in the CR effective
Hamiltonian. This necessitates the use of control techniques
such as composite pulse sequences [16,17] in order to isolate
the desired entangling dynamics. In the case of a CR gate,
such gate errors can be eliminated by a secondary control
pulse on the target qubit which, in conjunction with pulse
sequences, can result in CR gate fidelities exceeding 99%
[18]. However, the pulse sequence used in Ref. [18] is not
capable of addressing all coherent systematic errors to leading
order.

In this paper, we analyze how well a different, recently
discovered generic composite pulse sequence [19] would per-
form in the specific application of fixed-frequency transmons
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coupled via the CR effect as opposed to the conventional
approach. This sequence inserts local π rotations between
repeated application of an entangling gate to dynamically
correct all coherent systematic errors in that entangling gate,
but in practice there is a tradeoff between that reduction of
error and the introduction of errors coming from the insertion
of imperfect local π pulses. The purpose of this paper is to
examine this tradeoff for the case of CR-gated transmons and
determine the conditions for which there is a net benefit.

We theoretically simulate standard Clifford randomized
benchmarking (RB) to assess the CR gate performance and
show that, while there is no benefit to using the sequence of
Ref. [19] with current transmon noise levels and single-qubit
fidelities, as single-qubit fidelities improve the pulse sequence
could provide better two-qubit RB fidelities than the currently
used dynamical correction scheme.

II. DYNAMICAL ERROR CORRECTION
VIA PULSE SEQUENCES

We begin by summarizing the formalism developed in
Ref. [19]. We are interested in developing a protocol that
allows us to dynamically correct coherent systematic error
affecting an arbitrary two-qubit entangling gate. To this end,
Ref. [19] presented a family of composite pulse sequences
that are composed using repetitions of the nonlocal gate
(θ )ab = exp [−i(θ/2)σab], where a, b ∈ {X,Y,Z}, which can
be generated from any arbitrary two-qubit coupling along
with appropriate one-qubit rotations [20,21]. In practice, the
building block (θ )ab may contain errors, which we only con-
sider up to the leading order. Thus, we have

(θ )ab = exp
[
−i

θ

2
σab

](
I + i

∑
i, j∈{I,X,Y,Z}

εi jσi j

)
, (1)

where εi j is constant in time and is hereafter referred to as
the error in the i j error channel. The pulse sequences have the
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general form,

σ
(n)
echo(θ )abσ

(n)
echoσ

(n−1)
echo (θ )abσ

(n−1)
echo . . . σ

(1)
echo(θ )abσ

(1)
echo

= exp

[
−i

θ

2

n∑
l=1

ξlσab

]

×
{
I + i

∑
i, j

εi jσi j

n∑
m=1

ζ i j
m exp

[
i
θ

2
(χi j − 1)

m−1∑
l=1

ξlσab

]}
,

(2)

where σ
(l )
echo denotes a local π rotation of the form σcd ≡

σc ⊗ σd with c, d ∈ {I,X,Y,Z} hereafter referred to as an
echo pulse, and

ξl ≡
{ +1, if

[
σ

(l )
echo, σab

] = 0,

−1, if
{
σ

(l )
echo, σab

} = 0,
(3)

ζ i j
m ≡

{ +1, if
[
σ

(l )
echo, σi j

] = 0,

−1, if
{
σ

(l )
echo, σi j

} = 0,
(4)

χi j ≡
{ +1, if[σi j, σab] = 0,

−1, if{σi j, σab} = 0.
(5)

We refer to a sequence containing n applications of the noisy
entangling operation as a “length-n” sequence. To eliminate
the effects of the i j error channel to leading order, we require

n∑
m=1

ζ i j
m exp

[
i
θ

2
(χi j − 1)

m−1∑
l=1

ξlσab

]
= 0. (6)

To simplify this robustness condition, Ref. [19] considered
two cases: One where only commuting errors are present
(χi j = 1) and one where only anticommuting errors are
present (χi j = −1).

Let us first consider the case where we only have errors
that commute with the entangling operation (θ )ab. In this case,
Eq. (6) reduces to

n∑
m=1

ζ i j
m = 0. (7)

This immediately suggests that the robustness constraint is
satisfied only for even values of n. The robustness condition
in Eq. (7) for a length-2 sequence requires ζ

i j
1 = −ζ

i j
2 . Setting

ζ
i j
1 = 1 implies that the first echo pulse commutes with all

the errors. Without loss of generality, we can choose the first
pulse to be the identity operator for simplicity. Note that,
in order to have a nonidentity operation, the second pulse
must commute with σab, i.e., ξ2 = 1. The second pulse must
also anticommute with all the errors in order to satisfy the
robustness condition. If all potential commuting errors are
present, this is not possible since there is no choice of σ

(2)
echo

that will simultaneously anticommute with all commuting
errors, [σ (2)

echo, σi j] = 0 ∀ i j � [σi j, σab] = 0. A length-2 se-
quence can cancel four of the seven commuting error terms
while producing an entangling operation, which may be all
that is necessary in certain situations, but no more. (This can
be quickly verified for any specific choice of σab by simply
listing all possibilities, but see Appendix A for the general
proof.)

Nonetheless, with the exception of error in the ab channel
itself, all errors that commute with σab can be eliminated
to first order by using two nested applications of a length-2
sequence, i.e., a length-4 sequence. For instance, the length-4
sequence,

U (4)[(θ )ab] ≡ (θ )abσaI (θ )abσaIσcc(θ )abσaI (θ )abσaIσcc

= (θ )abσaI (θ )abσbc(θ )abσaI (θ )abσbc

= exp
[
−i

4θ

2
σab

]
(I + O(ε2)), (8)

where {σcc, σab} = 0, eliminates all commuting error channels
to first order except for the ab channel itself.

We now consider the complementary case where all the er-
rors instead anticommute with the entangling operation (θ )ab.
The robustness constraint in Eq. (6) becomes

n∑
m=1

ζ i j
m exp

[
−iθ

m−1∑
l=1

ξlσab

]
= 0. (9)

Reference [19] showed that a nontrivial solution can be found
when n = 5, ξl = 1, ζ(1,2,4,5) = ±1, ζ3 = ∓1, and θ = θ0 ≡
arccos [(

√
13 − 1)/4] ≈ 0.27π . A set of echo pulses that cor-

respond to these values are σ
(1,2,4,5)
echo = I and σ

(3)
echo = σab.

Thus, a length-5 sequence that corrects all anticommuting
errors to leading order is given by

U (5)[(θ0)ab] ≡ (θ0)ab(θ0)abσab(θ0)abσab(θ0)ab(θ0)ab

= exp
[
−i

5θ0

2
σab

][
I + O

(
ε2

anticomm

)]
. (10)

The resulting gate in Eq. (10) is nearly maximally entan-
gling, but it is not locally equivalent to a CNOT. We can,
however, construct a gate locally equivalent to a CNOT that
can serve as a two-qubit Clifford group generator by using
two applications of the dynamically corrected gate:

UClif2 = exp
[
−i

ψ

2
σ ′
]
U (5) exp

[
−i

φ

2
σ ′
]

× U (5) exp
[
−i

ψ

2
σ ′
]
, (11)

where ψ = 2 arctan[(
√

−57 + 16
√

13)/(4 − √
13 +

2
√

−7 + 2
√

13)] ≈ 0.36π , φ = −2 arccos[−1/

(2
√

−14 + 4
√

13)] ≈ −1.56π , and σ ′ ∈ {σIX , σIY , σIZ , σXI ,

σY I , σZI} such that {σ ′, σab} = 0.
It is possible to combine a length-2 (or length-4) sequence

with a length-5 sequence in order to generate a length-10 (or
length-20) sequence that can address both commuting and
anticommuting error channels simultaneously. Furthermore,
all of these pulses can also be combined with a BB1-like pulse
sequence in order to correct the ab channel errors. First-order
error in this channel can manifest from gate mistiming or
fluctuations in the effective interqubit coupling, both of which
result in over- or underrotation of the entangling operation.
We refer the reader to Ref. [19] for a more detailed discussion.

Finally, we wish to emphasize that although the rest of
this manuscript focuses on the application of the length-5
pulse sequence to fixed frequency transmon qubits, similar
considerations apply in any other scenario having the key
feature that the errors in the entangling gate anticommute
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with the entangling operator. For example, in a silicon-based
system of two double quantum dots (DQDs), each containing
a single spin, coupled through a resonator [22]. The resonator
is coupled to only one of the quantum dots, which makes the
effective coupling dependent on the magnetic gradient within
the DQD. Imperfections on the magnetic field gradient, which
can be caused by either an anisotropy in the electron g tensor
or misalignment of the local micromagnet, causes systematic
commuting and anticommuting errors to emerge. These can
be addressed by a length-5 sequence or a combination of a
length-2 and a length-5 sequence depending on the severity
of the error. However, from this point on we use numbers
appropriate for the CR gated transmon case.

III. DYNAMICALLY CORRECTED CR GATE

We now apply the formalism we summarized in Sec. II to
a CR gate. We consider a system of two fixed off-resonant
transmons that are weakly coupled to a bus resonator. We
then apply a constant-amplitude microwave driving field on
one qubit, the control qubit, at the transition frequency of
the other qubit, the target qubit. In the weak driving limit, a
block-diagonal effective Hamiltonian for a CR gate can be
perturbatively constructed using the Schrieffer-Wolff transfor-
mation [14]:

HCR
eff = 1

2
hZIσZI +

∑
j∈{X,Y,Z}

(
1

2
hI jσI j + 1

2
hZ jσZ j

)
, (12)

where the expressions for hi j in terms of the physical param-
eters are given in the Appendix of Ref. [14]. This approach
differs from previous derivation of the CR Hamiltonian [9] in
that it yields coherent error terms pertaining to higher-energy
level leakage. We note that the Hamiltonian belongs in the
embedding su(2) ⊕ su(2) ⊕ u(1) ⊂ su(4). In particular, u(1)
is generated by σZI which yields a factor in the time-evolution
operator that can be removed by applying a local Z rotation
on the first qubit. For this reason, we will ignore the effects of
the σZI term. The entangling term here is the σZX term which,
if factored out, yields

U (t ) = exp
[
− i

2
thZXσZX

]
×
[
I + i

∑
j∈{X,Y,Z}

(εI jσI j + εZ jσZ j )

]
, (13)

where εi j can be calculated analytically up to a desired or-
der using the Baker-Campbell-Hausdorff (BCH) formula. The
pulse sequence building block, (θ )ZX , can then be obtained by
setting t = θ/hZX .

In experiments, the microwave drive acting on the control
qubit often leaks into the target qubit which results in on-
resonant crosstalk. This introduces large IX and IY terms in
the effective Hamiltonian. Thus, in practice, the commuting
errors are in the ZX and IX channels, while the anticom-
muting ones are in the IY , IZ , ZY , and ZZ channels [18].
Neglecting the ZX error channel for the moment, which is
reasonable provided that the errors are static and the evo-
lution time of the entangling gate is properly compensated
through calibration, the result in Sec. II suggests that we

apply a length-2 sequence with a σXZ echo pulse to eliminate
the IX channel. In addition, this choice of echo pulse can
also eliminate any higher-order ZI channel errors that may
accumulate due to the presence of large anticommuting error
terms. Although alternatives such as σXY can serve the same
purpose, we choose σXZ in order to take advantage of novel
control methods that allow implementation of near-perfect
virtual Z gates via abrupt phase modulation of the microwave
control drive [8].

We note that Refs. [17,18] use an operationally distinct
pulse sequence called an echoed CR (ECR) gate which has
the same effect as the above length-2 sequence with an XZ
echo pulse. The key operational difference between the ECR
scheme and our length-2 sequence is the sign reversal in the
entangling operation,

ECR ≡
(π

4

)
ZX

σXI

(
−π

4

)
ZX

σXI , (14)

which can be implemented experimentally by reversing the
signal of the microwave drive (� → −�). Unlike in our
length-2 scheme, a σXI echo pulse, which anticommutes with
σZX , is applied to avoid implementing a purely local gate.
We show in Appendix B that this yields a mathematically
equivalent pulse as the length-2 sequence in the case of a
CR Hamiltonian. So in the remainder of our discussions, the
length-2 sequence and the ECR gate are equivalent.

Another approach involves applying a secondary mi-
crowave pulse onto the target qubit so as to eliminate
particular terms in the Hamiltonian [18]. This cancellation
pulse is calibrated such that it eliminates the hIX , hIY , and
hZY terms. Using the experimental parameters provided in
Ref. [18], it can be verified numerically that the remain-
ing terms have different scales, hIZ � hZZ � hZX . Thus, the
dominant source of remaining error comes from the hZZ
term of the effective Hamiltonian, which translates to errors
in the ZZ and IY channels. Although a length-2 sequence
with an XZ echo pulse (i.e., ECR) can partially suppress
these anticommuting errors, one can instead get complete
first-order correction using the length-5 sequence of Eq. (10),
U (5)[U (θ0/hZX )], with ab = ZX . Then, to obtain a two-qubit
Clifford generator, we use Eq. (11) with σ ′ = σIZ , where we
again make use of virtual Z gates. This yields an entangling
Clifford gate compensated for all relevant coherent systematic
errors to leading order.

It is important to keep in mind that the theory we sum-
marized in Sec. II assumes that the echo pulses can be
implemented perfectly. This is not the case in practice and
echo pulse errors can be detrimental to the sequence’s efficacy.
Even though a longer and theoretically better sequence can be
obtained by combining the length-2 and length-5 sequences,
the resulting length-10 sequence requires more potentially
noisy one-qubit gates to implement. So, depending on the
level of one-qubit error, a length-2 or length-5 sequence can be
more effective than a length-10 sequence. The supplemental
material of Ref. [19] indicates that one-qubit gate errors on
the order of, at most, 10−5 are required in order to build a
CNOT out of a length-20 sequence with gate error below 10−3.
This may be very difficult to realize in the near future, which
is why we focus our discussion to the length-2 and the length-
5 sequence. In principle, a ( π

2 )
ZX

gate generated using the
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ECR π
4

)
ZX

X

−π
4

)
ZX

X

Length-2 π
4

)
ZX

X
π
4

)
ZX

X

Z Z

(2θ0)ZX

Z

(θ0)ZX

Z

(2θ0)ZX (2θ0)ZX

Z

(θ0)ZX

Z

(2θ0)ZX
RZ(ψ) X X RZ(φ) X X RZ(ψ)

Length-5

FIG. 1. Circuit diagrams for the two-qubit Clifford generator implemented using the ECR, the length-2 sequence, and the length-5 sequence
[see Eq. (11)]. The top (bottom) line corresponds to the control (target) qubit. The X and Z gates are the usual Pauli gates and RZ (θ ) is a rotation
about the Z axis by an angle θ . The generated Clifford gate is locally equivalent to a CNOT gate in all cases.

length-2 sequence requires four one-qubit gates, while UCliff2

requires 14 one-qubit gates. However, by taking advantage of
virtual Z gates, we can reduce this to two and four physical
one-qubit gates, respectively.

Finally, we note that the two-qubit Clifford gate generated
by the length-2 sequence ( π

2 )
ZX

, and by the length-5 sequence
UClif2 , are different up to local Clifford rotations. In both cases,
though, the local invariants of the resulting composite gate are
equal to that of a CNOT gate. We present in Fig. 1 a circuit
diagram for each of the cases we discussed.

IV. SIMULATED RANDOMIZED BENCHMARKING

To assess the performance of our dynamically corrected
gate, we simulate standard Clifford randomized benchmark-
ing (RB) [23] using {I,X± π

2
,X±π ,Z± π

2
,Z±π ,UClif2} as our

generating set where, as an example, Xπ denotes a π rotation
about the X axis. We include quasistatic error in all local X
rotations using the following noise model:

Xθ → exp

⎡⎣−i
ε

2

rxσX + ryσY + rzσZ√
r2
x + r2

y + r2
z

⎤⎦Xθ , (15)

where {rx, ry, rz} are sampled uniformly from [−1, 1], and
ε is sampled from a normal distribution centered at 0 with
standard deviation δθ . We present in Appendix C an analyt-
ical formula that relates the one-qubit RB infidelity to δθ .
On the other hand, Z rotations are performed with no error,
corresponding to the virtual gate method described in Ref. [8].
We also calculate the trace infidelity, which is not efficiently
accessible in experiment, but is a less computationally de-
manding measure for theory, especially in the limit of very
weak noise.

We use the experimental parameters reported in Ref. [18]:
ω1/2π = 5.114 GHz, ω2/2π = 4.914 GHz, δ1/2π =
δ2/2π = −0.330 GHz, �/2π = 60 MHz, and J/2π = 3.8
MHz. The evolution time for the building block of the
length-2 sequence ( π

4 )
ZX

is t = π/(4hZX ) = 49.2 ns, while
that of the length-5 sequence (θ0)ZX is t = θ0/hZX = 54 ns.
In order to simulate the effect of the cancellation pulse, we
only include hIZ , hZX , and hZZ in our effective Hamiltonian.
Furthermore, we ignore relaxation errors in our simulations
and focus solely on coherent systematic error. Each point

in the decay curve of our RB simulations are averaged over
1000 different sequences and noise realizations. The sequence
length is set just enough to find a good fit for the survival
probability function apk + b, where a, b, and p are fitting
parameters and k is the sequence length. The results of our
simulations are presented in Fig. 2.

Note that we do not include the initial portion of the decay
from 100% down to around 90% (not plotted) in the fit,
since there is nonexponential behavior there, particularly in
the case of the length-5 decay. Nonexponential decay is com-
monly attributed to gate-dependent errors or low-frequency
time-dependent noise [24], both of which are present in our
simulations. Gate-dependent errors are present because we
simulated RB with perfect Z gates but noisy X gates, as in
experiments. Low-frequency noise effects appear because we
perform each individual RB run with a fixed set of randomly
generated noisy one-qubit Clifford group, again correspond-
ing to the likely experimental case. We keep generating new
sets of noisy Clifford gates until we exhaust all of our RB
sequences. This builds statistics consistent with the distri-
bution from which the noisy one-qubit gates are generated.
A nonexponential decay is obtained by averaging over this
ensemble of RB data.

We find that the length-2 sequence performs similarly to
the length-5 sequence when the one-qubit RB error is set to
3 × 10−4 to match Ref. [8]. The length-2 sequence yields
a fidelity of 99.7% and the length-5 sequence, which takes
about five times as long (540 ns +4t1Q vs 98 ns +2t1Q, where
t1Q denotes the echo pulse gate time), yields 99.8% [25].
However, if the one-qubit errors were reduced, we see that
the length-5 sequence increasingly outperforms the length-2.

We can gain further insight by comparing the performance
of the two pulse sequences in the limit where there are no
one-qubit errors. For this task we use the trace fidelity since
simulated randomized benchmarking requires simulating in-
creasingly long sequences to obtain enough fidelity decay to
fit as the one-qubit gate error is reduced. We rearrange Eq. (1)
and isolate the error terms:

δU = exp
[ i

2
thZXσZX

]
U (t ) − I

= i
∑

j∈{I,X,Y,Z}
εI jσI j + εZ jσZ j .
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FIG. 2. (a) Solid symbols show randomized benchmarking (RB)
two-qubit Clifford gate infidelity as a function of one-qubit RB
infidelity for the length-2 and length-5 sequences. A current exper-
imentally attainable value of one-qubit infidelity is 3 × 10−4 [8],
corresponding to the RB points in the center of the plot. Open sym-
bols show the trace fidelity. (b) A standard RB decay plot comparing
the length-2 and length-5 sequences for the case where one-qubit
infidelity is set to 3 × 10−5.

We numerically calculate this for both schemes, assuming
perfect one-qubit gates, and get

δUL2 = −2.4 × 10−4I + .015i(σIY − σZZ )

+ 7.5i × 10−4(σIZ + σZY ) + 3.5i × 10−4σZX ,

δUL5 = −2i × 10−5σIX − 4.8i × 10−4σZX ,

where we have omitted any error terms with magnitudes
below 10−5. Since the gate infidelity is proportional to ε2

i j ,
we see that the length-5 scheme can reach error rates on the
order of 10−7 at best, while the length-2 scheme can only
reach 10−4. The much lower ideal infidelity of the length-5
sequence is because it cancels all the leading order errors
in U (t ), whereas the length-2 sequence is not capable of
eliminating the anticommuting error channels IY and ZZ . Of
course, the actual performance of both sequences is highly
dependent on the severity of the one-qubit gate imperfections,
as is evident in Fig. 2, but one can see there that the trace
infidelity of the length-5 sequence keeps decreasing with

decreasing single-qubit error while the length-2 sequence
plateaus in the 10−4 region. Moreover, the crossing point
where the length-5 is predicted to outperform the length-2
sequence occurs when the one-qubit infidelity is roughly
1 × 10−4. This indicates that the length-5 sequence may be
experimentally viable in the near future if one-qubit gate
fidelities can be brought above 99.99%.

One caveat to this conclusion is that, as previously noted,
the two-qubit Clifford generated from length-5 sequences is
about five times slower than its length-2 counterpart. Thus, the
length-5 sequence will suffer more from T1 relaxation error,
and its contribution to gate infidelity goes roughly as Tgate/T1

[26]. One could consider increasing the CR drive amplitude
� to speed up the gate. Numerical analysis of the CR gate
in the strong driving regime indicates that the Hamiltonian
terms that we considered as systematic error cannot be treated
perturbatively when using a naïve cosine ramp model for the
drive [15]. These terms can potentially be minimized while
reducing the CR gate time by using pulse shapes derived from
optimal control schemes which can result in CR gates under
100 ns [27]. Alternatively, one could also consider increasing
the coupling between the qubits to speed up the gate, since
the corresponding increase in σZZ crosstalk due to unwanted
excitations to higher energy transmon states would anyways
be canceled by the length-5 sequence, but the issue is that the
diminished qubit addressability would likely lower one-qubit
echo pulse fidelities. However, at least the task of engineering
a high-fidelity two-qubit gate is then effectively reduced to the
problem of engineering high-fidelity local gates.

Without those sort of changes to speed up transmon op-
erations, one has to consider in more detail the trade-off
between reduction of coherent error by the length-5 sequence
and increased incoherent error due to the longer gate time
of the sequence. We aim to quantify this now by analyzing
the effects of decoherence. For simplicity, we only consider
dephasing and relaxation from the first transmon excited state
to the ground state. Using the same parameters as above
and setting the ground-state energy to zero, we simulate the
evolution by a Lindblad master equation,

ρ̇ = −i
[
HCR

eff , ρ
]+ 1

T1

∑
j=1,2

D[σ−
j ]ρ + 1

T CPMG
2

D
[
�1

j

]
ρ,

(16)

where ρ is the density matrix, T1 is the relaxation time of the
two qubits, T CPMG

2 is the dephasing time measured via Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence (used here as
a lower bound on T2), σ−

j (�1
j) is the jth qubit’s lowering

operator (projection operator to the |1〉 state), and D is the
damping superoperator,

D[A]ρ = AρA† − 1
2A

†Aρ − 1
2ρA†A. (17)

In order to focus on the role of decoherence, we assume that
each one-qubit gate in the sequence is implemented without
coherent or leakage errors and with an average gate time of
30 ns [18] during which the transmons can relax. The average
two-qubit infidelity can then be calculated [28]:

〈F 〉 = 1

16

[
4 + 1

5

∑
i, j=I,X,Y,Z

tr
[
Uσi jU

†M(σi j )
]]

, (18)
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FIG. 3. A contour plot of two-qubit infidelity as a function of relaxation time T1 and echoed dephasing time T CPMG
2 for the length-2

sequence (left) and the length-5 sequence (right), assuming one-qubit gates with no coherent or leakage errors and an average gate time of
30 ns. Unphysical regions where T CPMG

2 > 2T1 are excluded. The dashed cyan contour indicates the crossing point where the two sequences
have equal infidelities. The same colorscale is used for both panels.

where U is the ideal unitary time-evolution operator, M is
a trace-preserving linear map, and σi j = σi ⊗ σ j are the 15
nonidentity Kronecker products of Pauli matrices. We plot the
results in Fig. 3.

The current state-of-the-art transmons can achieve average
coherence times of T1 = 0.23 ms and T CPMG

2 = 0.38 ms [29].
For those values, as opposed to the case of purely coherent
error considered in Fig. 2, Fig. 3 indicates that even in the
absence of one-qubit coherent gate error, the length-5 se-
quence does not outperform the length-2 sequence due to the
effects of incoherent error over the longer gate time. How-
ever, at increased coherence times of T1,T CPMG

2 ≈ 1.6ms, the
fidelity of the length-5 sequence begins to surpass that of
the length-2 sequence. For T1,T CPMG

2 � 1 ms the perfor-
mance of the length-2 sequence plateaus at 3.8 × 10−4, while
the length-5 sequence continues to show improvement until it
also eventually plateaus at roughly 3 × 10−7, consistent with
what we observed in Fig. 2(a).

Thus, while the length-5 sequence is not currently practi-
cal, given the rate of improvement in coherence times in recent
years (roughly an order of magnitude every three years) [30]
and the amount of attention being devoted to this task [31],
it is reasonable to expect the length-5 sequence to become a
viable option in the near future.

V. SUMMARY

We have shown how to dynamically correct a CR gate
using a recently developed composite pulse sequence and we
theoretically simulated a randomized benchmarking protocol
for an experimentally accessible comparison of its perfor-
mance with the standard ECR scheme, which is equivalent
to a length-2 pulse sequence. The application of a cancel-
lation pulse onto the target qubit eliminates a significant

amount of coherent systematic error from the effective CR
Hamiltonian. The length-2 sequence cannot address all of the
remaining dominant errors, all of which anticommute with
the entangling operation, but the newly developed length-5
sequence can, at the cost of additional local rotations and a
slower entangling gate. We find that both sequences perform
similarly against coherent error when using one-qubit gates
with currently achievable fidelities. However, we also show
that the length-5 sequence performance could scale much
better than the length-2 sequence when one-qubit gates are
improved.

The pulse sequences we presented can be easily extended
to systems with more than two fixed transmon qubits. Ideally,
any given pair of control and target qubit must be decoupled
from the remaining idle qubits when generating a two-qubit
operation. In cases where more than two qubits share the same
bus, the static always-on coupling can lead to spurious Z inter-
actions with one or more of the idle qubits. One work-around
to this problem is by performing the CR operation on the con-
trol and target qubit while decoupling the idle qubits through
Hahn-echo-like pulses [32,33]. We can apply the same idea to
the length-2 and length-5 sequence in order to simultaneously
address entangling gate errors within the control-target sub-
space and spurious errors with the idle qubits. However, the
additional echo pulses required to implement this makes the
sequence even longer than it already is.

The long gate time of the length-5 sequence already makes
it impractical for current coherence times, as the improve-
ment the sequence is designed to produce against coherent
errors is outweighed by the increased susceptibility to inco-
herent errors. However, once coherence times are increased
beyond 1 ms, the sequence we have presented in this pa-
per will become useful for increasing overall two-qubit gate
fidelity.
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APPENDIX A: ANALYSIS OF THE LENGTH-2 SEQUENCE

In Sec. II we noted that if all potential commuting er-
rors are present then there exists no σecho = σcd with c, d ∈
{I,X,Y,Z} that can satisfy

{σecho, σi j} = 0 ∀ i j � [σi j, σab] = 0. (A1)

To prove this, we begin by making the observation that
there exists a maximal embedding a ⊕ b ⊂ su(4) [34], where
“⊕” implies commutation of elements between the respective
subalgebras. Let us take a = u(1) with σab as its generator.
This means all the generators of b, which we denote as b =
{b1, b2, . . . bn}, commute with σab. Thus, not only do error
channels that commute with σab belong in this embedding, but
the echo pulse also must belong to the corresponding group
embedding since it also needs to commute with σab in order
for the sequence to produce a nonidentity operation. Without
losing any generality, we can partition b into two subsets as

b = {
{σi j}︷ ︸︸ ︷

b1, b2, . . . |
b\{σi j}︷ ︸︸ ︷
. . . bn},

where the left partition contains all the commuting errors that
are relevant in the system while the right partition is the coset
containing the remaining elements of the generating set of the
subalgebra. A σecho which anticommutes with everything on
the left partition and commutes with σab can only exist in the
coset. If all the possible commuting errors are present, then
all the elements of b must belong to the left partition, which
leaves no possibility for σecho. In other words, if all commuting
errors are present, then there exists no σecho that can satisfy
Eq. (A1) which proves our claim.

When b is a semisimple Lie algebra, not all the elements
of the coset b \ {σi j} will necessarily anticommute with all
elements of {σi j}. Nonetheless, if the coset happens to contain
a σecho which anticommutes with all the relevant error chan-
nels σi j , it can be used for error correction. We now show that
this is actually the case for the length-2 sequence. But before
proceeding further, we first remark that the construction in
Sec. II relies on the commutation and anticommutation rela-
tions of two-qubit Pauli operators. For this reason, we restrict
ourselves to embeddings which contain the subalgebra b with
spinor representation: so(4) ∼= su(2) ⊕ su(2) [35]. Given our
choice a = span(σab) as the u(1) subalgebra, there are two
choices for b.

In the first case with a = b, all the elements of the gener-
ating set {σmI , σIm, σnn, σpp, σmp, σpm}, where m = a, n, and
p are mutually distinct and arranged cyclically (e.g., m =
Z, n = X, p = Y ), commute with σaa. We can define the gen-
erators of the commuting su(2) subalgebras as σ±

X̃
≡ (σmI ±

σIm)/2, σ±
Ỹ

≡ (σnp ± σpn)/2, and σ±
Z̃

≡ (σpp ∓ σnn)/2.
In the second case with a �= b, all the elements of the gen-

erating set {σmI , σIn, σnm, σnp, σpm, σpp} commute with σab,
where now we have m = a and n = b. The generators can

be defined as σ±
X̃

≡ (σmI ± σIn)/2, σ±
Ỹ

≡ (σnp ∓ σpm)/2, and
σ±
Z̃

≡ (σpp ± σnm)/2.
In either case, any error channel or echo pulse lies in

the subspace spanned by the “+” and “−” generators (e.g.,
σaI = σ+

X̃
+ σ−

X̃
). Therefore, any given echo pulse can only

anticommute with errors belonging to a different subspace. As
an example, since the σaI echo pulse belongs to the subspace
spanned by the σX̃ generators, then only errors that belong in
the σỸ and σZ̃ subspaces can be eliminated by a length-2 se-
quence. Therefore, if all the present commuting errors belong
to at most two subspaces only, then the length-2 sequence
is sufficient for fixing the errors to first order. The transmon
qubit in the main text falls in this category.

A more precise statement of our initial claim is that the
length-2 sequence is not capable of correcting errors from
all three subspaces. However, placing the initial length-2 se-
quence inside another length-2 sequence which uses an echo
pulse that anticommutes with the initial one allows us to
eliminate errors from all three subspaces simultaneously. If
we use σaI for our first sequence’s echo pulse, the second echo
pulse must be in the σỸ or σZ̃ subspace in order to satisfy the
robustness condition. Clearly, though, the u(1) term cannot be
corrected by a length-2 sequence since it commutes with every
allowable echo.

APPENDIX B: EQUIVALENCE OF THE LENGTH-2
SEQUENCE AND THE ECR SCHEME

In this section we will show that the ECR scheme is math-
ematically equivalent to a length-2 sequence with a σXZ echo
pulse. We begin by noting that the hIZ and hZZ terms in the
effective Hamiltonian of a CR gate are proportional to �2,
whereas the hZX and hIX are only proportional to �. Thus, in
the absence of noise, the evolution can be generally expressed
as

U (�, t ) = exp[−it (�2(aσIZ + bσZZ ) + �(cσZX + dσIX ))],

(B1)

where a, b, c, and d are given in Appendix C of Ref. [14].
Using the pulse sequence in Eq. (14), we have

U (�, t )σXIU (−�, t )σXI .

The change from � → −� flips the sign of terms that are
linearly proportional to �. Furthermore, the two σXI surround-
ing U (−�, t ) flip the sign of terms in the exponential which
anticommutes with σXI . Thus, the cumulative effect of this
sequence is

U (�, t )σXIU (−�, t )σXI

= exp[−it
(
�2(aσIZ + bσZZ ) + �(cσZX + dσIX ))]

× exp[−it (�2(aσIZ − bσZZ ) − �(−cσZX + dσIX ))].

(B2)

On the other hand, a length-2 sequence with a σXZ echo
pulse yields

U (�, t )σXZU (�, t )σXZ

= exp[−it (�2(aσIZ + bσZZ ) + �(cσZX + dσIX ))]

× exp[−it (�2(aσIZ − bσZZ ) + �(cσZX − dσIX ))], (B3)
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where now we flip the sign of terms in the second exponential
which anticommute with σXZ . We see that in either case the
final products are exactly equivalent.

APPENDIX C: ANALYTICAL EXPRESSION
FOR ONE-QUBIT CLIFFORD RB FIDELITY

We now present an analytical expression for the Clifford
RB fidelity of a one-qubit gate under the error model given in
Eq. (15). In summary, the goal of Clifford RB is to provide a
simple, robust, and scalable method for benchmarking the full
set of Clifford gates through randomization. The randomiza-
tion process, also known as twirling, produces a depolarizing
channel whose average fidelity can be modeled and experi-
mentally measured. Since the average fidelity of a quantum
operation is invariant under the twirling process [36,37], the
measured fidelity is representative of the original untwirled
operation. For a more detailed discussion of Clifford RB, we
refer the reader to Ref. [23].

The key to creating a depolarizing error channel lies in
the fact the uniform probability distribution over the Clifford
group C comprises a unitary two-design. By definition, this
gives the twirling condition,

1

|C|
|C|∑
i=1

(C†
i �Ci )(ρ) =

∫
U (d )

(U †�U )(ρ)dU, (C1)

where Ci are elements of the Clifford group, � is an arbitrary
quantum channel acting on the system, and the integral is
taken with respect to the Haar measure onU (2n) with n being
the number of qubits. The integral in Eq. (C1) produces a
unique depolarizing channel �d with the same average fidelity
as � [36,37]. The depolarizing channel is modeled by

�d(ρ) = pρ + (1 − p)
I

2n
,

whose fidelity (as well as �’s) is given by

F = p+ 1 − p

2n
.

To estimate the average fidelity of one qubit under the error
model given in Eq. (15), we simply replace � accordingly and
evaluate the sum:

1

|C|
|C|∑
i=1

(
C†
i exp

[
− i

ε

2
r̂ · �σ

]
Ci
)

(ρ)

= 1

|C|
|C|∑
i=1

C†
i exp

[
− i

ε

2
r̂ · �σ

]
CiρC†

i exp

[
i
ε

2
r̂ · �σ

]
Ci

= I

2
+ 1 + 2 cos(θ )

3

ρ̂ · �σ
2

. (C2)

Since ρ = I+ρ̂·�σ
2 , then we must have

p = 1 + 2 cos (θ )

3
.

Thus, the average Clifford RB fidelity is

F = 2 + cos (θ )

3
. (C3)

In the main text we noted that we used virtual gates in our
simulations. This means that any Z gates in the Clifford group
are treated as noiseless gates. Thus, we can approximate the
fidelity when using virtual Z gates by appropriately weighting
the fidelity of the 24 one-qubit Clifford gates:

FVZ = 20F + 4

24
= 13 + 5 cos (θ )

18
, (C4)

where we assumed that we had four noiseless gates
(I,Z,Z± π

2
). Assuming a Gaussian noise model with a standard

deviation δθ , we can average over noise realizations and get

FVZ = 1√
2πδθ2

∫ ∞

−∞
exp

[−θ2

2δθ2

]
13 + 5 cos(θ )

18
dθ

= 13 + 5 exp
[− δθ2

2

]
18

. (C5)
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