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ABSTRACT: Total organic carbon (TOC) mass concentrations are decreasing
across the contiguous United States (CONUS). We investigate decadal trends in
organic carbon (OC) thermal fractions [OC1 (volatilizes at 140 °C), OC2 (280
°C), OC3 (480 °C), OC4 (580 °C)] and pyrolyzed carbon (PC), reported at
121 locations in the Interagency Monitoring of Protected Visual Environments
(IMPROVE) network from 2005 to 2015 for 23 regions across the CONUS.
Reductions in PC and OC2 drive decreases in TOC (TOC = OC1 + OC2 +
OC3 + OC4 + PC) mass concentrations. OC2 decreases by 40% from 2005 to
2015, and PC decreases by 34%. The largest absolute mass decreases occur in
the eastern United States, and relative changes normalized to local
concentrations are more uniform across the CONUS. OC is converted to
organic mass (OM) using region- and season-specific OM:OC ratios.
Simulations with GEOS-Chem reproduce OM trends and suggest that decreases
across the CONUS are due to aerosol liquid water (ALW) chemistry. Individual
model species, notably aerosol derived from isoprene oxidation products and formed in ALW, correlate significantly (p < 0.05) with
OM2, even in arid regions. These findings contribute to literature that suggests air quality rules aimed at SO2 and NOx emissions
induce the cobenefit of reducing organic particle mass through ALW chemistry, and these benefits extend beyond the eastern United
States.

1. INTRODUCTION

Concentrations of organic carbon (OC), a major contributor
to fine particulate matter (PM2.5) mass,1 have decreased over
past decades across the contiguous United States (CONUS),
notably in the southeastern United States.2−6 Carbon-14
analysis at rural locations such as national parks revealed that
most OC is nonfossil in these areas and presumably derived
from biogenic emissions,7,8 which are projected to increase as
the climate warms.9 In urban and near-urban locations,
residential heating and cooking contributes some amount of
nonfossil carbon-14, but this is not a significant contributor at
remote locations.8,10 Smoke from wildfires, which are
increasing in frequency, intensity, and acreage burned,11,12

also contribute nonfossil carbon to the total organic carbon
(TOC). Decreases in OC are attributable to the effects of
anthropogenic NOx and SO2 regulations,13 the impetus of
which was to reduce acid deposition in the eastern United
States and ozone mixing ratios. This reduces surface mass
concentrations of sulfate and nitrate,2 hygroscopic PM
constituents that facilitate aerosol liquid water (ALW)
formation and secondary organic aerosol (SOA), in turn
reducing contributions to OC in observations in the south-
eastern United States3 and in model simulations of the
CONUS.13,14 The Community Multiscale Air Quality
(CMAQ) and GEOS-Chem models better reproduce observed
decadal trends most successfully when the SOA chemical

mechanism includes water-mediated chemistry and uptake, in
particular in the eastern United States.15

The Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) network provides the longest continuous
measurements of surface ambient concentrations of carbona-
ceous material in PM2.5 across the United States using thermal
optical organic carbon/elemental carbon (OC/EC) ana-
lyzers.16,17 Organic and elemental carbon mass concentrations
are measured from the evolution of organic species from a filter
at operationally defined temperatures. Mass measurements of
OC are made by heating filters in a helium environment to
allow organic species to volatilize without oxidation on the
filter. Organic species tend to pyrolyze above 300 °C,18 and
this pyrolysis is monitored and corrected via reflectance.19 The
IMPROVE network defines four OC thermal fractions (OC1,
OC2, OC3, and OC4) at temperatures ranging from 140 to
580 °C,20 a protocol applied routinely since 2005, to minimize
the amount of OC that undergoes pyrolysis during
analysis.19−21 OC fraction measurements provide information
about the volatility of the organic species within each fraction
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and not specific chemical identity. There are a number of
uncertainties within these fractions, including pyrolysis,
interactions from other species,22−24 and analytical biases.25

However, previous studies have used OC fractions to provide
chemical insight regarding speciation and sources.26−29 Field
campaigns in locations around the world, using a previous
iteration of the IMPROVE thermal protocol, identify biomass
burning and anthropogenic combustion processes as major
sources of OC1 and OC226−28 and cooking emissions and dust
as sources that contribute to OC3 and OC4.26,29 A laboratory
analysis of individual organic compounds found widely in the
atmosphere (e.g., oxalic acid, levoglucosan, azelaic acid, and
humic-like substances) discovered that as the molecular weight
of an organic species increases, higher temperatures are needed
for carbon evolution.30 Efforts to identify specific organic
functional groups31−33 and other chemical properties, includ-
ing viscosity,34 from filters analyzed for TOC content are an
active area of research.
Changing chemical regimes for ozone in response to

decreases in anthropogenic NOx emissions in the atmosphere
of the CONUS are noted in the literature.35 This changing
photochemistry may also affect SOA formation pathways in
ways that affect the overall nature of particulate organic carbon
by altering speciation, degree of oxidation, and phase state.
Volatile organic carbon (VOC) reacts with various oxidants
and forms peroxy radicals (RO2) in the presence of oxygen.36

Traditionally, the fate of an RO2 species is assumed to be
predominantly driven by its bimolecular reaction with NO,
HO2, or another RO2. However, as NOx emissions decrease,
autoxidation reactions become more important, potentially
leading to more highly oxidized organic species.37 Decadal
changes in OC fraction mass concentrations and relative
fractional contribution to the total may indicate changes in
SOA speciation, oxidation, and other properties. In 2019,
Hand et al.38 cautiously suggested that organic aerosol (OA)
across the CONUS is increasingly aged and oxidized over time,
although analytical bias in the separation of OC and EC
confound interpretation.25

Previous studies of temporal trends in OA and particulate
OC focus on TOC measurements,2−4 and decadal trends in
the individual thermal fractions have not received as much
analysis in the literature. Here, we investigate geospatial and
temporal trends in OC fractions to determine which contribute
significantly to overall TOC decreases. We also track decadal
changes in OA from 2005 to 2015 in the GEOS-Chem model
to identify potential OC sources and formation mechanisms
that may help to explain observed trends.

2. MATERIALS AND METHODS
2.1. Surface Measurements and Estimates. IMPROVE

network chemical speciation data were downloaded from
http://vista.cira.colostate.edu/Improve/ on February 26, 2020,
for 121 sites across the CONUS with >80% of sampling days
reported from 2005 to 2015 [Figure S1a, Supporting
Information (SI)]. These years correspond to a change in
the thermal protocol in 200520 and a change in the instrument
after 2015.39 We use all reported values and uncertainties.
Values below the method detection limit (MDL) are kept in
the analysis when the value plus uncertainty is above the MDL.
Uncertainties are reported as measures of standard deviation,40

and there is an equal chance that these values fall above or
below the MDL. Since these values may exceed the MDL, we
keep them in our analysis. Rural sites are grouped into 23

chemical climatology regions defined by IMPROVE as having
similar aerosol composition and topography (Figure S1b, SI),6

and each region in our analysis contains between 2 and 10
sites. We use surface mass concentration data of thermally
defined OC fractions OC1 (140 °C), OC2 (280 °C), OC3
(480 °C), and OC4 (580 °C), PC, and TOC (OC1 + OC2 +
OC3 + OC4 + PC) across these chemical climatology regions.
OC1 concentrations are assumed to be a lower bound due to
volatilization of species during field latency, transport, and
storage.41 We report OC1 trends and concentrations since they
are reported by the IMPROVE network, but we do not
attempt to assign chemical meaning due to high levels of
uncertainty. OC4 is the least volatile fraction.
The OC fractions are operationally defined, and there is

debate about how method differences impact quantification of
OC and EC.23 IMPROVE uses one of several thermal/optical
reflectance analysis protocols, and we limit our analysis to this
method to avoid intercomparison issues. Some analytical biases
may still persist.22−24,41,42 Semivolatile species, such as
ammonium nitrate43 and OC1, are lost from filter samples
before and during analysis.41,42 Metal salt particles, particularly
ones containing copper and iron, can reduce the oxidation
temperature of EC and enhance OC charring, affecting the
OC/EC split and reported TOC concentrations.22 KCl and
NaCl from biomass smoke and sea spray can also alter the
temperature at which large organic compounds and EC
evolve.23 CONUS-averaged copper and iron concentrations
do not appreciably change, and sea salt concentrations do not
trend positive or negative from 2005 to 2015 (Figure S2, SI).
Further, we use median values in our analysis to minimize the
impact of episodic outliers, such as wildfires and biomass
burning. Water-soluble organic carbon (WSOC) characteristic
of rural aerosol is susceptible to pyrolysis during analysis.16

Total pyrolyzed carbon (PC) is measured in a separate
category from the thermal fractions and cannot be assigned to
a particular step in the temperature ramp. Hence, reported
mass concentrations for OC fractions are lower mass bounds
because some of each fraction may be lost to charring and
counted as PC.16 Recently, Malm et al. (2020)25 demonstrated
that PC and EC coevolve, causing lower-temperature oxidation
of EC,44,45 which biases TOC concentrations high because it
includes some EC. It is difficult to quantitatively assess how PC
impacts individual OC fraction trends. While there are
uncertainties and precautions to take when using OC fraction
data, the IMPROVE record is the oldest continuous TOC
network in the CONUS, and the underutilized OC fraction
data may facilitate insight regarding the controlling mecha-
nisms responsible for the decrease in TOC and its changing
nature.
The IMPROVE protocol measures particulate organic

carbon, yet organic aerosol is composed of other elements,
such as hydrogen, oxygen, nitrogen, and sulfur, that are not
accounted for in these measurements. Often, an OM:OC ratio
of 1.8 is applied as a factor to account for noncarbon organic
mass, though ratios vary spatially, seasonally, and decadally and
depend on air mass origin.38,46−49 Several methods of OM:OC
ratio determination are discussed in the literature. In 2005, El-
Zanan et al.48 experimentally determined OM:OC ratios at five
IMPROVE sites representative of their chemical climatology
regions using subsequent solvent extractions of dichloro-
methane, acetone, and water. Other methods include multiple
linear regression approaches based on reported IMPROVE
measurements,46 a combination of aerosol mass spectrometers
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(AMS) and satellite NO2 data,47 and functional group
information derived from Fourier-transform infrared (FT-IR)
spectra of IMPROVE samples.50 Across all analyses, OM:OC
ratios ranged from 1.3 to 2.6. Ratios are highest in the summer
and rural areas and lowest in the winter and urban areas.46,47

Average OM:OC ratios across the CONUS may be increasing
with time (Figure S3, SI),38 although analytical biases that
apportion some light-absorbing carbon (LAC) to OC25 cannot
be ruled out.

We determine seasonal organic mass (OM) for all regions
across the CONUS with >80% complete data from 2005 to
2015 using OM:OC ratios determined via mass balance using
IMPROVE-defined reconstructed mass51 and removing the 1.8
multiplier from OC (eq 1) as summarized by Malm et al. in
2020.25,48,52 OM:OC ratios using this method are subject to
the same biases as filter measurements detailed above, such as
the loss of semivolatile species.22−24,41,42,53

=
− − − − − ×

OM: OC
PM (NH ) SO NH NO EC SOIL 1.8 Cl

OC
2.5 4 2 4 4 3

(1)

Here, SOIL is equal to (2.2 × Al + 2.49 × Si + 1.63 × Ca +
2.42 × Fe + 1.94 × Ti).51 We convert IMPROVE-measured
OC to OM estimates for a more direct comparison to GEOS-
Chem simulations because the model provides OA mass
concentrations. Each OC fraction and TOC is multiplied by
the appropriate seasonal and regional OM:OC ratio, and they
are referred to as OM fractions and TOM.
ALW mass concentrations are estimated using the

thermodynamic equilibrium model ISORROPIA version 2.1,
publicly available online.54 Temperature and relative humidity
(RH) data were extracted from the North American Regional
Reanalysis (NARR) model as in the work of Nguyen et al.55

Three-hour temperature and RH data are averaged to 24 h to
match the 24-h sampling time of IMPROVE measurements.
ALW concentrations are estimated at each available
IMPROVE sampling day. We assume metastable conditions
and use only SO4

2− and NO3
− mass concentrations since

NH4
+, which increases ALW, is not measured at IMPROVE

sites. We do not include dust and organic species due to large
water uptake uncertainties56−58 and the spatial heterogeneity
in dust, which would disproportionately affect uncertainties in
ALW estimations across regions. Our approach affects absolute
values of ALW, but it does not affect overall interpretation or
broad trends, consistent with previous analyses that use the

Figure 1. Maps of relative decadal trends (2005−2015) in (a) TOC, (b) OC1, (c) OC2, (d) OC3, (e) OC4, and (f) PC mass concentrations for
each chemical climatology region. Size corresponds to the magnitude of the percent change. Red indicates an increasing trend, blue indicates a
decreasing one, a colored circle indicates that the increase or decrease is significant (p < 0.05) by the Mann−Kendall test, and an unfilled circle
indicates that the change is insignificant.
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same method and include organic compounds3 and dust59 in
sensitivities of ALW estimates.
2.2. GEOS-Chem Modeling. Observations are paired in

space and time via a nearest-neighbor approach with model
predictions from GEOS-Chem version 12.3.2 (http://acmg.
seas.harvard.edu/geos) driven by the MERRA-2 reanalysis
product60 developed by the NASA Global Modeling and
Assimilation Office (GMAO). Nested 0.5° × 0.625°
simulations over North America are examined across 2005−
2015 using output from global simulations run at 2° × 2.5°
horizontal resolution to provide boundary conditions.
Anthropogenic emissions for the United States are taken
from the National Emissions Inventory 2011 (NEI11)
developed by the United States Environmental Protection
Agency (EPA), as implemented in GEOS-Chem by Travis et
al.61 and adjusted for trends over time using the EPA’s national
annual scaling factors. Online biogenic emissions are provided
by the Model of Emissions of Gases and Aerosols from Nature
(MEGAN)62 with updates for acetaldehyde emissions63 and
CO2 dependence.

64 Biogenic emissions vary over time on the
basis of ambient meteorological conditions, as do trends in leaf
area index (LAI), which are captured using the MODIS-
derived LAI data product from Yuan et al.65 Fire emissions are
modeled using the fourth-generation Global Fire Emissions
Database (GFED4).66,67 Inorganic aerosol thermodynamics
are modeled using the ISORROPIA 2.2 module,54 while SOA
formation is represented by the simplified Volatility Basis Set
(VBS) approach of Pye et al.68 with the addition of the
nonreversible aqueous-phase isoprene SOA scheme of Marais
et al.15 We include 13 speciation bins in our analysis (defined
in Table S1, SI). Note that we treat the bins INDIOL
(organonitrate hydrolysis products) and ISOAAQ (aerosol
from the aqueous isoprene mechanism) separately. While
INDIOL includes contributions from gas-phase isoprene
oxidation products, lifetimes are uncertain69 and INDIOL is
by default excluded from mass summation calculations in
GEOS-Chem.
We determine the direction and significance of relative

decadal trends in particulate OC, OC converted to OM, and
predicted GEOS-Chem speciation bins (Table S1, SI) using
Sen’s slope and the Mann−Kendall test, nonparametric
techniques that are resistant to outliers and account for
seasonality, in R statistical software.70−74 We define winter as
December, January, and February (DJF), spring as March,
April, and May (MAM), summer as June, July, and August
(JJA), and fall as September, October, and November (SON).

3. RESULTS AND DISCUSSION
Across the CONUS, absolute and relative OC1, OC2, and PC
mass concentrations exhibit statistically significant (p < 0.05)
decreasing trends over time in all chemical climatology regions
[Figures 1 and S4 (SI)], as does the TOC with the exception
of two regions in California. The median TOC concentration
across the CONUS decreases from 0.78 μg m−3 in 2005 to
0.64 μg m−3 in 2015. OC2 and PC drive TOC mass
concentration decreases. Species in OC2 may contain
carboxylic acids, polyaromatic hydrocarbons (PAHs), and
steranes.17 PAHs and steranes are anthropogenic emissions
markers for incomplete fossil fuel combustion and motor oil
emissions,75−77 and carboxylic acids originate from oxidation
of biogenic and anthropogenic VOCs or direct emission from
fossil fuel combustion and biomass burning.78 Changes in PC
may be due to misapportioned EC,25 and some laboratory

analyses connect PC to WSOC.16 OC2 and PC decreases are
ubiquitous and significant (p < 0.05), with the largest absolute
and relative decreases occurring in the eastern United States,
where ALW mass concentrations and relative decreases in
ALW are also the greatest (Figures S4−S6, SI).55,79 These
decreases are generally larger than measurement uncertainties,
especially in the southeastern United States (Figure S7, SI).
OC3 increases in three chemical climatology regions in the
humid eastern United States over the same time period,
especially during summer (Figure S8, SI) after 2013 (Figure
2).

The magnitude of decadal changes among the OC fractions
varies within and across regions, and OC fractional
contributions to the TOC differ from 2005 to 2015 (Figure
2). OC2 mass concentrations decrease significantly (p < 0.05)
by a total of 0.07 μg m−3, from 23% of the TOC to 17%. By
contrast, OC3 mass concentrations across the CONUS
increase by 0.03 μg m−3, from 27% of the TOC to 38%, and
contribute the most by mass to the CONUS-averaged TOC
after 2010. Over the decade from 2005 to 2015, these increases
are significant in three regions in the eastern United States.
OC4 mass concentrations decrease by less than 0.01 μg m−3;
however, the fractional contribution of OC4 to the TOC
increases from 19% to 23%. Median publicly reported OC1
mass concentrations decrease by more than 50%. In 2005,
across the CONUS, PC concentrations are higher than any
OC fraction at 0.23 μg m−3 and decrease to 0.15 μg m−3 by
2015 (29% of the TOC to 24%). The rate of decline for PC is

Figure 2. Decadal trends across the CONUS for (a) the TOC, OC
fraction, and PC mass concentrations and (b) fractional contribution
of OC fractions and PC to the TOC. Error bars represent the
standard error of the medians.
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significant, higher than that for any OC fraction, and is spatially
consistent with the largest decreases in ALW (Figures S5 and
S6, SI). Decadal declines in OC2 are statistically robust and
larger than measurement uncertainties, and OC2 is less likely
to pyrolyze than fractions evolving at higher temperatures.18

GEOS-Chem reproduces spatial and temporal trends in
IMPROVE-estimated total organic mass (TOM) using region-
and season-specific OM:OC ratios across the CONUS (Figure
3). Individual GEOS-Chem simulated organic aerosol

speciation bin mass concentrations correlate significantly (p
< 0.05) with specific IMPROVE OM fractions in every region
and season, offering plausible mechanistic insight into these
changes. Significant correlations (p < 0.05) between predicted
OA and estimated OM fractions are found in each region and
indicate that some chemical complexity tied to formation
pathways is captured by OC fraction measurements in routine
network data. Over all regions and seasons, we assess 13 model
species (Table S1, SI) and compare them with OM fractions.
We find 739 significant paired evaluations over 11 years in 23
regions. Correlations are positive and occur frequently among
water-mediated species and OM2; thus, we explore pathways
and impacts of water-mediated chemistry.
Water-mediated chemistry predicted by GEOS-Chem is

linked to observations in the OM fractions in multiple regions
across the CONUS and provides plausible mechanistic
explanations for observations. GEOS-Chem oxidation products
of isoprene produced in the aqueous mechanism (ISOAAQ)
correlate significantly (p < 0.05) with OM2 in summer (Figure
4). This GEOS-Chem species includes carboxylic acids,80

which are formed from the aqueous-phase chemistry of
isoprene oxidation products81,82 and observed as part of
OC2 in laboratory studies.26−28 Statistical significance is also
observed for ISOAAQ with OM1 and OM4 in some regions
and seasons. This is consistent with laboratory studies that
demonstrate evolution of individual compounds such as oxalic
acid in one or more OC thermal fraction.17

Decreasing summertime measured OM2 trends correlate
significantly (p < 0.05) with decreases in measured (R > 0.9)
and predicted (R > 0.9) SO4

2−, ALW (R > 0.8), and ISOAAQ,
which includes species that require the presence of water to
form (Figures S9 and S10, SI).83 The absolute and relative

decreases are highest in the humid eastern United States
during summer, where decreases in ALW are largest (Figure
S5, SI). However, decreases in OM2, ALW, and ISOAAQ
occur in most regions across the CONUS. For example, in the
Great Basin region, representative of arid areas of the United
States (Figure 4), predicted ALW mass and isoprene emissions
are low,84 yet relative decreases in OM2, ALW, and ISOAAQ
are similar to observed trends in the East. This is suggestive
that water-mediated processes also play a determining role in
the TOC decreases outside humid locations of the eastern
United States.
GEOS-Chem also predicts increases in several speciation

bins, including aerosol products of light aromatics (ASOA),
terpene oxidation products (TSOA), aerosols from semi-
volatile organic carbon (POA), and oxidation products of
primary organic gas oxidation (OPOA) (Table S1, Figure S11,
SI). Many of these changes, especially OPOA (Figure S12, SI),
are positively correlated with OM3, which also demonstrates
increases. OPOA generally follows the same temporal pattern
as OM3 in many regions, showing an increase in concen-
trations starting in the latter half of our analysis (Figure S13,
SI). Increases in OPOA are linked to OM3 in spring, summer,
and fall across the CONUS. While the TOC is reported to be
decreasing, increases among positively associated independent
measurements and modeled species (i.e., OM3 and OPOA)
warrant further study.
Changes in OC fractions and ALW suggest changing particle

properties. ALW acts as a plasticizer, and decreases in ALW
lead to more viscous particles in laboratory and model
studies.85,86 It is also plausible that changes in the fractional
contribution of the thermal OC fractions are indicative of
altered OA viscosity.87,88 PC decreases alongside ALW and has
been linked in laboratory studies to WSOC,16 which may
suggest decreasing WSOC concentrations. As noted pre-

Figure 3. IMPROVE TOM and GEOS-Chem predictions of the TOA
across the CONUS from 2005 to 2015. Standard errors are
represented via error bars.

Figure 4. Decadal decreases in ALW, GEOS-Chem-predicted
ISOAAQ, and OM2 for (a) Appalachia and (b) the Great Basin.
Note that the y-axes are different between panels.
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viously, decreases in PC may be due to decreases in
misapportioned LAC.25 LAC is thought to be organic in
nature25 and could form from browning reactions in the
atmosphere facilitated by ALW.89−91 Organic speciation
changes may also occur concurrent with decreasing NOx
emissions and increasing importance of autoxidation reac-
tions.37 These findings are consistent with a potential increase
in OA viscosity and are supportive of the changing nature of
organic chemical species and pathways in OA over the
CONUS. This has implications for particle phase state, which
affects processes including reactive uptake and particle
growth92 through changing mass transfer and bulk diffu-
sion,93,94 impacting the ability to quantitatively model and
accurately assess aerosol impacts on climate and air quality.95

Increased particle viscosity leads to long particle-phase
diffusion time scales, which can prolong the time needed for
oxidation and degradation and increase long-range transport of
pollutants.
Biogenic emissions of VOCs have not changed greatly in the

CONUS over the decade analyzed here and have even
increased in some areas.9,11 Decreases, most notably in
inorganic anthropogenic emissions of SO2 and NOx, contribute
to decreasing OA concentrations through a variety of
mechanisms.3,14,96 Models consistently suggest that the
dominant impact is via ALW formation pathways.13,14,79 The
largest decreases in OA predicted by GEOS-Chem are strongly
linked to SOA formed via aqueous pathways. Observed
decreases in individual OC fractions positively associated
with GEOS-Chem organic aerosol are at least partially
attributable to decreases in anthropogenic emissions, most
notably inorganic compounds that affect aerosol hygroscopicity
to facilitate ALW uptake and SOA formation. The con-
sistencies among independent decadal surface measurements
and modeling results in humid and arid regions alike suggest
that some level of chemical information is captured in routine
OC fraction measurements and reproduced by models. This
may offer insights into changing chemical regimes and
implications for phase state, viscosity, and oxidation state of
OA in the CONUS. Proper assessment of the impacts of
climate, energy, and regulatory policy requires that models
make accurate predictions for the right reasons. The findings
here are consistent with the hypothesis that ancillary benefits
occur broadly across the CONUS from federal air-quality rules
aimed at ozone and acid rain through reductions in OA mass
concentrations.
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U.; Ammann, M.; Shiraiwa, M. Ozone Uptake on Glassy, Semi-Solid
and Liquid Organic Matter and the Role of Reactive Oxygen
Intermediates in Atmospheric Aerosol Chemistry. Phys. Chem. Chem.
Phys. 2016, 18 (18), 12662−12674.
(94) Marshall, F. H.; Miles, R. E. H.; Song, Y.-C.; Ohm, P. B.;
Power, R. M.; Reid, J. P.; Dutcher, C. S. Diffusion and Reactivity in
Ultraviscous Aerosol and the Correlation with Particle Viscosity.
Chem. Sci. 2016, 7 (2), 1298−1308.
(95) Shiraiwa, M.; Li, Y.; Tsimpidi, A. P.; Karydis, V. A.; Berkemeier,
T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Pöschl, U. Global
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