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Abstract

The Goheer-Kleban-Susskind no-go theorem says that the symmetry of de Sit-
ter space is incompatible with finite entropy. The meaning and consequences of
the theorem are discussed in the light of recent developments in holography and
gravitational path integrals. The relation between the GKS theorem, Boltzmann
fluctuations, wormholes, and exponentially suppressed non-perturbative phenomena
suggests: the classical symmetry between di↵erent static patches is broken; and that
eternal de Sitter space—if it exists at all—is an ensemble average.
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1 Introduction

All phenomena in a region of space can be described by a set
of degrees of freedom localized on the boundary of that region,
with no more than one degree of freedom per Planck area.

The Holographic Principle has been the driving force behind many
of the advances in quantum gravity over the last twenty five years,
but up to now the only precise examples have been cosmologies,
which like anti de Sitter space, have asymptotically cold1 time-like
causal boundaries. The reliance on the existence of such boundaries
is troubling because the space we live in seems not to have one.
Instead it has a horizon and a space-like warm boundary. If the
HP is to apply to the real world then we need to generalize it.

So, does the Holographic Principle apply to cosmologies like de
Sitter space? If yes, then what are the rules? I don’t know for sure,
and this paper will not conclusively answer the question, but I will
try to lay out some tentative principles.

Two things that will not be found here are specific models and
applications to phenomenology.

1.1 An Obstruction? Or Not

Some time ago Goheer, Kleban, and I (GKS) [1] proved a theorem
that it is impossible for a quantum system to satisfy the symmetries

1By cold I mean non-fluctuating. By warm I mean the opposite.
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of classical de Sitter space if the entropy is finite2. At the time, I in-
terpreted this as a no-go theorem for absolutely stable (eternal) de
Sitter space, but recent developments in quantum gravity suggest
that a di↵erent interpretation might be possible. The idea is that
a de Sitter vacuum might be eternal but the symmetries only ap-
proximate, being violated by exponentially small non-perturbative
e↵ects. The mechanisms are very similar to ones that have recently
been uncovered in the SYK system and its gravitational dual.

1.2 Eternal de Sitter Space

By eternal de Sitter space I mean a cosmology that is trapped in
a state of finite entropy and cannot escape through reheating or
tunneling to a larger “terminal vacuum” [2][3][4][5][6]. Eternal de
Sitter space might arise from a landscape in which the scalar fields
have strictly positive potential, greater than some finite positive
gap, in which there is one or more minima of V. Figure 1 illustrates
this kind of potential. I don’t know if a landscape with these prop-
erties can exist in a real theory of quantum gravity but let’s assume
that it can, and see where it takes us.

2The framework for [1] was the same as for this paper; namely the assumption that a static patch of
de Sitter space has a holographic description based on conventional Hamiltonian quantum mechanics.
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Figure 1: A schematic landscape for eternally stable de Sitter space. The universe spends
most of its time in the lowest minimum with rare fluctuations to higher points.

Classically the di↵erent minima lead to di↵erent stable de Sitter
geometries, but in quantum mechanics tunneling allows transitions
between the minima. This leads to a single thermal equilibrium
state (of a static patch) which mostly sits in the lowest minimum.
But occasional Boltzmann fluctuations allow transitions to higher
minima, followed by tunneling back to the lowest minimum. The
rates for such fluctuations are of order exp (�S0) where S0 is the
nominal entropy of the de Sitter space at the lowest minimium3.
Other less extreme fluctuations can take place; for example the
horizon of a static patch may spontaneously emit an object such
as a black hole. These freak fluctuations are the only things that
happen in the closed quantum world of a de Sitter static patch [7][8],
but thermal correlations contain a wealth of information about non-
equilibrium dynamics.

Eternal de Sitter space is of course eternal, both to the future and

3The notation exp will be used to indicate a general exponential scaling. Thus eS , eS/3, and e2S are
all exp (S).
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to the past4. Among the possible Boltzmann fluctuations that can
take place over an enormous expanse of time are transitions to what
we ordinarily think of as the initial conditions of our universe. I have
in mind a fluctuation to to an inflationary point on the landscape,
which after some inflation eventually evolves to a standard ⇤-CDM
universe. That of course would not be the end of the story. After a
very long period of ⇤-dominance a fluctuation will occur to another
minimum and the whole process will repeat.

While this may be possible, a theory based on Boltzmann fluc-
tuations is a very implausible framework for cosmology. In order
to escape the eternal cycle of recurrences, near recurrences, partial
recurrences, and freak histories described in [8] it seems necessary
to have a landscape that includes terminal vacua [2][3]. A phe-
nomenon called “fractal flow” [4][5][6] can then lead to a much
more plausible cosmology.

Nevertheless it is interesting to explore the consequences of the
Holographic Principle for eternal de Sitter space even if it eventually
leads to the conclusion that eternal de Sitter space is inconsistent.

2 Static Patch Holography

There are a number of di↵erent approaches to de Sitter space that
might loosely be called holographic. I will stick to the original
meaning of the term: a description localized on the boundary of
a spatial region in terms of a quantum system without gravity.
Specifically we will focus on static patches and their boundaries—
cosmic horizons. I will not speculate on the details of the quantum

4From the viewpoint of a static patch.
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system other than to say it should be fairly standard; for example
it might be described as a collection of qubits, or some form of ma-
trix quantum mechanics with a Hermitian Hamiltonian. The bulk
space-time and its geometry emerge from the holographic degrees
of freedom.

2.1 The Semiclassical Limit

The classical limit of de Sitter space is described by the metric,

ds2 = �f (r)dt2 + f (r)�1dr2 + r2d⌦2
2

f (r) =

✓
1� r2

R2

◆
(2.1)

The length-scale R is the radius of curvature, inverse to the Hubble
parameter. The cosmic horizon at r = R is the place where f (r) =
0.

The semiclassical limit refers to the theory of small perturbations
about the classical geometry, which can be described in powers of
~. Although it may be su�cient for many purposes the semiclassi-
cal theory is incomplete. The full quantum theory will have non-
perturbative e↵ects of magnitude

exp (� a2

G~),

where a is some characteristic length scale and G is Newton’s con-
stant. If a ⇠ R then the nonperturbative e↵ects are order

exp (�S0),
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S0 being the de Sitter entropy. In the semiclassical limit only the
zeroth order term in exp (�S0) is retained.

De Sitter space is in some ways similar to a black hole. Both
have horizons, an entropy proportional to the horizon area, and a
temperature. Both have a semiclassical limit and additional non-
perturbative e↵ects. For any real black hole the nonperturbative
e↵ects are exponentially small (in the entropy), but they play a cru-
cial role in establishing the consistency between quantummechanics
and gravity. It seems reasonable that the same would true for de
Sitter space. Sections 3 through 5 are about these nonperturbative
e↵ects but for now we focus on the semiclassical theory.

To illustrate the static patch consider the example of (1 + 1)-
dimensional de Sitter space. The conformal diagram is a rectangle
twice as wide as it is high, and periodically identified5 as illustrated
in fig 2.

5Strictly speaking a true Penrose diagram would only contain a single square with each point on the
diagram representing a zero-sphere, i.e., two points.
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Figure 2: Conformal diagram for 2-D de Sitter space and the static patch defined by a past
and future pair of asymptotic points. The static patch (yellow) is the intersection of the
causal future of the past point and the causal past of the future point. The intersection
of the two light cones shown as red dots defines the bifurcate horizon. The dashed blue
curve indicates identification of the left and right edges.

A static patch is defined by picking a pair of points6, one on
the asymptotic past and one on the asymptotic future. The static
patch is the intersection of the causal future of the past point and
the causal past of the future point. The geodesic connecting the
asymptotic points will be referred to as the world-line of the “pode.”

Observers who spend their entire existence in the static patch will
see their world bounded by the horizon although the full geometry
has no boundary. Our central hypothesis is that everything that
goes on in the static patch can be described by a unitary holographic
system with the degrees of freedom located at the stretched hori-

6A “point” on the asymptotic boundary does not literally mean a point but rather a region of proper
size no bigger than R. This is familiar in AdS/CFT where a point on the boundary has N2 degrees of
freedom and represents a region of AdS size [9].
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zon (see section 2.2). The holographic quantum mechanics, which
includes a Hilbert space and a Hermitian Hamiltonian, allows us
to define certain thermal properties of the static patch including a
density matrix, a temperature T = 1/�, and an entropy S0.

⇢ =
e��H

Z

� =
1

T
= 2⇡R

S0 = Tr ⇢ log ⇢ =
⇡R2

G
(2.2)

In addition to the quantum mechanics of a single static patch,
we also require transformation laws between static patches. For
example in fig 3 we see two static patches of dS2.

Figure 3: Two static patches in the same dS.

A theory of de Sitter space should have transformation rules re-
lating conditions in di↵erent static patches. In classical GR these
transformations are symmetries that express the identical nature of
the patches. These symmetries relating static patches, and the pos-
sibility of representing them in a holographic theory are the main
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subject of this paper.
The Penrose diagram for general dimensional de Sitter space is

shown in the top panel of fig 4.

Figure 4: Upper panel: Penrose diagram for higher dimensional de Sitter space. Static
patches come in pairs and the center of these patches are referred to as the pode and the
antipode. Lower panel: the geometry of the t = 0 slice of de Sitter space is a sphere with
the pode at one pole and the antipode at the other. The dashed surface midway between
the pode and antipode is the bifurcate horizon.

The diagram shows that static patches come in matched pairs—
blue and pink in the diagram. We will refer to the points at the
centers of these static patches as the pode and the antipode.
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2.2 Where is the Hologram?

The penrose diagram of fig 4 looks a lot like the diagram for the
two-sided AdS eternal black hole [10]. From all that we know about
such black holes this suggests (and we will assume) that the podal
and antipodal degrees of freedom are uncoupled, but entangled
in a thermofield-double state. However the geometries of the two-
sided black hole and de Sitter space are very di↵erent. In the lower
panel of fig 4 we see a time-symmetric slice through the de Sitter
space geometry at t = 0. The geometry of the slice is a sphere.
By contrast the corresponding slice through the eternal black hole
would be a wormhole connecting two infinite asymptotic bound-
aries. The spatial slice of de Sitter space has no boundary, the
pode and antipode being points at which the geometry is smooth.

Instead of being located at the boundary as in AdS the holo-
graphic degrees of freedom of the static patch are located at the
(stretched) horizon. To see this, consider Bousso’s generalization
[11] of the Penrose diagrams for the AdS eternal black hole, and for
de Sitter space7 These are shown in fig 5.

7Bousso supplements a Penrose diagram with a system of wedge-like symbols showing the direction in
which light sheets focus and de-focus.
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Figure 5: Penrose diagrams supplemented with Bousso wedges for the AdS eternal black
hole and for de Sitter space .

The question is: Where should we locate the holographic screens
(tips of the wedges) so that the maximum entropy of the spatial
region described by the hologram is su�cient to encode everything
in the geometry? In fig 6 the diagrams are shown for AdS in which
we place the screens near the horizon in the first case and near the
boundary in the second case.
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Figure 6: The AdS eternal black hole case: the upper panel introduces screens close to
the horizon. According to the light-sheet entropy bound the number of degrees of freedom
on the screens is su�cient to represent the states of the black hole, but not su�cient to
represent degrees of freedom in the space far from the horizons. In the lower panel the
screens are placed out near the AdS boundaries. In this case the degrees of freedom on
screens is su�cient to encode the entire space.

From the light-sheet entropy bounds of [12][11] one sees that in the
first case the maximum entropy on the pink spatial region is just
a tiny bit larger than the black hole entropy. Placing holographic
degrees of freedom at these locations would allow enough degrees
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of freedom to describe the black hole, but not enough to describe
phenomena in the bulk far from the horizon.

In the second case, where the wedges are near the boundary, the
maximum entropy grows as the screens are moved outward. This
is the well-known reason that the holographic degrees of freedom
of AdS are located at the boundary.

Next consider de Sitter space. In figure 7 two choices for the
locations of holographic screens are shown. In the upper panel the
screen is shown near the pode.
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Figure 7: Penrose-Bousso diagrams for de Sitter space . In the upper panel the screen is
near the pode and the screen has almost no degrees of freedom . In the lower panel the
screen is near the horizon and the number of degrees of freedom is su�cient to encode
the entire static patch.

The maximum entropy is very small when the screen is near the
pode. By contrast, in the lower panel the screen is shown close to
the horizon.The maximum entropy on the pink slice in this case is
large enough to describe the entire static patch.That’s the argument
for locating the holographic degrees of freedom at the horizon.

The Penrose diagram suggests that there are two sets of degrees
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of freedom—one for the pode and one for the antipode—located on
the stretched horizons of each side, and entangled in a thermofield-
double state (see fig 8).

Figure 8: The stretched horizons of the pode and antipode patches.

2.3 Symmetry of De Sitter Space

Let’s suppose that an oracle handed us what he claimed is a holo-
graphic dual of de Sitter space. How would we know if it really
describes de Sitter space or something else—perhaps a black hole?
The answer is symmetry. There are many static patches in de Sitter
space and the symmetry of the space transforms one to another.
The most conclusive test would be to show that the model satisfies
the de Sitter space symmetry. In figure 3 we see that one static
patch can probe the region behind the horizon of another. Since the
original pode-patch is described by unitary evolution, establishing
that the symmetry is satisfied would tell us that all static patches
are described by unitary evolution. To put it another way, testing
the de Sitter symmetry is also testing for the existence of space-
time behind the horizon. Without testing the symmetry there is
no compelling reason to think that a given quantum system repre-
sents dS.
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The symmetry of clasical d-dimensional de Sitter space isO(d, 1),
a non-compact version of the orthogonal group O(d + 1). O(d, 1)
has

d(d + 1)

2

generators. Of these

(d� 2)(d� 1)

2
+ 1

generate transformations that keep the pode, antipode, and the
horizon fixed. I’ll refer to these as the “easy” generators. They
include rotations R about the pode-antipode axis and the boost-
Hamiltonian H.

In addition there are (d� 1) rotations J , which rotate the posi-
tions of the pode and antipode, and another (d�1) boost operators
K, that also move the pode, antipode, and horizon. I’ll call these
the “hard” generators.

As an illustration here is the complete algebra for d = 3,

[R,H ] = 0

[R,J ] = i✏ijJj

[R,K, ] = i✏ijKj

[Ji,Jj] = i✏ijR

[Ki,Kj] = �i✏ijR
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[Ji,Kj] = i✏ijH

[H,Ki] = �i✏ijJj

[H,Ji] = i✏ijKj (2.3)

2.4 Four Step Protocol

What follows is a schematic protocol to test the oracle’s claim. If
it succeeds then the oracle’s purported dual is legitimate. If it fails
then we know he is a phony.

Actually there is a middle ground. Suppose the protocol succeeds
to some very high level of accuracy, but beyond that it fails. Then
the right thing to do is to see if the small violations have a plausible
gravitational explanation. As we will see this is not just an academic
possibility.

The protocol is probably consistent at the semiclassical level—in
other words to all orders in perturbation theory. Beyond that, at
the level of exponentially small non-perturbative e↵ects, the proto-
col must fail, but there is a plausible gravitational explanation for
the failure involving higher genus8 saddle points in the gravitational
path integral.

To formulate the protocol we first break the de Sitter symmetry
by choosing a pair of static patches, the pode and the antipode.
This is not a real symmetry breaking; in the semiclassical theory

8I will use the terms higher genus and wormhole rather loosely to mean any connected geometry with
topology di↵erent from the original semiclassical geometry. For Euclidean dS the semiclassical geometry
is a 4-sphere. Any other connected topology is by definition a higher genus wormhole.
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it is gauge fixing9. If the theory is gauge invariant then the results
of any physical calculation should not depend on the gauge, which
in this case means the particular pair of asymptotic points used to
define the static patch.

1. Step one begins with a candidate for the dual of the static
patch. It consists of a conventional quantum system: a Hilbert
space Hp of states; a Hamiltonian Hp; and a set of Hermitian
observables including the easy generators of the subgroup that
hold fixed the pode. These generators include the Hamiltonian
Hp and the rotation generators Rp that rotate the static patch
around the pode. The easy generators are collectively denoted
Gp.

The system is assumed to be in thermal equilibrium at some
definite temperature10 T and entropy S.

2. Step two introduces another copy of the system labeled a (for
antipode). The doubled system has Hilbert space

H = Hp ⌦Ha. (2.4)

The total Hamiltonian is,

H = Hp �Ha. (2.5)

The Hamiltonian Ha is identical to Hb. The full Hamiltonian
generates a boost that translates one side of the Penrose dia-
gram (the pode side) upward, and the other side downward.

9See however section 7.

10With the normalization of the Hamiltonian defined by 2.3 the temperature of the static patch has the
value T = 1/2⇡.
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The full rotation generators acting on H are

R = Ra +Rb. (2.6)

More generally,

G = Ga ±Gb, (2.7)

the minus sign being chosen for the Hamiltonian.

Because de Sitter space is spatially closed without a boundary
we must impose gauge constraints,

G| i = 0 (2.8)

on the physical states.

So far none of this is unusual and can easily be satisfied in many
ways. That’s why I call G the “easy” generators. Another way
to characterize them is that they are the generators that com-
mute with the Hamiltonian. And finally the easy generators
do not couple the pode and antipode degrees of freedom.

3. The third step involves the construction of the remaining “hard”
generators of O(d, 1), those that displace the pode and an-
tipode. Let us call them G. They consist of the remaining
rotation generators J and an equal number of boosts K. The
hard generators couple the pode and antipode degrees of free-
dom non-trivially. The easy and hard generators together form
the O(d, 1) algebra.

This third step may not be possible. There may be no choice of
G that satisfies the commutation relations 3.17. This in itself

20



may not be fatal if the algebra can be realized to a su�ciently
high degree of accuracy. For example the violations may be ex-
ponentially small⇠ exp (�S0). The symmetry may be satisfied
to leading order in an expansion in e�S0, with the violations
occurring only in higher orders. We will see in section 5.1 that
this is exactly what the GKS anomaly tells us must happen.
But for now let us assume the G can be constructed.

4. The final step, assuming the others have been successful, is to
impose the hard gauge constraints,

G| i = 0. (2.9)

Note that the hard gauge constraints 2.9 automatically imply
the easy gauge constraints 2.8 but not the other way. As in
step 3, if the entropy is finite this may only be possible to
exponential precision.

If there are no states satisfying the gauge constraints,

G| i = 0

G| i = 0, (2.10)

then we stop, go back, and choose another candidate until we find
one that has at least one gauge-invariant state.

The gauge invariant state that is crucial is the de Sitter vacuum
which looks thermal to observers in the pode and antipode patches.
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This state is the thermofield-double,

|TFDi =
X

i

e�
�Ei
2 |Eiia|Ēiib. (2.11)

which must satisfy the gauge constraints, at least to leading order
in exp (�S0). I don’t see any reason why there should be other
gauge invariant states but this seems to be controversial. In any
case the entire discussion in this paper is about the state in 2.11.

We will return to these symmetry issues but first I want to digress
and describe a toy model which can provide a source of intuition
about de Sitter static patches.

3 Toy Model

The motivation for the toy model is the observation that the pode
is a point of unstable equilibrium. Imagine a light test-particle
located exactly at the pode. Consider a second test-particle a tiny
distance from the pode. Assume the second particle is initially
at rest relative to the pode and subsequently follows a geodesic.
Geodesic deviation will cause that particle to fall away from the
pode with the separation growing exponentially. This is illustrated
in fig 9.
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Figure 9: The pode is a point of instability. A particle arbitrarily close to the pode
will depart (exponentially) from the pode and eventually it will fall through the horizon.
Classically it will take a logarithmically infinite coordinate time to reach the horizon.

To model this behavior we can consider a non-relativistic particle
in an inverted three-dimensional harmonic oscillator potential,

H =
X

i

p2i � x2i
2

(i = 1, 2, 3) (3.12)

The unstable equilibrium point xi = 0 corresponds to the pode.
The spectrum of H is continuous and runs over all real numbers.
The energy eigenfunctions at large x have the form,

 ! e±ix2/2. (3.13)

Classically, if the particle starts near the top of the potential the
subsequent motion satisfies,

r ⌘
p

|x|2 ! et

|p| ! et, (3.14)
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where p is the momentum of the particle. This matches the behav-
ior of a particle in dS.

The time that it takes for the particle to get to distance R from
the pode is,

t⇤ ⇡ logR. (3.15)

I’ve intentionally used the notation t⇤ which is the conventional
notation for the scrambling time. The reason will become clear
shortly.

The inverted oscillator is characterized by an operator algebra
including the Hamiltonian, and for each direction a generator L±
defined by,

L± =
x± pp

2
. (3.16)

The algebra, which I will call the symmetry of the model is,

[H,L�] = iL�

[H,L+] = �iL+

[L�, L+] = i. (3.17)

From the first two of these relations it follows that,

L�(t) = L�e
�t

L+(t) = L+e
t (3.18)
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The algebra is satisfied by a generalization to a system of many
non-interacting particles as well as particles coupled by translation-
ally invariant forces.

The toy model as defined up to this point is the semiclassical
limit of a more complete model which has a stretched horizon, a
finite entropy, and nonperturbative e↵ects.

3.1 Toy Model with Stretched Horizon

So far, in the toy model the particle falls in the potential for an
infinite amount of time before reaching r = 1. This parallels the
fact that classically, a particle takes infinite time to reach the de
Sitter horizon.

To make a more interesting model the radial direction can be
cut o↵ by turning the potential sharply upward at a distance R
from the pode. Instead of a single particle we can introduce N
particles which are allowed to interact, but only when they are very
near the bottom of the potential. The details of the interaction
are not important other than they lead to chaotic behavior and
thermalization.

Figure 10 illustrates the setup. The first panel shows the poten-
tial, along with N particles in thermal equilibrium at the bottom.
The second panel is the view-from-above in which we see the parti-
cles occupying a two-dimensional shell at distance R from the pode.
This shell is the toy model version of the stretched horizon.
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Figure 10: Toy model with stretched horizon. The right panel shows the view from above.

The number of particles can be chosen so that the area-density
at the stretched horizon is of order 1/G. The entropy of the ther-
mal gas is proportional to the number of particles and and by an
appropriate choice of temperature and other numerical constants,

S0 =
Area

4G

=
⇡R2

G
(3.19)

Note that the time that it takes for a particle to fall from the pode
to the stretched horizon is the scrambling time.

The semiclassical limit is identified with the limit R ! 1. In
that limit the entropy becomes infinite and the thermal state is very
boring to an observer at the pode. Thermal fluctuations do occur,
but the potential well is so deep that the probability for a particle
in the equilibrium “soup” to reach the pode is zero.
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3.2 Fluctuations

If R (and therefore the entropy) is kept finite, there is a non-zero
probability to find one or more particles at the pode. The par-
ticles could form interesting objects such as black holes, galaxies,
or brains. These nonperturbative Boltzmann fluctuations are ex-
tremely rare, but they are the only things that happen in thermal
equilibrium [8].

Consider the probability of a Boltzmann fluctuation in which
an object O materializes at the pode. To represent this situa-
tion mathematically we introduce a projection operator ⇧O that
projects onto states in which the object O is present at the pode.
The probability in question is given by,

PO = Tr ⇢⇧O (3.20)

where ⇢ is the thermal density matrix.
Non-equilibrium dynamics is encoded in the thermal state. For

example, suppose we want to know the probability that if the object
O is present at t = 0, then at a later time t it will have made a
transition to O0. This is encoded in the correlation function,

Tr⇢ ⇧O e�iHt ⇧O0 eiHt = Tr⇢ ⇧O(0) ⇧O0(t) (3.21)

This type of formula, and generalizations of it, show that the theory
of fluctuations in thermal equilibrium encodes a very rich spectrum
of dynamical phenomena.

The probability PO is given by a standard expression,

PO = e��S (3.22)
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where the “entropy-deficit” �S is defined by,

�S = S0 � SO. (3.23)

This formula requires some explanation. The symbol S0 stands
for the de Sitter entropy ⇡R2/G. SO however, does not stand for
the entropy of the object O. It is the conditional entropy of the
whole system, given that the object O is present at the pode. A
simple way to think about SO is that it represents the entropy of
the remaining horizon degrees of freedom, given that O is present,
plus the entropy of O. We will return to this in section 5.2.

3.3 The GKS Anomaly

Can the algebra 3.17 be satisfied in the cuto↵ model? With the
identification 3.16 and the modification of the Hamiltonian required
to construct the cuto↵ model, the algebra will not hold, but one
may ask if there can be new operators L±, which along with the
new Hamiltonian, satisfy it? The answer is no [1]. To prove it11 we
consider the first of equations 3.18 (a consequence of the algebra)
and take its matrix element between normalizable states,

h |L�(t)| i ! e�t ! 0. (3.24)

The argument for the GKS anomaly contains two parts:

1. Finiteness of entropy implies that the energy spectrum is dis-
crete. More exactly it says that the number of states below
any given energy is finite. This is much weaker than saying the

11A more rigorous version of the proof was given in [1].
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Hilbert space is finite dimensional, which we do not assume.

2. Functions defined as sums of the form,

F (t) =
X

i

aie
iEit (3.25)

cannot go to zero as t ! 1. They will have fluctuations and
even recurrences on very long time scales. One can easily prove
that the late-time variance of F (t) satisfies,

lim
T!1

1

T

Z T

0
|F 2|dt =

X

i

|ai|2 > 0 (3.26)

In other words, over long periods of time F will fluctuate with
a variance equal to

P
i |ai|2.

It follows [1] that 3.24 (and the algebra 3.17 which led to it) cannot
be satisfied if the entropy is finite. There is a deep relationship
between fluctuations and the non-perturbative breaking of semi-
classical symmetries.

We can be more quantitative. In the semiclassical limit the en-
ergy spectrum is continuous and 3.25 is replaced by,

F (t) =

Z
A(E)eiEt. (3.27)

If A(E) is square integrable then F (t) ! 0 as t ! 1. In approx-
imating the sum by an integral we make the following correspon-
dence:

ai = A(E)�E (3.28)
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where �E is the spacing between neighboring energy levels. Now
consider the sum in 3.26 and rewrite it in terms of A.

X
|ai|2 =

X
|A(E)|2(�E)2

!
Z

|A(E)|2�EdE (3.29)

The energy level spacings �E are of order e�S0. Thus it follows
that |

P
ai|2 ⇠ �E ⇠ e�S0, and from 3.26,

Var(L�) ⇠ e�S0 . (3.30)

Given that the symmetry algebra requires the asymptotic variance
in L� to be zero, the actual variance in 3.30 is a measure of how
badly the symmetry is broken by the anomaly.

More generally it seems reasonable to suppose that the discrete-
ness of the energy spectrum produces e↵ects that scale like a power
of e�S0.

The bottom line is that fluctuations of order e�S0 create an ob-
struction to realizing the symmetry algebra 3.17 as long as the
entropy is finite.

3.4 Caveats

The toy model has elements in common with de Sitter space, but
like all analogies it has limitations. Two come to mind: First,
because it is based on non-relativistic particles it cannot capture
the physics of massless photons in de Sitter space. For example
the probability to find a single thermal photon of wavelength ⇠
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R/2 within a distance ⇠ R/2 of the pode is order 1. This is a
perturbative phenomenon which would requires massless relativistic
degrees of freedom instead of massive non-relativistic particles.

Another unphysical feature of the toy model is that the size of the
horizon is fixed, while the size of the de Sitter horizon is dynamical
and adjusts to the amount of entropy that it contains (see section
5.2).

4 The GKS Anomaly in JT/SYK

A similar anomaly to that seen in section 3.3 also a↵ects two-
dimensional models such as JT gravity and its quantum SYK com-
pletion. Figure 12 shows the AdS(2) solution of JT gravity with
its Rindler-like horizons.

Figure 11: AdS(2) with horizons.
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The classical theory12 has an exact SL(2R) symmetry which
persists to all orders in perturbation theory; in other words it is
a feature of the semiclassical theory. However the symmetry is
broken by non-perturbative quantum e↵ects [13]. The SL(2R)
group has three generators, T , H and P , whose action is illustrated
diagramatically [14] in the three panels of fig 12.

Figure 12: The three generators of SL(2R): T generates global time translations and shifts
the horizon vertically; H is the boost Hamiltonian that generates Rindler-like boosts; and
P generates space-like shifts of the horizon. Only H does not move the horizon.

The generator T generates global time shifts and moves the hori-
zons vertically from their original location (grey lines) to a new
location (purple lines.) The generator H is the boost Hamiltonian
that holds the horizons fixed but acts on equal-time-slices to boost
them. Finally P generates a spacelike displacement of the horizon

12JT gravity coupled to matter with the matter being uncoupled to the dilaton. I am grateful to Douglas
Stanford and Henry Lin for explaining this to me.
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as shown. T and P are analogous to the hard generators of O(d, 1)
and H is easy.

These generators satisfy the SL(2R) algebra,

[H, T ] = iP

[H,P ] = iT

[T ,P ] = iH (4.31)

which as I said is exact semiclassically, but cannot hold non-perturbatively.
To see this we define the light-like generators,

L� =
P � Tp

2

L+ =
P + Tp

2
. (4.32)

From 4.31,

i[H,L±] = ±L± (4.33)

implying,

L±(t) = L±e
±t. (4.34)

In the classical JT system the entropy is infinite and equation
4.34 presents no problem, but in a quantum completion such as
SYK the entropy is finite, of order the number of fermion species
N. The rest of the argument is identical to the one in section 3.3
and implies that the SL(2R) symmetry cannot be exact, except in
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the limit N ! 1.
All of this is well known from other points of view [13] [14], and

it is believed that the breaking of the symmetry can be understood
in terms of higher genus corrections to the JT path integral.

5 de Sitter

Return now to de Sitter space and static patch holography. In so far
as the static patch is in thermal equilibrium with finite entropy it
will undergo Boltzmann fluctuations. As we saw in section 3.3 these
fluctuations are the source the symmetry breaking in the toy model.
In this section I’ll do two things: first I’ll discuss the anomaly in
the O(d, 1) de Sitter symmetry; and then I’ll explain how general
relativity can be used to give a quantitative account of Boltzmann
fluctuations

5.1 The O(d,1) Anomaly

Now let’s return to the symmetry algebra of de Sitter space. From
the last two of equations 2.3 we may construct light-like generators,

L± =
J2 ±K1p

2
(5.35)

satisfying,

i[H,L±] = ±L±. (5.36)
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Note that these equations are identical to the first two equations in
3.17 and that they again imply,

L�(t) = L�(0)e
�t. (5.37)

Following the same logic as in section 3.3 we may evaluate this
equation between normalizable states to find,

h |L�(t)| i ! 0. (5.38)

For the same reasons as in 3.3 and in [1] (having to do with persis-
tent fluctuations) there is a GKS anomaly making it impossible to
satisfy 5.38, and therefore the algebra. The arguments of section 3.3
concerning fluctuations give the same estimate for the magnitude
of the e↵ects of the anomaly,

Var(L�) ⇠ e�S0 . (5.39)

5.2 Using GR to Calculate Fluctuation Probabilities

In theories with a gravitational dual, general relativity provides a
precise way of calculating the probability for certain fluctuations.
Consider the rate for fluctuations which nucleate massive objects
such as black holes near the pode. We may make use of 3.22 and
3.23 to compute the rate. To calculate S0 we can use the metric
2.1 to get the radius of the horizon (we get rH = R), then calculate
the area of the horizon, and finally the entropy. The result is,

S0 =
⇡R2

G
. (5.40)
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Next consider the metric of de Sitter space with an object O of
mass M at the pode. The e↵ect of the mass is to pull in the cosmic
horizon, shrinking its area and therefore its entropy [15][16][17].
Out beyond the radius of the object the metric takes the form 2.1
except that the emblackening factor f (r) is replaced by

fM(r) =

✓
1� r2

R2
� 2MG

r

◆
. (5.41)

The horizon location is defined by fM(r) = 0. Multiplying by r
this becomes,

r � r3

R2
� 2MG = 0 (5.42)

Equation 5.42 has three solutions, two with positive r and one
with negative r. The negative solution is unphysical. The larger
of the two positive solutions determines the location of the cosmic
horizon and the smaller determines the horizon of a black hole of
mass M . To lowest order in M the cosmic horizon is shifted to a
new value of r given by,

r = R�MG (5.43)

The entropy is given by,

SO =
⇡(R�MG)2

G
(5.44)

and (to leading order in M) the entropy-deficit by [15],

�S = 2⇡MR. (5.45)
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Now recall that the inverse temperature of de Sitter space is
� = 2⇡R. Using 3.22 we find,

PO = e��M. (5.46)

Equation 5.46 is the Boltzman weight of the for a configuration of
energyM. The answer itself is not surprising but what is interesting
is that the connection between entropy and area has been used in
a new way—not for equilibrium probabilities but for fluctuations
away from average behavior.

More generally we can go past linear order in M . Let us denote
the two solutions of 5.42 by r� and r+ and define the independent
parameter,

x = (r+ � r�). (5.47)

One can express x in terms of the mass of the black hole by elimi-
nating r+ and r� from the equations,

R2 = r2+ + r2� + r+r�
2MGR2 = r+r�(r+ + r�)

x = r+ � r� (5.48)

The value of x runs from (x = �R) to (x = +R). Changing
the sign of x interchanges the cosmic and black hole horizons. It is
convenient to think of positive and negative values of x as di↵erent
configurations; for example at both x = �R and x = +R there is
a vanishingly small horizon and a maximally large horizon, but we
regard the two states as di↵erent.

37



The entropy and entropy-deficit are given by

SO =
⇡

G

�
r2+ + r2�

�

�S =
⇡

G

�
R2 � r2+ � r2�

�
(5.49)

Let us consider the “Nariai point” (x = 0) at which (r+ = r�).
One easily finds that at the Nariai point,

r+2 = r2�

⌘ r2N

=
R2

3
(5.50)

From 5.49 and 5.50 we find,

SN =
2S0

3

�SN =
S0

3
(5.51)

It is not obvious that �S is smooth at x = 0. One might expect
that�S(x) has a cusp as in the top panel of fig 13. However explicit
calculation shows that the dependence is completely smooth and
surprisingly simple,

�S =
S0

3

✓
1� x2

R2

◆
. (5.52)

This is illustrated in the bottom panel of fig 13.
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Figure 13: Entropy deficit and a function of x. The upper panel incorrectly shows a cusp
at the Nariai point. The lower panel shows the correct smooth behavior 5.52.

The total probability for a black hole fluctuation is given by an
integral13 over x,

Prob =
1

R4

Z R

0
e��Sx3dx

= e
�S0
3

1

R4

Z R

0
e
S0x

2

3R2 x3dx. (5.53)

One finds,

Prob ⇠ 3G

⇡R2

✓
1 +

3

S0
e�S0 /3

◆
(5.54)

13The factor x3 in the integrand of 5.53 is due to three negative modes associated with the instability
of an object located at the pode. See figure 9 and equation 3.12.
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The first term in 5.54 comes from the endpoint of the integration
at x2 = R2 and is perturbative in G. It is associated with the
lightest black holes and numerically dominates the integral. The
second term comes from the saddle point at x = 0. It can be re-
written as

e�
⇡R2
3

1
G .

It is obviously non-perturbative in G. We will discuss its meaning
in the next section.

6 The Nariai Geometry

Quantum mechanically the non-perturbative fluctuations we are
discussing originate from the discreteness of the energy spectrum.
On the gravitational side those same e↵ects are encoded in higher
genus14 contributions to the gravitational (Euclidean) path integral
[18][19][20][21][22]. In the case of anti de Sitter space the geome-
tries that contribute are constrained to have asymptotic AdS-like
boundary conditions, but subject to that constraint they can have
any topology. In the case of Euclidean de Sitter space there are no
boundaries; the path integral therefore includes all closed topolo-
gies. Among these are the Nariai geometries.

To illustrate the connection between fluctuations and higher-
genus contributions consider the fluctuations discussed in section
5.2 in which a black hole is spontaneously created near the pode.
The first panel of figure 14 shows the Penrose diagram for a Schwarzschild-

14See footnote 3 in section 2.4.
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de Sitter black hole. A slice through the time-symmetric space-like
t = 0 surface is depicted in green. In the lower panel the geometry
of such a slice is shown for two di↵erent masses of the black hole.
The figure on the right depicts a relatively larger mass than on the
left.

Figure 14: de Sitter-Schwarzschild black hole. The upper panel shows the Penrose diagram
and the two lower panels show the spatial geometry of time-symmetric slices. In each case
the dashed blue curves indicate geometric identifications.

One may continue the t = 0 geometry in either Minkowski or Eu-
clidean signature. The Minkowski continuation just gives back the
geometry in the top panel of figure 14. The Euclidean continuation
gives a compact geometry with the topology S2 ⇥ S2 which I will
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call an S-geometry (Euclidean Schwarzschild de Sitter). There is
a one parameter family of S-geometries parameterized by the mass
M of the black hole.

The metric of the S-geometry is,

ds2 =

✓
1� r2

R2
� 2MG

r

◆
d⌧ 2+

✓
1� r2

R2
� 2MG

r

◆�1

dr2+r2d⌦2

(6.55)
The one thing left to specify is the range of the periodic Euclidean

time ⌧. Normally the periodic constraint requires 0 < ⌧  � where
� signifies inverse temperature. However in the present case there
is no well defined temperature because the black hole and cosmic
horizon have very di↵erent temperatures. For a small black hole �
is 4⇡MG while the de Sitter value of � is 2⇡R. The black hole is
far out of equilibrium with the de Sitter space.

What this means geometrically is that it is not possible to avoid
a conical singularity at either the black hole or the cosmic horizon.
For this reason the S spaces are not genuine saddle points of the
Euclidean gravitational path integral—with one exception. The
exception is the Nariai space, i.e., S-space at the symmetric point
x = 0. The geometry of Nariai space is S2 ⇥ S2 and its Minkowski
continuation is S2⇥dS2, i.e., a spatial sphere times two-dimensional
de Sitter space.

Nariai space is a genuine Euclidean saddle point whose Minkowski
continuation is often called the Nariai black hole. To understand
it better let’s go back to S-space with a small black hole. A static
patch is also shown in the upper panel of fig 15. Because the black
hole is at the center of the static patch we cannot think of the pode
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as a point. Instead I’ve indicated a shell by a dashed red line. The
shell is a 2-sphere that surrounds the black hole between the black
hole horizon (black dot) and the cosmic horizon (purple dot).

Figure 15: The top panel shows the penrose diagram for a Euclidean Schwarzschild black
hole together with a static patch which encloses the black hole symmetrically. The black
dot on the left is the black hole horizon. The purple dot on the right is the cosmic horizon.
The lower panel shows a spatial slice of the region between the two horizons. The dashed
red line indicates the static position of a 2-sphere somewhere between the two horizons.

A spatial t = 0 slice of the geometry between the two horizons
is shown in the lower panel.

Now let us consider deforming the geometry by increasing the
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black hole mass and at the same time decreasing the cosmic hori-
zon area (following the curve in the lower panel of fig 13) until we
reach the Nariai point. At that point the geometry—not just the
topology— is S2⇥S2 but from the viewpoint of the static patch ob-
server, it looks like a spatial interval times a 2-sphere. The observer
is sandwiched between two equal horizons.

Thought of as a real process, this history would violate the second
law of thermodynamics, but as long as S0 is finite, it can happen
as a rare Boltzmann fluctuation. What it requires is for energy to
be transferred from the cosmic horizon to the black hole—a kind
of anti-evaporation. The most likely trajectory for the system to
follow is the time reverse of the evaporation process in which one of
the two Nariai horizons spontaneously emits a bit of radiation which
is then absorbed by the other. When this happens the emitter loses
energy and becomes hotter. The result is that it emits more energy
until the smaller horizon becomes a small black hole (or even no
black hole) and the larger horizon reaches entropy S0. The time
reverse of this process is the Boltzmann fluctuation that leads to
the Nariai state from the small black hole state.

Once the Nariai state is achieved it is unstable. One possibility
is that the system can return to the original state with the original
black hole shrinking and the original cosmic horizon returning to
its full dS size. But the opposite can also happen: the system
overshoots a bit and the original black hole keeps absorbing energy
while the original cosmic horizon shrinks down to a small black hole.
We can think of this as a transition from from x = �R to x = +R.
An observer between the two horizons sees a surprising history in
which the geometry of the static patch turns itself “inside-out”—the
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outer cosmic horizon and the inner black hole horizon exchanging
roles. This remarkably strange event is illustrated in fig 16.

Figure 16: The “inside-out transition” in which a small black hole horizon and the cosmic
horizon become interchanged by passing through the intermediate Nariai black hole.

6.1 Nariai and Hawking-Moss

One might be tempted to think of this inside-out transition as a
quantum tunneling event, but unlike a typical quantum tunneling
the process stretches out over a long time. The energy transfer is
simply Hawking evaporation or its time-reverse, and takes a time of
order the Page time15. The transition is a thermal process mediated
by a Hawking-Moss instanton[23], not a quantum tunneling event.
It takes a very long time during which the system sits at or near the
top of the potential, i.e, at x = 0. The Hawking-Moss instanton
calculates the probability that the system in question is at the top
of a broad potential barrier [24].

15One should distinguish two time scales. The first is how long the inside-out transition takes. That is
a time of order the Page time. The second is the typical time between such events. This latter time scale
is exponential ⇠ eS0/3.
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In this case the Hawking-Moss instanton is the Nariai geometry,
S2 ⇥ S2 and the probability to find the system in the Nariai state
is

e��IN

where I is the action-deficit of Euclidean Nariai space. Not sur-
prisingly that action deficit is the same as the entropy-deficit of the
Nariai black hole,

�IN =
S0

3
. (6.56)

Thus we see an example of the relation between fluctuations (The
appearance of a Nariai black hole) and a higher genus wormhole
geometry (the S2 ⇥ S2 Nariai geometry.)

6.2 Connection with Anomaly

What does all of this have to do with the O(d, 1) symmetry (or
lack of it) of de Sitter space? I think the answer is fairly simple. In
the Euclidean continuation the symmetry group is O(5). There is
a natural action of the O(5) group on the semiclassical Euclidean
dS geometry, namely S4. But the full path integral receives con-
tributions from other topologies, in particular the Nariai geometry
S2 ⇥ S2. Trying to define the action of O(5) on S2 ⇥ S2 is like try-
ing to define the action of O(3) on a torus. It’s not that the torus
breaks the symmetry like a egg would; the symmetry operations
just don’t exist on the torus. Likewise the generators of O(5) don’t
exist on S2 ⇥ S2.
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One might try to get around this by defining the action of the
group to be trivial on all higher topologies; in other words define
S2 ⇥ S2 to be invariant under O(5). I think the reason that this
doesn’t work is that in general, states of di↵erent topology are not
orthogonal: the overlaps are order exp(�S) [21]. For this reason
the action of the group on S2 ⇥ S2 cannot be arbitrarily chosen
independently of the action on S4.

Thus we are left with the conclusion that higher topologies not
only break the symmetry of dS: they don’t even allow it to be de-
fined. This is consistent with the GKS anomaly which also implies
that the generators cannot consistently be constructed to order
exp (�S0).

7 Implications of the Anomaly

The group O(d, 1) relates di↵erent static patches within a single de
Sitter space. For example in fig 17 shows two static patches related
by the action of a light-like generator L.
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Figure 17: Two-dimensional de Sitter space with two static patches related by a light-like
generator L.

If the O(d, 1) symmetry were not broken by the GKS anomaly
one would expect that the dynamics in the two patches would be
identical. In particular the Hamiltonian in one patch would be
related to that in the other patch by a unitary transformation and
the two spectra would be identical. However our result suggests that
this is not true; what is more likely is that the coarse-grained spectra
of the two Hamiltonians are the same but at the discrete level of
individual eigenvalues, the spectra do not match. The occurrence
and timing of fluctuations in the two static patches (for example
quantum recurrences) would be di↵erent. The Hamiltonians for
di↵erent patches might be drawn from a single ensemble but would
be di↵erent instances of that ensemble. In the absence of knowledge
about which Hamiltonian governs an observer’s patch, averaging
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over the ensemble would make sense16.

7.1 Gauge Symmetry?

It is usually assumed that theO(d, 1) relating di↵erent static patches
is a gauge symmetry, or a redundancy of the description. But hav-
ing a gauge symmetry requires that the gauge transformation can
be consistently defined. This does not appear to be possible for
the symmetries of de Sitter space except in the semiclassical limit.
The GKS anomaly precludes the existence of the generators to
higher order in e�S0 and indicate the di↵erent static patches are
inequivalent when e↵ects of order e�S0 are considered. Thus, the
answer to the question is that O(d, 1) should be treated as a gauge
symmetry in the semiclassical approximation, but not in the full
non-perturbative theory. One could select a static patch not by
gauge fixing, but by simply selecting the patch whose detailed en-
ergy levels have some specific pattern.

One possible conclusion is that eternal de Sitter space is not
consistent—a view taken in [1]. In this paper I’ve advocated another
viewpoint; namely that the de Sitter symmetries are approximate,
valid in classical theory and in perturbation theory, but not beyond.
In fact for other topologies the action of O(d, 1) may not even be
defined. For example it is hard to imagine the action of O(d, 1) on
the Nariai space S(2)⇥ S(2).

In some ways the situation seems similar to recent discussions
of global symmetries and their breaking by higher topologies [27]

16Similar ideas have long been advocated by Banks and Fischler [25][26] who argues that many static
patch Hamiltonians may lead to identical observations. Their argument is quite di↵erent from the one in
this paper. It is based on assumed limits of observation in a closed world with finite entropy.
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where it was suggested that global symmetries (forbidden by grav-
ity) may be restored in the ensemble average. In the context of
de Sitter space the average over all the static patches in de Sitter
space might have the symmetry that the individual instances don’t
have.

8 Conclusion

Eternal de Sitter space is a spacetime without time-like bound-
aries, but a static patch is bounded by a horizon. On the basis of
covariant entropy bounds I argued that the natural place to locate
holographic degrees of freedom is on the stretched horizon. The
only things that happen in eternal de Sitter space are fluctuations
of these horizon degrees of freedom, which from the bulk point of
view sporadically produce interesting objects deep in the interior
of the static patch.

We’ve explored three non-perturbative de Sitter space phenom-
ena, related to these fluctuations. The first: the violation of the de
Sitter symmetry O(4, 1) due to the GKS anomaly. The variance
Var(L�) in 5.39 is a measure of the magnitude of the violation.

The second: large scale Boltzmann fluctuations in which the
holographic horizon degrees of freedom undergo freak rearrange-
ments, leading to large black holes materializing in the interior of
the static patch. The probability for this to happen is given by 5.54.
The second term of this expression is non-perturbative and repre-
sents the creation of the largest black holes with entropy ⇡ S0/3.

Finally wormholes and higher genus geometries: a saddle point
due to the Nariai geometry S2⇥S2 contributes non-perturbatively
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to the gravitational path integral and describe a massive fluctuation
in which de Sitter space turns itself “inside out.”

These phenomena which all scale exponentially with �S0 are
closely connected. One might even say they express the same un-
derlying fact; namely the discreteness of the energy spectrum, and
finite level spacing �E ⇠ e�S. Moreover they are extensions of
things that have been observed in other contexts such as SYK and
JT gravity. The new thing here is that they appear in the hologra-
phy of de Sitter space.

The violation of symmetry is especially interesting. It means
that di↵erent static patches are inequivalent. They may have di↵er-
ent Hamiltonians and di↵erent energy spectra although the coarse
grained spectra must be the same to insure a universal semiclassical
limit. Although it is an open question, it is an interesting conjec-
ture that the symmetry-violation is washed out by some form of
ensemble averaging, as is thought to be the case for JT gravity.
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