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Abstract

Computational scientists have investigated swimming performance across a mul-

titude of different systems for decades. Most models depend on numerous model

parameters and performance is sensitive to those parameters. In this paper, param-

eter subspaces are qualitatively identified in which there exists enhanced swimming

performance for an idealized, simple swimming model that resembles a C. elegans,

an organism that exhibits an anguilliform mode of locomotion. The computational

model uses the immersed boundary method to solve the fluid-interaction system.

The 1D swimmer propagates itself forward by dynamically changing its preferred

body curvature. Observations indicate that the swimmer’s performance appears

more sensitive to fluid scale and stroke frequency, rather than variations in the ve-

locity and acceleration of either its upstroke or downstroke as a whole. Pareto-like

optimal fronts were also identified within the data for the cost of transport and

swimming speed. While this methodology allows one to locate robust parameter

subspaces for desired performance in a straight-forward manner, it comes at the cost

of simulating orders of magnitude more simulations than traditional fluid-structure

interaction studies.

Keywords: aquatic locomotion; anguilliform motion; fluid-structure interaction; immersed

boundary method; computational fluid dynamics; nematodes

1 Introduction

For decades numerous scientists have studied the swimming performance of animals across

all lengths scales of the animal kingdom. Outside of (wet) laboratory settings, compu-
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tational scientists have developed and used sophisticated modeling tools to explore a

plethora of swimming systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Often these tools require

immense computational resources, e.g., high performance computing clusters, to simu-

late the system, either due to an individual simulation’s computational time expense,

the number of simulations necessary to generate data for a particular study, or both

[11, 12, 13, 14, 15, 16]. Due to these restrictions, parameter sweeps are regularly per-

formed with respect to one model parameter at a time, thus not fully mapping perfor-

mance out across an entire parameter space, or even multi-dimension subspaces. N -

dimensional parameter spaces are often studied through 1-dimensional subspaces (lines)

through the higher dimensional space [17, 18, 19, 20, 21]. Thus, 2D (or 3D) perfor-

mance landscapes have not been fully mapped out, in which performance metrics can be

interpreted from any combination of two (or more) traits.

Nematode locomotion has been well-studied for over half a century [22, 23, 24, 25,

26, 27, 28, 29, 17, 30, 21]. Nematodes are an ideal model organism to study due to

their simple two-dimensional planar gait. They display anguilliform modes of swimming;

their muscles contract, resulting in their entire bodies bending, head to tail, with the

locomotive benefit of propelling forward [22, 24, 31, 26, 30]. Due to their bodylengths

on the order of ∼ 1 mm [32]), many nematodes, like C. elegans live at low Reynolds

numbers (Re < 1). The Reynolds number, Re, is non-dimensional quantity that is used

to quantify the scale of a fluid-system. It is defined in terms on four parameters: two

system parameters - a characteristic length and velocity, L and V , respectively, and two

parameters describing physical properties of the underlying fluid - its density and dynamic

viscosity, ρ and µ, respectively. The Reynolds number is defined as

Re =
ρLV

µ
. (1)

Aquatic locomotion performance has been observed to be scale (Re) dependent [33, 34]

in a number of organisms, such as water boatmen [18], fish [35], and jellyfish [36, 16]. As

C. elegans exist in the lower Re regime, many fluid-structure interaction computational

models of nematodes have only considered the low Reynolds limit, i.e., the Stokes flow

Regime (Re = 0) [37, 17, 21]. However, anguilliform modes of locomotion are reliable

swimming gaits for many organisms, such as eels or lamprey [38, 5], who perceive life

through the lens of intermediate or higher Reynolds numbers, i.e., Re in the 100s, 1000s,

or higher. Computational fluid dynamics models tend to be easier to perform fluid

scaling studies than purely experimental studies, as they reduce the need for numerous

high-fidelity scaled physical models and/or large quantities fluids of various viscosities,

or finding organisms of specific sizes and/or training them. Furthermore, theoretical

extensions of existing locomotion modes into different fluid scales are possible through

computational modeling.
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In this work, I attempt to quantify swimming performance using various metrics

(forward swimming speed, an emergent peak-to-peak stroke amplitude, Strouhal number,

cost of transport, a distance effectiveness ratio, and an angular trajectory metric), across

broad 2-dimensional parameter subspaces for an idealized, simple swimming model in

2D that resembles a nematode, like a C. elegans. The simple swimmer model is a one-

dimensional entity that propagates itself forward by dynamically changing its body’s

1D preferred curvature state between two specific body positions - either a concave up

or concave down state [39, 40], see Figure 1. Similar to a C. elegans, the swimmer’s

locomotive patterns resemble a C-shape [41], rather than a more S-shape, which C. elegans

use for crawling [31] or like that of other angulliform swimmers like eels or lampreys [5].

The governing fluid-structure interaction equations governing this system are solved using

the immersed boundary method (IB).

The parameter space explored is composed of the fluid scale (an input Reynolds

number, Rein), the stroke (undulation) frequency, f , and a kinematic parameter, p. The

kinematic parameter, p, helps govern the kinematic profile of each stroke. Varying p is

akin to changing the acceleration and velocity of the undulation movement itself. That

is, it controls how quickly each stroke accelerates from rest (current curvature state) to

its maximal velocity and back to rest (next curvature state). Previous experimental work

suggested that a nematode’s undulatory amplitude did not vary when placed in a variety

of increasing viscosity environments [42], i.e., decreasing Re; however, this may not be

the case as Re increases, as this model demonstrates. The same nematode morphology

was used across all simulations. However, previous work has established that bending

frequency impacts nematode performance, for both speed and efficiency, at Re ∼ 0.4

[29]. Thus, I elected to vary stroke (undulation) frequency. Moreover, the swimming

performance of C-shape undulation, like that of C. elegans, has not been previously

investigated across intermediate Re.

Ultimately, I explored relationships between the three input parameters varied, (Rein, f, p),

by analyzing two parameters at a time, while holding the third constant at three differ-

ent values. Robust parameter subspaces were then identified, to which offered greater

swimming performance than others. Moreover, from this data, Pareto-like fronts were

uncovered for different parameter combinations [43, 44, 34].

2 Methods

The idealized, simple swimming model first presented in [39] and further explored in

[40], was modified in this work, see Figure 1b for its basic 1D geometry. This swimmer

resembles a nematode; it is able to propagate forward by varying its curvature between

two preferred curvature (shape) states as illustrated in Figure 1a - between a concave up

state and a concave down geometric state. The choice of the body to be comprised of
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a straight section with a cubic-polynomial cap was to mitigate a simple asymmetry in

the body itself, as observed in C. elegans previously [26, 45, 30]. The straight portion

of its body comprised 28% of its entire bodylength (L), while the polynomial portion,

composed the remaining 72%. This choice was to give an initial height of h = 0.5

(see Figure 1b). One complete stroke (undulation) was defined as comprising both the

upstroke and downstroke of the swimmer’s body itself.

Figure 1: (a) Evolution of the preferred curvature during the upstroke and downstroke.
The emergent peak-to-peak stroke amplitude, A, of each stroke is also depicted. (b)
The geometry of the simple swimmer is composed of a straight line segment and a curve
portion given by a cubic polynomial. (c) Depictions of the definitions for the angular
trajectory as off the horizontal (θ), the horizontal distance swam (DS), and the total
linear distance moved by the swimmer (DTot). Note that (c) depicts a swimmer for the
case (Rein, f, p) = (1350, 2.1, 0.25).

To computationally model this swimmer, an open-source 2D implementation of the

immersed boundary method [46], IB2d [47, 48], was used. In fact, this swimmer is

one of the built-in models within the software [39]. It can be found at github.com/

nickabattista/IB2d in the sub-directory:

IB2d/matIB2d/Examples/Examples Education/Interpolation/Swimmer.

The mathematical details regarding this swimmer’s implementation in IB2d can be

found in the Supplemental Materials with further details in [39, 40]. Additional details

on the IB method can be found in [49, 46, 47, 48]. Therefore I will only offer the

computational parameters listed in Table 1 here; however, the interpolation procedure for

the swimmer’s dynamical curvature is briefly described below, noting that the interpolant

is detailed in greater depth in [40]. Each curvature state’s information are contained in

matrices A and B, for the concave up and concave down configurations, respectfully.
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Details regarding how the curvature is defined are found in the Supplemental Materials.

I begin by defining a matrix function, h(τ), that interpolates the curvature of the swimmer

between two curvature states A and B,

h(τ) = A + g(τ)(B−A), (2)

where g(τ) is a cubic polynomial defined to be

g(τ) =


g0(t) = a0 + a1τ + a2τ

2 + a3τ
3 0 ≤ τ ≤ p

g1(t) = b0 + b1τ + b2τ
2 + b3τ

3 p ≤ τ ≤ 1− p
g2(t) = c0 + c1τ + c2τ

2 + c3τ
3 1− p ≤ τ ≤ 1

. (3)

τ is a non-dimensional time given by the fraction of either the upstroke or downstroke,

i.e., a half-stroke. Since the period of a half-stroke is 0.5/f , then τ = t/(0.5/f), as

0 ≤ t ≤ 0.5/f and 0 ≤ τ ≤ 1 for each half-stroke. p is an interpolation mediary point (the

kinematic parameter). p can be used to control the velocity and acceleration of how the

curvature changes during the upstroke and downstroke, i.e., it controls the acceleration

to the maximal speed in which the swimmer’s curvature changes during either upstroke

or downstroke, as well as the deceleration thereafter. Varying p produces interpolants

such as those in Figure 2. The the maximal and minimal acceleration occur at p and

1 − p, respectively, see Figure 2c. The choice of a piecewise cubic interpolant (Eq. 3)

was to ensure that there were enough degrees of freedom to allow for a kinematic control

parameter (p) as well as to satisfy the following continuity conditions:

h(0) = A

h(1) = B

}
continuity

h′(0) = 0

h′(1) = 0

}
cont. velocities

h′′(0) = 0

h′′(1) = 0

}
no instant. accel.

(4)
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Parameter Variable Units Value
Domain Size [Lx, Ly] m [6, 16]

Spatial Grid Size dx = dy m Lx/1024 = Ly/384
Lagrangian Grid Size ds m dx/2

Time Step Size dt s 2.5× 10−5

Total Simulation Time T stroke cycles 6
Fluid Density ρ kg/m3 1000

Fluid Dynamic Viscosity µ kg/(ms) [0.475,17750]
Swimmer Length L m 1.42
Swimmer Height h m 0.5
Stroke Frequency f s−1 [1,2.5]

Input Reynolds number Rein - [0.1,4500]
Kinematic Parameter p − [0.075,0.425]

Spring Stiffness kspr kg ·m/s2 9.5625× 109

Non-invariant Beam Stiffness kbeam kg ·m/s2 2.03634× 1012

Table 1: Numerical parameters used in the two-dimensional simulations.

Figure 2: (a) The interpolation function, g(τ), (b) its first derivative, g′(τ), and (c) its
second derivative, g′′(τ), for a variety of p values.

In this study, three parameters were varied - the dynamic viscosity (µ), the stroke

frequency (f), and a kinematic parameter, p. The viscosity µ was varied to effectively

change an input fluid scale, given by an input Reynolds number, Rein, i.e.,

Rein =
ρL(fL)

µ
. (5)
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The characteristic length and velocity scale are defined to be the swimmer’s bodylength,

L, and a frequency-based velocity, given by fL [50, 51]. For each simulation a specific

(Rein, f, p) combination was determined, to which the corresponding µ was computed

from Eq. 5 to give the appropriate Rein. Note that it is customary in anguilliform

studies to use fA, the product of f and the peak-to-peak undulation amplitude, A, as

the characteristic velocity in the Reynolds number calculation. However, the undulation

amplitude is an emergent output of the model and thus cannot be known when initializing

the simulations. Therefore I elected to use a characteristic velocity seen in fish literature

as an input velocity scale, fL [50, 51, 52] and show relationships between an input

Reynolds number (Rein) and output Reynolds number (Reout). The output Reynolds

number is defined as Reout = ρ ·L ·fA/µ, whose frequency based velocity scale is given as

fA. Relationships among Rein and Reout are depicted in Figure S1 in the Supplemental

Materials. The output Reynolds numbers fall within the intermediate Re regime, which

is an interesting regime to study due to the balance of inertial and viscous forces [53].

Moreover, Reout appears most strongly correlated to Rein, compared to either f or p.

Also, the definition of the output peak-to-peak stroke amplitude, A, is illustrated in

Figure 1a and c.

The model output included a non-dimensional forward swimming speed, which was

defined to be the inverse of the Strouhal number, i.e.,

St =
fA

VF
, (6)

where St is the Strouhal number, VF is the dimensional forward swimming speed, and fA

is a frequency based velocity based on the output peak-to-peak stroke amplitude of the

swimmer, A. The above definition of St uses the stroke (undulation) frequency, f , rather

than a vortex shedding frequency, as is common in swimming studies. The St analysis

focused on the St range in which the majority of swimming and flying animals reside,

i.e., 0.2 < St < 0.4 [54]. Moreover, a power-based cost of transport [19, 5] was computed

and defined to be

COTDim =
1

N

1

VF

N∑
j=1

|Fj||Uj|, (7)

where Fj and Uj are the applied vertical force and tangential body velocity of the swimmer

at N time-points during a specific period of time. Note that since dt is fixed and the

frequency changes across many simulations, the number of time-steps may vary from

simulation to simulation. However, each simulation’s time-steps were sub-sampled at

specific time-points of each stroke cycle to ensure that data was stored at the same

fractions of a stroke cycle across all simulations performed. These differences were taken

into account when computing all locomotion quantities used in the performance metrics,
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i.e., VF , Fj, and Uj. The cost of transport was non-dimensionalized, in the following

manner

COT =
COTDim

ρf 2A2L2
,

where L is the length of the swimmer. The non-dimensional COT is similar to finding

the energy-consumption coefficient of [19]. Also, a distance effectiveness metric was

computed, deff . It was defined as the ratio of forward distance swam and the total

linear distance swam, i.e.,

deff =
DS

DTot

, (8)

where DS and DTot are the horizontal (forward) distance and the total linear distance

moved by the swimmer, respectively, during the same N time-points, see Figure 1c. DTot

was computed by tracking the linear distance traveled by the swimmer’s head across

the N time-points and adding them together. Thus, DTot encompassed both vertical

and horizontal movement. Lastly, the average angle off the horizontal, θ, was computed

(see Figure 1c), to discern parameter combinations that lead to non-horizontal swimming

trajectories.

For each simulation performed, a time-averaged non-dimensional forward swimming

speed (1/St), Strouhal number (St), COT , and peak-to-peak stroke amplitude (A/L)

were computed along with θ and the distance effectiveness ratio, deff , which allowed for

effectively mapping these metrics across entire broad subspaces when a sufficient number

of simulations were performed.

3 Results

Different modes of locomotion are more effective at certain fluid scales than others [55].

To investigate the effectiveness of this nematode-like, anguilliform swimming modality,

simulations were performed across four orders of magnitude of Rein. Moreover, a plethora

of literature has illustrated that an organism’s forward swimming speed is dependent on

its stroke (undulation) frequency [56, 23, 57]. By highly resolving a subspace of (Rein, f)

allowed for exploring any nonlinear effects that could arise when both Rein and f are

varied for this particular mode of locomotion. Furthermore, by varying the kinematic

parameter p, one could explore how any such nonlinear affects might be exacerbated by

variations of the velocity/acceleration within the stroke’s (undulation’s) kinematic profile

itself. Thus, a total of 6,357 fully coupled 2D fluid-structure interaction simulations

were performed to explore the 3-dimensional parameter space for this idealized, simple

swimming model. With the goal of finding robust parameter subspaces which lead to

higher swimming performance, the following cases were considered:

1. The input Reynolds number & frequency space for 3 specific values of the kinematic
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parameter, p.

2. The input Reynolds number & kinematic parameter space for 3 specific frequencies.

3. The frequency & kinematic parameter space for 3 specific input Reynolds numbers

Varying these three parameters (Rein, f, p) can lead to substantially different swim-

ming behavior, both in terms of kinematics as well as dynamical performance. Figure

3 gives snapshots of the swimmer’s position and fluid vorticity after 5 complete stroke

cycles (5 upstrokes and 5 downstrokes each) for a variety of (Rein, f, p) combinations.

As parameters are varied, some swimmers are able to outperform others in terms of dis-

tance swam and forward speed; however, not all swimmers move laterally across. Some

swimmers begin drifting upwards or downwards as well at different angular trajectories.

Figure 3: Numerous swimmer’s vortex wake and position after its 5th full stroke cycle.
Different parameter combinations lead to different swimming behavior, both in terms of
distance swam and dynamics, as seen by variations in the vortex wakes left behind. The
colormap illustrates vorticity and the initial position of the swimmer is given for each
case.

3.1 Exploring the Reynolds number & Frequency Space

First, an input fluid scale (Rein) and stroke frequency (f ) subspace was explored for 3

values of the kinematic parameter, p. Generally, as Rein increased, the swimming speed

(1/St) increased for a given f . Lower f tended to have higher swimming speeds for a

given Rein. Figure 4 illustrates that both the distance swam and swimming speed were

greater for lower frequencies for the case of Rein = 180. Moreover, the swimming speed’s

waveform changes as frequency changes. Holding a fixed f and varying Re produces

similar trends, but where higher Rein leads to enhanced swimming. For this data, see

Figure S2 in the Supplemental Documents.
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However, nonlinear relationships exist between swimming speed, Rein, and f , for given

p. Figure 5 provides temporally-averaged data for forward swimming speed, St, cost of

transport (COT ), peak-to-peak stroke amplitude (A/L), and deff for a subset of the total

cases performed involving differing Rein and f for p = 0.125. Swimming speed (1/St)

and cost of transport (COT ) take on maximal value between 1 . Rein . 5; however, this

is due to very small emergent stroke amplitudes. For 5 . Rein . 100, higher f produces

faster swimmers; however, near Rein = 100, a transition occurs in which lower f produces

faster swimmers. Throughout the range of 5 . Rein . 500, COT decreases; it begins to

increase shortly after Rein ≈ 500.

For comparative purposes, Figure 6 presents the swimming speed (1/St), St, and

COT data as colormaps for all cases of p considered (p = 0.125, 0.25, and 0.375). Each

shaded-in box in the grid corresponds to an individual, independent FSI simulation of a

different (Rein, f) combination for a specific p. Generally a combination of a higher Rein

(Rein & 300) and lower f produces the fastest swimmers; however, the faster swimmers

also tend to correspond to the slightly more costly swimming, i.e., the non-minimal regions

of COT are near regions of maximal swimming speed, and higher stroke amplitudes.

Lower f resulted in higher stroke amplitudes in general. As p varies, there appear to be

only subtle differences in these performance metrics across the (Rein, f)-subspace. The

region of 0.2 < St < 0.4 as well as higher deff slightly decreases in each subspace as p

increases (see Figure S3 in the Supplemental Materials). Furthermore, at low Rein the

swimmer appears to substantially drift downward (negative θ) while swimming. As Rein

increases there is an abrupt transition to the swimmer migrating upwards (positive θ).

For Rein & 30 the swimmer has less of a vertical shift off the horizontal as it swims (see

Figure S3). The dimensional analog to Figure 6 is also provided as Figure S17 in the

Supplemental Materials.

However, Figure 7 presents the swimming speeds observed for all frequencies consid-

ered and three different kinematic parameters for 3 different Rein cases: (a) Rein = 6, (b)

Rein = 45, and (c) Rein = 270. For a given Re, swimming speed appears more sensitive

to frequency and less sensitive to variations in p, e.g., in the case of Rein = 6, varying f

could result in ∼ 3-fold difference in swimming speeds, while varying p did not seem to

produce a substantial difference. A figure giving the swimming speed data in different

dimensional forms for the p = 0.125 case is provided in Figure S4 in the Supplemental

Materials. For Rein & 100 Hz, Figure S4c shows a linear relationship between swimming

speed (bodylengths/stroke) and the logarithm of Rein.
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Figure 4: The (a) non-dimensional distance (bodylengths) and (b) speed (1/St) over time
for swimmers with Rein = 180, p = 0.125 and over variety of f .

Figure 5: The time-averaged data on the (Rein, f)-subspace for p = 0.125 for (a) non-
dimensional swimming speeds (1/St), (b) non-dimensional cost of transports (COT ), (c)
peak-to-peak output stroke amplitudes (A) , and (d) non-dimensional distance effective-
ness metrics (deff ).
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Figure 6: Colormaps illustrating the non-dimensional forward swimming speeds (top row)
and cost of transports (bottom row) over the (Rein, f)-subspaces for 3 different p values:
p = 0.125, 0.25, and 0.375.

Figure 7: Semi-logarithmic plots illustrating the sensitivity of forward swimming speed
to p for particular cases of Re: (a) Rein = 6, (b) Rein = 45, and (c) Rein = 270.

12



3.2 Exploring the input Reynolds number & Kinematic

Parameter Space

The (Rein, p)-subspace was explored for three particular f values: f = 1.25, 1.75, and

2.25 Hz. As suggested by Figure 6, varying p for a given Rein, leads to smaller variations

in output metrics. For the cases of Rein = 180 and f = 1.75 and 2 Hz, the distance

swam and swimming speed over time are given in Figures S6 and S7 in the Supplemental

Materials. Moreover, as p is varied for Rein . 500 (and particular f), there are minimal

differences in forward swimming speed and COT , see Figure 8. Thus overall the time-

averaged performance metrics, such as forward speed (1/St) and COT , do not appear too

sensitive to variations in p for Rein . 500. However, Rein & 500 and lower f correspond

larger regions of maximal swimming, but with smaller stroke amplitudes (see Figure S9).

Moreover, generally as f increases, stroke amplitude decreases for Rein & 1. Note that

the raw data can be seen in Figure S8 provided in the Supplemental Materials. Similar

trends can be seen for deff and θ, see Figure S9 in the Supplemental Materials.

However, Figures 8 and S9 illustrate that as f varies, the overall performance depicted

on each (Rein, p)-subspace greatly varies. Higher Rein generally led to greater swimming

speeds, St values that fell within the biologically relevant range (0.2 < St < 0.4), as well

as higher deff , suggesting that the movements of the swimmer led to increased forward

thrust resulting in greater forward propagation. Higher Rein also appears to result less

upwards migration of the swimmer across the domain, i.e, the angle off the horizontal,

θ, is closer to 0. Although, for higher f and low Rein, the subspace of drifting vertically

downwards (θ ∼ −25◦) continues to increase in size, followed by a regime of Rein to which

the swimmer drifts upwards (θ ∼ 30◦). Furthermore, a nonlinear relationship emerges in

COT , where COT takes on its minimal values over a subset of Rein (100 . Rein . 1000),

with increasing values of COT on either side of that subset. The dimensional analog to

Figure 8 is provided as Figure S18 in the Supplemental Materials.

Figure 9 shows that as p varies for multiple f and Rein: (a) Rein = 6, (b) Rein = 45,

and (c) Rein = 270, that changes in p could vary forward swimming speeds by upwards

of ∼ 10 − 50%. This occurs in both the case of Rein = 45 and Rein = 270 for all f

considered. However, the Rein = 6 case illustrates that varying f results in two-fold

increases (∼ 200%) in swimming speed, while varying p minimally affects swimming

speed. Moreover, increases in swimming speed by upwards of ∼ 40% can be seen for

other values of f in the Rein = 45 and 270 cases. Hence varying both f an p can greatly

affect the swimmer’s resulting swimming performance, depending on the fluid scale being

explored, although variations in f seems to more substantially affect the model. A figure

giving the swimming speed data in different dimensional forms for the f = 1.75 Hz

case is provided in Figure S10 in the Supplemental Materials. Only minute increases in

swimming speed occur as Rein increases from 0.5 to 100 for swimming speeds in units
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of bodylengths/stroke or bodylengths/second; however, shortly after Rein > 100, speeds

substantially increase.

Figure 8: Colormaps illustrating the non-dimensional forward swimming speeds (top row)
and cost of transports (bottom row) over the (Rein, p)-subspaces for 3 different f values:
f = 1.25, 1.75 and 2.25 Hz.

Figure 9: Plots illustrating the sensitivity of forward swimming speed to f for particular
cases of Rein: (a) Rein = 6, (b) Rein = 45, and (c) Rein = 270.
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3.3 Exploring the Frequency & Kinematic Parameter Space

Lastly, the frequency and kinematic parameter subspace, (f, p), was explored for 3 specific

Rein, Rein = 9, 90, and 900. For Rein = 90 minimal differences were observed in the

distance swam and swimming speed (1/St) over time (see Figure S12 in the Supplemental

Materials). However, as f changes substantial variations in swimming performance were

observed, as shown in Figure 10, which illustrates the swimming speed (1/St) and COT

on 3 (f, p)-subspaces corresponding to different Rein. In the Rein = 900 case, the highest

speeds were associated with low f and low p. However, frequencies within the range of

1.6 − 2.0 Hz with p > 0.15 appear to be associated with higher swimming speeds, than

those of f outside that range. This region also had generally lower COT . On the other

hand, in the Rein = 9 case, as f increased, swimming speed generally increased while

COT generally decreased. The case in-between (Rein = 90) shows the regions with the

highest swimming speeds correpond to regions of the highest COT . However, substantial

swimming speeds with low COT are observed for lower f and lower p. Similar speeds are

also produced at higher f and higher p but with higher associated COT . Hence there

exists a Rein regime in which lower frequency results in higher swimming speed and lower

COT .

There are intricate nonlinear relationships between swimming speed and COT in

certain (f, p) subspaces that correspond to different Rein. Furthermore, these nonlinear

relationships can be seen in Figure 11, which provides the time-averaged swimming speed

(1/St) for all frequencies considered and a subset of p for three Rein: (a) Rein = 9, (b)

Rein = 90, and (c) Rein = 900. As Rein increases from (a)→(c), the shape of the curve

changes. For Rein = 9, increasing frequency resulted in monotonically increasing forward

swimming speeds, as previously suggested in Figure 5. While for Rein = 90, as frequency

increased, there was a sudden drop in swimming speeds, followed by speeds increasing

slightly for f & 1.75 Hz. However, when Rein = 900, a clear nonlinear relationship

emerges, where a unique maxima and minima emerge near f ∼ 1.3 and 2Hz, respectively.

Additional data for 1/St St, A/L, and COT for the Rein = 90 case can be found in Figure

S13 in the Supplemental Materials. Similarly, colormaps of deff , θ, and amplitude (A/L)

can be found in Figure S14 in the Supplemental Materials. Note that swimming in the

0.2 < St < 0.4 range does not occur until the highest Rein case considered (Rein = 900).

Also as Rein increases, the deff increases as well, indicating that the movement patterns

the swimmer performs, leads to greater thrusts forward for swimming. This also tends

to correspond to less vertical drifting when swimming, i.e., θ is closer to zero degrees.

Moreover, among all cases shown in Figures 10 and 11, varying p did not generally

appear to substantially affect either forward speed or COT , i.e., swimming performance

appears to be more sensitive to f than to p. As Figure 11b illustrates, only in the

higher Rein cases of Rein = 90 and 900 did swimming performance appear sensitive
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to p, i.e., swimming speed is 1.3x larger in the p = 0.4 case when compared to the

p = 0.1 case for Rein = 90 and f ≈ 1.75 Hz. A figure giving the swimming speed

data in different dimensional forms for the Rein = 90 case is provided in Figure S15 in

the Supplemental Materials. For f & 1.75 Hz, Figure S15c shows a linear relationship

between swimming speed (bodylengths/second) and stroke frequency, while swimming

speed (bodylengths/stroke) is constant in the same frequency range, see Figure 15b.

Figure 10: Colormaps illustrating the non-dimensional forward swimming speeds (1/St)
(top row) and cost of transports (bottom row) over the (f, p)-subspaces for 3 different
Rein values: Rein = 9, 90 and 900.
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Figure 11: Plots illustrating how sensitive forward swimming speed is to p for particular
cases of Rein: (a) Rein = 9, (b) Rein = 90, and (c) Rein = 900.

3.4 Exploring Cost of Transport vs. Forward Swimming Speed

A Pareto-like front can be observed when plotting the non-dimensional cost of transport

(COT ) against the non-dimensional swimming speed (1/St) [43, 44, 9, 34], see Figure

12a. This is called Pareto-like because maximal swimming speeds are desired for low

COT , i.e., ones ideally hopes to minimize COT , rather than maximize it, and hence

not maximize both quantities, as is traditionally done in Pareto optimization strategies.

COT appears to be minimal in cases when the swimmer’s forward swimming speed is

2.5 . 1/St . 3. The further outside of that range, the more COT appears to increase.

As Figure 12a presents the data from Sections 3.1-3.3 all combined, patterns emerge of

where subspaces lie within the overall performance space, i.e., Figures 12b-d.

Across the (Rein, f)-subspaces, the data stretches throughout the entire performance

space for every case of p considered (Figure 12b). On the other hand, the (Rein, p)-

subspaces divulge a slightly different story. As f varies, the data still stretches throughout

the entire performance space; however, it was more clustered. Higher f resulted in faster

speeds within the region of 103 . COT . 105 (Figure 12c). Furthermore, distinct

localized clusters emerge in the (f, p)-subspace, for different values of Rein (Figure 12d).

Lower Rein appear to be associated with generally slower speeds and higher COT over

every (f, p)-subspace considered. The cluster associated with Rein = 900 appears near

the region with minimal COT , centered about 1/St = 3. These trends can be seen in

specific subspaces in more detail in the Supplemental Materials; see Figures S5, S11, and

S16. These figures present the data for a particular subspace using 1D parameterizations

through the subspace itself, i.e., parameterizations of either Rein, f , or p depending on the

subspace investigated. Furthermore, the dimensional analog of Figure 12, is provided as

Figure S19 in the Supplemental Materials, where swimming speed and cost of transport

are given in units of bodylengths/second and N/kg, respectively.
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Figure 12: The non-dimensional COT and forward swimming speeds (1/St) plotted
against each other for (a) every simulation performed, (b) the (Rein, f)-subspace, (c)
the (Rein, p)-subspace, and (d) the (f, p)-subspace.

4 Discussion

Two-dimensional immersed boundary simulations were used to explore parameter sub-

spaces of an idealized, simple swimming model. A total of 6,357 simulations were per-

formed using The College of New Jersey’s high-performance computing cluster [58], each

requiring approximately 24 hours of computing time, resulting in ∼ 152, 568 computa-

tional hours necessary to explore such parameter subspaces. Multiple swimming perfor-

mance metrics were extensively quantified across broad subspaces given by combinations

of two parameters (Rein, f), (Rein, p), and (f, p) and 3 specific values of third. Some of

the general trends observed were:

1. Higher swimming speeds (1/St) occur for parameter subspaces involving higher

Rein (Rein & 250) and lower f (f . 1.75 Hz). These regions also corresponded to

swimmers with high emergent peak-to-peak stroke amplitudes.

2. These swimming speeds also correspond to Strouhal numbers (St) in the range in

which the majority of swimming and flying animals are observed, i.e., 0.2 < St < 0.4
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[54].

3. The subspaces in which produce greater swimming speeds (for higher Rein), also

tend to require COT roughly 2-10x higher than where it is minimal.

4. The highest non-dimensional swimming speeds (1/St) occurred over subspaces in-

volving Rein due to minimal peak-to-peak amplitudes. In units of bodylengths/stroke

or bodylengths/second, these corresponding parameter combinations resulted in the

slowest swimmers.

5. Swimming performance was less affected by variations in the kinematic parameter,

p, compared to variations in f or Rein for their respective ranges considered.

While these trends may have been found without having performed such large numbers

of simulations, even by possibly two orders of magnitude, our parameter explorations were

able to divulge robust parameter subspaces that offer greater (or lesser) performance. For

example, the simple swimmer propelled itself forward the slowest for Rein ≈ 10, even for

a variety of f and p. On the other hand, a robust subspace for high swimming speeds

appeared to be for Rein & 500, 1 ≤ f ≤ 1.75 Hz, and p in any of the values sampled

(0.075 < p < 0.425). Moreover, from the parameter subspace offering high swimming

speeds, one could find further subspaces in which COT was above (or below) particular

thresholds.

Overall, our study was also able to hint towards the performance metrics’ underlying

sensitivity to parameters, although a proper quantitatively-based global sensitivity anal-

ysis, such as Sobol Sensitivity Analysis [59], is still required. However, such sensitivity

analyses require themselves a large number of simulations to be performed (∼ 103−104 for

3 parameters), in which parameter combinations (Rein, f, p) are selected through Sobol

Sequences [60, 61], rather than uniform sampling as carried out here. Thus, finding ro-

bust parameters subspaces in which reveal higher swimming performance may not be as

trivial to find. It remains unclear whether after Sobol sampling from a 3D space and

performing simulations, if the data could be projected into a subspace, i.e., project the

3D swimming performance metric data onto a 2D subspace, e.g., (Rein, f), (Rein, p), or

(f, p), and offer as much insight into swimming behavior.

There exist other methods to explore parameter subspaces which attempt to reduce

the dimensionality of the system and thus the overall necessity of having to explore such

a large parameter space (and perform a seemingly infeasible number of computationally

expensive simulations). One such method is called active subspaces which finds large

variations in the gradient of a model’s output in order to construct a response surface in

a lower dimensional space [62, 63]. It has been successfully applied to numerous problems,

including optimizing the design of an aircraft wing, where a low dimensional subspace

was found within a 50-dimensional input parameter space. The low dimensional subspace
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that was found effectively described the variability within the lift and drag coefficients to

such an extent that it revealed global trends within the original higher dimensional pa-

rameter space. This allowed for an efficient method to design an optimal wing [64]. Such

an approach could prove beneficial while exploring the fitness landscapes of numerous

mechanical systems, each composed of a high dimensional parameter space, along with

their inherent global sensitivities to parameters, all in conjunction with possible con-

vergent evolutionary processes. Although evolution does not optimize towards a global

optima, it could be useful technique for identifying and analyzing trends across a variety

of mechanical systems.
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