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Abstract

Computational models of aquatic locomotion range from modest individual simple
swimmers in 2D to sophisticated 3D multi-swimmer models that attempt to parse
collective behavioral dynamics. Fach of these models contain a multitude of model
input parameters to which its outputs are inherently dependent, i.e., various perfor-
mance metrics. In this work, the swimming performance’s sensitivity to parameters
is investigated for an idealized, simple anguilliform swimming model in 2D. The
swimmer considered here propagates forward by dynamically varying its body cur-
vature, similar to motion of a C. elegans. The parameter sensitivities were explored
with respect to the fluid scale (Reynolds number), stroke (undulation) frequency,
as well as a kinematic parameter controlling the velocity and acceleration of each
upstroke and downstroke. The input Reynolds number and stroke frequencies sam-
pled were from [450,2200] and [1,3] Hz, respectively. In total, 5000 fluid-structure
interaction simulations were performed, each with a unique parameter combination
selected via a Sobol sequence, in order to conduct global sensitivity analysis. Re-
sults indicate that the swimmer’s performance is most sensitive to variations in its
stroke frequency. Trends in swimming performance were discovered by projecting
the performance data onto particular 2D subspaces. Pareto-like optimal fronts were
identified. This work is a natural extension of the parameter explorations of the

same model from [1].
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1 Introduction

Mathematical models inherently depend on parameter estimation and selection. In the
study of disease [2] or drug epidemics [3], transmission and recovery rates are estimated
based on available epidemiological data. Similarly, scientists investigating cellular pro-
cesses, immunology, or oncology may attempt to fine tune model parameters based off
experimental data available to investigate novel therapies [4, 5, 6]. Parameter explorations
have provided insight into a number of organismal systems, including odor-capture by
crabs [7], soaring strategies of birds [8], or tubular heart pumping [9]. A chief focus in each
of these studies involved not only explorations within a particular input parameter space,
but the sensitivity of the model’s output to the model’s input parameters. A system is
sensitive to an input parameter, if slight variations in the parameter result in significant
changes in the system’s output. Global sensitivity analyses quantify the impact of pa-
rameter uncertainty (inputs) on the overall model prediction uncertainty (outputs) in a
holistic fashion [10]. These analyses attempt to determine which parameters, or their
combinations, are most sensitive for the system output across a given parameter space.

In organismal biology contexts, uncertain parameters, or fluctuations in parameters,
could be viewed slightly differently than those in some population epidemiology or cel-
lular contexts. Rather than only focusing on fine tuning model parameters to match
experimental data, variations in parameters could be interpreted as biodiversity, even ex-
tending towards evolutionary contexts by exploring robustness of a performance metric
to parameter sensitivities [11, 12, 9]. In particular, biodiversity has highlighted elegant
“many-to-one mapping” solutions, where different morphologies (form) can lead to sim-
ilar performance (function) [13, 14]. However, not all combinations of traits produce
similar performance. To that extent, slight variations may to lead non-linear conse-
quences in functional performance [15]. Upon exploring regions of higher performance
within performance landscapes, global sensitivity analysis can determine what variation
(or combinations thereof) induce the greatest changes in performance. Thus one is able
to rank the importance of specific traits for maintaining a particular performance level
(within a specific region on the landscape) while assessing its robustness. Furthermore,
quantifying such sensitivities could further provide insight into the evolution rate of a
given mechanical system [16, 17].

In the spirit of interdisciplinary collaboration from the 2020 SICB Symposium Melding
Modeling and Morphology: integrating approaches to understand the evolution of form
and function, this paper highlights a formal mathematical approach for assessing the
sensitivity of a model’s output due its input parameters. This paper explores the global
sensitivity analysis of a mathematical model of a biological system - an idealized swimmer
that resembles an aquatic nematode. The selection of a fluid-structure interaction model

was two fold: (1) to illustrate that such global sensitivity analysis can be performed on



a complex model and (2) to highlight the challenges (necessary computational resources)
to perform such an analysis on a computational fluid dynamics model. The swimmer
itself, in resembling a nematode, propagates itself forward through its fluid environment
by varying its body curvature, i.e., bending [18, 19, 20, 21|, see Figure 1.

Previous experimental work directly focused on C. elegans has highlighted that vari-
ations in bending frequency impact locomotion performance at low Reynolds numbers
(Re < 1) [21]. The Reynolds number is a dimensionless number that is given as a com-
bination of four parameters: two parameters describing the physical properties of the
fluid - its density and viscosity, p and u, respectively, and two system parameters - a
characteristic length scale, L and characteristic velocity scale, V. Mathematically, it is

given as
pLV
= ®

Low Re situations arise when viscous forces are much greater than inertial forces. Many

Re

computational models of nematodes have only considered the low Reynolds limit, i.e.,
the Stokes flow Regime (Re = 0) [22, 23, 24]. However, anguilliform swimming gaits are
observed in other organisms, such as fly larva, leeches, eels, or lamprey [25, 26, 27, 28|.
These organisms are much larger and live at intermediate Re (Re ~ 10s or 100s) or
higher Re (Re = 1000) ranges. A recent computational study sought out to explore
the effectiveness of this anguilliform gait across a variety of fluid scales, f, and intrinsic
curvature dynamics [1].

This work continues that of [1], which explored the same idealized anguilliform swim-
mer’s performance through thorough extensive parameter subspace investigations. The
parameter space considered was composed a fluid scaling parameter, given by an input
Reynolds number (Re;,), the stroke (undulation) frequency (f), and a kinematic control
parameter (p). The kinematic parameter controls the velocity and acceleration of the
swimmer’s body curvature as it undulates between a concave up and concave down state.
That is, it controls each stroke’s acceleration from rest in its current curvature (concav-
ity) state to its maximal velocity and back to rest in its next curvature (concavity) state.
Previous experimental work suggests that a nematode’s undulatory amplitude does not
change when places in increasing viscosity environments [29], i.e., decreasing Re settings;
however, this work will show that does not appear be the case as Re increases.

While [1] performed extensive parameter explorations using the same anguilliform
swimmer model, specific 2D slices through the overall 3D parameter space were chosen in
which to investigate swimming performance. The 2D slices were chosen in a rectangular
fashion. For example, as the entire parameter space considered was Re;, X f X p =
[0.3,4500] x [1,2.5] x [0.075, 0.425], one 2D slice could be all (Re, f) combinations for p =
0.25. The range of Re;, given above is based off the definition of input Reynolds number
provided in Eq. 2. Although this systematic approach allows one to identify a parameter



subspace that results in desired swimming performance, i.e., determine threshold forward
swimming speeds or cost of transports, it has a few significant drawbacks. First, it is
unclear whether the resulting performance data could be interpolated with any accuracy
between parallel 2D slices due to nonlinear relationships that may exist. Second, it is
restrictive in that it does not allow one to perform a formal global sensitivity analyses
on 3D parameter space, due to the manner in which the 3D space is sampled. Thus you
cannot determine which parameter (or combinations thereof) most significantly affect the
model’s output across the input parameter ranges considered.

The anguilliform swimmer model explored here has substantial forward swimming
speeds when Re;,, 2 450 [1]. Therefore, with the goal of performing global sensitivity anal-
yses, the selected parameter subspace to perform the analyses was Re € [450,2200], f €
[1,3] Hz, and p € [0.05,0.45]. In the remainder of this paper, Sobol sensitivity analysis
[30] is performed on a variety of swimming performance metrics over the parameter ranges
above. By comparing multiple output metrics sensitivity to parameters it is possible to
determine how different performance metrics may have differing parameter sensitivities,
both in determining which parameter it is most sensitive to as well as its relative impor-
tance (magnitude). Discernible patterns are also uncovered in swimming performance by
projecting the 3D parameter space sampled onto specific 2D subspaces. Furthermore,
Pareto-like optimal fronts in swimming performance are identified across various combi-
nations of the input parameters [31, 32, 33|. Lastly, the parameter sensitivity suggested
by these Pareto-like fronts is consistent with that of the formal Sobol sensitivity analysis.
Both Sobol sensitivity analysis and Pareto-like optimal fronts will be described in further

detail in Sections 2 and 3, respectively.

2 Methods

In this work, I continued the investigation of the anguilliform swimming model first
presented in [34] and further explored in [35, 1]. To propagate forward, i.e., swim, the
swimmer changes the curvature along its 1D body, a motion that resembles an aquatic
nematode [36, 20], see Figure 1. Its total stroke (undulation) cycle is compromised
of both an upstroke and downstroke, which end when the swimmer’s body is either
concave down and concave up, respectively. As the swimmer propagates forward, it leaves
behind a vortex wake. This observation suggests that hydrodynamic force generation by
dynamically changing curvature is sufficient for locomotion [37]. The swimmer given
in Figure 1 corresponds to the case of (Re;,, f,p) = (1011.75,1.6875,0.4125). As these
parameters are varied, the swimmer’s performance may substantially change, as can be

seen in Figures 6, 7, and 8 (and as shown in [1]).
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Figure 1: An illustration of how the swimmer changes its preferred curvature to propagate
forward during the 2" through 5 stroke cycles. Snapshots of the swimmer and the
associated fluid vorticity (colormap) are given at the beginning of each successive stroke
cycle. The definition of the peak-to-peak amplitude, A, is given. This amplitude is an
output of the model.

I used the open-source fluid-structure interaction software, IB2d [38, 39, 34|, based on
the immersed boundary method (IB) [40] to perform the computational fluid dynamics
simulations. This framework allows one to study this particular anguilliform swimming
mode in an incompressible, viscous fluid, thus allowing for studies across numerous fluid
scales i.e., Reynolds numbers. This anguilliform model is one of the built-in examples
contained in the software offered to the scientific community. It can be found at github.

com/nickabattista/IB2d in the sub-directory:
IB2d/matIB2d/Examples/Examples Education/Interpolation/Swimmer.

A background introduction to IB and the swimmer’s implementation are provided
in the Supplemental Materials; greater detail regarding the mathematical framework,
formulation, and implementation can be found in [34, 35, 1]. The computational grid,
temporal, and material property parameters are identical to those used in [1]; they are
given in Table S1 in the Supplemental Materials. The model parameters varied in this
study are an input Reynolds Number, Re;,, stroke (undulation) frequency, f, and a
kinematic control parameter, p. The kinematic parameter, p, helps govern the kinematic
profile of each stroke. Although, each upstroke (or downstroke) always performs an
undulatory motion, varying p is akin to changing the acceleration and velocity through
stroke pattern itself. That is, it controls how quickly each stroke accelerates from rest in
the starting curvature (concavity) state, to its maximal velocity, and back to rest in the

other curvature (concavity) state.



In other words, in this study I varied one parameter that encompasses size variations
(the input Reynolds number, Re;,), another that details how often swimming movement
patterns are performed (the frequency, f), and a third that changes the intrinsic kine-
matics within each stroke (kinematic parameter, p). The model parameter ranges were
slightly different than those in [1]. Here a 3D parameter subspace was selected based
on the previous explorations in which there was significant forward swimming speed:
Rei, x f x p=[450,2200] x [1,3] Hz x [0.05,0.45]. The range of f was selected to center
about the undulation frequency that C. elegans display while swimming in water, roughly
2 Hz [21, 41]. Although, in wet granular media C. elegans swim with frequencies around
~ 1 Hz as well as exhibit faster swimming behavior [36, 42]. On the other hand, C.
elegans undergoing dietary restrictions undulate at higher frequencies of ~ 3 Hz while
also swimming faster than the control [21]. Other anguilliform swimmers such as eels and
lampreys swim at higher frequencies. For example, eels have been observed to steadily
swim with an undulation frequency of ~ 3 Hz [43]. Thus, the range of frequencies was
chosen to be between [1,3] Hz. The values of the kinematic parameter p were chosen to
span the range in which lead to a symmetric interpolation function, see Figure S1 in the
Supplemental Materials.

To achieve the desired input Reynolds number, Re;,, first a tuple was selected, i.e.,
Rein, f,p), followed by finding the appropriate dynamic viscosity, u, to give the appro-
priate Re;,, i.e.,

Rem = s (2)

where L is the swimmer’s bodylength (characteristic length) and the product fL gives
an input frequency-based velocity scale. In anguilliform studies it is common to use the
product of f and a peak-to-peak undulation amplitude, A, as the characteristic velocity
when calculating Re. However, since undulation amplitude is an output of the model
and cannot be known a priori, I elected to use a characteristic velocity seen in fish
literature as an input velocity scale, fL [44, 45, 46]. Illustrations of the peak-to-peak
amplitude, A are given in Figures 1 and 2. The output Reynolds number is defined as
Reous = p- L - fA/pu, whose frequency based velocity scale is given as fA. Comparisons
of the input and output Reynolds numbers, Re;, and Re,,, respectfully, are provided in
the Supplemental Materials.

A variety of swimming performance metrics were computed in each simulation. The
motivation behind calculating multiple metrics was to identify whether different perfor-
mance metrics were most sensitive to different input parameters. Rather than report the
dimensional swimming speed, Vy;,,, for each simulation, swimming speeds are provided in
dimensionless form, given by the inverse of the Strouhal number. The Strouhal number
is defined as

St

=V (3)



where A is the peak-to-peak undulation amplitude, see Figures 1 and 2. Note that A is
an output of the model itself, whose changing values due to variations input parameter
changes was also analyzed.

The Strouhal number has been used previously to assess efficient swimming [47, 48].
It compares the wavespeed to the average speed of the swimmer. Three other perfor-
mance metrics were computed: a power-based cost of transport [49, 28], COT, a distance
effectiveness ratio, d.s¢, and an angular trajectory metric, 8. The COT provides the ener-
getic cost per unit speed of the swimmer, d.f compares the forward distance swam to the
total linear distance swam overall, and € indicates how horizontal the overall swimming

movement stayed. All of these quantities are provided in non-dimensional units, i.e.,
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where Dg and Dy, are the forward distance swam (horizontal distance) and total linear
distance moved by the swimmer during a specific period of time encompassing N time-
points. F}j and U, are the applied force and tangential body velocity of the swimmer,
at the j* time step, respectively. The applied force was computed as the force perpen-
dicular to the original direction of motion of the swimmer. Xpg(t) and Yy(t) are the
time-dependent Lagrangian position of the swimmer’s head and (X0, Yaso) is the initial
position of the last point along the straight section of the swimmer’s body (see Figure

2). The non-dimensional COT is similar the energy-consumption coefficient in [49].
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Figure 2: (a) The swimmer’s geometry is composed of a straight line segment and a
curved portion, given by a cubic polynomial. The swimmer’s height, A, is the height of
the curved portion off the straight segment. It remained uniform across all simulations.
(b) The definitions for the angular trajectory off the horizontal (), as measured off the
swimmer’s head and a fixed point along the horizontal (last point along the straight
portion of the swimmer’s body), the horizontal distance swam (Dg), and the total linear
distance moved by the swimmer (Dr,). The swimmer in (b) corresponds to the case of
(Rein, f,p) = (270,1.25,0.25). Figure adapted from [1].

To assess this swimming model’s overall sensitivity to its parameters, I sampled the
overall parameter space using Saltelli’s extension of the Sobol sequence [10, 50]. A total
of 5000 combinations were selected, {(Req, f,p);}5-,000, in which to simulate the model.
Once the simulations were performed, they were analyzed to produce a peak-to-peak un-
dulation amplitude A and a Strouhal number, St, and thereby a time-averaged forward
swimming speed (1/St), d.sp, COT, and 6. Once the metrics were computed, Sobol
sensitivity analysis could then be conducted. Sobol sensitivity is a variance-based sensi-
tivity analysis that can provide global sensitivity to parameters, rather than only local
sensitivity [51, 52]. By quantifying global sensitivity, one can determine which parame-
ter, when varied within a particular range, results in the most significant changes in the
model’s output, even with respect to other parameters being varied [50, 52]. More detail
regarding global vs local sensitivity analyses is provided in the Supplemental Materials.

The workflow for the entire simulation and sensitivity analysis process is illustrated

in Figure 3.
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Figure 3: Workflow of the entire simulation and global sensitivity process

3 Results

A Sobol sequence was generated using N = 1000 and d = 3 (the dimension of the
parameter space) using Saltelli’s extension of the Sobol sequence [10, 50] for a total of
N(d+ 2) = 5000 different parameter combinations to be simulated in order to find the



Sobol sensitivity indices of each performance metric. The simulations were performed on
The College of New Jersey’s high performance computing cluster [53]. As each simulation
took approximately ~ 24 hours to run, the entire effort of this study took required
approximately a total of 120,000 computational hours.

Once the swimming performance metrics were computed, the Sobol sensitivity indices
were found [30, 50]. Figure 4 provides the indices for both the first-order and total-order
parameter interactions. Over the input parameter ranges considered, the performance
metrics were most sensitive to variations in stroke (undulation) frequency, f. Moreover,
higher-order interactions appear to exist, as the first-order and total-order indices are not
equivalent. However, both indicate that system is most sensitive to f. This remained
true for the dimensional swimming speed and cost of transport data, see Figure S7 in
the Supplemental Materials. The degree of sensitivity to each parameter did vary among
the output metrics. While this study only varied Re;,, f, and p, it is possible that the
performance metrics could be more sensitive to other parameters not explored here, such

as variations in the swimmer’s morphology [54, 55, 56, 57].
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Figure 4: (a) First-order and (b) Total-order Sobol indices of the three varied parameters
Rein, f, and p for 5 swimming performance metrics: non-dimensional swimming speed
(1/St), Strouhal number (St), non-dimensional cost of transport (COT), a distance ef-
fectiveness ratio (d.ss), and the average angular trajectory from horizontal ().

With only the Sobol indices in hand, it is unclear how the performance metrics are
sensitive to f, e.g., if f is increased, it is unclear whether swimming speeds would increase
or decrease. More so, it isn’t clear how to determine a finer parameter subspace where
higher swimming performance resides directly from the Sobol indices alone. If another
parameter subspace were tested, as the input ranges would be different in that subspace,
it would inherently change the sensitivity indices, and in possibly substantial ways as

well.
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Figure 5: (a) The overall 3D parameter space being sampled by Sobol sequences. (b)
[lustration of sampling points via Sobol sequences being projected into a 2D subspace,
here the (f,p) subspace (c) Visualization of where data is projected from a higher dimen-
sion space into a 2D subspace.

From the Sobol sensitivity analysis performed in this paper, 2D subspace colormaps
are not able to be produced in the same manner as in [1]. Since the 3D parameter space
was sampled using Sobol sequences, coplanar 2D subspaces, like those in [1], are not
highly resolved. The sampled points simply do not heavily lie on any of the same 2D
subspaces. Therefore, the sampled data here was projected onto three distinct subspaces:
(Rein, f), (Rein,p), and (f,p), as in the process illustrated by Figures 5b-c. Having
performed 5000 simulations, these projected subspaces appear “filled” and can be parsed

for general performance trends.
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Figure 6: Colormaps corresponding to the non-dimensional forward swimming speeds
(1/St), Strouhal numbers (St), and cost of transports (COT') for all the data sampled from
Sobol sequences when projected onto either the (Rej,, f), (Rei, p), or (f,p) subspaces.
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Figure 7: Colormaps corresponding to d.sy, 6, and A/BL for all the data sampled from
Sobol sequences when projected onto either the (Rejy,, f), (Rei, p), or (f,p) subspaces.

Figures 6 and 7 provide the projected data onto each respective subspace: (Reyy, f),
(Rejn, p), or (f,p). From a quick glance, qualitative patterns emerge within regions of
the (Reyn, f) and (f, p) subspaces for all performance metrics. The data in the (Re;,, p)
subspace looks more like random noise. For example, the COT, d.ss, 6, or A panels
corresponding to the (Re;,, p) subspace do not show much, if any, immediate discernible
qualitative pattern(s). However, it does appear that lower f corresponds to more noisy
data within almost every subspace. Furthermore, the subspaces in which patterns arose
had f as one of its component axes. The patterns and trends that emerged within the
performance data aligned with the f-axis in the (Rey,, f) and (f,p) subspaces. While
slight variations do occur in the other component’s direction, either Re;, or p, in these

two subspaces, respectively, the most substantial change appears to be in the direction of

12



f. This agrees with the Sobol sensitivity analysis above, see Figure 4. Although, as these
plots suggest, f is not the only significant parameter contributing to the model output.

The patterns that emerged in Figures 6 and 7 show similar general trends as those
seen in [1]. For example, the high swimming speeds arose from high Re;, and lower f.
Interestingly, the minimal value regions for COT fell for either high Re;, and low f or
low Re;, and high f. Although, low Re;, and high f correspond to a region of higher
St, where St leaves the biological range of 0.2 < St < 0.4 [47]. High values of d.yy
in the (Re;,, f) subspace also corresponded to lower values in COT, moderately high
swimming speeds, and emergent peak-to-peak stroke amplitudes of approximately 1/3
of their bodylength. These occurred around f ~ 2 Hz. C. elegans have been observed
swimming at roughly f ~ 2 Hz with peak-to-peak amplitudes that were roughly 25% of
their bodylength, but at Re = 0.5 [42]. It appeared overall that low frequency swimming
resulted in higher peak-to-peak stroke amplitudes and downward swimming trajectories.
Moreover, the performance metrics show non-linear dependence on f and p, as inferred
from the (f,p) panels. The observable trends in the (Re;,, f) and (Re;,,p) projected
subspaces are consistent with those involving the output Reynolds number, Re,,, i.e.,

(Reout, f) and (Regyut, p). This data is provided in Figures S5 and S6 in the Supplemental

Materials.
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Figure 8: The non-dimensional COT and forward swimming speeds (1/St) plotted against
each other for (a) every simulation performed, as well as colors indicating different ranges
of the input parameters: (b) different Rey, (c) different f, and (d) different p.
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Lastly, a Pareto-like optimal front is identified when plotting the non-dimensional
cost of transport (COT') against the non-dimensional swimming speed (1/St) [31, 32, 58,
33, 59], see Figure 8a. This is referred to as Pareto-like simply because minimal COT is
desired for maximal 1/St, thus both metrics are not being maximized as is standard in
traditional Pareto optimization. The COT appears to increase exponentially (note the
logarithmic axis) with increasing swimming speed. Figures 8b-d, depict where different
input parameter ranges lie within the performance landscape across all simulations per-
formed. (b) and (d) illustrate that for a given Re;, or p within the input parameter space
that combinations of the other two parameters, either (f,p) or Re;,, f), respectively,
could result in a swimmer whose performance could almost be anywhere in the entire
landscape. For example, given Re;, = 500, one could create a swimmer whose swimming
speed was anywhere between [2, 4] by selecting the appropriate f and p combination. On
the other hand, distinct clusters emerge in (c) for different f. As f increases, swimming
speed generally decreases while COT' increases. Undulation frequencies within the range
of [1,2] extend the length of the Pareto-like front. However, frequencies within the [1, 1.5]
range span the entire performance space, while frequencies within [1.5,2] are more re-
stricted towards the Pareto-like front. This further supports that the model output is
most sensitive to undulation frequency, f, within the aforementioned parameter subspace
considered in this study. Where different parameter combination swimmers lie within the
performance space is given in Figure 9. This figure also gives some swimmer’s position
and vortex wakes after their 5'* stroke cycle. There do not appear to be any qualitative
patterns among the vortex wakes that suggest higher or lower cost of transport. This
performance space data is also given in dimensional form in Figures S9 and S10 in the
Supplemental Materials. A similar trend is observed in the dimensional data, in which
distinct clusters form for different f, as in Figure 8c, although higher f corresponds to
higher dimensional cost of transport. Moreover, there appears to be more clustering
for different Re,,; than in Figure 8b, where higher Re,,; appear to correspond to faster

swimming and slightly lower cost of transport in dimensional units.
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Figure 9: Numerous swimmer’s vortex wake and position after their 5 full stroke cycle
and indicating where they fall onto the non-dimensional cost of transport vs. swimming
speed performance space. The colormap illustrates vorticity and the greyed out swimmer
shows the starting position of the swimmer in each case. Different parameter combi-
nations (Re;,, f,p) lead to different swimming behavior, as indicated by its placement
within the performance space and vortex wake left behind.

4 Discussion

Previous experimental and computational studies have highlighted the importance of size
(scale) [60, 61], stroke/undulation frequency [62, 63, 64], bending curvature and stiffness
[61, 65], and intrinsic kinematics [66, 67] on swimming performance. In this work, 3
input parameters were varied: the scale (Re;,), stoke (undulation) frequency (f), and a
kinematic control parameter (p) for an idealized, simple anguilliform fluid-structure in-
teraction model. The input parameter space was composed entirely of a region in which
there is substantial forward swimming performance [1]. Rather than focusing on the net
effect that variations of a single parameter has on swimming performance, the model’s
global sensitivity to its input parameters was uncovered using Sobol sensitivity analy-
sis. The sensitivity analysis indicated that swimming performance was most sensitive to
variations in frequency (Figures 4 and S7).

While it is already well-known that frequency affects forward speed and performance
(62, 63, 64], this study indicates that varying the frequency (within the parameter space
considered) will more significantly affect the resulting model’s performance than changes
in the other two input parameters and combinations thereof. Although, all of the per-
formance metrics considered were most sensitive to frequency, the degree of sensitivity

to each parameter varied between different metrics. For example, after frequency, the
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total-order Sobol indices in Figure 4b illustrates that 1/St, St, COT, and d.;; appear
more sensitive to p than Re,,;, while 8 is more sensitive to Re,,; than p. Therefore when
discussing a model’s sensitivity to a particular parameter, it can only be with respect
to a specific performance metric. Moreover, the Sobol index rankings after f among
first-order indices are different for every output metric except 6, see Figure 4a. Since
the first-order and total-order indices are not equivalent, it suggests that higher-order
interactions among parameters are important in the model output.

The morphology and kinematics of the swimmer studied here resemble that of a C.
elegans [36]. This model has previously predicted swimming speeds (1/St ~ 0.4 — 0.7)
in agreement at lower biologically relevant Re (Regy: ~ 0.5) and frequencies (f ~ 1.8 —
2.2 Hz) [1] with the organism itself (1/St ~ 0.53 — 0.75) [42]. However, in this work the
fluid scale investigated was approximately two or more orders of magnitude greater than
that of a C. elegans [42]. At higher Re, the emergent peak-to-peak stroke amplitude no
longer appeared conserved, in contrast to experimental studies of C. elegans [29]. The
choice of Re in this work was deliberate to investigate this simple anguilliform mode over
a range of Re that boasted higher forward swimming speeds [1]. This selection of input Re
(and resulting output Re) across the intermediate Re regime is a particularly interesting
fluid scale to explore due to the importance and intricate balance of both viscous and
inertial forces [68, 69, 70]. Many of the seminal anguilliform studies have assumed either
low Re [71, 18] or high Re [72] settings. Much of the work since has also focused on one
these two regimes, although a few studies have focused their efforts on intermediate Re
(69, 73].

The C-start escape mechanism in larval fish falls within the intermediate Re regime
(Re ~ 100s) [74, 73]. However, it is not energetically efficient for the swimmer to ex-
clusively use this mode. They only use it to evade a predator before continuing with
a less energy intensive anguilliform mode [75]. During larval stages, some insects may
use an anguilliform mode at Re ~ 100s, such as Ceratopogonid larva, which have been
observed swimming at an estimated Re ~ 160 at 2.17 bodylength/s [25]. Other anguil-
liform swimmers, such as eels or lampreys, swim at higher Re in the 1000s or 10,000s
[43, 27, 76]. However, their anguilliform modes are not equivalent to the simple swimmer
studied here. A CFD model of lamprey swimming at Re ~ 1000s and f = 1 Hz resulted
in swimming speeds between 0.25 — 0.5 bodylengths/s [76]. The model explored here
produced swimmers within the range of 0.7 — 2.3 bodylengths/s for swimmers operating
at Reyyr ~ 100s (Figures S8 and S9 in the Supplemental Materials). Anguilliform swim-
mers like American eels (Anguilla rostrata), larval sea lampreys (Petromyzon marinus, 5-7
years old), and medicinal leeches (Hirudo medicinalis) have been observed to swim at
steady state speeds of 0.5 — 2 bodylengths/s [27, 77], 1.6 — 1.75 bodylengths/s [75], and
1.8 — 2 bodylengths/s [26], respectively. These organisms all swim at high Re. Varying

their Re across orders of magnitude could substantially change their hydrodynamics, as
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suggested by differences in the flow fields of lamprey models [78, 79].

Recently, much emphasis has been placed on designing optimal undulatory swimmers
80, 73, 81, 31, 56, 66, 82, 59]. In general these studies attempted to optimize either shape,
kinematics, or both in regards to swimming speed and either Froude efficiency or cost
of transport. These ideas could help inform the design of faster, more efficient, or more
maneuverable underwater vehicles [83, 84, 85]. The Froude efficiency is the ratio between
the useful propulsive power generated to the rate of energy input. Optimal morphologies
and kinematics were different depending on whether maximal speed, maximal Froude
efficiency, or lowest cost of transport were desired [80, 56, 66, 81, 59]. Optimization
studies by Toki¢ and Yue [81, 59] suggest that swimming speed and cost of transport are
the main drivers of evolution, rather than Froude efficiency. However, the studies above
assumed high Re settings; only the studies by Gazzola et al. 2012 [73], Van Rees et al.
2013 [56], and Van Rees et al. 2015 [66] explored designs within the intermediate Re
space - in particular, one specific Re, Re = 550. None of these studies varied Re across
an intermediate regime nor did they vary undulation frequency. The global sensitivity
results here indicated that varying frequency within an Re regime of 50 < Re,,; < 1220
will most significantly affect swimming performance. On the other hand, this study did
not alter the swimmer’s morphology, such as its length, curvature, or thickness, nor stroke
dynamics, such as burst and glide modes or asymmetric stroke patterns.

Furthermore, the parameter sensitivity indices may change if other subspaces of the
whole (Rey,, f,p) space are considered, as suggested by the data [1]. Changing the input
parameter space may lead to significant changes in the sensitivity results, e.g., rather than
sampling Re;, € [450,2200], selecting Re;, € [10,100]. For example, investigating the
performance of the anguilliform swimming mode at different phases of development when
Re may be smaller than 100, might suggest a higher degree of sensitivity to Re rather than
f, or other parameters entirely. Thus, to perform sensitivity analysis properly, insights
from experimental data or other parameter explorations must first be carefully analyzed

to make sure the analysis is performed over the appropriate input space [86, 87].

5000
j=17

Moreover, projections of the Sobol sampled 3D parameter space, {(Rei,,, f;, ;)
were projected onto two-parameter subspaces, i.e., (Rei,, f), (Reim, p), and (f,p). Similar
trends within the performance metrics could be recognized through these projections
(Figures 6, 7, and S8) and the Pareto-like front identified (Figures 8 and S9 to those
observed in [1]. However, there are distinct differences between the two analyses.

First, in [1], the parameter combinations were selectively sampled in a rectangular
fashion. Each subspace considered variations in two parameters at a time while holding
the third parameter constant, rather than varying all three at once. The latter is what
was done in the work here, via Sobol sequence sampling. The 3D data here had to
be projected from a higher dimensional subspace (3D) to a lower dimensional subspace

(2D) to investigate trends. Second, the projected colormaps here (Figures 6 and 7)
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divulged that the performance metrics appear most sensitive to changes in frequency -
most discernible qualitative patterns align with changes in f. However, each subspace also
contained regions in which looked more like noise. These noisy regions do not suggest a
dominate parameter or parameter combinations. Third, the 3D Sobol sampling approach
allowed for performing a global sensitivity analysis. The broad parameter explorations
in [1] did not allow this. From enough 2D subspace explorations, naive hypotheses could
be formulated, but only in a strict qualitative sense [1]. Fourth, the parameter space
sampled in this paper was only realized from the thorough explorations in [1]. That is, a
3D subspace (with high swimming performance) was first identified from [1], to which was
then sub-sampled for the sensitivity analysis performed here. Hence, in order to perform
this analysis, such a region must be identified a priori. Thus, parameter explorations are
still necessary before performing sensitivity analysis if one is interested in the sensitivity
to parameters within regions of desired performance, unless experimental data is readily
available.

Both the study presented here and [1] only considered a 3D parameter space in which
to analyze swimming performance. It took nearly 5000 simulations for the Sobol sensi-
tivity indices to converge when studying a 3D input space. Therefore studying a higher
dimensional parameter space (> 3) using this formulation will require exponentially more
simulations [88]. Contemporary methods involving polynomial chaos have become popu-
lar to reduce the computational burden, i.e., reduce the amount of simulations required
for accurate indices [89, 90, 91].

Finally, when using mathematical modeling for biological inquiry, sensitivity analyses
can help further knowledge of a biological system. It provides insight into the importance
of parameters for specific output metrics. For example, if one wished to decipher which
parameter (phenotype) was most important to the success of an active predation strategy,
they would have to restrict the parameter space for a given model to a biologically relevant
one for that particular organism. However, sensitivity insights alone aren’t sufficient
to fully understand any possible limitations of a particular predation strategy. Other
parameter explorations would complement the sensitivity results to possibly inform why
that organism has evolved a particular way, e.g., maybe such a strategy would not work (or
be nearly as successful) if it grew to 10x its size (thus increasing the Re by a factor of 10).
Both parameter explorations as well as sensitivity analyses can be used in-conjunction

with one another to provide greater understanding a biological system. Symbiosis .

Lonly until you run out of computing time (environmental factors)
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Supplemental Materials

Computational Parameters and Geometry

Table S1 offers the computational parameters used in the study. They are identical to

those in [1] with the exception of the parameter ranges for Re;,, f, and p.

Parameter Variable Units Value
Domain Size Ly, L,] m 6, 16]
Spatial Grid Size dr = dy m L,/1024 = L, /384
Lagrangian Grid Size ds m dx/2
Time Step Size dt s 2.5 x 107°
Total Simulation Time T stroke cycles 6
Fluid Density 0 kg/m? 1000
Fluid Dynamic Viscosity o kg/(ms) [0.475,17750]
Swimmer Length L m 1.5
Swimmer Height h m 0.5
Stroke Frequency f st [1,3.0]
Reynolds number (input) Rein - [450,2200]
Kinematic Parameter P - [0.05,0.45]
Spring Stiffness Espr kg -m/s 9.5625 x 10?
Non-invariant Beam Stiffness |  Kpeqm kg-m/s? 2.03634 x 102

Table S1: Numerical parameters used in the two-dimensional immersed boundary simu-
lations of the idealized, simple anguilliform swimmer

The undulations of the swimmer’s body that produce forward swimming are governed
by interpolating between two curvature states. The function that governs the interpola-

tion is given by a cubic spline [35, 1]. This interpolant satisfies the following criteria:

1. Continuity of the interpolation polynomial, its velocity, and its acceleration between

successive half-strokes and stroke cycles
2. No instantaneous acceleration or deceleration
3. Symmetry within each half-stroke cycle

The resulting interpolant can be seen in Figure S1 for a variety of kinematic parame-
ter (p) values. This figure was modified from [1]. As p increases, the interpolant deviates
from trivial sinusoidal curvature interpolation functions. Some anguilliform studies in-
vestigating optimal morphokinematics use a mix of cubic splines and sinusoidal functions

to prescribe the swimmer’s body kinematics [80, 66]; however, these constructions result

2



in many more free parameters that govern the body’s shape and kinematics, rather than
only one (p) in the simplified model explored here.

The curvature interpolation scheme used here provides functionality to subtly change
properties of the stroke, i.e., the maximum velocity and accelerations of the changing body
curvature during each upstroke or downstroke. Given two (or more) curvature (geometric)
states, one could design a custom interpolation function(s) based on an animal’s kinematic
data. This could be done by tracking points along the moving body and in addition to
recording the position over time, using such data to approximate the points’ associated
velocity and acceleration between different positions. The curvature interpolant here used
a cubic spline interpolant [35, 1], which allowed for one free parameter (p) that could be
varied to change the body curvature’s maximal velocity and acceleration. Increasing p
would continue to deviate away from pure sinusoidal behavior, see Figure S1. Moreover,
this framework allows one to enforce that no instantaneous accelerations occur along the
swimmer’s body, see Figure Slc. Introducing a higher-order interpolation function would
give rise to more free parameters which would allow one to more closely replicate the

exact kinematics of a moving body.
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Figure S1: (a) Examples of how the interpolation function deviates away from a trivial
sinusoidal interpolation between body curvature states as p increases. The associated
velocity and acceleration profiles are given in (b) and (c¢) respectively. Figure modified
and courtesy of [1].

Since it was desired to have a fluid scaling parameter as an input to the model, an
input Reynolds number was defined in Eq. 2, based on a characteristic length that
was the swimmer’s body (L) and a frequency based characteristic velocity that was the

product of the undulation frequency and the swimmer’s body length, fL [44, 45]. Many
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anguilliform swimming studies use the characteristic velocity as fA, where A is the peak-
to-peak undulation amplitude. However, since A is an output of the model, using a
characteristic velocity scale of fA was impossible for the input Re. Figure S2 provides
plots of the input Re vs. output Re, as organized by the input parameters f and p in
Figures S2b and c, respectively. The output Re, Re,,; depends on model output A, as
a pattern emerges, where higher f corresponds to lower Re,,, given a particular Re;,.
This occurs as f and A are inversely related, i.e., higher f results in a smaller A, see
Figure 7). Figure S3 provides a deeper look into the relationship among the three input
parameters and Re,,;, while Figure S4 confirms that the output Reynolds number is most

significantly affected by changes to the input Reynolds number.
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Figure S2: The input Reynolds number, Re;, = pL(fL)/u, plotted against the output
Reynolds number, Rey: = pL(fA)/n, whose frequency based velocity scale (fA) is based
off the undulation peak-to-peak amplitude, A, which is an output of the model.
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Global vs. local sensitivity analyses

Sobol sensitivity is a variance-based sensitivity analysis that can provide global sensitivity
to parameters, rather than only local sensitivity [51, 52]. By quantifying global sensitivity,
one can determine which parameter, when varied within a particular range, results in the
most significant changes in the model’s output, even with respect to other parameters
being varied. Moreover, Sobol analysis is able to efficiently calculate first-order parameter
sensitivity indices, i.e., perturbations of one parameter at a time, but also higher-order
indices, i.e., those corresponding to perturbations of two or more parameters at a time,
and total-order indices, i.e., all combinations of other parameters [50, 52]. Furthermore,
due to this, the importance of higher-order interactions can be inferred by comparing first-
order and total-order sensitivity indices. If there are significant differences between these
indices, it suggests the presence of higher-order interactions. Higher-order interactions
occur when two or more parameters are changed and it causes a greater variation in the
output than when varying each of those inputs alone.

If one changes the input parameter space sampled for sensitivity, the sensitivity in-
dices, like those in Figure 4 or S7, could significantly change. Thus, while Sobol sensitivity
analysis gives global sensitivities of model output metrics to model parameters, the sen-
sitivity results are highly dependent on the sampled parameter space [86, 87]. Thus,
careful consideration must be made to choose the appropriate input parameter ranges
from either experimental data or previously performed parameter studies.

In comparison to global sensitivity analyses, local sensitivity analyses, on the other
hand, have the misfortune of necessitating that only one parameter can be varied at a
time, which considerably restricts the parameter space that is able to be explored and
analyzed. Under-resolving the input parameter space could easily lead to inaccurate
sensitivities, unless the model is linear [52]. The model examined here was previously
seen to exhibit non-linear behavior [1]. Therefore it was deemed necessary to use global
approaches for sensitivity.

Furthermore, higher-order interactions are difficult to accurately parse out of the data



using only local sensitivity methods. However, with enough work, some local sensitivity
estimates might be able to arrive at the same conclusion that a model is most sensitive
to a particular parameter [51]. Unfortunately, if the goal of the sensitivity analysis is
for model reduction, i.e., eliminating parameters or dynamics from a model, it might
incorrectly suggest some parameters are not important, as it is difficult to predict the

importance of parameter interactions using local sensitivity methods [52].

Additional Data

Non-dimensional Data

Figures S5 and S6 provide colormaps of the performance data in terms of the output
Reynolds number, Rey,; = p-L- fA/u, based on the output peak-to-peak stroke amplitude,
across the (Rey,, f) and (Re;,, p) projected subspaces, respectively. The resulting output
Reynolds numbers spanned [50, 1220]. Patterns emerge across both projected subspaces
as either Re,,; and either f or p vary in each subspace. Although, there are regions within
the subspaces that for particular performance metrics look qualitatively like noise, e.g.,
the colormap for the (Re,y,p) subspace for COT when p 2 0.25 for all Reyy,. Such
noisy regions might suggest that the two varying subspace parameters are not the main
parameters driving that performance metric in that region. The third free parameter
(and possible interactions with the others) may have a more significant impact on that
performance metric there.

Interestingly, both subspaces suggest that the largest regions of highest swimming
speed are located within regions that may encompass both high and low values in COT),
near f ~ 2.0 Hz. These regions also correspond to higher d.f;. Moreover, the Strouhal
numbers almost everywhere within the subspaces fall within the optimal region of 0.2 <
St < 0.4 [47], except near the lower end of the Re,,; spectrum, where they begin to rise
greater than 0.4 as Re,,; decreases.

Furthermore, the (Re, f) projected parameter subspace data is qualitatively very sim-
ilar when organized by either Re;, (Figures 6 and 7) or Re,,; (Figure S5). These con-
sistencies suggest that the Sobol sensitivity analysis would remain consistent for either
Re;,, or Reyy;. However, there are clear differences in the case of (Re, p) among Figures 6
and 7) when compared to Figure S6. That is, the data appears noisy in the former, while
patterns form in the latter. The patterns that emerge in Figure S6 indicate a strong de-
pendence on fA, as it organized by Re,,;. However, this is actually to be expected since
Reout depends on the output A and it is observed that f and A are inversely related (see
the A panel for the (Re, f) and (f, p) subspaces in Figure 7). So the patterns that emerge
are a result that although the input frequency f is not one of the axes, its presence is felt

by the dependence of A in Re,y;.
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Figure S5: Colormaps corresponding to the (Reyy, f) projected subspace, providing the
non-dimensional forward swimming speeds (1/St), cost of transports (COT'), and stroke
amplitudes (A/L), as well as the Strouhal numbers (St), the distance effectiveness ratios
(dess), and the angular trajectories off the horizontal (#) for all the data sampled from
Sobol sequences. Note that the Reynolds numbers shown here are the Re,,;, whose
frequency based velocity scale (fA) is given in terms of the output stroke amplitude, A.
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Figure S6: Colormaps corresponding to the (Reyu, p) projected subspace, providing the
non-dimensional forward swimming speeds (1/St), cost of transports (COT'), and stroke
amplitudes (A/L), as well as the Strouhal numbers (St), the distance effectiveness ratios
(dess), and the angular trajectories off the horizontal (#) for all the data sampled from
Sobol sequences. Note that the Reynolds numbers shown here are the Re,,;, whose
frequency based velocity scale (fA) is given in terms of the output stroke amplitude, A.

Dimensional Data

A comparison of the global parameter sensitivities for swimming speed and cost of trans-
port between their dimensional and non-dimensional form is provided in Figure S7.
The dimensional output metrics for swimming speed (bodylength/s) and COT (N/kg)
are still most sensitive to variations in the stroke (undulation) frequency within the
Rein, X f x p = [450,2200] x [1,3] x [0.05,0.45] parameter subspace. However, both of
the dimensional swimming speed and cost of transport are slightly more sensitive to Re;,

than p.
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Figure S7: (a) First-order and (b) Total-order Sobol indices of the three varied parameters
Rein, f, and p to compare global parameter sensitivities of dimensional to non-dimensional
quantities for swimming speed and cost of transport.

Colormaps showing the dimensional forward swimming speeds (bodylength/s) and
cost of transports (N/kg) over each projected parameter subspace are provided in Figure
S8. Similar to Figures S5 and S6, patterns emerge within the subspaces as different
parameters are varied. Note that these Figures give the Reynolds number as Reg,y,
unlike Figures 6 and 7 in the main manuscript. Beyond similar trends in f, dimensional
swimming speed appears to be highly correlated with higher Re,,; and higher p. As
Figure S1 suggests, higher p correspond to slower initial accelerations, but higher maximal

velocities and accelerations of the changing body curvature throughout each half-stroke.
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Figure S8: Colormaps corresponding to the dimensional forward swimming speeds
(bodylength/s) and cost of transports (N/kg) for all the data sampled from Sobol se-
quences when projected onto either the (Reyy, f) and (Reyyu, p) subspaces.

Pareto-like optimal fronts were identified by plotting the dimensional cost of transport
(N/kg) against swimming speed (bodylength/s) for each simulation performed. The
data is presented in Figure S9. From Figure S9d, given a p, depending on values of
the other two parameters, one could construct a swimmer that falls almost anywhere
within the performance space. However, Figure S9c shows distinct clusters where different
frequency ranges reside and Figure S9b suggests higher Re,,; result in faster swimming
speeds (bodylength/s) and lower cost of transport (N/kg). This complemented the Sobol
sensitivity results for the dimensional data analyzed; choosing a particular f would most

significantly determine where in the performance space a swimmer may reside.
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Figure S10 shows where different parameter combination swimmers lie within the
performance space in Figure S10. This figure also illustrates those swimmer’s position
and vortex wakes after their 5 stroke cycle. Again, the Reynolds number indicated here
is the output Re, Rey = pL(fA)/u, where A is the peak-to-peak amplitude, computed

as output from the model. These are the same swimmers illustrated in Figure 9, but in
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Figure S10: Numerous swimmer’s vortex wake and position after its 5 full stroke cycle
as well as indicating where they fall onto the dimensional cost of transport (N/kg) vs.
swimming speed (bodylength/s) performance space. The colormap illustrates vorticity
and the greyed out swimmer shows the starting position of the swimmer in each case.
Different parameter combinations (Re,y, f,p) lead to different swimming behavior, as
indicated by its placement within the performance space and vortex wake left behind.

Details regarding the Immersed Boundary Method (IB)

Here the immersed boundary method (IB) [40] will be briefly introduced. The IB was
fluid-structure interaction method that solved the equations that coupled the angulliform
swimmer and the fluid to which it was immersed. The open-source IB software IB2d
[38, 39, 34] was used for all the simulations presented in this work.
The full viscous, incompressible Navier-Stokes equations were used to model the fluid
since Re € [250,750], i.e.,
ou

'O[E(X’ t) +u(x,t) - Vu(x,t)| = =Vp(x,t) + pAu(x, t) + F(x,t) (7)

V-u(x,t) =0 8)

where u(x,t) and p(x,t)are the fluid’s velocity and pressure, respectively, at spatial lo-
cation x at time t. F(x,t) is the force per unit area applied to the fluid by the immersed
boundary, i.e., the swimmer. These three quantities are modeled in an Eulerian frame-
work on a fixed rectangular mesh. p and p are the fluid’s density and dynamic viscosity,
respectively.

All interactions between the swimmer and fluid are governed by integral equations
with delta function kernels. As the swimmer bends, deformation forces are spread from

its body to the nearest fluid mesh points. Similarly, the fluid velocity is interpolated back
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onto the swimmer to ensure the no-slip condition is satisfied. The integral equations that

govern these dynamics are given as:

F(x,t) = /f(s,t)5 (x — X(s,t))ds 9)

88_}5(3,25) - /u(x, 06 (x — X (s, 1)) dx. (10)

X(s,t) and f(s,t) give the Cartesian coordinates and deformation forces along the im-
mersed boundary (the swimmer) for each point denoted by Lagrangian parameter, s,
and at time, t, respectively. Eqns (9)-(9) essentially transform Lagrangian variables to
Eulerian variables and vice versa. Here §(x) is a 2D delta function. These delta functions
help ensure that forces from the immersed body are spread only to the nearest fluid mesh
points to the immersed boundary, and vice-versa for when the velocity field is interpolated
back to immersed boundary.

To construct a discretized 1D swimmer with physical meaning, throughout the entire
swimmer’s body linear springs and beams are used to connect adjacent Lagrangian points.
The deformation force equations for springs and beams are given as the following,

Fop = —kspr (1 — HXFRfLXLH) (X —Xp). (11)

4

0
Fbeam = _kbeam@ (X(Sa t) - XB(Sa t)) ) (12)

where kgp, and Kpeqn, are the spring stiffness and beam stiffness coefficients, respectively.
In (11), the terms X and Xp represent the Cartesian positions of two Lagrangian nodes
to which are connected by a spring - a leader (L) and a follower (F) node, at time, t. Ry,
is that spring’s corresponding resting length. In (12), Xpg(s,t) represents the preferred
curvature (shape) of the swimmer’s body at time, ¢t. This model dynamically changes
Xp(s,t) over time, interpolating changing between preferred curvature states. Therefore
this self-propelled swimmer propagates forward only due to time-varying body curvature
and not through explicit prescribed motion of its Lagrangian points.

IB2d discretizes each beam using 3 Lagrangian points; define those three points as

X(s,t) = (XQ’Y;I)a
X(s+1,1) = (X, Y2), (13)
X(s = 1,t) = (X;, Yp).

As described in [34], since Newton’s Second Law of Motion relates forces to an over-
all acceleration, (12) is further discretized by a second derivative with respect to time.

Thereby, all deformation forces arises from beams can be calculated in the following

13



manner
X, —2X,+ X, —C,(t
Fbeam(s - 17 1) = _kbeam I * P ( ) 5
Y, = 2Y, + Y, — C,(t)

X, —2X,+ X, —C,(t
Fbeam<s7 1) = 2kbeam I + P ( ) ) (14)
Y, —2Y, + Y, — Cy(1)

X, —2X,+ X, —C,(t
Fbeam(s + 17 1) = _kbeam I * b ( ) .
Y, — 2V, + Y, — Cy(t)

Note that C,(t) and Cy(t) are the preferred curvatures at time ¢. In these discretizations

they are defined as

C _ < Cx > _ ( erref - 2quref +prref )7 (15)
Cy }/;' 2}/;]p7‘ef + }/ppref

pref
where the pref subscript denotes the preferred geometric configuration. These quantities

all may be time-dependent.
To discretize (9) and (10) regularized delta functions from [40] were used , i.e., 05(x),

i = 0 (5)0 (1) (). "

where ¢(r) is defined as

(B =2|r| +/1+4r| —4r2), 0<|r|<1
(17)

1

8
o(r) =9 (5 =2r|+/=T+12[r| —4r2),1 < |r| < 2
0 2 <|r|.
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