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Abstract

Computational scientists have investigated swimming performance across a mul-
titude of different systems for decades. Most models depend on numerous model
parameters and performance is sensitive to those parameters. In this paper, param-
eter subspaces are qualitatively identified in which there exists enhanced swimming
performance for an idealized, simple swimming model that resembles a C. elegans,
an organism that exhibits an anguilliform mode of locomotion. The computational
model uses the immersed boundary method to solve the fluid-interaction system.
The 1D swimmer propagates itself forward by dynamically changing its preferred
body curvature. Observations indicate that the swimmer’s performance appears
more sensitive to fluid scale and stroke frequency, rather than variations in the ve-
locity and acceleration of either its upstroke or downstroke as a whole. Pareto-like
optimal fronts were also identified within the data for the cost of transport and
swimming speed. While this methodology allows one to locate robust parameter
subspaces for desired performance in a straight-forward manner, it comes at the cost
of simulating orders of magnitude more simulations than traditional fluid-structure

interaction studies.
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1 Introduction

For decades numerous scientists have studied the swimming performance of animals across

all lengths scales of the animal kingdom. Outside of (wet) laboratory settings, compu-



tational scientists have developed and used sophisticated modeling tools to explore a
plethora of swimming systems [1, 2, 3, 4, 5, 6, 7, 8 9, 10]. Often these tools require
immense computational resources, e.g., high performance computing clusters, to simu-
late the system, either due to an individual simulation’s computational time expense,
the number of simulations necessary to generate data for a particular study, or both
[11, 12, 13, 14, 15, 16]. Due to these restrictions, parameter sweeps are regularly per-
formed with respect to one model parameter at a time, thus not fully mapping perfor-
mance out across an entire parameter space, or even multi-dimension subspaces. N-
dimensional parameter spaces are often studied through 1-dimensional subspaces (lines)
through the higher dimensional space [17, 18, 19, 20, 21]. Thus, 2D (or 3D) perfor-
mance landscapes have not been fully mapped out, in which performance metrics can be
interpreted from any combination of two (or more) traits.

Nematode locomotion has been well-studied for over half a century [22, 23, 24, 25,
26, 27, 28, 29, 17, 30, 21]. Nematodes are an ideal model organism to study due to
their simple two-dimensional planar gait. They display anguilliform modes of swimming;
their muscles contract, resulting in their entire bodies bending, head to tail, with the
locomotive benefit of propelling forward [22, 24, 31, 26, 30]. Due to their bodylengths
on the order of ~ 1 mm [32]), many nematodes, like C. elegans live at low Reynolds
numbers (Re < 1). The Reynolds number, Re, is non-dimensional quantity that is used
to quantify the scale of a fluid-system. It is defined in terms on four parameters: two
system parameters - a characteristic length and velocity, L and V', respectively, and two
parameters describing physical properties of the underlying fluid - its density and dynamic

viscosity, p and u, respectively. The Reynolds number is defined as

_ pLV
o

Re (1)
Aquatic locomotion performance has been observed to be scale (Re) dependent [33, 34]
in a number of organisms, such as water boatmen [18], fish [35], and jellyfish [36, 16]. As
C. elegans exist in the lower Re regime, many fluid-structure interaction computational
models of nematodes have only considered the low Reynolds limit, i.e., the Stokes flow
Regime (Re = 0) [37, 17, 21]. However, anguilliform modes of locomotion are reliable
swimming gaits for many organisms, such as eels or lamprey [38, 5], who perceive life
through the lens of intermediate or higher Reynolds numbers, i.e., Re in the 100s, 1000s,
or higher. Computational fluid dynamics models tend to be easier to perform fluid
scaling studies than purely experimental studies, as they reduce the need for numerous
high-fidelity scaled physical models and/or large quantities fluids of various viscosities,
or finding organisms of specific sizes and/or training them. Furthermore, theoretical
extensions of existing locomotion modes into different fluid scales are possible through

computational modeling.



In this work, I attempt to quantify swimming performance using various metrics
(forward swimming speed, an emergent peak-to-peak stroke amplitude, Strouhal number,
cost of transport, a distance effectiveness ratio, and an angular trajectory metric), across
broad 2-dimensional parameter subspaces for an idealized, simple swimming model in
2D that resembles a nematode, like a C. elegans. The simple swimmer model is a one-
dimensional entity that propagates itself forward by dynamically changing its body’s
1D preferred curvature state between two specific body positions - either a concave up
or concave down state [39, 40], see Figure 1. Similar to a C. elegans, the swimmer’s
locomotive patterns resemble a C-shape [41], rather than a more S-shape, which C. elegans
use for crawling [31] or like that of other angulliform swimmers like eels or lampreys [5].
The governing fluid-structure interaction equations governing this system are solved using
the immersed boundary method (IB).

The parameter space explored is composed of the fluid scale (an input Reynolds
number, Re;,), the stroke (undulation) frequency, f, and a kinematic parameter, p. The
kinematic parameter, p, helps govern the kinematic profile of each stroke. Varying p is
akin to changing the acceleration and velocity of the undulation movement itself. That
is, it controls how quickly each stroke accelerates from rest (current curvature state) to
its maximal velocity and back to rest (next curvature state). Previous experimental work
suggested that a nematode’s undulatory amplitude did not vary when placed in a variety
of increasing viscosity environments [42], i.e., decreasing Re; however, this may not be
the case as Re increases, as this model demonstrates. The same nematode morphology
was used across all simulations. However, previous work has established that bending
frequency impacts nematode performance, for both speed and efficiency, at Re ~ 0.4
[29]. Thus, I elected to vary stroke (undulation) frequency. Moreover, the swimming
performance of C-shape undulation, like that of C. elegans, has not been previously
investigated across intermediate Re.

Ultimately, I explored relationships between the three input parameters varied, (Re;,, f, p),
by analyzing two parameters at a time, while holding the third constant at three differ-
ent values. Robust parameter subspaces were then identified, to which offered greater
swimming performance than others. Moreover, from this data, Pareto-like fronts were

uncovered for different parameter combinations [43, 44, 34].

2 Methods

The idealized, simple swimming model first presented in [39] and further explored in
[40], was modified in this work, see Figure 1b for its basic 1D geometry. This swimmer
resembles a nematode; it is able to propagate forward by varying its curvature between
two preferred curvature (shape) states as illustrated in Figure la - between a concave up

state and a concave down geometric state. The choice of the body to be comprised of



a straight section with a cubic-polynomial cap was to mitigate a simple asymmetry in
the body itself, as observed in C. elegans previously [26, 45, 30]. The straight portion
of its body comprised 28% of its entire bodylength (L), while the polynomial portion,
composed the remaining 72%. This choice was to give an initial height of h = 0.5
(see Figure 1b). One complete stroke (undulation) was defined as comprising both the

upstroke and downstroke of the swimmer’s body itself.
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Figure 1: (a) Evolution of the preferred curvature during the upstroke and downstroke.
The emergent peak-to-peak stroke amplitude, A, of each stroke is also depicted. (b)
The geometry of the simple swimmer is composed of a straight line segment and a curve
portion given by a cubic polynomial. (c) Depictions of the definitions for the angular
trajectory as off the horizontal (6), the horizontal distance swam (Dg), and the total
linear distance moved by the swimmer (D7, ). Note that (c) depicts a swimmer for the
case (Rey, f,p) = (1350, 2.1,0.25).

To computationally model this swimmer, an open-source 2D implementation of the
immersed boundary method [46], IB2d [47, 48], was used. In fact, this swimmer is
one of the built-in models within the software [39]. It can be found at github.com/
nickabattista/IB2d in the sub-directory:

IB2d/matIB2d/Examples/Examples Education/Interpolation/Swimmer.

The mathematical details regarding this swimmer’s implementation in /B2d can be
found in the Supplemental Materials with further details in [39, 40]. Additional details
on the IB method can be found in [49, 46, 47, 48]. Therefore I will only offer the
computational parameters listed in Table 1 here; however, the interpolation procedure for
the swimmer’s dynamical curvature is briefly described below, noting that the interpolant
is detailed in greater depth in [40]. Each curvature state’s information are contained in

matrices A and B, for the concave up and concave down configurations, respectfully.
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Details regarding how the curvature is defined are found in the Supplemental Materials.
I begin by defining a matrix function, h(7), that interpolates the curvature of the swimmer

between two curvature states A and B,

h(r) = A+ g(7)(B - A), (2)

where g(7) is a cubic polynomial defined to be

go(t) = ag + a7 + asm® + az7> 0<7<p
g(T) = gi(t) =bg + b7+ bet? + b33 p<7<1-—p . (3)
gt)=co+aT+er?+eam 1-p<7<1

T is a non-dimensional time given by the fraction of either the upstroke or downstroke,
i.e., a half-stroke. Since the period of a half-stroke is 0.5/f, then 7 = ¢/(0.5/f), as
0<t<0.5/fand 0 <7 <1 for each half-stroke. p is an interpolation mediary point (the
kinematic parameter). p can be used to control the velocity and acceleration of how the
curvature changes during the upstroke and downstroke, i.e., it controls the acceleration
to the maximal speed in which the swimmer’s curvature changes during either upstroke
or downstroke, as well as the deceleration thereafter. Varying p produces interpolants
such as those in Figure 2. The the maximal and minimal acceleration occur at p and
1 — p, respectively, see Figure 2c. The choice of a piecewise cubic interpolant (Eq. 3)
was to ensure that there were enough degrees of freedom to allow for a kinematic control

parameter (p) as well as to satisfy the following continuity conditions:

0
0 } cont. velocities } no instant. accel.

(4)

} continuity



Parameter Variable Units Value
Domain Size Ly, L,] m 6, 16]
Spatial Grid Size de =dy m L,/1024 = L, /384
Lagrangian Grid Size ds m dx /2
Time Step Size dt s 2.5 x 107°
Total Simulation Time T stroke cycles 6
Fluid Density p kg/m? 1000
Fluid Dynamic Viscosity o kg/(ms) [0.475,17750]
Swimmer Length L m 1.42
Swimmer Height h m 0.5
Stroke Frequency f st 1,2.5]
Input Reynolds number Reimn - [0.1,4500]
Kinematic Parameter p — [0.075,0.425]
Spring Stiffness Espr kg -m/s 9.5625 x 10?
Non-invariant Beam Stiffness |  kpeam kg -m/s* 2.03634 x 10'?

Table 1: Numerical parameters used in the two-dimensional simulations.
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Figure 2: (a) The interpolation function, ¢g(7), (b) its first derivative, ¢’(7), and (c) its
second derivative, ¢”(7), for a variety of p values.

In this study, three parameters were varied - the dynamic viscosity (u), the stroke

frequency (f), and a kinematic parameter, p. The viscosity p was varied to effectively

change an input fluid scale, given by an nput Reynolds number, Re;,, i.e.,

Rem =

_ pL(fL)

(5)



The characteristic length and velocity scale are defined to be the swimmer’s bodylength,
L, and a frequency-based velocity, given by fL [50, 51]. For each simulation a specific
(Rejn, f,p) combination was determined, to which the corresponding p was computed
from Eq. 5 to give the appropriate Re;,. Note that it is customary in anguilliform
studies to use fA, the product of f and the peak-to-peak undulation amplitude, A, as
the characteristic velocity in the Reynolds number calculation. However, the undulation
amplitude is an emergent output of the model and thus cannot be known when initializing
the simulations. Therefore I elected to use a characteristic velocity seen in fish literature
as an input velocity scale, fL [50, 51, 52] and show relationships between an input
Reynolds number (Re;;,) and output Reynolds number (Re,,:). The output Reynolds
number is defined as Rey,; = p- L+ fA/u, whose frequency based velocity scale is given as
fA. Relationships among Re;, and Re,,; are depicted in Figure S1 in the Supplemental
Materials. The output Reynolds numbers fall within the intermediate Re regime, which
is an interesting regime to study due to the balance of inertial and viscous forces [53].
Moreover, Re,,; appears most strongly correlated to Re;,, compared to either f or p.
Also, the definition of the output peak-to-peak stroke amplitude, A, is illustrated in
Figure 1a and c.

The model output included a non-dimensional forward swimming speed, which was
defined to be the inverse of the Strouhal number, i.e.,

_ /4

St = (6)

where St is the Strouhal number, V is the dimensional forward swimming speed, and fA
is a frequency based velocity based on the output peak-to-peak stroke amplitude of the
swimmer, A. The above definition of St uses the stroke (undulation) frequency, f, rather
than a vortex shedding frequency, as is common in swimming studies. The St analysis
focused on the St range in which the majority of swimming and flying animals reside,
i.e., 0.2 < St < 0.4 [54]. Moreover, a power-based cost of transport [19, 5] was computed
and defined to be

N
11
COTpim = NV—F;WJHUJL (7)

where F; and U; are the applied vertical force and tangential body velocity of the swimmer
at N time-points during a specific period of time. Note that since dt is fixed and the
frequency changes across many simulations, the number of time-steps may vary from
simulation to simulation. However, each simulation’s time-steps were sub-sampled at
specific time-points of each stroke cycle to ensure that data was stored at the same
fractions of a stroke cycle across all simulations performed. These differences were taken

into account when computing all locomotion quantities used in the performance metrics,



ie., Vp, F;, and U;. The cost of transport was non-dimensionalized, in the following

manner

C'C)CTDzm
pf2A2L2 ’

where L is the length of the swimmer. The non-dimensional C'OT' is similar to finding

COT =

the energy-consumption coefficient of [19]. Also, a distance effectiveness metric was
computed, d.sr. It was defined as the ratio of forward distance swam and the total

linear distance swam, i.e.,
Dg
defs = : (8)
</ DTot

where Dg and Dr, are the horizontal (forward) distance and the total linear distance
moved by the swimmer, respectively, during the same NV time-points, see Figure 1c. Dypy
was computed by tracking the linear distance traveled by the swimmer’s head across
the N time-points and adding them together. Thus, Dr, encompassed both vertical
and horizontal movement. Lastly, the average angle off the horizontal, 6, was computed
(see Figure 1c), to discern parameter combinations that lead to non-horizontal swimming
trajectories.

For each simulation performed, a time-averaged non-dimensional forward swimming
speed (1/St), Strouhal number (St), COT, and peak-to-peak stroke amplitude (A/L)
were computed along with 6 and the distance effectiveness ratio, d.ss, which allowed for
effectively mapping these metrics across entire broad subspaces when a sufficient number

of simulations were performed.

3 Results

Different modes of locomotion are more effective at certain fluid scales than others [55].
To investigate the effectiveness of this nematode-like, anguilliform swimming modality,
simulations were performed across four orders of magnitude of Re;,,. Moreover, a plethora
of literature has illustrated that an organism’s forward swimming speed is dependent on
its stroke (undulation) frequency [56, 23, 57]. By highly resolving a subspace of (Re;y, f)
allowed for exploring any nonlinear effects that could arise when both Re;, and f are
varied for this particular mode of locomotion. Furthermore, by varying the kinematic
parameter p, one could explore how any such nonlinear affects might be exacerbated by
variations of the velocity/acceleration within the stroke’s (undulation’s) kinematic profile
itself. Thus, a total of 6,357 fully coupled 2D fluid-structure interaction simulations
were performed to explore the 3-dimensional parameter space for this idealized, simple
swimming model. With the goal of finding robust parameter subspaces which lead to

higher swimming performance, the following cases were considered:

1. The input Reynolds number & frequency space for 3 specific values of the kinematic



parameter, p.
2. The input Reynolds number & kinematic parameter space for 3 specific frequencies.
3. The frequency & kinematic parameter space for 3 specific input Reynolds numbers

Varying these three parameters (Rey,, f,p) can lead to substantially different swim-
ming behavior, both in terms of kinematics as well as dynamical performance. Figure
3 gives snapshots of the swimmer’s position and fluid vorticity after 5 complete stroke
cycles (5 upstrokes and 5 downstrokes each) for a variety of (Rej,, f,p) combinations.
As parameters are varied, some swimmers are able to outperform others in terms of dis-
tance swam and forward speed; however, not all swimmers move laterally across. Some

swimmers begin drifting upwards or downwards as well at different angular trajectories.
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Figure 3: Numerous swimmer’s vortex wake and position after its 5" full stroke cycle.
Different parameter combinations lead to different swimming behavior, both in terms of
distance swam and dynamics, as seen by variations in the vortex wakes left behind. The
colormap illustrates vorticity and the initial position of the swimmer is given for each
case.

3.1 Exploring the Reynolds number & Frequency Space

First, an input fluid scale (Re;;,) and stroke frequency (f) subspace was explored for 3
values of the kinematic parameter, p. Generally, as Re;, increased, the swimming speed
(1/St) increased for a given f. Lower f tended to have higher swimming speeds for a
given Re;,. Figure 4 illustrates that both the distance swam and swimming speed were
greater for lower frequencies for the case of Re;, = 180. Moreover, the swimming speed’s
waveform changes as frequency changes. Holding a fixed f and varying Re produces
similar trends, but where higher Re;, leads to enhanced swimming. For this data, see

Figure S2 in the Supplemental Documents.



However, nonlinear relationships exist between swimming speed, Re;,, and f, for given
p. Figure 5 provides temporally-averaged data for forward swimming speed, St, cost of
transport (COT), peak-to-peak stroke amplitude (A/L), and d.ys for a subset of the total
cases performed involving differing Re;, and f for p = 0.125. Swimming speed (1/St)
and cost of transport (COT') take on maximal value between 1 < Rey, < 5; however, this
is due to very small emergent stroke amplitudes. For 5 < Re;, < 100, higher f produces
faster swimmers; however, near Re;, = 100, a transition occurs in which lower f produces
faster swimmers. Throughout the range of 5 < Re;, < 500, COT decreases; it begins to
increase shortly after Re;, ~ 500.

For comparative purposes, Figure 6 presents the swimming speed (1/St), St, and
COT data as colormaps for all cases of p considered (p = 0.125,0.25, and 0.375). Each
shaded-in box in the grid corresponds to an individual, independent FSI simulation of a
different (Rey,, f) combination for a specific p. Generally a combination of a higher Re,
(Rejn 2 300) and lower f produces the fastest swimmers; however, the faster swimmers
also tend to correspond to the slightly more costly swimming, i.e., the non-minimal regions
of COT are near regions of maximal swimming speed, and higher stroke amplitudes.
Lower f resulted in higher stroke amplitudes in general. As p varies, there appear to be
only subtle differences in these performance metrics across the (Re;,, f)-subspace. The
region of 0.2 < St < 0.4 as well as higher d s slightly decreases in each subspace as p
increases (see Figure S3 in the Supplemental Materials). Furthermore, at low Re;, the
swimmer appears to substantially drift downward (negative ¢) while swimming. As Re;,
increases there is an abrupt transition to the swimmer migrating upwards (positive 6).
For Re;, 2 30 the swimmer has less of a vertical shift off the horizontal as it swims (see
Figure S3). The dimensional analog to Figure 6 is also provided as Figure S17 in the
Supplemental Materials.

However, Figure 7 presents the swimming speeds observed for all frequencies consid-
ered and three different kinematic parameters for 3 different Re;,, cases: (a) Re;, = 6, (b)
Re;, = 45, and (c) Re;, = 270. For a given Re, swimming speed appears more sensitive
to frequency and less sensitive to variations in p, e.g., in the case of Re;, = 6, varying f
could result in ~ 3-fold difference in swimming speeds, while varying p did not seem to
produce a substantial difference. A figure giving the swimming speed data in different
dimensional forms for the p = 0.125 case is provided in Figure S4 in the Supplemental
Materials. For Re;, = 100 Hz, Figure S4c shows a linear relationship between swimming

~

speed (bodylengths/stroke) and the logarithm of Re;,.
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Figure 4: The (a) non-dimensional distance (bodylengths) and (b) speed (1/St) over time
for swimmers with Re;, = 180, p = 0.125 and over variety of f.
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dimensional swimming speeds (1/St), (b) non-dimensional cost of transports (COT), (c)
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Figure 6: Colormaps illustrating the non-dimensional forward swimming speeds (top row)
and cost of transports (bottom row) over the (Re;,, f)-subspaces for 3 different p values:
p = 0.125,0.25, and 0.375.
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Figure 7: Semi-logarithmic plots illustrating the sensitivity of forward swimming speed
to p for particular cases of Re: (a) Re;, = 6, (b) Re;, = 45, and (c¢) Re;, = 270.
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3.2 Exploring the input Reynolds number & Kinematic

Parameter Space

The (Re;,, p)-subspace was explored for three particular f values: f = 1.25,1.75, and
2.25 Hz. As suggested by Figure 6, varying p for a given Re;,, leads to smaller variations
in output metrics. For the cases of Re;, = 180 and f = 1.75 and 2 Hz, the distance
swam and swimming speed over time are given in Figures S6 and S7 in the Supplemental
Materials. Moreover, as p is varied for Re;, < 500 (and particular f), there are minimal
differences in forward swimming speed and C'OT, see Figure 8. Thus overall the time-
averaged performance metrics, such as forward speed (1/St) and COT, do not appear too
sensitive to variations in p for Re;, < 500. However, Re;, = 500 and lower f correspond
larger regions of maximal swimming, but with smaller stroke amplitudes (see Figure S9).
Moreover, generally as f increases, stroke amplitude decreases for Re;, = 1. Note that
the raw data can be seen in Figure S8 provided in the Supplemental Materials. Similar
trends can be seen for d.r; and 0, see Figure S9 in the Supplemental Materials.

However, Figures 8 and S9 illustrate that as f varies, the overall performance depicted
on each (Re;,, p)-subspace greatly varies. Higher Re;, generally led to greater swimming
speeds, St values that fell within the biologically relevant range (0.2 < St < 0.4), as well
as higher d.ss, suggesting that the movements of the swimmer led to increased forward
thrust resulting in greater forward propagation. Higher Re;, also appears to result less
upwards migration of the swimmer across the domain, i.e, the angle off the horizontal,
0, is closer to 0. Although, for higher f and low Re;,, the subspace of drifting vertically
downwards (6 ~ —25°) continues to increase in size, followed by a regime of Re;;,, to which
the swimmer drifts upwards (6 ~ 30°). Furthermore, a nonlinear relationship emerges in
COT, where COT takes on its minimal values over a subset of Re;, (100 < Re;, < 1000),
with increasing values of COT on either side of that subset. The dimensional analog to
Figure 8 is provided as Figure S18 in the Supplemental Materials.

Figure 9 shows that as p varies for multiple f and Re;,: (a) Re;, = 6, (b) Rey, = 45,
and (c) Rey, = 270, that changes in p could vary forward swimming speeds by upwards
of ~ 10 — 50%. This occurs in both the case of Re;, = 45 and Re;, = 270 for all f
considered. However, the Re;, = 6 case illustrates that varying f results in two-fold
increases (~ 200%) in swimming speed, while varying p minimally affects swimming
speed. Moreover, increases in swimming speed by upwards of ~ 40% can be seen for
other values of f in the Re;, = 45 and 270 cases. Hence varying both f an p can greatly
affect the swimmer’s resulting swimming performance, depending on the fluid scale being
explored, although variations in f seems to more substantially affect the model. A figure
giving the swimming speed data in different dimensional forms for the f = 1.75 Hz
case is provided in Figure S10 in the Supplemental Materials. Only minute increases in

swimming speed occur as Re;, increases from 0.5 to 100 for swimming speeds in units
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of bodylengths/stroke or bodylengths/second; however, shortly after Re;, > 100, speeds

substantially increase.
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Figure 8: Colormaps illustrating the non-dimensional forward swimming speeds (top row)
and cost of transports (bottom row) over the (Re;,, p)-subspaces for 3 different f values:
f=1.25/1.75 and 2.25 Hz.
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3.3 Exploring the Frequency & Kinematic Parameter Space

Lastly, the frequency and kinematic parameter subspace, (f, p), was explored for 3 specific
Re;n, Rey = 9,90, and 900. For Re;, = 90 minimal differences were observed in the
distance swam and swimming speed (1/St) over time (see Figure S12 in the Supplemental
Materials). However, as f changes substantial variations in swimming performance were
observed, as shown in Figure 10, which illustrates the swimming speed (1/St) and COT
on 3 (f, p)-subspaces corresponding to different Re;,,. In the Re;, = 900 case, the highest
speeds were associated with low f and low p. However, frequencies within the range of
1.6 — 2.0 Hz with p > 0.15 appear to be associated with higher swimming speeds, than
those of f outside that range. This region also had generally lower COT'. On the other
hand, in the Re;, = 9 case, as f increased, swimming speed generally increased while
COT generally decreased. The case in-between (Re;, = 90) shows the regions with the
highest swimming speeds correpond to regions of the highest COT'. However, substantial
swimming speeds with low C'OT are observed for lower f and lower p. Similar speeds are
also produced at higher f and higher p but with higher associated C'OT. Hence there
exists a Re;, regime in which lower frequency results in higher swimming speed and lower
corT.

There are intricate nonlinear relationships between swimming speed and C'OT in
certain (f,p) subspaces that correspond to different Re;,. Furthermore, these nonlinear
relationships can be seen in Figure 11, which provides the time-averaged swimming speed
(1/St) for all frequencies considered and a subset of p for three Re;,: (a) Rey, = 9, (b)
Rei, = 90, and (¢) Rey, = 900. As Rey,, increases from (a)—(c), the shape of the curve
changes. For Re;, = 9, increasing frequency resulted in monotonically increasing forward
swimming speeds, as previously suggested in Figure 5. While for Re;,, = 90, as frequency
increased, there was a sudden drop in swimming speeds, followed by speeds increasing
slightly for f 2 1.75 Hz. However, when Re;, = 900, a clear nonlinear relationship
emerges, where a unique maxima and minima emerge near f ~ 1.3 and 2Hz, respectively.
Additional data for 1/St St, A/L, and COT for the Re;, = 90 case can be found in Figure
S13 in the Supplemental Materials. Similarly, colormaps of d.yy, 6, and amplitude (A/L)
can be found in Figure S14 in the Supplemental Materials. Note that swimming in the
0.2 < St < 0.4 range does not occur until the highest Re;, case considered (Re;, = 900).
Also as Re;, increases, the d.rs increases as well, indicating that the movement patterns
the swimmer performs, leads to greater thrusts forward for swimming. This also tends
to correspond to less vertical drifting when swimming, i.e., 6 is closer to zero degrees.

Moreover, among all cases shown in Figures 10 and 11, varying p did not generally
appear to substantially affect either forward speed or COT, i.e., swimming performance
appears to be more sensitive to f than to p. As Figure 11b illustrates, only in the

higher Re;, cases of Re; = 90 and 900 did swimming performance appear sensitive
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to p, i.e., swimming speed is 1.3x larger in the p = 0.4 case when compared to the
p = 0.1 case for Re;, = 90 and f ~ 1.75 Hz. A figure giving the swimming speed
data in different dimensional forms for the Re;, = 90 case is provided in Figure S15 in
the Supplemental Materials. For f 2 1.75 Hz, Figure S15¢ shows a linear relationship
between swimming speed (bodylengths/second) and stroke frequency, while swimming

speed (bodylengths/stroke) is constant in the same frequency range, see Figure 15b.
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Figure 10: Colormaps illustrating the non-dimensional forward swimming speeds (1/St)
(top row) and cost of transports (bottom row) over the (f,p)-subspaces for 3 different
Re;, values: Re;, = 9,90 and 900.
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3.4 Exploring Cost of Transport vs. Forward Swimming Speed

A Pareto-like front can be observed when plotting the non-dimensional cost of transport
(COT) against the non-dimensional swimming speed (1/St) [43, 44, 9, 34], see Figure
12a. This is called Pareto-like because maximal swimming speeds are desired for low
COT, i.e., ones ideally hopes to minimize COT, rather than maximize it, and hence
not maximize both quantities, as is traditionally done in Pareto optimization strategies.
COT appears to be minimal in cases when the swimmer’s forward swimming speed is
2.5 < 1/St < 3. The further outside of that range, the more COT appears to increase.
As Figure 12a presents the data from Sections 3.1-3.3 all combined, patterns emerge of
where subspaces lie within the overall performance space, i.e., Figures 12b-d.

Across the (Rey,, f)-subspaces, the data stretches throughout the entire performance
space for every case of p considered (Figure 12b). On the other hand, the (Re;,,p)-
subspaces divulge a slightly different story. As f varies, the data still stretches throughout
the entire performance space; however, it was more clustered. Higher f resulted in faster
speeds within the region of 10> < COT < 10° (Figure 12c). Furthermore, distinct
localized clusters emerge in the (f, p)-subspace, for different values of Re;, (Figure 12d).
Lower Re;, appear to be associated with generally slower speeds and higher COT over
every (f,p)-subspace considered. The cluster associated with Re;, = 900 appears near
the region with minimal COT, centered about 1/St = 3. These trends can be seen in
specific subspaces in more detail in the Supplemental Materials; see Figures S5, S11, and
S16. These figures present the data for a particular subspace using 1D parameterizations
through the subspace itself, i.e., parameterizations of either Re;,, f, or p depending on the
subspace investigated. Furthermore, the dimensional analog of Figure 12, is provided as
Figure S19 in the Supplemental Materials, where swimming speed and cost of transport

are given in units of bodylengths/second and N /kg, respectively.
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Figure 12: The non-dimensional COT and forward swimming speeds (1/St) plotted
against each other for (a) every simulation performed, (b) the (Re;,, f)-subspace, (c)
the (Re;n, p)-subspace, and (d) the (f, p)-subspace.

4 Discussion

Two-dimensional immersed boundary simulations were used to explore parameter sub-
spaces of an idealized, simple swimming model. A total of 6,357 simulations were per-
formed using The College of New Jersey’s high-performance computing cluster [58], each
requiring approximately 24 hours of computing time, resulting in ~ 152,568 computa-
tional hours necessary to explore such parameter subspaces. Multiple swimming perfor-
mance metrics were extensively quantified across broad subspaces given by combinations
of two parameters (Rey,, f), (Rein, p), and (f,p) and 3 specific values of third. Some of

the general trends observed were:

1. Higher swimming speeds (1/St) occur for parameter subspaces involving higher
Rein (Rei, 2 250) and lower f (f < 1.75 Hz). These regions also corresponded to

swimmers with high emergent peak-to-peak stroke amplitudes.

2. These swimming speeds also correspond to Strouhal numbers (St) in the range in

which the majority of swimming and flying animals are observed, i.e., 0.2 < St < 0.4
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[54].

3. The subspaces in which produce greater swimming speeds (for higher Re;,), also

tend to require C'OT roughly 2-10x higher than where it is minimal.

4. The highest non-dimensional swimming speeds (1/St) occurred over subspaces in-
volving Re;,, due to minimal peak-to-peak amplitudes. In units of bodylengths/stroke
or bodylengths/second, these corresponding parameter combinations resulted in the

slowest swimmers.

5. Swimming performance was less affected by variations in the kinematic parameter,

p, compared to variations in f or Re;, for their respective ranges considered.

While these trends may have been found without having performed such large numbers
of simulations, even by possibly two orders of magnitude, our parameter explorations were
able to divulge robust parameter subspaces that offer greater (or lesser) performance. For
example, the simple swimmer propelled itself forward the slowest for Re;,, ~ 10, even for
a variety of f and p. On the other hand, a robust subspace for high swimming speeds
500, 1 < f < 1.75 Hz, and p in any of the values sampled
(0.075 < p < 0.425). Moreover, from the parameter subspace offering high swimming

appeared to be for Re;, 2

Y

speeds, one could find further subspaces in which COT was above (or below) particular
thresholds.

Overall, our study was also able to hint towards the performance metrics’ underlying
sensitivity to parameters, although a proper quantitatively-based global sensitivity anal-
ysis, such as Sobol Sensitivity Analysis [59], is still required. However, such sensitivity
analyses require themselves a large number of simulations to be performed (~ 103—10? for
3 parameters), in which parameter combinations (Re;,, f,p) are selected through Sobol
Sequences [60, 61], rather than uniform sampling as carried out here. Thus, finding ro-
bust parameters subspaces in which reveal higher swimming performance may not be as
trivial to find. It remains unclear whether after Sobol sampling from a 3D space and
performing simulations, if the data could be projected into a subspace, i.e., project the
3D swimming performance metric data onto a 2D subspace, e.g., (Rey,, f), (Rei, p), or
(f,p), and offer as much insight into swimming behavior.

There exist other methods to explore parameter subspaces which attempt to reduce
the dimensionality of the system and thus the overall necessity of having to explore such
a large parameter space (and perform a seemingly infeasible number of computationally
expensive simulations). One such method is called active subspaces which finds large
variations in the gradient of a model’s output in order to construct a response surface in
a lower dimensional space [62, 63]. It has been successfully applied to numerous problems,
including optimizing the design of an aircraft wing, where a low dimensional subspace

was found within a 50-dimensional input parameter space. The low dimensional subspace
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that was found effectively described the variability within the lift and drag coefficients to

such an extent that it revealed global trends within the original higher dimensional pa-

rameter space. This allowed for an efficient method to design an optimal wing [64]. Such

an approach could prove beneficial while exploring the fitness landscapes of numerous

mechanical systems, each composed of a high dimensional parameter space, along with

their inherent global sensitivities to parameters, all in conjunction with possible con-

vergent evolutionary processes. Although evolution does not optimize towards a global

optima, it could be useful technique for identifying and analyzing trends across a variety

of mechanical systems.
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