
Diving into a simple anguilliform swimmer’s sensitivity

Nicholas A. Battista

Dept. of Mathematics and Statistics, 2000 Pennington Road, The

College of New Jersey, Ewing Township, NJ 08628, USA

battistn@tcnj.edu

July 8, 2021

Abstract

Computational models of aquatic locomotion range from modest individual simple

swimmers in 2D to sophisticated 3D multi-swimmer models that attempt to parse

collective behavioral dynamics. Each of these models contain a multitude of model

input parameters to which its outputs are inherently dependent, i.e., various perfor-

mance metrics. In this work, the swimming performance’s sensitivity to parameters

is investigated for an idealized, simple anguilliform swimming model in 2D. The

swimmer considered here propagates forward by dynamically varying its body cur-

vature, similar to motion of a C. elegans. The parameter sensitivities were explored

with respect to the fluid scale (Reynolds number), stroke (undulation) frequency,

as well as a kinematic parameter controlling the velocity and acceleration of each

upstroke and downstroke. The input Reynolds number and stroke frequencies sam-

pled were from [450,2200] and [1,3] Hz, respectively. In total, 5000 fluid-structure

interaction simulations were performed, each with a unique parameter combination

selected via a Sobol sequence, in order to conduct global sensitivity analysis. Re-

sults indicate that the swimmer’s performance is most sensitive to variations in its

stroke frequency. Trends in swimming performance were discovered by projecting

the performance data onto particular 2D subspaces. Pareto-like optimal fronts were

identified. This work is a natural extension of the parameter explorations of the

same model from [1].

Keywords: aquatic locomotion; anguilliform motion; fluid-structure interaction; immersed

boundary method; sensitivity analysis; Sobol sensitivity
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1 Introduction

Mathematical models inherently depend on parameter estimation and selection. In the

study of disease [2] or drug epidemics [3], transmission and recovery rates are estimated

based on available epidemiological data. Similarly, scientists investigating cellular pro-

cesses, immunology, or oncology may attempt to fine tune model parameters based off

experimental data available to investigate novel therapies [4, 5, 6]. Parameter explorations

have provided insight into a number of organismal systems, including odor-capture by

crabs [7], soaring strategies of birds [8], or tubular heart pumping [9]. A chief focus in each

of these studies involved not only explorations within a particular input parameter space,

but the sensitivity of the model’s output to the model’s input parameters. A system is

sensitive to an input parameter, if slight variations in the parameter result in significant

changes in the system’s output. Global sensitivity analyses quantify the impact of pa-

rameter uncertainty (inputs) on the overall model prediction uncertainty (outputs) in a

holistic fashion [10]. These analyses attempt to determine which parameters, or their

combinations, are most sensitive for the system output across a given parameter space.

In organismal biology contexts, uncertain parameters, or fluctuations in parameters,

could be viewed slightly differently than those in some population epidemiology or cel-

lular contexts. Rather than only focusing on fine tuning model parameters to match

experimental data, variations in parameters could be interpreted as biodiversity, even ex-

tending towards evolutionary contexts by exploring robustness of a performance metric

to parameter sensitivities [11, 12, 9]. In particular, biodiversity has highlighted elegant

“many-to-one mapping” solutions, where different morphologies (form) can lead to sim-

ilar performance (function) [13, 14]. However, not all combinations of traits produce

similar performance. To that extent, slight variations may to lead non-linear conse-

quences in functional performance [15]. Upon exploring regions of higher performance

within performance landscapes, global sensitivity analysis can determine what variation

(or combinations thereof) induce the greatest changes in performance. Thus one is able

to rank the importance of specific traits for maintaining a particular performance level

(within a specific region on the landscape) while assessing its robustness. Furthermore,

quantifying such sensitivities could further provide insight into the evolution rate of a

given mechanical system [16, 17].

In the spirit of interdisciplinary collaboration from the 2020 SICB Symposium Melding

Modeling and Morphology: integrating approaches to understand the evolution of form

and function, this paper highlights a formal mathematical approach for assessing the

sensitivity of a model’s output due its input parameters. This paper explores the global

sensitivity analysis of a mathematical model of a biological system - an idealized swimmer

that resembles an aquatic nematode. The selection of a fluid-structure interaction model

was two fold: (1) to illustrate that such global sensitivity analysis can be performed on
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a complex model and (2) to highlight the challenges (necessary computational resources)

to perform such an analysis on a computational fluid dynamics model. The swimmer

itself, in resembling a nematode, propagates itself forward through its fluid environment

by varying its body curvature, i.e., bending [18, 19, 20, 21], see Figure 1.

Previous experimental work directly focused on C. elegans has highlighted that vari-

ations in bending frequency impact locomotion performance at low Reynolds numbers

(Re < 1) [21]. The Reynolds number is a dimensionless number that is given as a com-

bination of four parameters: two parameters describing the physical properties of the

fluid - its density and viscosity, ρ and µ, respectively, and two system parameters - a

characteristic length scale, L and characteristic velocity scale, V . Mathematically, it is

given as

Re =
ρLV

µ
. (1)

Low Re situations arise when viscous forces are much greater than inertial forces. Many

computational models of nematodes have only considered the low Reynolds limit, i.e.,

the Stokes flow Regime (Re = 0) [22, 23, 24]. However, anguilliform swimming gaits are

observed in other organisms, such as fly larva, leeches, eels, or lamprey [25, 26, 27, 28].

These organisms are much larger and live at intermediate Re (Re ∼ 10s or 100s) or

higher Re (Re & 1000) ranges. A recent computational study sought out to explore

the effectiveness of this anguilliform gait across a variety of fluid scales, f , and intrinsic

curvature dynamics [1].

This work continues that of [1], which explored the same idealized anguilliform swim-

mer’s performance through thorough extensive parameter subspace investigations. The

parameter space considered was composed a fluid scaling parameter, given by an input

Reynolds number (Rein), the stroke (undulation) frequency (f), and a kinematic control

parameter (p). The kinematic parameter controls the velocity and acceleration of the

swimmer’s body curvature as it undulates between a concave up and concave down state.

That is, it controls each stroke’s acceleration from rest in its current curvature (concav-

ity) state to its maximal velocity and back to rest in its next curvature (concavity) state.

Previous experimental work suggests that a nematode’s undulatory amplitude does not

change when places in increasing viscosity environments [29], i.e., decreasing Re settings;

however, this work will show that does not appear be the case as Re increases.

While [1] performed extensive parameter explorations using the same anguilliform

swimmer model, specific 2D slices through the overall 3D parameter space were chosen in

which to investigate swimming performance. The 2D slices were chosen in a rectangular

fashion. For example, as the entire parameter space considered was Rein × f × p =

[0.3, 4500]× [1, 2.5]× [0.075, 0.425], one 2D slice could be all (Re, f) combinations for p =

0.25. The range of Rein given above is based off the definition of input Reynolds number

provided in Eq. 2. Although this systematic approach allows one to identify a parameter
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subspace that results in desired swimming performance, i.e., determine threshold forward

swimming speeds or cost of transports, it has a few significant drawbacks. First, it is

unclear whether the resulting performance data could be interpolated with any accuracy

between parallel 2D slices due to nonlinear relationships that may exist. Second, it is

restrictive in that it does not allow one to perform a formal global sensitivity analyses

on 3D parameter space, due to the manner in which the 3D space is sampled. Thus you

cannot determine which parameter (or combinations thereof) most significantly affect the

model’s output across the input parameter ranges considered.

The anguilliform swimmer model explored here has substantial forward swimming

speeds when Rein & 450 [1]. Therefore, with the goal of performing global sensitivity anal-

yses, the selected parameter subspace to perform the analyses was Re ∈ [450, 2200], f ∈
[1, 3] Hz, and p ∈ [0.05, 0.45]. In the remainder of this paper, Sobol sensitivity analysis

[30] is performed on a variety of swimming performance metrics over the parameter ranges

above. By comparing multiple output metrics sensitivity to parameters it is possible to

determine how different performance metrics may have differing parameter sensitivities,

both in determining which parameter it is most sensitive to as well as its relative impor-

tance (magnitude). Discernible patterns are also uncovered in swimming performance by

projecting the 3D parameter space sampled onto specific 2D subspaces. Furthermore,

Pareto-like optimal fronts in swimming performance are identified across various combi-

nations of the input parameters [31, 32, 33]. Lastly, the parameter sensitivity suggested

by these Pareto-like fronts is consistent with that of the formal Sobol sensitivity analysis.

Both Sobol sensitivity analysis and Pareto-like optimal fronts will be described in further

detail in Sections 2 and 3, respectively.

2 Methods

In this work, I continued the investigation of the anguilliform swimming model first

presented in [34] and further explored in [35, 1]. To propagate forward, i.e., swim, the

swimmer changes the curvature along its 1D body, a motion that resembles an aquatic

nematode [36, 20], see Figure 1. Its total stroke (undulation) cycle is compromised

of both an upstroke and downstroke, which end when the swimmer’s body is either

concave down and concave up, respectively. As the swimmer propagates forward, it leaves

behind a vortex wake. This observation suggests that hydrodynamic force generation by

dynamically changing curvature is sufficient for locomotion [37]. The swimmer given

in Figure 1 corresponds to the case of (Rein, f, p) = (1011.75, 1.6875, 0.4125). As these

parameters are varied, the swimmer’s performance may substantially change, as can be

seen in Figures 6, 7, and 8 (and as shown in [1]).
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Figure 1: An illustration of how the swimmer changes its preferred curvature to propagate
forward during the 2nd through 5th stroke cycles. Snapshots of the swimmer and the
associated fluid vorticity (colormap) are given at the beginning of each successive stroke
cycle. The definition of the peak-to-peak amplitude, A, is given. This amplitude is an
output of the model.

I used the open-source fluid-structure interaction software, IB2d [38, 39, 34], based on

the immersed boundary method (IB) [40] to perform the computational fluid dynamics

simulations. This framework allows one to study this particular anguilliform swimming

mode in an incompressible, viscous fluid, thus allowing for studies across numerous fluid

scales i.e., Reynolds numbers. This anguilliform model is one of the built-in examples

contained in the software offered to the scientific community. It can be found at github.

com/nickabattista/IB2d in the sub-directory:

IB2d/matIB2d/Examples/Examples Education/Interpolation/Swimmer.

A background introduction to IB and the swimmer’s implementation are provided

in the Supplemental Materials; greater detail regarding the mathematical framework,

formulation, and implementation can be found in [34, 35, 1]. The computational grid,

temporal, and material property parameters are identical to those used in [1]; they are

given in Table S1 in the Supplemental Materials. The model parameters varied in this

study are an input Reynolds Number, Rein, stroke (undulation) frequency, f , and a

kinematic control parameter, p. The kinematic parameter, p, helps govern the kinematic

profile of each stroke. Although, each upstroke (or downstroke) always performs an

undulatory motion, varying p is akin to changing the acceleration and velocity through

stroke pattern itself. That is, it controls how quickly each stroke accelerates from rest in

the starting curvature (concavity) state, to its maximal velocity, and back to rest in the

other curvature (concavity) state.
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In other words, in this study I varied one parameter that encompasses size variations

(the input Reynolds number, Rein), another that details how often swimming movement

patterns are performed (the frequency, f), and a third that changes the intrinsic kine-

matics within each stroke (kinematic parameter, p). The model parameter ranges were

slightly different than those in [1]. Here a 3D parameter subspace was selected based

on the previous explorations in which there was significant forward swimming speed:

Rein× f × p = [450, 2200]× [1, 3] Hz× [0.05, 0.45]. The range of f was selected to center

about the undulation frequency that C. elegans display while swimming in water, roughly

2 Hz [21, 41]. Although, in wet granular media C. elegans swim with frequencies around

∼ 1 Hz as well as exhibit faster swimming behavior [36, 42]. On the other hand, C.

elegans undergoing dietary restrictions undulate at higher frequencies of ∼ 3 Hz while

also swimming faster than the control [21]. Other anguilliform swimmers such as eels and

lampreys swim at higher frequencies. For example, eels have been observed to steadily

swim with an undulation frequency of ∼ 3 Hz [43]. Thus, the range of frequencies was

chosen to be between [1,3] Hz. The values of the kinematic parameter p were chosen to

span the range in which lead to a symmetric interpolation function, see Figure S1 in the

Supplemental Materials.

To achieve the desired input Reynolds number, Rein, first a tuple was selected, i.e.,

Rein, f, p), followed by finding the appropriate dynamic viscosity, µ, to give the appro-

priate Rein, i.e.,

Rein =
ρL(fL)

µ
, (2)

where L is the swimmer’s bodylength (characteristic length) and the product fL gives

an input frequency-based velocity scale. In anguilliform studies it is common to use the

product of f and a peak-to-peak undulation amplitude, A, as the characteristic velocity

when calculating Re. However, since undulation amplitude is an output of the model

and cannot be known a priori, I elected to use a characteristic velocity seen in fish

literature as an input velocity scale, fL [44, 45, 46]. Illustrations of the peak-to-peak

amplitude, A are given in Figures 1 and 2. The output Reynolds number is defined as

Reout = ρ · L · fA/µ, whose frequency based velocity scale is given as fA. Comparisons

of the input and output Reynolds numbers, Rein and Reout, respectfully, are provided in

the Supplemental Materials.

A variety of swimming performance metrics were computed in each simulation. The

motivation behind calculating multiple metrics was to identify whether different perfor-

mance metrics were most sensitive to different input parameters. Rather than report the

dimensional swimming speed, Vdim, for each simulation, swimming speeds are provided in

dimensionless form, given by the inverse of the Strouhal number. The Strouhal number

is defined as

St =
fA

Vdim
. (3)
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where A is the peak-to-peak undulation amplitude, see Figures 1 and 2. Note that A is

an output of the model itself, whose changing values due to variations input parameter

changes was also analyzed.

The Strouhal number has been used previously to assess efficient swimming [47, 48].

It compares the wavespeed to the average speed of the swimmer. Three other perfor-

mance metrics were computed: a power-based cost of transport [49, 28], COT , a distance

effectiveness ratio, deff , and an angular trajectory metric, θ. The COT provides the ener-

getic cost per unit speed of the swimmer, deff compares the forward distance swam to the

total linear distance swam overall, and θ indicates how horizontal the overall swimming

movement stayed. All of these quantities are provided in non-dimensional units, i.e.,

COT =
1

N

1

Vdim

1

ρ(fA)2L2

N∑
j=1

|Fj||Uj| (4)

deff =
DS

DTot

(5)

θ =
1

N

N∑
j=1

tan−1

(
YH(t)− YM0

XH(t)− xM0

)
(6)

where DS and DTot are the forward distance swam (horizontal distance) and total linear

distance moved by the swimmer during a specific period of time encompassing N time-

points. Fj and Urj are the applied force and tangential body velocity of the swimmer,

at the jth time step, respectively. The applied force was computed as the force perpen-

dicular to the original direction of motion of the swimmer. XH(t) and YH(t) are the

time-dependent Lagrangian position of the swimmer’s head and (XM0, YM0) is the initial

position of the last point along the straight section of the swimmer’s body (see Figure

2). The non-dimensional COT is similar the energy-consumption coefficient in [49].

7



Figure 2: (a) The swimmer’s geometry is composed of a straight line segment and a
curved portion, given by a cubic polynomial. The swimmer’s height, h, is the height of
the curved portion off the straight segment. It remained uniform across all simulations.
(b) The definitions for the angular trajectory off the horizontal (θ), as measured off the
swimmer’s head and a fixed point along the horizontal (last point along the straight
portion of the swimmer’s body), the horizontal distance swam (DS), and the total linear
distance moved by the swimmer (DTot). The swimmer in (b) corresponds to the case of
(Rein, f, p) = (270, 1.25, 0.25). Figure adapted from [1].

To assess this swimming model’s overall sensitivity to its parameters, I sampled the

overall parameter space using Saltelli’s extension of the Sobol sequence [10, 50]. A total

of 5000 combinations were selected, {(Rein, f, p)j}5j=1000, in which to simulate the model.

Once the simulations were performed, they were analyzed to produce a peak-to-peak un-

dulation amplitude A and a Strouhal number, St, and thereby a time-averaged forward

swimming speed (1/St), deff , COT , and θ. Once the metrics were computed, Sobol

sensitivity analysis could then be conducted. Sobol sensitivity is a variance-based sensi-

tivity analysis that can provide global sensitivity to parameters, rather than only local

sensitivity [51, 52]. By quantifying global sensitivity, one can determine which parame-

ter, when varied within a particular range, results in the most significant changes in the

model’s output, even with respect to other parameters being varied [50, 52]. More detail

regarding global vs local sensitivity analyses is provided in the Supplemental Materials.

The workflow for the entire simulation and sensitivity analysis process is illustrated

in Figure 3.

Figure 3: Workflow of the entire simulation and global sensitivity process

3 Results

A Sobol sequence was generated using N = 1000 and d = 3 (the dimension of the

parameter space) using Saltelli’s extension of the Sobol sequence [10, 50] for a total of

N(d + 2) = 5000 different parameter combinations to be simulated in order to find the
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Sobol sensitivity indices of each performance metric. The simulations were performed on

The College of New Jersey’s high performance computing cluster [53]. As each simulation

took approximately ∼ 24 hours to run, the entire effort of this study took required

approximately a total of 120,000 computational hours.

Once the swimming performance metrics were computed, the Sobol sensitivity indices

were found [30, 50]. Figure 4 provides the indices for both the first-order and total-order

parameter interactions. Over the input parameter ranges considered, the performance

metrics were most sensitive to variations in stroke (undulation) frequency, f . Moreover,

higher-order interactions appear to exist, as the first-order and total-order indices are not

equivalent. However, both indicate that system is most sensitive to f . This remained

true for the dimensional swimming speed and cost of transport data, see Figure S7 in

the Supplemental Materials. The degree of sensitivity to each parameter did vary among

the output metrics. While this study only varied Rein, f , and p, it is possible that the

performance metrics could be more sensitive to other parameters not explored here, such

as variations in the swimmer’s morphology [54, 55, 56, 57].

Figure 4: (a) First-order and (b) Total-order Sobol indices of the three varied parameters
Rein, f , and p for 5 swimming performance metrics: non-dimensional swimming speed
(1/St), Strouhal number (St), non-dimensional cost of transport (COT ), a distance ef-
fectiveness ratio (deff ), and the average angular trajectory from horizontal (θ).

With only the Sobol indices in hand, it is unclear how the performance metrics are

sensitive to f , e.g., if f is increased, it is unclear whether swimming speeds would increase

or decrease. More so, it isn’t clear how to determine a finer parameter subspace where

higher swimming performance resides directly from the Sobol indices alone. If another

parameter subspace were tested, as the input ranges would be different in that subspace,

it would inherently change the sensitivity indices, and in possibly substantial ways as

well.
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Figure 5: (a) The overall 3D parameter space being sampled by Sobol sequences. (b)
Illustration of sampling points via Sobol sequences being projected into a 2D subspace,
here the (f, p) subspace (c) Visualization of where data is projected from a higher dimen-
sion space into a 2D subspace.

From the Sobol sensitivity analysis performed in this paper, 2D subspace colormaps

are not able to be produced in the same manner as in [1]. Since the 3D parameter space

was sampled using Sobol sequences, coplanar 2D subspaces, like those in [1], are not

highly resolved. The sampled points simply do not heavily lie on any of the same 2D

subspaces. Therefore, the sampled data here was projected onto three distinct subspaces:

(Rein, f), (Rein, p), and (f, p), as in the process illustrated by Figures 5b-c. Having

performed 5000 simulations, these projected subspaces appear “filled” and can be parsed

for general performance trends.
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Figure 6: Colormaps corresponding to the non-dimensional forward swimming speeds
(1/St), Strouhal numbers (St), and cost of transports (COT ) for all the data sampled from
Sobol sequences when projected onto either the (Rein, f), (Rein, p), or (f, p) subspaces.
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Figure 7: Colormaps corresponding to deff , θ, and A/BL for all the data sampled from
Sobol sequences when projected onto either the (Rein, f), (Rein, p), or (f, p) subspaces.

Figures 6 and 7 provide the projected data onto each respective subspace: (Rein, f),

(Rein, p), or (f, p). From a quick glance, qualitative patterns emerge within regions of

the (Rein, f) and (f, p) subspaces for all performance metrics. The data in the (Rein, p)

subspace looks more like random noise. For example, the COT , deff , θ, or A panels

corresponding to the (Rein, p) subspace do not show much, if any, immediate discernible

qualitative pattern(s). However, it does appear that lower f corresponds to more noisy

data within almost every subspace. Furthermore, the subspaces in which patterns arose

had f as one of its component axes. The patterns and trends that emerged within the

performance data aligned with the f -axis in the (Rein, f) and (f, p) subspaces. While

slight variations do occur in the other component’s direction, either Rein or p, in these

two subspaces, respectively, the most substantial change appears to be in the direction of
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f . This agrees with the Sobol sensitivity analysis above, see Figure 4. Although, as these

plots suggest, f is not the only significant parameter contributing to the model output.

The patterns that emerged in Figures 6 and 7 show similar general trends as those

seen in [1]. For example, the high swimming speeds arose from high Rein and lower f .

Interestingly, the minimal value regions for COT fell for either high Rein and low f or

low Rein and high f . Although, low Rein and high f correspond to a region of higher

St, where St leaves the biological range of 0.2 < St < 0.4 [47]. High values of deff

in the (Rein, f) subspace also corresponded to lower values in COT , moderately high

swimming speeds, and emergent peak-to-peak stroke amplitudes of approximately 1/3

of their bodylength. These occurred around f ∼ 2 Hz. C. elegans have been observed

swimming at roughly f ∼ 2 Hz with peak-to-peak amplitudes that were roughly 25% of

their bodylength, but at Re ≈ 0.5 [42]. It appeared overall that low frequency swimming

resulted in higher peak-to-peak stroke amplitudes and downward swimming trajectories.

Moreover, the performance metrics show non-linear dependence on f and p, as inferred

from the (f, p) panels. The observable trends in the (Rein, f) and (Rein, p) projected

subspaces are consistent with those involving the output Reynolds number, Reout, i.e.,

(Reout, f) and (Reout, p). This data is provided in Figures S5 and S6 in the Supplemental

Materials.

Figure 8: The non-dimensional COT and forward swimming speeds (1/St) plotted against
each other for (a) every simulation performed, as well as colors indicating different ranges
of the input parameters: (b) different Rein (c) different f , and (d) different p.
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Lastly, a Pareto-like optimal front is identified when plotting the non-dimensional

cost of transport (COT ) against the non-dimensional swimming speed (1/St) [31, 32, 58,

33, 59], see Figure 8a. This is referred to as Pareto-like simply because minimal COT is

desired for maximal 1/St, thus both metrics are not being maximized as is standard in

traditional Pareto optimization. The COT appears to increase exponentially (note the

logarithmic axis) with increasing swimming speed. Figures 8b-d, depict where different

input parameter ranges lie within the performance landscape across all simulations per-

formed. (b) and (d) illustrate that for a given Rein or p within the input parameter space

that combinations of the other two parameters, either (f, p) or Rein, f), respectively,

could result in a swimmer whose performance could almost be anywhere in the entire

landscape. For example, given Rein = 500, one could create a swimmer whose swimming

speed was anywhere between [2, 4] by selecting the appropriate f and p combination. On

the other hand, distinct clusters emerge in (c) for different f . As f increases, swimming

speed generally decreases while COT increases. Undulation frequencies within the range

of [1, 2] extend the length of the Pareto-like front. However, frequencies within the [1, 1.5]

range span the entire performance space, while frequencies within [1.5, 2] are more re-

stricted towards the Pareto-like front. This further supports that the model output is

most sensitive to undulation frequency, f , within the aforementioned parameter subspace

considered in this study. Where different parameter combination swimmers lie within the

performance space is given in Figure 9. This figure also gives some swimmer’s position

and vortex wakes after their 5th stroke cycle. There do not appear to be any qualitative

patterns among the vortex wakes that suggest higher or lower cost of transport. This

performance space data is also given in dimensional form in Figures S9 and S10 in the

Supplemental Materials. A similar trend is observed in the dimensional data, in which

distinct clusters form for different f , as in Figure 8c, although higher f corresponds to

higher dimensional cost of transport. Moreover, there appears to be more clustering

for different Reout than in Figure 8b, where higher Reout appear to correspond to faster

swimming and slightly lower cost of transport in dimensional units.
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Figure 9: Numerous swimmer’s vortex wake and position after their 5th full stroke cycle
and indicating where they fall onto the non-dimensional cost of transport vs. swimming
speed performance space. The colormap illustrates vorticity and the greyed out swimmer
shows the starting position of the swimmer in each case. Different parameter combi-
nations (Rein, f, p) lead to different swimming behavior, as indicated by its placement
within the performance space and vortex wake left behind.

4 Discussion

Previous experimental and computational studies have highlighted the importance of size

(scale) [60, 61], stroke/undulation frequency [62, 63, 64], bending curvature and stiffness

[61, 65], and intrinsic kinematics [66, 67] on swimming performance. In this work, 3

input parameters were varied: the scale (Rein), stoke (undulation) frequency (f), and a

kinematic control parameter (p) for an idealized, simple anguilliform fluid-structure in-

teraction model. The input parameter space was composed entirely of a region in which

there is substantial forward swimming performance [1]. Rather than focusing on the net

effect that variations of a single parameter has on swimming performance, the model’s

global sensitivity to its input parameters was uncovered using Sobol sensitivity analy-

sis. The sensitivity analysis indicated that swimming performance was most sensitive to

variations in frequency (Figures 4 and S7).

While it is already well-known that frequency affects forward speed and performance

[62, 63, 64], this study indicates that varying the frequency (within the parameter space

considered) will more significantly affect the resulting model’s performance than changes

in the other two input parameters and combinations thereof. Although, all of the per-

formance metrics considered were most sensitive to frequency, the degree of sensitivity

to each parameter varied between different metrics. For example, after frequency, the
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total-order Sobol indices in Figure 4b illustrates that 1/St, St, COT , and deff appear

more sensitive to p than Reout, while θ is more sensitive to Reout than p. Therefore when

discussing a model’s sensitivity to a particular parameter, it can only be with respect

to a specific performance metric. Moreover, the Sobol index rankings after f among

first-order indices are different for every output metric except θ, see Figure 4a. Since

the first-order and total-order indices are not equivalent, it suggests that higher-order

interactions among parameters are important in the model output.

The morphology and kinematics of the swimmer studied here resemble that of a C.

elegans [36]. This model has previously predicted swimming speeds (1/St ∼ 0.4 − 0.7)

in agreement at lower biologically relevant Re (Reout ∼ 0.5) and frequencies (f ∼ 1.8 −
2.2 Hz) [1] with the organism itself (1/St ∼ 0.53− 0.75) [42]. However, in this work the

fluid scale investigated was approximately two or more orders of magnitude greater than

that of a C. elegans [42]. At higher Re, the emergent peak-to-peak stroke amplitude no

longer appeared conserved, in contrast to experimental studies of C. elegans [29]. The

choice of Re in this work was deliberate to investigate this simple anguilliform mode over

a range of Re that boasted higher forward swimming speeds [1]. This selection of input Re

(and resulting output Re) across the intermediate Re regime is a particularly interesting

fluid scale to explore due to the importance and intricate balance of both viscous and

inertial forces [68, 69, 70]. Many of the seminal anguilliform studies have assumed either

low Re [71, 18] or high Re [72] settings. Much of the work since has also focused on one

these two regimes, although a few studies have focused their efforts on intermediate Re

[69, 73].

The C-start escape mechanism in larval fish falls within the intermediate Re regime

(Re ∼ 100s) [74, 73]. However, it is not energetically efficient for the swimmer to ex-

clusively use this mode. They only use it to evade a predator before continuing with

a less energy intensive anguilliform mode [75]. During larval stages, some insects may

use an anguilliform mode at Re ∼ 100s, such as Ceratopogonid larva, which have been

observed swimming at an estimated Re ∼ 160 at 2.17 bodylength/s [25]. Other anguil-

liform swimmers, such as eels or lampreys, swim at higher Re in the 1000s or 10,000s

[43, 27, 76]. However, their anguilliform modes are not equivalent to the simple swimmer

studied here. A CFD model of lamprey swimming at Re ∼ 1000s and f = 1 Hz resulted

in swimming speeds between 0.25 − 0.5 bodylengths/s [76]. The model explored here

produced swimmers within the range of 0.7− 2.3 bodylengths/s for swimmers operating

at Reout ∼ 100s (Figures S8 and S9 in the Supplemental Materials). Anguilliform swim-

mers like American eels (Anguilla rostrata), larval sea lampreys (Petromyzon marinus, 5-7

years old), and medicinal leeches (Hirudo medicinalis) have been observed to swim at

steady state speeds of 0.5− 2 bodylengths/s [27, 77], 1.6− 1.75 bodylengths/s [75], and

1.8 − 2 bodylengths/s [26], respectively. These organisms all swim at high Re. Varying

their Re across orders of magnitude could substantially change their hydrodynamics, as
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suggested by differences in the flow fields of lamprey models [78, 79].

Recently, much emphasis has been placed on designing optimal undulatory swimmers

[80, 73, 81, 31, 56, 66, 82, 59]. In general these studies attempted to optimize either shape,

kinematics, or both in regards to swimming speed and either Froude efficiency or cost

of transport. These ideas could help inform the design of faster, more efficient, or more

maneuverable underwater vehicles [83, 84, 85]. The Froude efficiency is the ratio between

the useful propulsive power generated to the rate of energy input. Optimal morphologies

and kinematics were different depending on whether maximal speed, maximal Froude

efficiency, or lowest cost of transport were desired [80, 56, 66, 81, 59]. Optimization

studies by Tokić and Yue [81, 59] suggest that swimming speed and cost of transport are

the main drivers of evolution, rather than Froude efficiency. However, the studies above

assumed high Re settings; only the studies by Gazzola et al. 2012 [73], Van Rees et al.

2013 [56], and Van Rees et al. 2015 [66] explored designs within the intermediate Re

space - in particular, one specific Re, Re = 550. None of these studies varied Re across

an intermediate regime nor did they vary undulation frequency. The global sensitivity

results here indicated that varying frequency within an Re regime of 50 < Reout < 1220

will most significantly affect swimming performance. On the other hand, this study did

not alter the swimmer’s morphology, such as its length, curvature, or thickness, nor stroke

dynamics, such as burst and glide modes or asymmetric stroke patterns.

Furthermore, the parameter sensitivity indices may change if other subspaces of the

whole (Rein, f, p) space are considered, as suggested by the data [1]. Changing the input

parameter space may lead to significant changes in the sensitivity results, e.g., rather than

sampling Rein ∈ [450, 2200], selecting Rein ∈ [10, 100]. For example, investigating the

performance of the anguilliform swimming mode at different phases of development when

Re may be smaller than 100, might suggest a higher degree of sensitivity to Re rather than

f , or other parameters entirely. Thus, to perform sensitivity analysis properly, insights

from experimental data or other parameter explorations must first be carefully analyzed

to make sure the analysis is performed over the appropriate input space [86, 87].

Moreover, projections of the Sobol sampled 3D parameter space, {(Reinj
, fj, pj)}5000j=1 ,

were projected onto two-parameter subspaces, i.e., (Rein, f), (Rein, p), and (f, p). Similar

trends within the performance metrics could be recognized through these projections

(Figures 6, 7, and S8) and the Pareto-like front identified (Figures 8 and S9 to those

observed in [1]. However, there are distinct differences between the two analyses.

First, in [1], the parameter combinations were selectively sampled in a rectangular

fashion. Each subspace considered variations in two parameters at a time while holding

the third parameter constant, rather than varying all three at once. The latter is what

was done in the work here, via Sobol sequence sampling. The 3D data here had to

be projected from a higher dimensional subspace (3D) to a lower dimensional subspace

(2D) to investigate trends. Second, the projected colormaps here (Figures 6 and 7)
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divulged that the performance metrics appear most sensitive to changes in frequency -

most discernible qualitative patterns align with changes in f . However, each subspace also

contained regions in which looked more like noise. These noisy regions do not suggest a

dominate parameter or parameter combinations. Third, the 3D Sobol sampling approach

allowed for performing a global sensitivity analysis. The broad parameter explorations

in [1] did not allow this. From enough 2D subspace explorations, naive hypotheses could

be formulated, but only in a strict qualitative sense [1]. Fourth, the parameter space

sampled in this paper was only realized from the thorough explorations in [1]. That is, a

3D subspace (with high swimming performance) was first identified from [1], to which was

then sub-sampled for the sensitivity analysis performed here. Hence, in order to perform

this analysis, such a region must be identified a priori. Thus, parameter explorations are

still necessary before performing sensitivity analysis if one is interested in the sensitivity

to parameters within regions of desired performance, unless experimental data is readily

available.

Both the study presented here and [1] only considered a 3D parameter space in which

to analyze swimming performance. It took nearly 5000 simulations for the Sobol sensi-

tivity indices to converge when studying a 3D input space. Therefore studying a higher

dimensional parameter space (> 3) using this formulation will require exponentially more

simulations [88]. Contemporary methods involving polynomial chaos have become popu-

lar to reduce the computational burden, i.e., reduce the amount of simulations required

for accurate indices [89, 90, 91].

Finally, when using mathematical modeling for biological inquiry, sensitivity analyses

can help further knowledge of a biological system. It provides insight into the importance

of parameters for specific output metrics. For example, if one wished to decipher which

parameter (phenotype) was most important to the success of an active predation strategy,

they would have to restrict the parameter space for a given model to a biologically relevant

one for that particular organism. However, sensitivity insights alone aren’t sufficient

to fully understand any possible limitations of a particular predation strategy. Other

parameter explorations would complement the sensitivity results to possibly inform why

that organism has evolved a particular way, e.g., maybe such a strategy would not work (or

be nearly as successful) if it grew to 10x its size (thus increasing the Re by a factor of 10).

Both parameter explorations as well as sensitivity analyses can be used in-conjunction

with one another to provide greater understanding a biological system. Symbiosis 1.

1only until you run out of computing time (environmental factors)
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Supplemental Materials

Computational Parameters and Geometry

Table S1 offers the computational parameters used in the study. They are identical to

those in [1] with the exception of the parameter ranges for Rein, f , and p.

Parameter Variable Units Value

Domain Size [Lx, Ly] m [6, 16]

Spatial Grid Size dx = dy m Lx/1024 = Ly/384

Lagrangian Grid Size ds m dx/2

Time Step Size dt s 2.5× 10−5

Total Simulation Time T stroke cycles 6

Fluid Density ρ kg/m3 1000

Fluid Dynamic Viscosity µ kg/(ms) [0.475,17750]

Swimmer Length L m 1.5

Swimmer Height h m 0.5

Stroke Frequency f s−1 [1,3.0]

Reynolds number (input) Rein - [450,2200]

Kinematic Parameter p − [0.05,0.45]

Spring Stiffness kspr kg ·m/s2 9.5625× 109

Non-invariant Beam Stiffness kbeam kg ·m/s2 2.03634× 1012

Table S1: Numerical parameters used in the two-dimensional immersed boundary simu-
lations of the idealized, simple anguilliform swimmer

The undulations of the swimmer’s body that produce forward swimming are governed

by interpolating between two curvature states. The function that governs the interpola-

tion is given by a cubic spline [35, 1]. This interpolant satisfies the following criteria:

1. Continuity of the interpolation polynomial, its velocity, and its acceleration between

successive half-strokes and stroke cycles

2. No instantaneous acceleration or deceleration

3. Symmetry within each half-stroke cycle

The resulting interpolant can be seen in Figure S1 for a variety of kinematic parame-

ter (p) values. This figure was modified from [1]. As p increases, the interpolant deviates

from trivial sinusoidal curvature interpolation functions. Some anguilliform studies in-

vestigating optimal morphokinematics use a mix of cubic splines and sinusoidal functions

to prescribe the swimmer’s body kinematics [80, 66]; however, these constructions result

2



in many more free parameters that govern the body’s shape and kinematics, rather than

only one (p) in the simplified model explored here.

The curvature interpolation scheme used here provides functionality to subtly change

properties of the stroke, i.e., the maximum velocity and accelerations of the changing body

curvature during each upstroke or downstroke. Given two (or more) curvature (geometric)

states, one could design a custom interpolation function(s) based on an animal’s kinematic

data. This could be done by tracking points along the moving body and in addition to

recording the position over time, using such data to approximate the points’ associated

velocity and acceleration between different positions. The curvature interpolant here used

a cubic spline interpolant [35, 1], which allowed for one free parameter (p) that could be

varied to change the body curvature’s maximal velocity and acceleration. Increasing p

would continue to deviate away from pure sinusoidal behavior, see Figure S1. Moreover,

this framework allows one to enforce that no instantaneous accelerations occur along the

swimmer’s body, see Figure S1c. Introducing a higher-order interpolation function would

give rise to more free parameters which would allow one to more closely replicate the

exact kinematics of a moving body.

Figure S1: (a) Examples of how the interpolation function deviates away from a trivial
sinusoidal interpolation between body curvature states as p increases. The associated
velocity and acceleration profiles are given in (b) and (c) respectively. Figure modified
and courtesy of [1].

Since it was desired to have a fluid scaling parameter as an input to the model, an

input Reynolds number was defined in Eq. 2, based on a characteristic length that

was the swimmer’s body (L) and a frequency based characteristic velocity that was the

product of the undulation frequency and the swimmer’s body length, fL [44, 45]. Many
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anguilliform swimming studies use the characteristic velocity as fA, where A is the peak-

to-peak undulation amplitude. However, since A is an output of the model, using a

characteristic velocity scale of fA was impossible for the input Re. Figure S2 provides

plots of the input Re vs. output Re, as organized by the input parameters f and p in

Figures S2b and c, respectively. The output Re, Reout depends on model output A, as

a pattern emerges, where higher f corresponds to lower Reout, given a particular Rein.

This occurs as f and A are inversely related, i.e., higher f results in a smaller A, see

Figure 7). Figure S3 provides a deeper look into the relationship among the three input

parameters and Reout, while Figure S4 confirms that the output Reynolds number is most

significantly affected by changes to the input Reynolds number.

Figure S2: The input Reynolds number, Rein = ρL(fL)/µ, plotted against the output
Reynolds number, Reout = ρL(fA)/µ, whose frequency based velocity scale (fA) is based
off the undulation peak-to-peak amplitude, A, which is an output of the model.

Figure S3: Colormaps corresponding to the output Reynolds number, Reout, for all the
data sampled from Sobol sequences when it is projected onto either the (Rein, f) and
(Rein, p), or (f, p) subspaces.
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Figure S4: (a) First-order and (b) Total-order Sobol indices of the three varied parameters
Rein, f , and p for the output Reynolds number, Reout.

Global vs. local sensitivity analyses

Sobol sensitivity is a variance-based sensitivity analysis that can provide global sensitivity

to parameters, rather than only local sensitivity [51, 52]. By quantifying global sensitivity,

one can determine which parameter, when varied within a particular range, results in the

most significant changes in the model’s output, even with respect to other parameters

being varied. Moreover, Sobol analysis is able to efficiently calculate first-order parameter

sensitivity indices, i.e., perturbations of one parameter at a time, but also higher-order

indices, i.e., those corresponding to perturbations of two or more parameters at a time,

and total-order indices, i.e., all combinations of other parameters [50, 52]. Furthermore,

due to this, the importance of higher-order interactions can be inferred by comparing first-

order and total-order sensitivity indices. If there are significant differences between these

indices, it suggests the presence of higher-order interactions. Higher-order interactions

occur when two or more parameters are changed and it causes a greater variation in the

output than when varying each of those inputs alone.

If one changes the input parameter space sampled for sensitivity, the sensitivity in-

dices, like those in Figure 4 or S7, could significantly change. Thus, while Sobol sensitivity

analysis gives global sensitivities of model output metrics to model parameters, the sen-

sitivity results are highly dependent on the sampled parameter space [86, 87]. Thus,

careful consideration must be made to choose the appropriate input parameter ranges

from either experimental data or previously performed parameter studies.

In comparison to global sensitivity analyses, local sensitivity analyses, on the other

hand, have the misfortune of necessitating that only one parameter can be varied at a

time, which considerably restricts the parameter space that is able to be explored and

analyzed. Under-resolving the input parameter space could easily lead to inaccurate

sensitivities, unless the model is linear [52]. The model examined here was previously

seen to exhibit non-linear behavior [1]. Therefore it was deemed necessary to use global

approaches for sensitivity.

Furthermore, higher-order interactions are difficult to accurately parse out of the data
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using only local sensitivity methods. However, with enough work, some local sensitivity

estimates might be able to arrive at the same conclusion that a model is most sensitive

to a particular parameter [51]. Unfortunately, if the goal of the sensitivity analysis is

for model reduction, i.e., eliminating parameters or dynamics from a model, it might

incorrectly suggest some parameters are not important, as it is difficult to predict the

importance of parameter interactions using local sensitivity methods [52].

Additional Data

Non-dimensional Data

Figures S5 and S6 provide colormaps of the performance data in terms of the output

Reynolds number, Reout = ρ·L·fA/µ, based on the output peak-to-peak stroke amplitude,

across the (Rein, f) and (Rein, p) projected subspaces, respectively. The resulting output

Reynolds numbers spanned [50, 1220]. Patterns emerge across both projected subspaces

as either Reout and either f or p vary in each subspace. Although, there are regions within

the subspaces that for particular performance metrics look qualitatively like noise, e.g.,

the colormap for the (Reout, p) subspace for COT when p & 0.25 for all Reout. Such

noisy regions might suggest that the two varying subspace parameters are not the main

parameters driving that performance metric in that region. The third free parameter

(and possible interactions with the others) may have a more significant impact on that

performance metric there.

Interestingly, both subspaces suggest that the largest regions of highest swimming

speed are located within regions that may encompass both high and low values in COT ,

near f ∼ 2.0 Hz. These regions also correspond to higher deff . Moreover, the Strouhal

numbers almost everywhere within the subspaces fall within the optimal region of 0.2 <

St < 0.4 [47], except near the lower end of the Reout spectrum, where they begin to rise

greater than 0.4 as Reout decreases.

Furthermore, the (Re, f) projected parameter subspace data is qualitatively very sim-

ilar when organized by either Rein (Figures 6 and 7) or Reout (Figure S5). These con-

sistencies suggest that the Sobol sensitivity analysis would remain consistent for either

Rein or Reout. However, there are clear differences in the case of (Re, p) among Figures 6

and 7) when compared to Figure S6. That is, the data appears noisy in the former, while

patterns form in the latter. The patterns that emerge in Figure S6 indicate a strong de-

pendence on fA, as it organized by Reout. However, this is actually to be expected since

Reout depends on the output A and it is observed that f and A are inversely related (see

the A panel for the (Re, f) and (f, p) subspaces in Figure 7). So the patterns that emerge

are a result that although the input frequency f is not one of the axes, its presence is felt

by the dependence of A in Reout.
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Figure S5: Colormaps corresponding to the (Reout, f) projected subspace, providing the
non-dimensional forward swimming speeds (1/St), cost of transports (COT ), and stroke
amplitudes (A/L), as well as the Strouhal numbers (St), the distance effectiveness ratios
(deff ), and the angular trajectories off the horizontal (θ) for all the data sampled from
Sobol sequences. Note that the Reynolds numbers shown here are the Reout, whose
frequency based velocity scale (fA) is given in terms of the output stroke amplitude, A.
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Figure S6: Colormaps corresponding to the (Reout, p) projected subspace, providing the
non-dimensional forward swimming speeds (1/St), cost of transports (COT ), and stroke
amplitudes (A/L), as well as the Strouhal numbers (St), the distance effectiveness ratios
(deff ), and the angular trajectories off the horizontal (θ) for all the data sampled from
Sobol sequences. Note that the Reynolds numbers shown here are the Reout, whose
frequency based velocity scale (fA) is given in terms of the output stroke amplitude, A.

Dimensional Data

A comparison of the global parameter sensitivities for swimming speed and cost of trans-

port between their dimensional and non-dimensional form is provided in Figure S7.

The dimensional output metrics for swimming speed (bodylength/s) and COT (N/kg)

are still most sensitive to variations in the stroke (undulation) frequency within the

Rein × f × p = [450, 2200] × [1, 3] × [0.05, 0.45] parameter subspace. However, both of

the dimensional swimming speed and cost of transport are slightly more sensitive to Rein

than p.
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Figure S7: (a) First-order and (b) Total-order Sobol indices of the three varied parameters
Rein, f , and p to compare global parameter sensitivities of dimensional to non-dimensional
quantities for swimming speed and cost of transport.

Colormaps showing the dimensional forward swimming speeds (bodylength/s) and

cost of transports (N/kg) over each projected parameter subspace are provided in Figure

S8. Similar to Figures S5 and S6, patterns emerge within the subspaces as different

parameters are varied. Note that these Figures give the Reynolds number as Reout,

unlike Figures 6 and 7 in the main manuscript. Beyond similar trends in f , dimensional

swimming speed appears to be highly correlated with higher Reout and higher p. As

Figure S1 suggests, higher p correspond to slower initial accelerations, but higher maximal

velocities and accelerations of the changing body curvature throughout each half-stroke.
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Figure S8: Colormaps corresponding to the dimensional forward swimming speeds
(bodylength/s) and cost of transports (N/kg) for all the data sampled from Sobol se-
quences when projected onto either the (Reout, f) and (Reout, p) subspaces.

Pareto-like optimal fronts were identified by plotting the dimensional cost of transport

(N/kg) against swimming speed (bodylength/s) for each simulation performed. The

data is presented in Figure S9. From Figure S9d, given a p, depending on values of

the other two parameters, one could construct a swimmer that falls almost anywhere

within the performance space. However, Figure S9c shows distinct clusters where different

frequency ranges reside and Figure S9b suggests higher Reout result in faster swimming

speeds (bodylength/s) and lower cost of transport (N/kg). This complemented the Sobol

sensitivity results for the dimensional data analyzed; choosing a particular f would most

significantly determine where in the performance space a swimmer may reside.
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Figure S9: The dimensional cost of transport (N/kg) and forward swimming speeds
(bodylength/s) plotted against each other for (a) every simulation performed, as well as
colors indicating different ranges of the input parameters: (b) different Rein (c) different
f , and (d) different p.

Figure S10 shows where different parameter combination swimmers lie within the

performance space in Figure S10. This figure also illustrates those swimmer’s position

and vortex wakes after their 5th stroke cycle. Again, the Reynolds number indicated here

is the output Re, Reout = ρL(fA)/µ, where A is the peak-to-peak amplitude, computed

as output from the model. These are the same swimmers illustrated in Figure 9, but in

the context of the dimensional performance space.
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Figure S10: Numerous swimmer’s vortex wake and position after its 5th full stroke cycle
as well as indicating where they fall onto the dimensional cost of transport (N/kg) vs.
swimming speed (bodylength/s) performance space. The colormap illustrates vorticity
and the greyed out swimmer shows the starting position of the swimmer in each case.
Different parameter combinations (Reout, f, p) lead to different swimming behavior, as
indicated by its placement within the performance space and vortex wake left behind.

Details regarding the Immersed Boundary Method (IB)

Here the immersed boundary method (IB) [40] will be briefly introduced. The IB was

fluid-structure interaction method that solved the equations that coupled the angulliform

swimmer and the fluid to which it was immersed. The open-source IB software IB2d

[38, 39, 34] was used for all the simulations presented in this work.

The full viscous, incompressible Navier-Stokes equations were used to model the fluid

since Re ∈ [250, 750], i.e.,

ρ
[∂u
∂t

(x, t) + u(x, t) · ∇u(x, t)
]

= −∇p(x, t) + µ∆u(x, t) + F(x, t) (7)

∇ · u(x, t) = 0 (8)

where u(x, t) and p(x, t)are the fluid’s velocity and pressure, respectively, at spatial lo-

cation x at time t. F(x, t) is the force per unit area applied to the fluid by the immersed

boundary, i.e., the swimmer. These three quantities are modeled in an Eulerian frame-

work on a fixed rectangular mesh. ρ and µ are the fluid’s density and dynamic viscosity,

respectively.

All interactions between the swimmer and fluid are governed by integral equations

with delta function kernels. As the swimmer bends, deformation forces are spread from

its body to the nearest fluid mesh points. Similarly, the fluid velocity is interpolated back
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onto the swimmer to ensure the no-slip condition is satisfied. The integral equations that

govern these dynamics are given as:

F(x, t) =

∫
f(s, t)δ (x−X(s, t)) ds (9)

∂X

∂t
(s, t) =

∫
u(x, t)δ (x−X(s, t)) dx. (10)

X(s, t) and f(s, t) give the Cartesian coordinates and deformation forces along the im-

mersed boundary (the swimmer) for each point denoted by Lagrangian parameter, s,

and at time, t, respectively. Eqns (9)-(9) essentially transform Lagrangian variables to

Eulerian variables and vice versa. Here δ(x) is a 2D delta function. These delta functions

help ensure that forces from the immersed body are spread only to the nearest fluid mesh

points to the immersed boundary, and vice-versa for when the velocity field is interpolated

back to immersed boundary.

To construct a discretized 1D swimmer with physical meaning, throughout the entire

swimmer’s body linear springs and beams are used to connect adjacent Lagrangian points.

The deformation force equations for springs and beams are given as the following,

Fspr = −kspr
(

1− RL

||XF −XL||

)
· (XL −XF ) . (11)

Fbeam = −kbeam
∂4

∂s4

(
X(s, t)−XB(s, t)

)
, (12)

where kspr and kbeam are the spring stiffness and beam stiffness coefficients, respectively.

In (11), the terms XL and XF represent the Cartesian positions of two Lagrangian nodes

to which are connected by a spring - a leader (L) and a follower (F) node, at time, t. RL

is that spring’s corresponding resting length. In (12), XB(s, t) represents the preferred

curvature (shape) of the swimmer’s body at time, t. This model dynamically changes

XB(s, t) over time, interpolating changing between preferred curvature states. Therefore

this self-propelled swimmer propagates forward only due to time-varying body curvature

and not through explicit prescribed motion of its Lagrangian points.

IB2d discretizes each beam using 3 Lagrangian points; define those three points as

X(s, t) = (Xq, Yq),

X(s+ 1, t) = (Xr, Yr), (13)

X(s− 1, t) = (Xp, Yp).

As described in [34], since Newton’s Second Law of Motion relates forces to an over-

all acceleration, (12) is further discretized by a second derivative with respect to time.

Thereby, all deformation forces arises from beams can be calculated in the following
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manner

Fbeam(s− 1, 1) = −kbeam

(
Xr − 2Xq +Xp − Cx(t)

Yr − 2Yq + Yp − Cy(t)

)
,

Fbeam(s, 1) = 2kbeam

(
Xr − 2Xq +Xp − Cx(t)

Yr − 2Yq + Yp − Cy(t)

)
, (14)

Fbeam(s+ 1, 1) = −kbeam

(
Xr − 2Xq +Xp − Cx(t)

Yr − 2Yq + Yp − Cy(t)

)
.

Note that Cx(t) and Cy(t) are the preferred curvatures at time t. In these discretizations

they are defined as

C =

(
Cx

Cy

)
=

(
Xrpref − 2Xqpref +Xppref

Yrpref − 2Yqpref + Yppref

)
, (15)

where the pref subscript denotes the preferred geometric configuration. These quantities

all may be time-dependent.

To discretize (9) and (10) regularized delta functions from [40] were used , i.e., δh(x),

δh(x) =
1

h3
φ
(x
h

)
φ
(y
h

)
φ
(z
h

)
, (16)

where φ(r) is defined as

φ(r) =


1
8
(3− 2|r|+

√
1 + 4|r| − 4r2), 0 ≤ |r| < 1

1
8
(5− 2|r|+

√
−7 + 12|r| − 4r2), 1 ≤ |r| < 2

0 2 ≤ |r|.
(17)
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