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Abstract. In this article we initiate the study of 1+2 dimensional wave maps on a curved
space time in the low regularity setting. Our main result asserts that in this context the
wave maps equation is locally well-posed at almost critical regularity.

As a key part of the proof of this result, we generalize the classical optimal bilinear L2

estimates for the wave equation to variable coefficients, by means of wave packet decom-
positions and characteristic energy estimates. This allows us to iterate in a curved Xs,b

space.
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1. Introduction

Let the (1 + 2)-dimensional spacetime Rt × R2
x be endowed with a Lorentzian metric

g = gαβ(t, x)dx
αdxβ,

so that the time slices t = const are space-like. Here x0 = t and we adopt the standard con-
vention of referring to spacetime coordinates by Greek indices and purely spatial coordinates
by Roman indices.

Given a smooth Riemannian manifold (M,h) with uniformly bounded geometry, a wave
map u : (R1+2, g) → (M,h) is formally a critical point of the Lagrangian

L(u) = 1

2

∫
R1+2

⟨du, du⟩T ∗(R×R2)⊗u∗TM dvolg,
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where u∗TM =
⋃

x{x}×Tu(x)M is the pullback of TM by u and u∗h is the pullback metric.
In local coordinates on M this becomes

L(u) = 1

2

∫
gαβ(z)hij(u(z))∂αu

i(z)∂βu
j(z)

√
|g(z)| dz

One may think of wave maps as the hyperbolic counterpart of harmonic maps. The Euler-
Lagrange equations take the following form, and we refer to [13, Chapter 8] for related
computations:

1√
|g|

Dα

(√
|g|gαβ∂βu

)
= 0 (1.1)

Here D denotes the pullback covariant derivative on u∗TM given by DXV = ∇u∗XV where
∇ is the Levi-Civita connection on TM .

In coordinates, wave maps solve a coupled system of nonlinear wave equations. We review
two useful settings for this problem:

Intrinsic formulation. Suppose the image of u is supported in the domain of a local
coordinate patch of M . Then the wave maps equation (1.1) is written as

□̃gu
i = −Γi

jk(u)g
αβ∂αu

j∂βu
k (1.2)

where □̃g is the Laplace-Beltrami wave operator

□̃gu = |g|−
1
2 ∂α

(
|g|

1
2 gαβ∂βu

)
(1.3)

denoted this way in order to distinguish it from its principal part □g defined by

□gu = gαβ∂α∂βu,

and Γi
jk are the Christoffel symbols on (M,h).

Extrinsic formulation. When the manifold M is isometrically embedded into an euclidean
space Rm wave maps can be equivalently defined extrinsically; see for instance [28]. If M is
compact, such an embedding exists for m large enough by Nash’s theorem. The Lagrangian
becomes

L(u) = 1

2

∫
gαβ⟨∂αu, ∂βu⟩

√
|g| dz

Formal critical points satisfy □̃gu ⊥ TuM and our equation takes the form

□̃gu
i = −S i

jk(u)g
αβ∂αu

j∂βu
k, (1.4)

where S stands for the second fundamental form on M .

Initial data for the Cauchy problem are chosen such that

u(0, x) ∈M, ∂tu(0, x) ∈ Tu(0,x)M.

The initial data space can be viewed as an infinite dimensional manifold, in which the wave
map evolution takes place.

2



The formulations above exhibit the presence of the null form

Qg(u, v) = gαβ∂αu∂βv.

Its structure is so that it eliminates quadratic resonant interactions in the wave map evolu-
tion, and has played a key role in the low regularity well-posedness of wave maps in the flat
case ([15], [19], [20], [39], [34]) as well as in other problems, especially in low dimensions. A
simple way to see this cancellation is via the formula

2Qg(u, v) = 2gαβ∂αu∂βv = □g(uv)− u□gv − v□gu. (1.5)

However in Section 6 we will obtain estimates for Qg(u, v) directly.

In both the intrinsic and the extrinsic formulations one can use the coordinates to de-
fine Sobolev spaces for the initial data sets. To understand the relevant range of Sobolev
indices we recall that in the Minkovski space the wave maps system is invariant under the
dimensionless rescaling

u ↦→ u(λt, λx), g ↦→ g(λt, λx)

which identifies the critical (scale-invariant) initial data space as Ḣ1 × L2(R2). In addition,
one may consider initial data spaces for more regular data, of the form

Hs = {(u0, u1) : R2 → TM ; ∇u0, u1 ∈ Hs−1(R2)}, s > 1.

It is this latter case which is considered in the present paper.
Several remarks are in order here. First of all, the constant functions are always acceptable

states in the context of manifold valued maps u0; this is why we include them all in our state
space Hs above. Secondly, one may ask whether the definition of the above spaces is context
dependent. We separately discuss the two formulations above.

The simplest set-up is in the case of the extrinsic formulation with (M,h) a compact
manifold. There one can directly use the Hs−1(R2) spaces for derivatives of Rm valued
functions. For simplicity, this is the set-up we adopt here.

For the intrinsic formulation matters are not as straightforward. The fact that s > 1
heuristically insures that functions u0 with ∇u0 ∈ Hs−1 are Hölder continuous. Thus locally
such functions are in the domain of a single chart, and the Hs−1 norms can be defined using
local coordinates. Further, by Moser estimates the local spaces are algebraically independent
of the choice of the local chart. Finally, the global spaces are obtained from the local ones
by using a suitable collection of local charts. Of course, some care is required here in order
to avoid a circular argument. Most generally such a construction would apply for manifolds
(M, g) with uniformly bounded geometry.

Finally we remark that in the setting of low-regularity discontinuous solutions as in [43],
defining the critical Sobolev spaces Ḣ1

x(R2 → M) is a delicate matter due to the need of
having an appropriate topology on these spaces that is independent of the choice of isometric
embeddings.

Throughout the paper we assume that

• The metric coefficients gαβ and gαβ are uniformly bounded.
• The surfaces t = const are uniformly space-like,

gijv
ivj ≳ |v|2.
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These conditions in turn imply the bound from below

−g00 ≳ 1.

Now we are ready to formulate our main result, which establishes well-posedness in the
energy-subcritical regime s > 1, as a stepping stone toward the energy-critical problem on a
curved background.

Theorem 1.1. Let M ⊂ Rm be an embedded manifold. Assume that ∂2t,xg
ij ∈ L2

tL
∞
x . Then

the Cauchy problem for the wave maps equation (1.4) is locally well-posed in Hs for 1 < s ≤ 2.

Our result includes existence, uniqueness, locally Lipschitz dependence on the initial data
and persistence of regularity as explained in Section 1.2.

While our main result above applies to the large data problem, the bulk of the paper is
devoted to the small data problem, to which the large data case reduces after a suitable
localization. To state the small data result, we replace the qualitative property of the metric
∇2g ∈ L2L∞ with a quantitative version which applies in the unit time interval t ∈ [0, 1]:

∥∂t,xgαβ∥L∞L∞ + ∥∂2t,xgαβ∥L2L∞ ≤ η2. (1.6)

Here η ≪ 1 is a fixed small parameter.
For the next result below, we work in a local patch in the intrinsic setting. We assume

that 0 belongs to the range of local coordinates associated to this patch, and work with data
(u0, u1) which is small in Hs

x×Hs−1
x . Then u0 is continuous and uniformly small. As long as

this property persists, the solution will remain within the domain of the local patch. Hence
its regularity can be measured in those coordinates. Our small data result is as follows:

Theorem 1.2. Let 1 < s ≤ 2 and assume g satisfies (1.6) in the time interval [0, 1]. There
exists ϵ > 0 such that for any initial data set (u0, u1) satisfying

∥(u0, u1)∥Hs×Hs−1 ≤ ϵ (1.7)

there exists a unique solution u to the wave maps problem (1.2) with this data in the space
C([0, 1];Hs) ∩ C1([0, 1];Hs−1), satisfying

∥(u, ∂tu)∥L∞(Hs×Hs−1) ≲ ∥(u0, u1)∥Hs×Hs−1 . (1.8)

The solution has a Lipschitz continuous dependence on the initial data.

Here the uniqueness is interpreted in the classical sense if s = 2. For 1 < s < 2, the
Hs ×Hs−1 can be defined as the unique limits of H2 ×H1 solutions. Alternatively, one may
prove the uniqueness property in the Xs,θ spaces, see the discussion below.

The higher Sobolev regularity is limited to H2 given the regularity of the metric g. How-
ever, adding higher regularity to g correspondingly adds regularity to the class of regular
solutions.

The objective of Section 1.2 will be to reduce our main result in Theorem 1.1 to the small
data result in Theorem 1.2 by a standard scaling and finite speed of propagation argument.

A key role in our analysis is played by the spaces Xs,θ associated to the wave operator
□g. Indeed, our main well-posedness argument is phrased as a fixed point argument in Xs,θ

where

1 < s ≤ 2,
1

2
< θ ≤ min{1, s− 1

2
}.
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In particular one can rephrase the uniqueness property in our main theorems as an uncondi-
tional uniqueness in Xs,θ, and the Lipschitz dependence as a Lipschitz dependence in Xs,θ.
These spaces are defined in Section 2, and the study of their linear and bilinear properties
occupies much of the paper.

1.1. Previous works. Here we provide a brief survey of previous results on Wave Maps
well-posedness, with an emphasis on variable coefficients.

The Cauchy problem on a flat background (R1+n,−dt2 + dx2) is by now well understood.
In view of the scaling symmetry u(t, x) ↦→ u(λt, λx), the critical Sobolev space is Ḣ

n
2 ×

Ḣ
n
2
−1(Rn). Local wellposedness in Hs ×Hs−1 was established for all subcritical regularities

s > n
2
by Klainerman-Machedon for n ≥ 3 and Klainerman-Selberg when n = 2 [15], [19].

The much more delicate critical problem s = n
2
was solved for small data in dimension n = 2

by Tataru [39], [43], Tao [34] and Krieger [21], with further contributions in higher dimension
by Klainerman-Rodnianski [17], and Shatah-Struwe [28], Nahmod-Stefanov-Uhlenbeck [27].
Further, when n = 2, the energy-critical problem in H1×L2 admits a global theory for large
data as developed by Sterbenz-Tataru [32], [33], Krieger-Schlag [22] and Tao [36].

For wave maps with variable coefficients, Geba [9] established local wellposedness in
the subcritical regime s > n

2
when 3 ≤ n ≤ 5, building on previous work of Geba and

Tataru [11]. More recently, Lawrie constructed global-in-time solutions on perturbations of
R1+4 Minkowski space for small data in the critical space H2 × H1(R4), and Lawrie-Oh-
Shahshashani obtained analogous small-data results on R × Hn, n ≥ 4 [24]. See also the
recent work of Li-Ma-Zhao on the stability of harmonic maps H2 → H2 under the wave map
flow [25].

A key component in the study of wave maps in the Minkowski case at critical regularity is
Tao’s renormalization idea, first introduced in [34]. The subcritical problem considered in this
article avoids the renormalization argument, which simplifies matters considerably. On the
other hand, Strichartz estimates do not suffice to treat the full subcritical range s > n

2
in low

dimensions, in particular when n = 2, 3. Indeed the null structure Qg(u, u) distinguishes the
wave maps system from equations with a generic quadratic derivative nonlinearity (∇u)2;
as observed by Lindblad [26], the latter can be illposed in Hs × Hs−1(R3) for s = 2 >
3
2
. The previous works [15, 19] rely on Xs,b spaces to exploit the null structure in lower

dimensions. We pursue an analogous strategy using the variable-coefficient Xs,b-type spaces
first introduced by Tataru [37] and further developed by by Geba and Tataru [44]. However,
the two-dimensional case involves additional subtleties as we shall discuss shortly.

1.2. Reduction of Theorem 1.1 to Theorem 1.2. Let

(ũ0, ũ1) : R2
x →M × Tũ0M ⊂ Rm × Rm

be an initial data such that

∥(∇ũ0, ũ1)∥Hs−1 ≤ R.

We have a solution ũ on a small time interval [0, T ] if the rescaled function

u(t, x) = ũ(Tt, Tx)

is a solution on [0, 1] using the rescaled metric g(Tt, Tx). This now obeys (1.6), provided
that T is small enough.
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The data for the rescaled solution will satisfy the scale invariant bound

∥(u0, u1)∥Ḣ1×L2 ≤ R

as well as the homogeneous bound

∥(u0, u1)∥Ḣs×Ḣs−1 ≤ RT s−1

We will choose T small enough so that

RT s−1 ≪ ϵ.

To obtain smallness of the full Hs ×Hs−1 norms we truncate the initial data, then we apply
Theorem 1.2 and we glue those solutions using finite speed of propagation.

Let c be the largest speed of propagation and let (yj)j be the centers of a family of balls
such that the truncated cones

Kj = {(t, x) | ct+ |x− yj| ≤ c+ 1, t ∈ [0, 1]}

are finitely overlapping and cover [0, 1]× R2.
Let χj be a smooth function which equals 1 on the ball Bj = Byj(c+ 1) and is supported

on B̃j = Byj(c+2). We denote by Bt
j = Byj(c+1−ct), B̃t

j = Byj(c+2−ct) the corresponding
balls at time t.

For every yj we choose a local chart of M such that u0(yj) corresponds to the origin.
We localize around yj viewing (by slight abuse of notation) u0, u1 as having their image

in the chart and defining uj0 = χju0, u
j
1 = χju1. Since, uj0(yj) = 0, by homogeneous

Sobolev embedding and Morrey’s inequality we deduce that smallness is retained locally by
the inhomogeneous Sobolev norms:

∥(uj0, u
j
1)∥Hs×Hs−1 ≤ ϵ. (1.9)

One uses Moser estimates to pass from the extrinsic Sobolev spaces to the Sobolev norms
defined using the patch coordinates.

By Theorem 1.2 we obtain a solution uj to (1.2) which remains in the image of the chart
on [0, 1] by (1.8) and Sobolev embedding. Now viewing uj as taking values in M ⊂ Rm, it
solves (1.4) and we restrict it to the truncated cone Kj.
To obtain a solution u on [0, 1]×R2 defined by each uj restricted to Kj we argue that any

two of them must coincide on their common domain. For H2 solutions this follows from the
finite speed of propagation, which is then proved in a standard fashion. For rough solutions
we use the well-posedness result from Theorem 1.2 to approximate them by H2 solutions,
and then we pass to the limit.

Now we show that ∇t,xu(t) ∈ Hs−1(R2). First we note that, by (1.25) we have∑
j

∥uj0∥2Hs ≃
∑
j

∥χju0∥2L2(B̃j)
+ ∥∇x(χju0)∥2Hs−1 ≲

≲
∑
j

∥u0∥2L2(B̃j)
+ ∥∇xu0∥2W s−1,2(B̃j)

≲
∑
j

∥∇xu0∥2W s−1,2(B̃j)
(1.10)

since by Morrey’s inequality and Sobolev embedding we have

∥u0∥L2(B̃j)
≲ ∥∇xu0∥L2+(B̃j)

≲ ∥∇xu0∥W s−1,2(B̃j)
.
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Moreover, by (1.26) and (1.24) we have

RHS (1.10) ≲
∑
j

∥∇xu0∥2L2(B̃j)
+ |∇xu0|2Ẇ s−1,2(B̃j)

≲ ∥u0∥2Ḣ1 + ∥∇xu0∥2Ḣs−1 ≲ R2.

Similarly we obtain
∑

j ∥u
j
1∥2Hs−1 ≲ R2. For the solution at time t, using (1.27) we get

∥∇t,xu(t)∥2Hs−1 ≲
∑
j

∥∇t,xu(t)∥2W s−1,2(Bt
j)
≲

∑
j

∥uj[t]∥2Hs×Hs−1 ≲
∑
j

∥uj0, u
j
1∥2Hs×Hs−1 ≲ R2.

This proves that ũ(t) ∈ Hs for t ∈ [0, T ] and

∥ũ∥L∞Hs([0,T ]×R2) ≤ CR∥(ũ0, ũ1)∥Hs

with a constant CR depending on R.
Now we address the locally Lipschitz dependence on the initial data. Let (ṽ0, ṽ1) : R2

x →
M × Tũ0M ⊂ Rm × Rm be another initial data set such that

∥(ũ0 − ṽ0, ũ1 − ṽ1)∥(Ḣs∩Ḣ1∩L∞)×Hs−1

is small enough and let ṽ be the solution on [0, T ] with this data. Then using the argument
above together with the Lipschitz dependence given by Theorem 1.2 of the local solutions
we obtain

∥ũ− ṽ∥L∞Hs([0,T ]×R2) ≲ CR∥(ũ0 − ṽ0, ũ1 − ṽ1)∥Hs .

Finally, we remark that assuming higher regularity for the metric g (such as ∂kg ∈ L2L∞

and g ∈ L∞Hk−1 for k ≥ 3, see the discussion below in the proof of Theorem 1.2) we have
that (Ḣn ∩ Ḣ1)×Hn−1 regularity of the initial data is maintained by the solution on [0, T ]
for n ≤ k.

Remark 1.3. If we assume the initial data (ũ0, ũ1) to be only in Ḣs× Ḣs−1, then we can still
construct a solution, but it will be only locally in Hs ×Hs−1 at future times.

1.3. Proof of Theorem 1.2. Here we set up the fixed point argument which yields The-
orem 1.2, and show that the proof reduces to four estimates described below.

As a preliminary step, we replace the metric gαβ by g̃αβ = (g00)−1gαβ in order to insure that
g̃00 = 1; this is not crucial in the analysis, but yields some minor technical simplifications.
The price to pay for this substitution is that we get another term in the equations,

□̃g̃u
i = −Γi

jk(u)g̃
αβ∂αu

j∂βu
k +

5

2
∂α(log |g00|)g̃αβ∂βu (1.11)

The extra term on the right will easily be perturbative in our setting. Hence we will simply
neglect it, drop the g̃ notation and simply assume that g00 = −1.
We now consider an initial data satisfying (1.7) and proceed to obtain the solution to (1.2)

on [0, 1] by a fixed point argument, as u = Φ(u) for the functional

Φi(u) := uilin + □̃−1
g

(
− Γi

jk(u)Qg(u
j, uk)

)
(1.12)

where ulin is the solution of the linear equation with F = 0

□̃gu = F, u[0] = (u0, u1) (1.13)

while □̃−1
g F is defined as the solution of (1.13) with u[0] = (0, 0).
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This argument relies on the choice of two Banach spaces X (for the components of our
solutions) and N (for the perturbative nonlinearity) such that Φ is a contraction on a small
ball of X. Specifically,

X = Xs,θ, N = Xs−1,θ−1

which are defined in Section 2 with θ ∈ (1/2, 1), θ < s− 1/2.

The linear mapping property in Lemma 2.14 states that for solutions of (1.13) we have

∥u∥X ≲ ∥(u0, u1)∥Hs×Hs−1 + ∥F∥N (1.14)

Having (1.14) we also need to know that the mapping written schematically as Γ(u)Qg(u, u) :
X → N holds, as well as

∥Γ(u)Qg(u, u)− Γ(v)Qg(v, v)∥N ≲ ϵ∥u− v∥X
for u, v in a ball of radius Cϵ in X. These two properties are now easily reduced to the esti-
mates (1.15)-(1.19) below; we obtain the ϵ smallness for the difference since the nonlinearity
is at least quadratic. We add that this contraction argument gives Lipschitz dependence on
ulin, therefore on the initial data by (1.14).

The building blocks for the iteration are the following nonlinear estimates:

Algebra property: ∥u · v∥X ≲ ∥u∥X∥v∥X (1.15)

Product estimate: ∥u · F∥N ≲ ∥u∥X∥F∥N (1.16)

Null form estimate: ∥Qg(u, v)∥N ≲ ∥u∥X∥v∥X (1.17)

Moser estimate: ∥Γ(u)∥X ≲ ∥u∥X(1 + ∥u∥MX ). (1.18)

The proof of the Algebra property (1.15) occupies the main part of this paper, being the
object of Section 6 which is based on the results of Sections 2-5 . All the other properties
rely fundamentally on (1.15):

The Product estimate (1.16) follows easily in Section 7 as a corollary of the estimates
established in the proof of (1.15), using a duality argument.

We obtain the Null form estimate (1.17) as a consequence of the identity (1.5) together
with (1.15), (1.16) and the linear bound ∥□gu∥N ≲ ∥u∥X from Lemma 2.13.

The nonlinear Moser estimate (1.18) is proved in Section 8. For the purpose of the
fixed point iteration argument based on (1.17) we may subtract a constant and assume that
Γ(0) = 0. Using the Algebra property (1.15) we may subtract a polynomial from Γ and assume
that ∂αΓ(0) = 0 for |α| ≤ C. Modifying Γ outside a neighborhood of the origin, it suffices
to prove (1.18) under the assumption that Γ and its derivatives are uniformly bounded.
Moreover, using the fundamental theorem of calculus, when ∥u∥X , ∥v∥X are bounded we
obtain as a consequence

∥Γ(u)− Γ(v)∥X ≲ ∥u− v∥X . (1.19)
8



Persistence of regularity. Assuming we control k ≥ 2 derivatives of the metric, and thus
for the rescaled metric on [0,1] we assume ∥∂kg∥L2L∞ ≪ 1 and g ∈ L∞Hk−1, we show that
Hσ ×Hσ−1 regularity of the initial data is maintained in time for any σ ∈ [s, k]. Let M ≥ 1
and

∥u[0]∥Hσ×Hσ−1 ≤M, ∥u[0]∥Hs×Hs−1 ≤ ϵ.

We obtain our solution as a fixed point for Φ from (1.12), which is a contraction on a small
ball of the space Z = Xσ,θ ∩Xs,θ endowed with the norm

∥u∥Z =
ϵ

M
∥u∥Xσ,θ + ∥u∥Xs,θ

provided ϵ is sufficiently small, independently of M . By Remark 2.15, the mapping property
(1.14) holds also for Hσ × Hσ−1, Xσ,θ and Xσ−1,θ−1. The nonlinear estimates (1.15)-(1.18)
are replaced by

∥u · v∥Xσ,θ ≲ ∥u∥Xσ,θ∥v∥Xs,θ + ∥u∥Xs,θ∥v∥Xσ,θ

∥Qg(u, v)∥Xσ−1,θ−1 ≲ ∥u∥Xs,θ∥v∥Xσ,θ + ∥u∥Xσ,θ∥v∥Xs,θ

∥u · F∥Xσ−1,θ−1 ≲ ∥u∥Xs,θ∥F∥Xσ−1,θ−1 + ∥u∥Xσ,θ∥F∥Xs−1,θ−1

∥Γ(u)∥Xσ,θ ≲ ∥u∥Xσ,θ

We refer to (6.1), (7.3) and Remark 7.2 for a discussion of these properties. We conclude
that the unique solution obtained earlier in X = Xs,θ is also in Xσ,θ and ∥u∥Xσ,θ ≲M .
In both fixed point arguments we have continuous dependence on the initial data, therefore

the obtained solution is the unique strong limit of smooth solutions.

1.4. Main ideas. We now provide an outline of the main ideas of the paper which are the
ingredients used to establish the building blocks (1.15)-(1.18) of our results.

Curved Xs,b spaces. The classical Xs,b spaces are multiplier weighted L2-spaces on the
Minkowski space-time adapted to the symbol of the wave operator□ similarly to how Sobolev
spaces are associated to the Laplacian ∆, see [16] and the references therein. These are used
to prove local well-posedness for constant coefficients wave maps above scaling: [15] (d ≥ 3)
and [19] (d = 2). For the history of classical Xs,b spaces and applications we refer to the
survey article [20].

A variable coefficient version of the Xs,b spaces, defined in physical space, was first intro-
duced1 in [37], and then further developed in [11] in order to study semilinear wave equations
on curved backgrounds with a generic quadratic derivative nonlinearity. These spaces were
later utilized by Geba [9] in his treatment of energy-subcritical wave maps in dimensions
3 ≤ d ≤ 5. We borrow this notion of curved Xs,b spaces in the present paper and review the
relevant definitions and lemmata in Section 2.

In two space dimensions, new techniques are required to establish Xs,b estimates, in par-
ticular the crucial algebra property (1.15). Using Strichartz estimates as for the case d ≥ 3
would incur an unacceptable loss of derivatives when d = 2. Instead we adapt some ideas of
Tataru from energy-critical wave maps in Minkowski space; see in particular [39, Theorem 3].

1Other variable-coefficient Xs,b constructions have been proposed, for instance via spectral theory on a
smooth compact manifold [3].
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Our analysis involves bilinear angular decompositions, wave packets, and energy estimates
along certain null hypersurfaces.

Bilinear estimates in Xs,b require optimal control of ∥uλ · vµ∥L2([0,1]×R2) with bounds de-
pending on the angular frequency localization of uλ and vµ. Decomposing the lower frequency
function vµ into wave packets concentrated on certain ”tubes” T , by orthogonality it will
suffice to obtain bounds for ∥uλ∥L2(T ). In effect, this strategy is a variable-coefficient variant
of the traveling wave decomposition employed in [39]. Foliating a tube T into null surfaces
Λ (see Section 4.1) we reduce to controlling∫

Λ

|uλ|2 dσ.

We call these characteristic energy estimates. While they can be proved by Fourier analysis
in the Minkowski case [39], the present context requires a physical space proof which is
considerably more delicate, as integration by parts based on the energy-momentum tensor
only controls tangential derivatives such as

∫
Λ
|Luλ|2 dσ.

The problem of ”inverting the L” in a manner consistent with the angular separation is
addressed using microlocal analysis in Section 5.

Wave packets analysis. A key technical device in this article consists in approximating
solutions to the linear wave equations by square-summable superpositions of wave packets,
which are localized in both space and frequency on the scale of the uncertainty principle,
and propagate in spacetime along null hypersurfaces. Such representations of the wave group
originate in the work of Cordoba-Fefferman [5]. For wave equations with C1,1 coefficients,
the first wave packet parametrix was given by Smith [29]. An alternate construction, based
on the use of phase space (FBI) transforms was provided by Tataru [38, 40, 41] for metrics
satisfying ∂2g ∈ L1L∞. Analogous constructions have since been employed for even rougher
coefficients, as in the the study of quasilinear wave equations in Smith-Tataru [30].

In this article we use Smith’s parametrix, which easily extends to rougher metrics satisfying
∂2g ∈ L1L∞. There are two reasons for that: (i) causality (the parametrix in [38, 40, 41] is
developed in a microlocal space-time foliation, without reference to a time foliation) and (ii)
localization scales ( in slabs [29] vs. tubes [38, 40, 41]). Neither of these reasons is critical but
taken together they do make a difference from a technical standpoint. Section 4 isolates the
essential properties of Smith’s parametrix that we shall need, while specific implementation
details are reviewed in Appendix A.

Another contribution of this paper is a wave packet characterization of functions in Xs,b

with low modulation, see Proposition 4.7 and Corollary 4.8.

Null structures arise in equations from mathematical physics where they manifest through
the vanishing of parallel interactions. The cancellations are realized in our setting expressing
the null form Qg(u, v) in a suitable null frame {L,L,E}:

2Qg

(
u, v

)
= Lu · Lv + Lu · Lv − 2Eu · Ev.

If L,E are tangent to the null hypersurfaces along which v propagates, then Lv and Ev are
better than the tranverse derivative Lv. Hence there is a gain in Qg(u, v) over a generic
quadratic term ∇u · ∇v if u and v propagate along nearby directions.
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Estimates for null forms have played a key role in the low regularity well-posedness of
wave maps in the flat case ([15], [19], [20], [39], [34]) and in other problems, especially in low
dimensions. Several null form estimates for variable coefficients have been obtained before
by Sogge [31], Smith-Sogge [7] and Tataru [42], under various assumptions on the metric.

The strategy outlined above of obtaining L2 estimates using wave packets and character-
istic energy estimates applies as well for bounding ∥Qg(uθ, vθ)∥L2([0,1]×R2) where the terms
uθ, vθ have an angular separation of ≃ α. A Whitney-type decomposition is used to reduce
to this assumption.

The Moser estimate (1.18), required for non-analytic target manifolds, is proved in Sec-
tion 8 following the method of iterated multilinear paradifferential expansions introduced
in [43].

1.5. Notations and preliminaries.

• We denote by τ and ξ the time, respectively the spatial Fourier variables. For 0 ̸= ξ,

write ξ̂ := ξ/|ξ| for its projection to the (Euclidean) unit sphere.
• We denote the Cauchy data at time s by v[s] = (v(s), ∂tv(s)) for any time s.
• Mixed Lebesgue norms shall be denoted by ∥u∥Lp

tL
q
x
:=

∥u(t)∥Lq
x


Lq
t
; to unclutter

the notation we often omit the subscripts. Also, when p = q we write Lp := Lp
tL

p
x.

• In the context of wave packet sums we will denote by ℓ2T the following norm

∥cT∥2ℓ2T =
∑
T∈Tλ

|cT |2

• To define Littlewood-Paley decompositions we fix a partition of unity of the positive
real line

1 =
∑

λ≥1 dyadic

sλ(r) (1.20)

where sλ is supported on the interval r ∈ [λ/2, 2λ] for λ ≥ 2 and in r ≤ 2 for
λ = 1. Setting Pλ(ξ) := sλ(|ξ|) and Pλ(τ, ξ) := sλ(|(τ, ξ)|), we define Littlewood-
Paley frequency decompositions on space and spacetime:

1R2 =
∑
λ

Pλ(Dx), 1R×R2 =
∑
λ

Pλ(Dt, Dx).

Projections P<λ, P>λ are defined in the usual manner, and we also set P[λ1,λ2] =∑
λ∈[λ1,λ2]

Pλ. In this article, summation indices representing frequency or modulation
are always understood to be dyadic. More generally, when the index set is not written
explicitly it will always be clear from the context.

If sλ is a compactly supported multiplier, s̃λ represents slightly wider version of sλ
so that sλ = s̃λsλ.
In this article, Littlewood-Paley decompositions are defined respect to the x vari-

able with one main exception: the (dual) metric g shall always be mollified in space-
time, and for a frequency µ we write g<µ := P<µ(Dt, Dx)g.

• Pseudo-differential operators in this paper are defined using Kohn-Nirenberg quan-
tization. When there is no danger of confusion, we sometimes denote both a symbol
ϕ(x, ξ) and its corresponding operator ϕ(X,D) by the abbreviation ϕ.

11



• The global Sobolev spaces Ḣs and Hs are defined for s ∈ R using the Fourier trans-
form by

∥u∥Ḣs = ∥ |ξ|s û∥L2 , ∥u∥Hs = ∥(1 + |ξ|2)s/2û∥L2 (1.21)

• We define the local Sobolev spaces W s−1,2(B), for a ball B of radius ≃ 1 or for
B = R2. When s−1 ∈ {0, 1} we use the classical definition, while when s−1 ∈ (0, 1)
we have the norm

∥v∥2W s−1,2(B) = ∥v∥2L2(B) + |v|2Ẇ s−1,2(B) (1.22)

where |·|Ẇ s−1,2(B) denotes the Gagliardo seminorm

|v|2Ẇ s−1,2(B) =

∫
B

∫
B

|v(x)− v(y)|2

|x− y|2s
dx dy. (1.23)

• When B = R2 one has

|v|Ẇ s−1,2(R2) ≃ ∥v∥Ḣs−1 , ∥v∥W s−1,2(R2) ≃ ∥v∥Hs−1 . (1.24)

When ψ ∈ C0,1(B̃) is supported in a slightly smaller ball one has

∥ψv∥Hs−1 ≲ ∥ψv∥W s−1,2(B̃) ≲ ∥v∥W s−1,2(B̃). (1.25)

We refer to [6] for these properties. Clearly, when the balls (Bj)j are finitely
overlapping one has ∑

j

|v|2Ẇ s−1,2(Bj)
≲ |v|2Ẇ s−1,2(R2) (1.26)

Conversely, assuming in addition that (Bj)j cover R2, by splitting the R2 × R2

integral in (1.23) into regions where there exists j such that both x, y ∈ Bj and
regions where |x− y| > δ (where we bound |v(x)− v(y)| ≤ |v(x)| + |v(y)| and use
the L2(Bj) norms), we obtain

|v|2Ẇ s−1,2(R2) ≲
∑
j

∥v∥2W s−1,2(Bj)
(1.27)

Bounds on the metric. Observe that we have for any λ the pointwise estimate

|∂2g<λ| ≲M(∂2g) ≤M(∥∂2g∥L∞
x
),

|∂k∂2g<λ| ≲ λkM(∥∂2g∥L∞
x
),

where M is the Hardy-Littlewood maximal function, and by Bernstein

∥∂k∂2g<λ∥L∞ ≲ λkλ
1
2∥∂2g∥L∞

x L2
t
≤ λ

1
2
+k∥∂2g∥L2

tL
∞
x
. (1.28)

Similarly, from the bound

|gλ| = |PλD
−2D2g| ≲ λ−2M(∥∂2g∥L∞

x
)

we have

∥gλ∥L2
tL

∞
x
≲ λ−2∥∂2g∥L2

tL
∞
x
. (1.29)

As a consequence of the above bounds on g, we recall the commutator estimate

∥[□g<
√

λ
, Pλ]v∥L2

x
≲ λ∥v∥L2

x
+ ∥∂tv∥L2

x
(1.30)
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which follows from

[□g<
√
λ
, Pλ] = [g<

√
λ, Pλ]∂t,x∂x, ∥[g<√

λ, Pλ]∥L2→L2 ≲ λ−1∥∇g∥L∞ .

Acknowledgments. The first author was partially supported by the Simons Foundation.
The second author was partially supported by an NSF Postdoctoral Fellowship. The third
author was partially supported by the NSF grant DMS-1800294 as well as by a Simons
Investigator grant from the Simons Foundation.

2. Curved Xs,θ spaces

In this section we present and expand on the theory of Xs,θ spaces associated to wave
operators with variable coefficients from [11] (see also [37]). An alternative definition of Xs,θ

spaces in the context of time-independent coefficients on compact manifolds was proposed
in [3] using spectral theory.

2.1. Definitions. We begin with our main building blocks, which are norms associated to a
single frequency λ and modulation d. The reader is reminded that sums over such parameters
are always understood as dyadic summations.

Definition 2.1. Let s ∈ R, θ ∈ (0, 1) and let I be a time interval.

(1) For dyadic λ ≥ d ≥ 1, the norm of Xs,θ
λ,d[I] is defined by

∥u∥2
Xs,θ

λ,d[I]
= λ2sd2θ∥u∥2L2(I×Rn) + λ2s−2d2θ−2∥□g<

√
λ
u∥2L2(I×Rn).

When I = [0, 1] we drop the I and denote simply Xs,θ
λ,d.

(2) The norms of Xs,θ
λ,≤h, X

s,θ
λ,≤h,∞ are defined by

∥u∥2
Xs,θ

λ,≤h

= inf
{ h∑

d=1

∥uλ,d∥2Xs,θ
λ,d

; u =
h∑

d=1

uλ,d

}
,

∥u∥2
Xs,θ

λ,≤h,∞
= inf

{
sup

1≤d≤h
∥uλ,d∥2Xs,θ

λ,d

; u =
h∑

d=1

uλ,d

}
,

for dyadic h ≤ λ. When h = λ we simply write Xs,θ
λ for Xs,θ

λ,≤λ. We also use a similar

definition for Xs,θ
λ,[d1,d2]

for a restricted range of dyadic modulations d1 ≤ d ≤ d2.

(3) For δ > 0 such that D = δ−1 is a dyadic integer and |I| ≃ δ, we analogously

define Xs,θ
λ,≤h[I], X

s,θ
λ,≤h,∞[I], Xs,θ

λ,[d1,d2]
[I] for D ≤ h ≤ λ, with summation, respectively

supremum, taken over D ≤ d ≤ λ or d1 ≤ d ≤ d2. When D is bounded by a universal
constant, we may equivalently take the summation over 1 ≤ d ≤ λ.
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Remark 2.2. There is some flexibility in how to mollify the coefficients of □g. The threshold√
λ is motivated by the hypothesis on ∂2g which gives ∥gαβ≥√

λ
∥L2

tL
∞
x
≲ λ−1, making □g≥

√
λPλ

effectively a first-order operator. Allowing higher frequencies would yield equivalent norms,
and indeed a paradifferential-type cutoff < λ would be more natural when considering merely
Lipschitz coefficients.

The full iteration spaces are defined as follows.

Definition 2.3. Let s ∈ R and θ ∈ (0, 1).

(1) A function u ∈ L2([0, 1], Hs(Rn)) is said to be in Xs,θ if it has finite norm defined by

∥u∥2Xs,θ = inf
{ ∞∑

λ=1

λ∑
d=1

∥uλ,d∥2Xs,θ
λ,d

; u =
∞∑
λ=1

λ∑
d=1

Pλuλ,d

}

(2) A function f ∈ L2([0, 1], Hs+θ−2(Rn)) is said to be in Xs−1,θ−1 if it has finite norm
defined by

∥f∥2Xs−1,θ−1 = inf
{
∥f0∥2L2Hs−1 +

∞∑
λ=1

λ∑
d=1

∥fλ,d∥2Xs,θ
λ,d

; f = f0 +
∞∑
λ=1

λ∑
d=1

□g<
√
λPλfλ,d

}
Remark 2.4. To motivate these definitions, note that the Xs,θ norm is obtained essentially by
interpolation between ∥u∥L2Hs and ∥u∥L2Hs +∥□gu∥L2Hs−1 , see (2.12). Since in the variable-
coefficient context modulation cannot be precisely interpreted in terms of localization in
Fourier space, the advantage of this concrete definition is that we get access to the notion of
modulation in a more robust way.

For negative modulation regularity, i.e. Xs−1,θ−1, this particular definition makes it easy
to invert □g from Xs−1,θ−1 to Xs,θ (see (2.21) and (2.20)) while at the same time obtaining
the duality relation that one expects by analogy from the classical flat spaces, see (2.13).

Remark 2.5. Roughly speaking, Xs,θ
λ,d will hold the portion of u at frequency λ and “modula-

tion” d. If g is the Minkowski metric and we modify the above definition of Xs,θ by replacing
L2([−1, 1]×Rn) with L2(R×Rn), then for uλ,d localized to frequency |ξ| ≃ λ and modulation⏐⏐|τ | − |ξ|

⏐⏐ ≃ d with d ≤ λ we have

∥uλ,d∥Xs,θ
λ

≃ λsdθ∥uλ,d∥L2 ≃ ∥uλ,d∥Xs,θ
λ,d
.

On the other hand, if d≫ λ,

∥uλ,d∥Xs,θ
λ

≃ λs+θ−2∥□uλ,d∥L2 ≃ ∥□uλ,d∥L2Hs+θ−2 .

Remark 2.6. By [11, Corollary 2.5], in the definition of the Xs,θ and Xs−1,θ−1 spaces one can

replace the Xs,θ
λ,d norm by the norm of X̄s,θ

λ,d defined by

∥u∥2
X̄s,θ

λ,d

= λ2s−2d2θ∥∇t,xu∥2L2 + λ2s−2d2θ−2∥□g<
√
λu∥

2
L2 .

This is based on the estimate in [11, Lemma 2.4]:

λs−1dθ∥∇t,xPλu∥L2 + λs−1dθ−1∥□g<
√
λPλu∥L2 ≲ ∥u∥Xs,θ

λ,d
. (2.1)
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This bound shows that on frequency localized functions, the Xs,θ
λ,d and X̄s,θ

λ,d norms are com-
parable and also that in Definition 2.3 one can assume that uλ.d and fλ,d are localized at
frequency λ. Moreover, based on (2.1) we have the straightforward embedding

Xs−1,θ−1 ⊂ L2Hs+θ−2. (2.2)

2.2. Basic properties. Here we show how some properties known for the classical Xs,b

spaces generalize to variable coefficients. We begin with some properties for our frequency
localized building blocks:

Proposition 2.7. Let u be a λ-frequency-localized function on [0, 1]× Rn. Then:

(1) (Energy estimates) For d ≳ |I|−1 and any v one has:

λs−1dθ−
1
2∥∇t,xu∥L∞L2[I] ≲ ∥u∥Xs,θ

λ,d[I]
(2.3)

∥v∥CHs∩C1Hs−1 ≲ ∥v∥Xs,θ if θ >
1

2
. (2.4)

(2) (Time localization) Let 1 ≤ d1 ≤ d2 ≤ λ and let χd2(t) be a bump function in time
localized on the d−1

2 scale. Then

χd2 : S̃λX
1, 1

2
λ,d1

→ X
1, 1

2
λ,d2

i.e. ∥χd2u∥
X

1, 12
λ,d2

≲ ∥u∥
X

1, 12
λ,d1

. (2.5)

(3) (Global extension) There exists a frequency localized extension of u from [0, 1] to ũ
supported in (d−1, 1 + d−1) such that

dθ∥∇t,xũ∥L2(R×Rn) + dθ−1∥□g<
√
λ
ũ∥L2(R×Rn) ≲ ∥u∥X1,θ

λ,d
.

(4) (Time orthogonality) Let 1 ≤ d ≤ d′ ≤ d′′ ≤ λ. For smooth partitions of unity with
respect to time intervals of length d−1: 1 =

∑
j χ

j
d(t), one has

∥u∥2
Xs,θ

λ,d′
≃

∑
j

∥χj
d(t)u∥

2

Xs,θ

λ,d′
(2.6)

∥u∥2
Xs,θ

λ,[d′,d′′]
≃

∑
j

∥χj
d(t)u∥

2

Xs,θ

λ,[d′,d′′]
(2.7)

(5) (Scaling) Set uδ(t, x) = u(δt, δx) defined on [0, 1] where δd ≥ 1. Then:

∥uδ∥Xs,θ
δλ,δd

≃ δs+θ−n+1
2 ∥u∥Xs,θ

λ,d[0,δ]
(2.8)

where Xs,θ
δλ,δd is defined using the metric gδ(t, x) = g(δt, δx).

Proof. (1) By energy estimates for the wave equation we obtain

∥∇t,xu∥2L∞L2[I] ≲ |I|−1 ∥∇t,xu∥2L2[I] + ∥∇t,xu∥L2[I]∥□g<
√
λ
u∥L2[I]

which implies (2.3) by (2.1). From this, for θ > 1
2
and I = [0, 1] we sum over d and use the

definition of Xs,θ to obtain the L∞Hs × L∞Hs−1 bound in (2.4).
Now we prove that the map

t ∈ [0, 1] → Hs ×Hs−1 ∋ v[t]
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is continuous when v ∈ Xs,θ. By the Fundamental theorem of calculus and Cauchy-Schwarz
in t, by summing modulations we have

∥vλ(t+ h)− vλ(t)∥Hs ≤ Cλ |h|
1
2 ∥vλ∥Xs,θ

λ

for any t, t+ h ∈ [0, 1]. Let ϵ > 0 and define λϵ such that∑
λ>λϵ

∥vλ∥2L∞Hs ≤ ϵ2.

Then

∥v(t+ h)− v(t)∥2Hs ≲
∑
λ≤λϵ

∥vλ(t+ h)− vλ(t)∥2Hs + ϵ2 ≤ (2.9)

≤ |h|
1
2 Cϵ∥v∥Xs,θ

λ
+ ϵ2 ≲ ε2. (2.10)

for h small enough. The same argument applies for ∂tv.
(2) By Hölder’s inequality and (2.3) we have

λd
1
2
2 ∥χd2u∥L2 ≲ λd

1
2
2 ∥χd2∥L2

t
∥u∥L∞L2 ≲ ∥u∥

X
1, 12
λ,d1

.

For the term □g<
√
λ(χd2u) we consider

d
− 1

2
2 ∥χd2□g<

√
λu∥L2 ≲ d

− 1
2

1 ∥□g<
√
λu∥L2 ≲ ∥u∥

X
1, 12
λ,d1

d
− 1

2
2 ∥∂2t χd2u∥L2 ≲ d

− 1
2

2 ∥∂2t χd2∥L2
t
∥u∥L∞L2 ≲ ∥u∥

X
1, 12
λ,d1

d
− 1

2
2 ∥∂tχd2∂t,xu∥L2 ≲ d

− 1
2

2 ∥∂tχd2∥L2
t
∥∂t,xu∥L∞L2 ≲ ∥u∥

X
1, 12
λ,d1

(3) First we extend u by solving □g<
√
λ
u = 0 outside [0, 1] and then we define ũ = χP̃λu

where χ(t) is smooth time cutoff supported in (−d−1, 1 + d−1) equal to 1 on [0, 1]. For
t ∈ [1, 1 + d−1]

∥∇t,xu(t)∥L2
x
≲ ∥∇t,xu(t− d−1)∥L2 + ∥□g<

√
λ
u∥L1L2([1−d−1,1+d−1]×Rn)

≲ ∥∇t,xu(t− d−1)∥L2
x
+ d−1/2∥□g<

√
λ
u∥L2 .

Therefore

∥∇t,xũ∥L2([1,1+d−1],Rn) ≲ ∥∇t,xu∥L2[0,1] + d−1∥□g<
√

λ
u∥L2[0,1].

We repeat this analysis on the interval [−d−1, 0]. For the term □g<
√
λ
ũ outside of [0, 1] we

write
□g<

√
λ
χP̃λ = χ′′(t)P̃λ + 2χ′(t)∂t,xP̃λ + χ[□g<

√
λ
, P̃λ] + χP̃λ□g<

√
λ
.

Then we use the already established L2 bounds together with (1.30).
(4) See [11, (53)], which is an easy commutation argument (see also Remark 2.6).
(5) The equivalence follows from a change of variables. The only issue is that the scaling

does not commute with taking the P<
√
λ localization for g. Instead we have (g<

√
λδ−1)δ =

(gδ)<
√
δλ. It remains to estimate

λ−1d−1∥□g
[
√
λ,
√

λδ−1]
u∥L2 ≲ λ−2d−1∥∂2g[√λ,

√
λδ−1]∥L2L∞∥∂2u∥L∞L2 ≲ ∥u∥X0,0

λ,d[0,δ]
.
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□

We next drop the frequency localization. Then one may ask whether we could also discard
the frequency localization in the coefficients. This is indeed the case for a restricted range
of Sobolev indices. Precisely, we have

Proposition 2.8. Let 0 ≤ s ≤ 2 and 0 < θ < 1. Then u ∈ Xs,θ iff it admits a decomposition

u =
∑
d≥1

ud

so that ∑
d

d2θ∥∇ud∥2L2Hs−1 + d2θ−2∥□gud∥2L2Hs−1 <∞

with an equivalent norm given by

∥u∥2Xs,θ = inf
u=

∑
ud

∑
d

[
d2θ∥∇ud∥2L2Hs−1 + d2θ−2∥□gud∥2L2Hs−1

]
(2.11)

We note that the counterpart of this result for Xs−1,θ−1 is also valid.

Proof. a) In one direction, given uλ,d we define

ud =
∑
λ>d

uλ,d

and prove the appropriate bounds for ud. Then by orthogonality

∥∇ud∥2L2Hs−1 ≲
∑
λ>d

∥∇uλ,d∥2L2Hs−1

∥□gud∥2L2Hs−1 ≲
∑
λ>d

∥□g<
√

λ
uλ,d∥2L2Hs−1 + ∥

∑
λ>d

□g≥
√
λ
uλ,d∥2L2Hs−1 ,

and the rightmost term on the second line is controlled by the estimates

∥
∑
λ>d

P<λ□g<
√
λ
uλ,d∥L2Hs−1 ≲ λs−1∥∂2g∥L2L∞∥∇uλ,d∥L∞L2

∥Pµ□g≥
√
λ
uλ,d∥L2Hs−1 ≲

(λ
µ

)2−s
λs−1∥∂2g∥L2L∞∥∇uλ,d∥L∞L2 , µ > λ,

and the Xs,θ energy bound.
b) In the opposite direction, we define

uλ,d = Pλud, d < λ

and
uλ,λ =

∑
d>λ

Pλud

and again prove the appropriate bounds. □

Continuing our global description of the Xs,θ spaces, for s ∈ [0, 2] we define the endpoints
Xs,0 and Xs,1 with norms

∥u∥2Xs,0 = ∥∇u∥2L2Hs−1

respectively
∥u∥2Xs,1 = ∥∇u∥2L2Hs−1 + ∥□gu∥2L2Hs−1
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Then we can also describe the full family of Xs,θ spaces as follows:

Proposition 2.9. For 0 ≤ s ≤ 2 and 0 ≤ θ < 1 we have:

(1) (Interpolation) The space Xs,θ can be described by interpolation as

Xs,θ = [Xs,0, Xs,1]θ (2.12)

(2) (Duality) For 1
2
< θ < 1 we have

Xs−1,θ−1 = (X1−s,1−θ + L2H2−s−θ)′. (2.13)

We remark that the first part of the proposition in particular shows that the spaces Xs,θ

defined in [37] and in [44] coincide.

Proof. (1) Examining the equivalent definition of the Xs,θ spaces in Proposition 2.8, one
immediately sees that it is nothing but the real (θ, 2) interpolation space between Xs,0 and
Xs,1 constructed using the J-method. Since these are Hilbert spaces, the outcome coincides
with the one provided by complex interpolation.

(2) This is proved in [11, Lemma 2.13]. □

It will be technically convenient at some junctures to view functions in Xs,θ[I] as restric-
tions of globally defined functions. For this purpose we assume that the metric g is extended
to a global Lorentzian metric in R1+n. This can be taken constant outside a compact time
interval.

Corollary 2.10. In the definition of Xs,θ
λ , we may assume in the decomposition uλ =

∑
uλ,d

that suppuλ,d ⊂ (−d−1, 1 + d−1) × Rn and take all spacetime norms over R1+n. The same
holds for other intervals.

We also have

Lemma 2.11. Let I = [0, δ] and D = δ−1. If v[0] = (0, 0), then

∥P̃λv∥
X

0, 12
λ,D[I]

≲ λ−1D− 1
2∥□g<

√
λ
P̃λv∥L2[I]. (2.14)

Proof. Since v[0] = (0, 0), the estimate follows from energy estimates. □

2.3. Linear mapping properties. Consider the linear problem

□gv = f, v[0] = (v0, v1). (2.15)

Lemma 2.12. Let 0 < s < 3 and 0 < θ ≤ 1. Then the linear equation (2.15) is well-posed
in Hs ×Hs−1 and

∥v∥Xs,θ ≲ ∥(v0, v1)∥Hs×Hs−1 + ∥f∥L2Hs−1 . (2.16)

Proof. This is proved in [11, Lemma 2.11]. For the sake of completeness we recall the
argument. We write

v =
∞∑
λ=1

PλP̃λv
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and apply Definitions (2.3) and (2.1):

∥v∥2Xs,θ ≲
∞∑
λ=1

∥P̃λv∥2Xs,θ
λ,1

≲ ∥v∥2L2Hs +
∞∑
λ=1

λ2(s−1)∥□g<
√
λ
P̃λv − P̃λ□gv∥2L2 + ∥f∥2Hs−1 .

For the first term we use energy estimates, while for the second write

□g<
√
λ
P̃λ − P̃λ□g = [□g<

√
λ
, P̃λ]− P̃λ□g>

√
λ

For the commutator use (1.30), while for the last term use the fixed-time bound

∞∑
λ=1

λ2(s−1)∥P̃λ(g>
√
λu)∥

2
L2 ≲M(∥∂2g∥L∞)2∥u∥2Hs−2 . (2.17)

which follows from Littlewood-Paley arguments (see [11, Lemma 2.9]). □

Next, we recall the following mapping and its proof from [9, Proposition 3.1]:

Lemma 2.13. For 0 < s < 3 and 0 ≤ θ ≤ 1, the operator □g maps

□g : X
s,θ → Xs−1,θ−1.

Proof. Let u ∈ Xs,θ. Using a decomposition from Definition (2.3) we write

□gu =
∞∑
λ=1

λ∑
d=1

□g<
√

λ
Pλuλ,d +

∞∑
λ=1

g>
√
λPλ∂

2uλ

Using the definition of Xs−1,θ−1 the first term is clearly bounded and we place the second
term in L2Hs−1. We do this using the following fixed-time bound

∥
∞∑
λ=1

g>
√
λPλfλ∥2Hs−1 ≲

∞∑
λ=1

λ2(s−2)∥fλ∥2L2 (2.18)

which is dual to (2.17) (see [11, Lemma 2.9]), together with (2.4). □

Finally, we want to extend and refine the linear bound (2.16) to apply to the Laplace-
Beltrami operator □̃g given by (1.3) and to source terms in Xs−1,θ−1.

Lemma 2.14. Let 1 ≤ s ≤ 2 and 1
2
< θ < 1. The solution of the linear equation

□̃gu = F, u[0] = (u0, u1) (2.19)

satisfies

∥u∥Xs,θ ≲ ∥(u0, u1)∥Hs×Hs−1 + ∥F∥Xs−1,θ−1 . (2.20)

Proof. (1) We first recall from [11, Lemma 2.12] that

□−1
g : Xs−1,θ−1 → Xs,θ (2.21)
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where □−1
g f is the solution w of the inhomogeneous equation (2.15) with w[0] = (0, 0). To

prove this, assume f ∈ Xs−1,θ−1, which gives a representation

f = f0 +
∞∑
λ=1

λ∑
d=1

□g<
√
λPλfλ,d = f0 +

∞∑
λ=1

□g<
√
λPλfλ.

The term

u =
∞∑
λ=1

λ∑
d=1

Pλfλ,d

is in Xs,θ by definition. Thus it remains to write □−1
g f = u+v and show that v ∈ Xs,θ using

(2.16). The function v solves

□gv = f0 −
∞∑
λ=1

g>
√
λPλ∂

2fλ, v[0] = −u[0].

The contribution of the initial data −u[0] is controlled by (2.16), (2.4), while f0 ∈ L2Hs−1.
For the rest of the inhomogenity one uses (2.18) and (2.3).

(2) Now we return to the proof of (2.20). We write

□̃g −□g = hα∂α

where

∥hα∥L2L∞ + ∥∇xh
α∥L2L∞ ≪ 1 (2.22)

and we will treat hα∂αu as a perturbation. A function u solves (2.19) if u = Φ(u) where
Φ(v) := S(u0, u1) + □−1

g (F − hα∂αv). Here S(v0, v1) denotes the solution of (2.15) with

f = 0. To show that Φ : Xs,θ → Xs,θ and that Φ is a contraction on Xs,θ, considering (2.21),
(2.16) and (2.4) it remains to check that

∥hα∂αv∥L2Hs−1 ≪ ∥∇t,xv∥L∞Hs−1 ≲ ∥v∥Xs,θ . (2.23)

Using (2.22) we obtain this bound first for s = 1 and s = 2 and by interpolation also for
1 ≤ s ≤ 2. □

Remark 2.15 (Higher regularity). Let k ≥ 3. Assuming control of k derivatives of the metric
g, we obtain the previous properties for a wider range of s. Thus, [11][Lemma 2.9] will hold
for −k + 2 < s < k + 1, which implies that (2.16), (2.21) and Lemma 2.13 extend to this
range of s.

Assuming ∥∂kg∥L2L∞ ≪ 1 (since g is a rescaled metric) we extend (2.20) to s ∈ [1, k]. We
also refer to [29][Theorem 4.7] for the fact that the parametrix representation with Hs×Hs−1

bounds extends to s ∈ [1, k] under the assumption g ∈ L∞Hk−1.
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2.4. X̃s,θ spaces. In the proof of the Moser estimate (1.18) it will be useful to have the

following modification of the Xs,θ
λ norms.

Definition 2.16. Let s ∈ R, θ ∈ (0, 1) and dyadic λ ≥ 1.

(1) The norm of X̃s,θ
λ,λ is defined for λ-frequency localized functions u by

∥u∥X̃s,θ
λ,λ

= λs+θ∥∇t,xu∥L2 + λs+θ− 1
2∥∇t,xu∥L∞L2 .

For 1 ≤ d < λ the norm of X̃s,θ
λ,d is defined by ∥u∥X̃s,θ

λ,d
= ∥u∥Xs,θ

λ,d
.

(2) The norm of X̃s,θ
λ is defined for λ-frequency localized functions u by

∥u∥2
X̃s,θ

λ

= inf
{ λ/2∑

d=1

∥uλ,d∥2Xs,θ
λ,d

+ ∥uλ,λ∥2X̃s,θ
λ,λ

; u =

λ/2∑
d=1

uλ,d + uλ,λ

}
,

(3) A function u ∈ L2([0, 1], Hs) is said to be in X̃s,θ if it has finite norm defined by

∥u∥2
X̃s,θ = inf

{ ∞∑
λ=1

∥uλ∥2X̃s,θ
λ

; u =
∞∑
λ=1

Pλuλ

}
where the uλ can be assumed wlog to be λ-frequency localized.

Clearly Xs,θ ⊂ X̃s,θ. The only difference between the two spaces occurs at high modu-
lations, where we discarded the terms λs+θ−2∥□g<

√
λ
uλ,λ∥L2 , making the norm X̃s,θ smaller.

This will be useful in the proof of the Moser estimate (1.18), see Remark 8.2. We can recover
the Xs,θ bound if we control high modulations through □g:

Lemma 2.17. If f ∈ X̃s,θ and □gf ∈ L2Hs+θ−2 then f ∈ Xs,θ and

∥f∥Xs,θ ≲ ∥f∥X̃s,θ + ∥□gf∥L2Hs+θ−2 .

The proof is straightforward using definitions 2.1, 2.3, 2.16 and is omitted.

2.5. Half-waves norms. For microlocal analysis purposes, we would like an equivalent
definition of the Xs,θ

λ,d norms in terms of half-waves. We factor the symbol of □g<
√
λ as

τ 2 − 2g0j
<
√
λ
τξj − gab

<
√
λ
ξaξb = (τ + a+)(τ + a−),

where

a± = −g0j
<
√
λ
ξj ∓

√
(g0j

<
√
λ
ξj)2 + gab

<
√
λ
ξaξb = −g0j√

λ
ξj ∓ a.

Write
A± = −g0j

<
√
λ
(t, x)Dj ∓ a(t, x,D).

Note that the frequency subscripts are omitted from a and A because a is not exactly
localized at frequencies <

√
λ. However one does have

P≥λ(Dt, Dx)a ∈ λ−NS1 for any N,

where S1 is the classical symbol class, which is more than enough decay for our purposes.

Lemma 2.18. In the definition of Xs,θ
λ,d, ∥□g<

√
λ
Pλu∥L2 may be replaced by ∥(Dt+A

−)(Dt+

A+)Pλu∥L2 or ∥(Dt + A+)(Dt + A−)Pλu∥L2.
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Proof. We have

(Dt + A−)(Dt + A+)Pλ − (Dt + A−)P>λ/8(Dt + A+)P>λ/8Pλ

= (Dt + A−)P<λ/8(Dt + A+)Pλ = (Dt + A−)P<λ/8A
+Pλ

= P<λ/8(DtA
+)Pλ + P<λ/8A

+PλDt + A−P<λ/8A
+Pλ,

In view of the off-diagonal estimates

∥(P<λ/8 + P>8λ)APλ∥L2→L2 = ∥(P<λ/8 + P>8λ)A>λ/8Pλ∥L2→L2 = O(λ−∞),

where A>λ/8 = (P>λ/8(Dx)a)(t, x,D), and the pseudo-differential calculus on R1+n, we have

∥(□g<
√
λ − (Dt + A−)(Dt + A+))Pλu∥L2

≲ ∥(□g<
√
λ − (Dt + A−)P>λ/8(Dt + A+)P>λ/8)Pλu∥L2 +O(λ−∞)∥∇t,xu∥L2

≲ ∥∇t,xu∥L2 .

□

Just as in Minkowski space, for bilinear Xs,θ estimates it is helpful to split each factor
into half-waves, approximately localized to positive or negative temporal frequencies (see the
discussion in Step 1 of the proof of Prop. 6.2). An alternative construction of half-waves
decompositions can be obtained using the ±-wave packets from Section 4. For any frequency
λ and modulation d ∈ [1, λ], let

∥u∥Xs,θ,±
λ,d

:= λs−1dθ
(
∥∇t,xu

±∥L2 + λd−1∥(Dt ± A±)u±∥L2 + d−1∥□g<
√
λu

±∥L2

)
.

Proposition 2.19. For any u : R×Rn → R satisfying u = Pλ(Dx)u, there is a decomposition
u = u+ + u− such that u± are also localized to spatial frequencies ∼ λ and

∥u±∥Xs,θ,±
λ,d

≲ ∥u∥Xs,θ
λ,d
.

Proof. Write

u = P≥λ/64(Dt)uλ + P<λ/64(Dt)uλ := u+ + u−;

note that we truncate smoothly Dt on the same scale as in Dx in order to make use of
standard pseudo-differential calculus. The estimates will then follow from the ellipticity of
Dt + A∓ on the microsupport of u±.

We supply the details for u+. Write P+(Dt) = P>−λ/64(Dt) and P
−(Dt) = P<−λ/64(Dt).

Introduce the slightly enlarged multiplier

Tλ = P≥λ/128(Dt)P̃λ(Dx).

Then

∥(1− Tλ)(Dt + A+)P+(Dt)Pλ(Dx)∥L2→L2 = ∥(1− Tλ)A
+
>λ/64P

+(Dt)Pλ(Dx)∥L2→L2 = O(λ−∞),

where A+
λ is mollified in (t, x). Now on the support of Tλ, the symbol τ + a− is elliptic and

belongs to S1
1, 3

4

(R1+n), hence there is a parametrix Q ∈ OPS−1
1, 3

4

(R1+n) such that Q(Dt +

A−) +R = Tλ with R ∈ S−∞(R1+n).
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Write

(Dt + A+)u+ = Q(Dt + A−)Tλ(Dt + A+)u+ +RTλ(Dt + A+)u+ + (1− Tλ)(Dt + A+)u+

= QT̃λ(Dt + A−)Tλ(Dt + A+)u+

+Q(1− T̃λ)(Dt + A−)Tλ(Dt + A+)u+ +RTλ(Dt + A+)u+

+ (1− Tλ)(Dt + A+)u+.

Therefore

∥(Dt + A+)u+∥L2 ≲ λ−1∥(Dt + A−)Tλ(Dt + A+)u+∥L2 + λ−N∥(Dt + A)Tλ(Dt + A+)u+∥L2

+ λ−N∥∇t,xu∥L2 .

The main term is

(Dt + A−)Tλ(Dt + A+)u+ = Tλ(Dt + A−)(Dt + A+)T ′
λu

+ [Dt + A−, Tλ]T
′
λ(Dt + A+)u+ [Dt + A−, Tλ][(Dt + A+), T ′

λ]u
(2.24)

where T ′
λ = P>−λ/64(Dt)P̃λ(Dx)u. The second and third terms are bounded by ∥∇t,xu∥L2 in

view of the commutator estimate

[A, Tλ] : L
2 → L2, A = A±,

which can be verified by decomposing the input and output frequencies and exploiting or-
thogonality; we leave the details to the reader.

For the first term on the right side of (2.24), we use the proof of the the previous lemma
and similar commutator estimates as above to obtain

∥(Dt + A−)(Dt + A+)T ′
λu∥L2

≤ ∥□g<
√
λT

′
λu∥L2 + ∥[□g<

√
λ − (Dt + A−)(Dt + A+)]T ′

λu∥L2

≲ ∥□g<
√
λu∥L2 + ∥[g0j

<
√
λ
, T ′

λ]∂t∂ju∥L2 + ∥[gab
<
√
λ
, T ′

λ]∂a∂bu∥L2 + ∥∇t,xu∥L2

≲ ∥∇t,xu∥L2 + ∥□g<
√
λu∥L2 .

This last estimate also yields the desired bound for ∥□g<
√
λu

+∥L2 , and altogether we obtain

∥(Dt + A+)u+∥L2 ≲ λ−1∥∇t,xu∥L2 + λ−1∥□g<
√
λu∥L2 .

□

If u is compactly supported in time, we may smoothly truncate the half-waves in time to
obtain:

Corollary 2.20. Suppose u ∈ Pλ(Dx)u has Fourier transform supported in [λ/2, 2λ] and is
supported in [−c, c]× Rn. Then there exists a decomposition

u = u+ + u−

where u± are supported in [−2c, 2c]×Rn, and satisfy the estimates of the previous proposition.
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3. Null frames

3.1. Null foliations. In this section we construct the null “hyperplanes” along which wave
packets propagate. Factor the principal symbol of □g as (τ +a

+)(τ +a−). For each direction
θ ∈ S1 and sign ±, we construct optical functions Φ±

θ as solutions to the eikonal equation

∂tΦ
±
θ + a±(t, x, ∂xΦ

±
θ ) = 0, Φ±

θ (0, x) = ⟨x, θ⟩.

By the standard theory of Hamilton-Jacobi equations, for small η these admit classical
solutions on the spacetime slab [−10, 10]× R2.
Recall that Φ is constructed via the Hamilton flow for a± defined by

ẋ = a±ξ (t, x, ξ), ξ̇ = −a±x (t, x, ξ). (3.1)

Solutions to this systems are called bicharacteristics. Write t ↦→ (x±t , ξ
±
t ) for the solution

initialized at (x0, ξ0). The map (x0, ξ0) ↦→ (x±t , ξ
±
t ) is 1-homogeneous in the second variable.

Moreover, a routine linearization argument reveals that

Lemma 3.1.

∂(x±t , ξ
±
t )

∂(x0, ξ0)
=

(
I +O(η) B(t)
O(η) I +O(η)

)
,

where the matrix B(t) has norm O(t).

Proof. The linearized system is

ẏ = aξxy + aξξζ,

ζ̇ = −axxy − axξζ.

The half-wave symbols a inherit the derivative bounds on the metric:

∥∂t,x∂kξ a(t, x, ξ)∥L∞
t,x

+ ∥∂2t,x∂kaξ(t, x, ξ)∥L2
tL

∞
x
≲ η for bounded ξ,

hence Gronwall yields the preliminary estimate |(y(t), ζ(t))| ≲ |(y(0), ζ(0))|.
Consider initial data y(0) = I, ζ(0) = 0. Then

|ζ(t)| ≲ ∥∂2xa∥L2L∞
√
t+

∫ t

0

|ζ(s)| ds,

so |ζ(t)| ≲ η
√
t. Substituting this into the equation for y, we obtain

|y(t)− I| ≲ η.

Now consider initial data y(0) = 0, η(0) = I. Then |y(t)| ≲ t, and

|ζ(t)− I| ≲
∫ t

0

|axx|s ds+
∫ t

0

|axξ(s)ζ(s)| dξ ≲ η.

□

Hence we may parametrize the graph of the ± flow map at time t by (x±t , ξ0) ↦→ (x0, ξ
±
t ),

via the diffeomorphisms

(x±t , ξ0) ↦→ (x0, ξ0) ↦→ (x±t , ξ
±
t ) ↦→ (x0, ξ

±
t ).

24



A short computation then yields

∂(x0, ξ
±
t )

∂(x±t , ξ0)
=
∂(x0, ξ

±
t )

∂(xt, ξ
±
t )

· ∂(x
±
t , ξ

±
t )

∂(x0, ξ0)
· ∂(x0, ξ0)
∂(x±t , ξ0)

=

(
I +O(η) B(t)
O(η) I +O(η)

)
. (3.2)

We define ξ±θ (t, x) by the relation

ξ±ξ0(t, x
±
t ) := ξ±t (x0, ξ0), (3.3)

and recall that the method of characteristics construction gives

∂xΦ
±
θ (t, x) = ξ±θ (t, x). (3.4)

As gαβ∂αΦ
±
θ ∂βΦ

±
θ = 0, we obtain a foliation Λ±

θ of [−10, 10] × R2 for each θ by the null
“hyperplanes”

Λ±
θ,h := {Φ±

θ = h}. (3.5)

The regularity of these null surfaces is easy to compute:

Lemma 3.2. The functions Φ±
θ have regularity ∂2t,xΦ

±
θ = O(η).

Proof. To simplify notation, we fix θ and focus on the + case for the remainder of this
section. We redenote a = a+, Φ = Φ+

θ . In our new notation, Φ solves

∂tΦ + a(t, x, ∂xΦ) = 0, Φ(0, x) = ⟨x, θ⟩,

Differentiating the identity (3.4) gives ∂2xΦ = ∂xξθ = O(η). The estimates involving time
derivatives now follow by differentiating the equation:

∂t∂xΦ + ax + aξ∂
2
xΦ = 0, ∂t∂xΦ(0, x) = 0 ⇒ ∂t∂xΦ = O(η),

∂2tΦ + at + aξ∂t∂xΦ = 0, ∂2tΦ(0, x) = 0 ⇒ ∂2tΦ = O(η).

□

Lemma 3.3 (Separation between null planes). dist(Λh1,θ,Λh2,θ) ∼ |h1−h2|. More precisely,
there exists constants c1, c2 > 0 such that for each (t, x) ∈ Λh1, we have

c1|h1 − h2| ≤ d((t, x),Λh2) ≤ c2|h1 − h2|,

where d denotes Euclidean distance measured in the time slice {t} × R2.

Proof. Without loss of generality assume h2 > h1. By the bounds on ∂2Φ, we have that
|∂xΦ| = 1 +O(η). The Euclidean gradient flow γ̇ = ∇xΦ

|∇xΦ| satisfies

Φ(t, γ(s))− Φ(t, γ(0)) =

∫ s

0

|∇xΦ(t, γ(τ))| dτ ∈ [C1s, C2s]

for absolute constants C1, C2. Thus the Euclidean distance of Λh2 is at most |h1 − h2|/C1.
If η is any other unit speed curve with η(0) = (t, x), then

|Φ(t, η(s))− Φ(t, η(0))| ≤
∫ s

0

|∇xΦ(t, θ(τ))| dτ ≤ C2s,

so the distance is at least |h1 − h2|/C2. □

The next two lemmas compare the bicharacteristics and null foliations for mollified and
unmollified metrics.
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Lemma 3.4. [44, Prop. 4.3] If Rn × Sn−1 ∋ (x, ξ) ↦→ (xt, ξt), (xt,λ, ξt,λ) are the + bicharac-
teristics for the metrics g and g<

√
λ with the same initial data, then

|xt,λ − xt| ≲ λ−1/2, |ξt,λ − ξt| ≲ λ−1/2.

Lemma 3.5. (Foliations for frequency truncated metrics) Let Λλ
h be the foliation defined as

before but replacing g with g
<λ

1
2
. Then dist(Λh,θ,Λ

λ
h,θ) ≲ λ−1.

Proof. The optical function Φλ for Λλ satisfies the corresponding eikonal equation

∂tΦ
λ + a

<λ
1
2
(t, x, ∂xΦ

λ) = 0, Φλ(0, x) = ⟨x, θ⟩,

where a
<λ

1
2
= a+

<λ
1
2
is the + half-wave symbol for the mollified metric (but is not itself

exactly localized, due to the square root). The difference ψ := Φ− Φλ solves the transport
equation

∂tψ + ⟨v(t, x), ∂xψ⟩ = a<λ1/2(t, x, ∂xΦ
λ)− a(t, x, ∂xΦ

λ) = O(λ−1), ψ(0, x) = 0,

v =

∫ 1

0

aξ(t, x, ∂xΦ
λ + s∂x(Φ− Φλ)) ds,

which may be integrated along characteristics to yield |ψ(t, x)| ≲ |tλ−1|. □

Certain estimates will be expressed in spacetime coordinates adapted to the foliation Λθ.
The following construction is modeled on [30].

Let Φ = Φθ be the optical function for Λθ. We rotate the coordinates in x by setting

xθ = ⟨x, θ⟩, x′θ = ⟨x, θ⊥⟩,
where θ⊥ is clockwise rotation of θ by angle π/2. Then in the coordinates (t, x′θ, xθ), we have
∂xθ

Φ(0, ·) = 1 and ∂2Φ = O(η). Hence ∂xθ
Φ = 1 +O(η) for all (t, x) ∈ [−10, 10]× R2.

Provided η is sufficiently small, the global implicit function theorem lets us write

Λh,θ = {(t, x′θ, ψθ(t, x
′
θ, h)}

for some C2 function ψθ. Then (t, x′θ, h) also define coordinates on [−10, 10]× R2 via

(t, x′θ, h) ↦→ (t, x′θ, ψθ(x
′
θ, h)) ∈ Λh,θ.

Straightforward computations show that

∂(x′θ, xθ)

∂(x′θ, h)
= I +O(η),

∂2(x′θ, xθ)

∂(x′θ, h)
2
= O(η).

(3.6)

The variable h parametrizes the leaves of the foliation and is constant along geodesics.

3.2. The null frame. The future-pointing geodesic generator of Λθ is L = −∇Φ. We
complete this to a null frame by the following standard construction. Let E = ⟨e(t, x), ∂x⟩
be a vector field tangent to the fixed-time slices of Λθ, defined concretely in terms of the
rotated coordinates (x′θ, xθ) as

E =
Ẽ

⟨Ẽ, Ẽ⟩1/2
, Ẽ(t, x′θ, xθ) = ∂x′

θ
+ (∂x′

θ
ψ)∂xθ

.
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Then ⟨L,E⟩ = −dt,xΦ(E) = 0; in fact one also has

0 = dxΦ(E) = ⟨E, ξθ(t, x)⟩ = ⟨e(t, x), ξθ(t, x)⟩, (3.7)

where ξθ(t, x) is the Fourier variable defined by (3.3). Finally, let L be a null vector field
transversal to Λθ and satisfying ⟨L,E⟩ = 0, ⟨L,L⟩ = −1. The vector fields {L,L,E} form a
null frame adapted to the foliation Λθ.

Lemma 3.6. We have L(t, x) = σ(t, x)[∂t+ ⟨aξ(t, x, ξ̂θ(t, x)), ∂x⟩] for some bounded function
σ.

Proof. The multiplicative factor reflects the difference between the null bicharacteristics of
the half wave symbol and full wave symbol. Write z = (t, x), ζ = (τ, ξ), and let p =
gαβζαζβ = p+p− = (τ + a+)(τ + a−). Let γ(s) = (z(s), ζ(s)) be a null bicharacteristic for p+.
Along this curve one has

ż = p+ζ = (p−)−1pζ , ζ̇ = −p+z = −(p−)−1pz,

Therefore

żαgαβ = 2(p−)−1gαµζµgαβ = 2(p−)−1ζβ = 2(p−)−1∂βΦ(z(s)),

so

−2(p−)−1L = 2(p−)−1∇Φ = ż = ∂t + ⟨aξ, ∂x⟩.

Finally, observe that p− = p+ + p− − p+ = −2
√
(g0jξj)2 + gabξaξb is bounded above and

below along γ. □

4. Wave packets analysis

In this section we collect and generalize the salient features of Smith’s wave packet
parametrix [29]. More specific implementation details are recalled in the appendix.

4.1. Packets, tubes, and null surfaces. We begin by clarifying our “wave packet” termi-
nology. For ω ∈ Sn−1, let γ±ω (t) = (x±(t), ξ±(t)) be a bicharacteristic for half wave symbol
τ + a± with ξ±(0) = ω. Let ω(t) := ξ(t)/|ξ(t)| be the projection of ξ on the unit sphere.

Definition 4.1. A smooth function u at frequency λ is a normalized wave packet for the
bicharacteristic γ±ω if:

• u is localized in phase space along γ±: there exist constants CN such that

|u(t, x)| ≤ CNλ
3
4 (λ|⟨x− x±(t), ω±(t)⟩|+ λ1/2|(x− x±(t)) ∧ ω±(t)|⟩|)−N , (4.1)

and similar estimates hold for
(
λ⟨ω±(t), ∂x⟩

)a
and [λ1/2(ω±(t) ∧ ∂x)]b applied to u±γ .

• Lu satisfies the same estimates with constant CN(t), where |CN(t)| ≲N ∥∂2g(t)∥L∞ ,
and L is the null generator for the null foliation Λ±

ω defined in Section 3.1.

For each frequency λ > 1, let ω vary over a maximal collection Ωλ−1/2 of unit vectors

separated by at least λ−
1
2 . To each such ω we associate a lattice Ξω

λ in the physical space Rn
x

on the dual scale, i.e. spaced λ−1 in the ω direction and spaced λ−
1
2 in directions in ω⊥. Let

Tλ = {(x, ω) : ω ∈ Ωλ−1/2 , x ∈ Ξω
λ}.
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To each bicharacteristic γ± = (x±(t), ξ±(t)) with (x±(0), ξ±(0)) ∈ Tλ, we associate a
spacetime “λ-tube”

T := {(t, x) : λ|⟨x− x±(t), ω±(t)⟩|+ λ1/2|(x− x±(t)) ∧ ω±(t)|⟩| ≤ 10}, (4.2)

on which packets for γ± concentrate. Each tube, say with initial data (x0, ω), is a λ−1/2

neighborhood of a ray, intersected with a λ−1 neighborhood of the null surface Λh,ω containing
the ray.

It is suggestive to identify T with γ± and denote normalized packets by uT . Let T ±
λ denote

λ-tubes associated to the bicharacteristics γ± for the metric g, initialized in the lattice Tλ.
By Lemmas 3.4 and 3.5, using the mollified metric g<

√
λ instead of g would yield an

essentially equivalent family of tubes in the sense that each tube from one family intersects
boundedly many tubes from the other family, which are in turn contained in the dilate of
the first tube by a fixed factor.

The tubes T ±
λ,ω associated to a given initial direction ω are finitely overlapping and admit

a natural notion of distance which is convenient for expressing the decay of wave packets.
Following Smith [29, Section 2], if T1, T2 ∈ T +

λ,ω are tubes with initial data (xj, ω), j = 1, 2,
we define

d(T1, T2) := λ|⟨x1 − x2, ω⟩|+ λ
1
2 |(x1 − x2) ∧ ω|.

Let (t, x′1,ω(t), h1) and (t, x′2,ω(t), h2) denote the corresponding rays in the foliation-adapted
coordinates. It follows from (3.6) that each tube takes the form

Tj = {|x′ω − x′j,ω(t)| ≲ λ−
1
2 , |h− hj| ≲ λ−1},

and that |x′1,ω(t)− x′2,ω(t)|+ |h1 − h2| ∼ |x′1,ω(0)− x′2,ω(0)|+ |h1 − h2|. Hence for λ≫ 1 we
can also write

d(T1, T2) ∼ λ|h1 − h2|+ λ
1
2 |x1,ω′(t)− x2,ω′(t)|.

If uT is a packet with initial direction ω and T ′ is any other tube with initial direction ω,
at time 0 the decay condition (4.1) translates to

|uT (0)|T ′ ≲N λ
3
4 ⟨d(T, T ′)⟩−N .

For t ̸= 0, a similar bound holds but requires justification since the condition (4.1) is
expressed in an orthogonal coordinate system whereas the null surfaces are curved.

Lemma 4.2. Let u = uT be a frequency λ wave packet for the + bicharacteristic (x+t , ξ
+
t )

initialized at (0, ω). Let Λλ
ω be the + null foliation with direction ω for g<

√
λ, and denote by

{L,L,E} the associated null frame. Then if T ′ ∈ T+
ω,λ is any other tube, one has for all N

|uT |T ′ ≲N λ
3
4 ⟨d(T, T ′)⟩−N

|EuT |T ′ ≲N λ
3
4
+ 1

2 ⟨d(T, T ′)⟩−N .
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Figure 1. Tubes corresponding to the same direction ω are finitely overlapping.

ω

ω⊥

λ−
1
2

λ−1

More precisely, if (t, x′ω(t), xω(t)) represents x+t in the rotated coordinates and ũ(t, x′ω, h) =

uT (t, x
′
ω, ψ(t, x

′
ω, h)), Ẽu(t, x

′
ω, h) = (EuT )(t, x

′
ω, ψ(t, x

′
ω, h)) represent u and Eu in the foli-

ation adapted coordinates, then

|ũ| ≲N λ
3
4 ⟨λ

1
2 |x′ω − x′ω(t)|+ |λh|⟩−N for all N.

|Ẽu| ≲N λ
3
4
+ 1

2 ⟨λ
1
2 |x′ω − x′ω(t)|+ |λh|⟩−N for all N.

Proof. Modulo multiplicative factors of size 1 +O(η), we have

ω(t) = −∂x′
ω
ψ(x′(t), 0)∂x′

ω
+ ∂xω ,

E(t, x′ω, xω(t, x
′
ω, h)) = ∂x′

ω
+ ∂x′

ω
ψ(t, x′ω, h)∂xω .

By a slight abuse of notation we also write E = E(t, x′ω, h).
We express the wave packet decay condition (4.1) in terms of the coordinates (x′ω, h). Let

yω = ⟨(x′ω − x′ω(t), ψ(t, x
′
ω)− ψ(t, x′ω(t), 0)), ω(t)⟩,

y′ω = ⟨(x′ω − x′ω(t), ψ(t, x
′
ω)− ψ(t, x′ω(t), 0)), E(t)⟩.

Then

y′ω = x′ω − x′ω(t) + [ψ(t, x′ω, h)− ψ(t, x′ω, 0) + ψ(t, x′ω, 0)− ψ(t, x′ω(t), 0)]∂xψ(t, x
′
ω(t), 0),

yω = ψ(t, x′ω, h)− ψ(t, x′ω, 0) + ψ(t, x′ω, 0)− ψ(t, x′ω(t), 0)− (x− x′ω(t))∂x′
ω
ψ(t, x′ω(t), 0)
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So

|y′ω| ≥ |x′ω − x′ω(t)| − c(ηt)2|x′ω − x′ω(t)| − cηth ≥ 1

2
|x′ω − x′ω(t)|

whenever
C|x′ω − x′ω(t)|

ηt
≥ h. Similarly,

|yω| ≥ (1 +O(η))h− cηt|x′ω − x′ω(t)| ≥
1

2
ch

if |x′ω − x′ω(t)| ≤ Ch
ηt
. Thus

|ũ(t, x′ω, h)| ≲N

⎧⎪⎨⎪⎩
λ

3
4 ⟨λh⟩−N , |x′ω − x′ω(t)| ≤

ηth
C
,

λ
3
4 ⟨λ 1

2 |x′ω − x′ω(t)|+ |λh|−N⟩−N , ηth
C

≤ |x′ω − x′ω(t)| ≤ Ch
ηt
,

λ
3
4 ⟨λ 1

2 |x′ω − x′ω(t)|⟩−N , |x′ω − x′ω(t)| ≥ Ch
ηt
,

but one may of course insert λ
1
2 |x′ω−x′ω(t)| and λh in the first and third regimes respectively.

To verify the bound on Ẽu, write

E(t, x′ω, h)u = E(t, x′ω(t), 0)u+ [E(t, x′ω, h)− E(t, x′ω(t), 0)]u.

For the first term we use the hypothesis that λ−1/2(ω(t)∧∂x)u satisfies the packet bounds (4.1).
The second term can be written as(

∂x′
ω
ψ(t, x′ω, h)− ∂x′

ω
ψ(t, x′ω(t), 0)

)
∂xωu,

which is O(λ|xω − x′ω(t)|+ λ|h|) times a normalized packet. □

Corollary 4.3. Let u be a frequency λ wave packet for the bicharacteristic (x+t , ξ
+
t ) of g<λ

1
2

initialized at (0, ω). Let Λω be the corresponding null foliation for the untruncated metric g.
Then the previous estimates hold with Λλ

ω replaced by the corresponding foliation Λω for the
untruncated metric g.

Proof. The above lemmas imply that the foliations for g and g<
√
λ are interchangeable as

far as the bound with respect to h is concerned. Similarly, as shown in [44, Prop. 4.3] the
bicharacteristics for g and g<

√
λ differ by O(λ−1/2). □

To express the decay of packets more compactly, we introduce the weight

mT (t, x) :=
(
1 + λ|⟨x− x±(t), ω±(t)⟩|+ λ1/2|(x− x±(t)) ∧ ω±(t)|

)
,

write

∥uT∥WPN
T
:= ∥λ−

3
4mN

T uT∥L∞ , (4.3)

and write ∥ · ∥WP to denote a generic WPN
T norm with the understanding that the constants

in bounds depend on N .
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4.2. Superpositions of wave packets. The following statement summarizes how the dif-
ferent wave packets fit together in Smith’s parametrix. Note that in the rest of the paper
we shall only use the properties below, and not the specifics of Smith’s construction.

Parametrix property 4.1. Let I = [0, δ]. For large enough dyadic λ ≥ 1, the following
properties hold:

(1) For any initial data (u1, u2) ∈ L2 × H−1 localized at frequency ≃ λ, there exists a
λ-wave packet superposition which depends linearly on (u1, u2):

u = u+ + u−, u± =
∑
T∈T ±

λ

cTuT (4.4)

such that (u(0), ∂tu(0)) = (u1, u2) and∑
±,T∈T ±

λ

|cT |2 ≈ ∥(u1, u2)∥2L2×H−1 (4.5)

For any such decomposition one has

∥□g<
√
λu(t)∥L2

x
≲ λ∥∂2g(t)∥L∞

x
∥cT∥ℓ2T ∀t ∈ I. (4.6)

(2) Let D = δ−1. For any solution of the homogeneous problem

□g<
√
λ
v = 0, v[0] = (v1, v2). (4.7)

there exists u as above satisfying

∥P̃λ(v − u)∥
X

0, 12
λ,D[I]

≲ δλ−1∥(v1, v2)∥H1×L2 (4.8)

∥cT∥ℓ2T ≲ λ−1∥(v1, v2)∥H1×L2 (4.9)

(3) Let T, T ′ ∈ T ±
λ,ω be two tubes associated to the same direction ω. For ν ≥ λ, let the

vector fields L,L,E associated to ±g√ν and to ω form a null frame as in section 3.2.
Then one has:

∥uT∥L∞(T ′) ≲
λ

3
4

⟨d(T, T ′)⟩N
(4.10)

∥LuT∥L2L∞(T ′) ≲
λ

3
4

⟨d(T, T ′)⟩N
(4.11)

∥EuT∥L∞(T ′) ≲λ
1
2

λ
3
4

⟨d(T, T ′)⟩N
(4.12)

∥LuT∥L∞(T ′) ≲ λ
λ

3
4

⟨d(T, T ′)⟩N
(4.13)

Moreover, the same inequalities hold with uT replaced by PλuT .
(4) For any t ∈ I and sign ±, for (cT )T ∈ ℓ2T one has

∥
∑
T∈T ±

λ

cTuT (t)∥2L2
x
≲

∑
T∈T ±

λ

|cT |2 , ∥
∑
T∈T ±

λ

cTu
′
T (t)∥2L2

x
≲ λ

∑
T∈T ±

λ

|cT |2 (4.14)
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We note that property (2) follows from property (1) together (1.30), (4.6) and Lemma
2.11. In Section A we discuss these properties in the context of Hart Smith’s wave packet
parametrix from [29].

Remark 4.4. The decay properties (4.10) through (4.13) reduce certain L2 bilinear estimates
to the characteristic energy estimates in section 5. Here is a typical computation. Suppose
v =

∑
T∈T +

λ,ω
aTvT is a superposition of frequency λ wave packets for a given initial direction

ω. Then by Schur’s test we deduce

∥uv∥2L2 ≲
∑
T

∥uv∥2L2(T ) =
∑
T

∑
T1,T2

aT1aT2⟨uvT1 , uvT2⟩L2(T )

≲
∑
T

∑
T1,T2

λ
3
2∥u∥2L2(T )d(T, T1)

−Nd(T, T2)
−N |aT1aT2|

≲
(
sup
T

∥u∥2L2(T )

)
λ

3
2

∑
T

|aT |2,

and the sup term is essentially an estimate for u over the null surfaces associated to the
direction ω.

4.3. Preliminaries to the general decomposition. The next goal is to obtain a more
general wave packet decomposition similar to (4.4) for functions in Xs,θ which are close
to being solutions of (4.7) in the sense of having low modulation. To allow for the extra
flexibility of having inhomogeneities □g<

√
λ
v, the resulting decomposition (Prop. 4.7 and Cor.

4.8) will have coefficients cT (·) that depend on time, which arise from Duhamel’s formula

v = v0 +

∫
I

1t≥svs ds

We first express the functions vs in the following way:

Lemma 4.5. For s ∈ I = [0, δ], let vs be the solution of the equation{
□g<

√
λ
vs = 0 on I × R2

vs[s] = (fs, gs).

where fs, gs are assumed to be localized at frequency ≃ λ. Then, there exists a wave packet
superposition (initialized at t = 0)

us =
∑

±,T∈T ±
λ

cT,suT

and a function ws such that

P̃λvs = P̃λ(us + ws)

where

ws[s] = (0, 0) (4.15)

∥ ˜̃Pλws∥
X

0, 12
λ,D[I]

≲ δ∥(fs, gs)∥L2×H−1 (4.16)

∥cT,s∥ℓ2T ≲ ∥(fs, gs)∥L2×H−1 . (4.17)
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Proof. DenoteM = ∥(fs, gs)∥L2×H−1 and for brevity we will denote ∥ ·∥
X

0, 12
λ,D[I]

by ∥ ·∥X . Note

that ∥vs[0]∥H1×L2 ≲ λM . We apply the Parametrix property 4.1 with (v1, v2) = vs[0] and we
obtain a representation P̃λvs = P̃λu

1 + P̃λw
1 where u1 is a wave packet superposition. For

s = 0 this is sufficient. For s ̸= 0, even though w1[s] ̸= (0, 0), we have ∥ ˜̃Pλw
1∥X ≲ δM .

Now we iterate this construction. For i ≥ 1 we write

P̃λw
i = P̃λ(

˜̃Pλw
i − vi+1) + P̃λv

i+1

where vi+1 solves the homogeneous equation

□g<
√
λv

i+1 = 0, vi+1[s] = ˜̃Pλw
i[s].

Assuming ∥ ˜̃Pλw
i∥X ≲ δiM we have ∥vi+1∥L∞(H1×L2) ≲ λδiM . As before we use the

Parametrix property 4.1 to write P̃λv
i+1 = P̃λ(u

i+1 + wi+1) with ∥ ˜̃Pλw
i+1∥X ≲ δi+1M .

From the above we obtain P̃λvs = P̃λ(us + ws) by defining

us =
∑
i≥1

ui, ws =
∑
i≥1

˜̃Pλw
i − vi+1

Note that ws[s] = (0, 0). Both series converge geometrically due to the powers of δ. □

Corollary 4.6. Let v ∈ X
0, 1

2
λ,D[I] for I = [0, δ] and let w be defined by

w = w0 +

∫
I

1t≥sws ds

where w0, ws are obtained from Lemma 4.5 applied with (f0, g0) = P̃λv[0], respectively (fs, gs) =
(0,□g<

√
λ
P̃λv(s)). Then,

∥ ˜̃Pλw∥
X

0, 12
λ,D[I]

≲ δ∥ ˜̃Pλv∥
X

0, 12
λ,D[I]

Proof. To ease notation we denote ˜̃Pλ by P . The inequality for w0 follows immediately due
to (2.3). Denoting by w̃ the integral term, we have w̃[0] = (0, 0) and, since wt[t] = (0, 0), we
have

□g<
√
λ
w̃(t) =

∫
I

1t≥s□g<
√
λ
ws ds. (4.18)

Note that by (4.16), (2.3) and Hölder’s inequality we have

∥Pw̃(t)∥L2×H−1 ≲ δ∥Pv∥
X

0, 12
λ,D[I]

(4.19)

We write

□g<
√

λ
Pw̃ = P□g<

√
λ
w̃ + [□g<

√
λ
, P ]w̃

and apply (2.14):

∥ ˜̃Pλw∥
X

0, 12
λ,D[I]

≲ λ−1D− 1
2 (∥P□g<

√
λ
w̃∥L2[I] + ∥[□g<

√
λ
, P ]w̃)∥L2[I])
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The second term is estimated by (1.30) and (4.19). For the first term on the RHS we apply
Minkowski’s inequality to (4.18)

λ−1D− 1
2∥P

∫
I

1t≥s□g<
√
λ
ws ds∥L2[I] ≲ λ−1D− 1

2

∫
I

∥P□g<
√
λ
ws∥L2[I] ds

≲ λ−1D− 1
2

∫
I

∥□g<
√

λ
Pws∥L2[I] + ∥[P,□g<

√
λ
]ws∥L2[I] ds ≲

∫
I

∥Pws∥
X

0, 12
λ,D[I]

ds

≲ δ

∫
I

λ−1∥□g<
√
λ
P̃λv(s)∥L2

x
ds ≲ δ∥ ˜̃Pλv∥

X
0, 12
λ,D[I]

where we have used (1.30), (4.16) and Hölder’s inequality in s. □

4.4. A wave packet characterization of the Xs,θ spaces. With the previous prelimi-
naries we are now ready to state our general decomposition (see also [42, Sec. 4]).

Proposition 4.7. Let I = [0, δ], µ ≥ D = δ−1 and let v ∈ X
0, 1

2
µ,D[I] be localized at frequency

≃ µ. We denote M := ∥ ˜̃Pµv∥
X

0, 12
µ,D[I]

≲ ∥v∥
X

0, 12
µ,D[I]

.

(1) Then, there exists a wave packet decomposition

Pµv(t) = Pµ

∑
±,T∈T ±

µ

aT (t)uT (t) (4.20)

where the time-dependent coefficients satisfy, for all t ∈ I,

∥aT∥ℓ2TL∞
t
≲M (4.21)

∥a′T (t)∥ℓ2T ≲ µ−1∥□g<√
µ
P̃µv(t)∥L2

x

∥a′T (t)∥L2
t ℓ

2
T
≲ D

1
2M (4.22)∑

±,T∈T ±
µ

a′T (t)uT (t) = 0. (4.23)

(2) Conversely, if (4.21), (4.22), (4.23) hold for some M and

w =
∑

±,T∈T ±
µ

aT (t)uT (t),

then ∥w∥
X

0, 12
µ,D[I]

≲M .

Proof. For brevity we will denote ∥ · ∥
X

0, 12
µ,D[I]

by ∥ · ∥X and Pµ, P̃µ,
˜̃Pµ by P, P̃ , ˜̃P .

(1) Note that it suffices to prove that there exists a decomposition

Pv(t) = Pw(t) + P
∑

±,T∈T ±
µ

aT (t)uT (t)
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for some function w with bound ∥ ˜̃Pw∥X ≲ δ∥ ˜̃Pv∥X and (aT )T satisfying the requirements
above, since then the proposition follows by an iterative argument.

By Duhamel’s formula we represent

P̃ v = v0 +

∫
I

1t≥svs ds

where v0 and each vs are solutions to the problems{
□g<√

µ
v0 = 0

v0[0] = P̃ v[0]

{
□g<√

µ
vs = 0

vs[s] = (0,□g<√
µ
P̃ v(s)).

We apply Lemma 4.5 and obtain:

Pv0 = Pu0 + Pw0, Pvs = Pus + Pws

u0 =
∑

±,T∈T ±
µ

cTuT , us =
∑

±,T∈T ±
µ

cT,suT

with the bounds

∥cT∥ℓ2T ≲ ∥P̃ v[0]∥L2×H−1 ≲M, ∥cT,s∥ℓ2T ≲ µ−1∥□g<√
µ
P̃ v(s)∥L2

x
(4.24)

and us(s) = vs(s) = 0. We write Pv = PP̃v = Pu+ Pw where

u = u0 +

∫
I

1t≥sus ds, w = w0 +

∫
I

1t≥sws ds

By Corollary 4.6 we have ∥ ˜̃Pw∥X ≲ δ∥ ˜̃Pv∥X .
We obtain the representation

u(t) =
∑

±,T∈T ±
µ

aT (t)uT (t)

where, for any sign ± and any T ∈ T ±
µ :

aT (t) = cT +

∫
I

1t≥scT,s ds |aT |L∞
t
≲ |cT |+

∫
I

|cT,s| ds

and a′T (t) = cT,t for all t ∈ I. We have

∥aT∥ℓ2TL∞
t
≲ ∥cT∥ℓ2T + ∥

∫
I

|cT,s| ds∥ℓ2T ≲M +

∫
I

∥cT,s∥ℓ2T ds ≲

≲M +

∫
I

µ−1∥□g<√
µ
P̃ v(s)∥L2

x
ds ≲M + δ

1
2µ−1∥□g<√

µ
P̃ v∥L2

t,x
≲M.

This verifies (4.21). The next condition holds due to (4.24):

∥a′T (t)∥ℓ2T = ∥cT,t∥ℓ2T ≲ µ−1∥□g<√
µ
P̃ v(s)∥L2

x

which also gives (4.22) by integration.
Since us(s) = vs(s) = 0 we have

∑
a′T (s)uT (s) = 0 for any s ∈ I, obtaining (4.23), which

completes the proof of the first part.
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(2) By Hölder’s inequality in time and (4.14) we have

D
1
2∥w∥L2(I×R2) ≲

∑
±

∥
∑
T∈T ±

µ

aT (t)uT (t)∥L∞
t L2

x
≲

∑
±

∥aT∥L∞
t ℓ2T

≲
∑
±

∥aT∥ℓ2TL∞
t
≲M

Now we consider the term □g<√
µ
w which we write as

□g<√
µ
w =

∑
±,T∈T ±

µ

[
aT (t)□g<√

µ
uT (t) + a′T (t)g∂t,xuT (t) + ∂t(a

′
T (t)uT (t))

]
For the last term we use (4.23). For the first term we use (4.6):

D− 1
2∥

∑
aT (t)□g<√

µ
uT (t)∥L2(I×R2) ≲ λD−1∥∂2g∥L2

tL
∞
x

∑
±

∥aT∥L∞
t ℓ2T

≲ λM,

while for the second term we use (4.14) and (4.22):

∥
∑

a′T (t)∂t,xuT (t)∥L2(I×R2) ≲ µ∥a′T (t)∥L2
t ℓ

2
T
≲ µD

1
2M,

which completes the proof. □

The previous proposition provides the main part of the wave packet decomposition. How-
ever, it does not provide control of the second derivatives (in time) of the coefficients. To
remedy this we have the following corollary.

Corollary 4.8. Under the assumptions and notations of Prop. 4.7:

(1) There exists a decomposition

Pµv = v+ + v− + vR

where

v± = Pµ

∑
T∈T ±

µ

cT (t)uT (t) (4.25)

such that

∥v±∥
X

0, 12
µ,D[I]

≲M, ∥vR∥
X

0, 12
µ,D[I]

≲M, (4.26)

∥vR∥L2[I] ≲ µ−1D
1
2M (4.27)

and

∥cT∥ℓ2TL∞
t
≲M (4.28)

∥c′T (t)∥L2
t ℓ

2
T
≲ D

1
2M (4.29)

∥c′′T (t)∥L2
t ℓ

2
T
≲ µD

1
2M. (4.30)

(2) Let T, T ′ ∈ T ±
µ,ω be two tubes associated to the same direction ω. Then

∥LPµ

(
cTuT

)
∥L∞(T ′) ≲ µ

µ
3
4

⟨d(T, T ′)⟩N
|cT |L∞

t
(4.31)
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Corollary 4.9. Moreover, for any function uλ localized at frequency ≃ λ≫ µ we have:

∥uλ · vR∥
X

0, 14
λ,µ [I]

≲ µ
3
4∥uλ∥

X
0, 12
λ,D[I]

M (4.32)

while for λ ≃ µ ≳ η we have

∥Pη(uλ · vR)∥
X

0, 14
η,η [I]

≲
λ

η
1
4

∥uλ∥
X

0, 12
λ,D[I]

M (4.33)

Proof of Corollary 4.8. (1) The previous proposition provides a decomposition into + and−
components and only condition (4.30) is missing on the coefficients. To gain it, we regularize
the coefficients aT (t) in time on the µ−1 scale at the expense of introducing the remainder
vR which obeys the favorable L2 estimate (4.27). We write and define

aT (t) = a<µ
T (t) + a>µ

T (t), cT (t) := a<µ
T (t)

The conditions (4.28), (4.29) are maintained from (4.21), (4.22), while (4.30) follows from
(4.29).

The v± are defined by (4.25). We prove that ∥v±∥
X

0, 12
µ,D[I]

≲ M and as a consequence

we also obtain ∥vR∥
X

0, 12
µ,D[I]

≲ M . We have to place v± and □g<√
µ
v± in L2. The fact that

D
1
2∥v±∥L2[I] ≲M and

D− 1
2µ−1∥

∑
cT (t)□g<√

µ
uT (t)∥L2(I×R2) ≲M

D− 1
2µ−1∥

∑
c′T (t)∂uT (t)∥L2(I×R2) ≲M

follow like in the proof of part (2) of Prop. 4.7. What remains is

D− 1
2µ−1∥

∑
c′′T (t)uT (t)∥L2(I×R2) ≲ D− 1

2µ−1∥c′′T (t)∥L2
t ℓ

2
T
≲M

For vR we have

vR = Pµ

∑
±,T∈T ±

µ

a>µ
T (t)uT (t)

Since

µ∥a>µ
T (t)∥L2

t ℓ
2
T
≲ ∥a>µ,′

T (t)∥L2
t ℓ

2
T
≲ D

1
2M

we obtain (4.27).

(2) To prove (4.31), for any t ∈ I we write

LPµ

(
cT (t)uT (t)

)
= cT (t)LPµuT (t) + c′T (t)PµuT (t)

For the first term we use (4.13), while for the second we use (4.10) together with

|c′T |L∞
t
≲ µ |cT |L∞

t
(4.34)

which holds due to the time regularization done in Step (1). □

Proof of Corollary 4.9. Note that by Bernstein’s inequality and (4.27), (4.26), (2.3) we have

∥vR∥L2L∞ ≲ D
1
2M, ∥□g<√

µ
vR∥L2L∞ ≲ µ2D

1
2M, ∥vR∥L∞

t,x
≲ µM.
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For the L2 part of (4.32) we have

µ
1
4∥uλ · vR∥L2 ≲ µ

1
4∥uλ∥L∞L2∥vR∥L2L∞ ≲ µ

3
4 (D/µ)

1
2∥uλ∥

X
0, 12
µ,D[I]

M

and recall that D ≤ µ. For □g<
√
λ
(uλ · vR) we consider

∥□g<
√
λ
uλ · vR∥L2 ≲ ∥□g<

√
λ
uλ∥L2∥vR∥L∞ ≲ λD

1
2µ∥uλ∥

X
0, 12
µ,D[I]

M

∥uλ ·□g<√
µ
vR∥L2 ≲ ∥uλ∥L∞L2∥□g<√

µ
vR∥L2L∞ ≲ µ2D

1
2∥uλ∥

X
0, 12
µ,D[I]

M

∥uλ · (□g<
√
λ
−□g<√

µ
)vR∥L2 ≲ ∥uλ∥L2∥µ−1∂2vR∥L∞ ≲ µ2D

1
2∥uλ∥

X
0, 12
µ,D[I]

M

∥∂uλ · ∂vR∥L2 ≲ ∥∂uλ∥L∞L2∥∂vR∥L2L∞ ≲ λµD
1
2∥uλ∥

X
0, 12
µ,D[I]

M

These estimates combine to complete the proof of (4.32) and we turn to (4.33). Here we use
Bernstein’s inequality in the form Pη : L

2L1 → ηL2. We have

η
1
4∥Pη(uλ · vR)∥L2 ≲ η

1
4η∥uλ · vR∥L2L1 ≲ η

1
4η∥uλ∥L∞L2∥vR∥L2

which clearly suffices using (4.27). For □g<√
η
(uλ · vR) we similarly consider

∥(□g<
√

λ
−□g<√

η
)Pη(uλ · vR)∥L2 ≲ η2∥uλ · vR∥L2L1 ≲

≲ η2∥uλ∥L2∥vR∥L∞L2 ≲ η2∥uλ∥
X

0, 12
µ,D[I]

M

η∥∂uλ · ∂vR∥L2L1 ≲ η∥∂uλ∥L∞L2∥∂vR∥L2 ≲ ηλD
1
2∥uλ∥

X
0, 12
µ,D[I]

M

η∥□g<
√
λ
uλ · vR∥L2L1 ≲ η∥□g<

√
λ
uλ∥L2∥vR∥L∞L2 ≲ ηλD

1
2∥uλ∥

X
0, 12
µ,D[I]

M

and similarly for uλ ·□g<
√

λ
vR. Each of the term above times η−

7
4 is ≲ λ/η

1
4 . □

Finally, we have the following time-dependent wave packets sums analogue of (4.10)-(4.13).

Lemma 4.10. For a fixed ω and a dyadic frequency η let

vω(t) =
∑

T∈T ±
η ,ωT=ω

cT (t)uT (t), t ∈ I.
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For ν ≥ η, let the vector fields L,L,E associated to ±g√ν and to ω form a null frame as in
section 3. Then one has:

∥vω∥L∞ ≲ η
3
4

( ∑
T,ωT=ω

|cT |2L∞
t

) 1
2 (4.35)

∥EPηv
ω∥L∞ ≲ η

5
4

( ∑
T,ωT=ω

|cT |2L∞
t

) 1
2 (4.36)

∥LPηv
ω∥L2L∞ ≲ η

3
4

( ∑
T,ωT=ω

|cT |2L∞
t
+ |c′T |

2
L2
t

) 1
2 (4.37)

∥LPηv
ω∥L∞ ≲ η

7
4

( ∑
T,ωT=ω

|cT |2L∞
t

) 1
2 . (4.38)

Proof. These follow easily from (4.10)-(4.13). In the case of (4.37) and (4.38) we have to
consider the case in which the ∂t derivative from L or L falls on the coefficients cT (t). We
write

L(Pηv
ω)(t) =

∑
T,ωT=ω

cT (t)LPηuT (t) +
∑

T,ωT=ω

c′T (t)PηuT (t)

For the first sum we use (4.11), while for the second we use (4.10). The bound (4.38) follows
from (4.31). □

5. Microlocalized characteristic energy estimates

The proof of the algebra property Xs,θ · Xs,θ ⊂ Xs,θ relies on estimates for directionally
localized half-waves along certain characteristic surfaces.

5.1. Microlocalization. For each dyadic number α ≤ 1, let τ + a±<α−1 be the half-wave

symbols for the operator □g<α−1 (note that a±<α−1 is not quite frequency-localized due to the

square root) and let Φα,±
t (x, ξ) = (xα,±t , ξα,±t ) denote their Hamiltonian flows.

On one hand, a routine linearization argument as in the proof of Lemma 3.2 shows that
the flow map satisfies

∂k(xα,±t , ξα,±t )

∂(x, ξ)k
= O(α1−|k|), |k| ≥ 1. (5.1)

On the other hand, in view of homogeneity the flow map is smoother in some directions than
others. To capture this directional information, we consider a class of phase space metrics
adapted to the wave equation developed in [10, 11]. For each 0 < α < 1, define g := gα by

gα,(x,ξ)(y, η) =
|⟨y, ξ⟩|2

α4|ξ|2
+

|y ∧ ξ|2

α2|ξ|2
+

|⟨η, ξ⟩|2

|ξ|4
+

|η ∧ ξ|2

α2|ξ|4
. (5.2)

We recall

Lemma 5.1 ([11, Lemma 4.2]). The flows Φα,±
t are bi-Lipschitz and gα-smooth.

These metrics shall define the symbol classes S(m, g) in which we work. At a point (x, ξ),
the unit ball with respect to g(x,ξ) consists of a α

2 × (α)n−1 rectangle in the spatial variable
with long side orthogonal to ξ, and a |ξ| × (α|ξ|)n−1 rectangle in the frequency variable with
long side parallel to ξ. One easily verifies that perturbing the basepoint (x, ξ) within this
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unit ball yields comparable metrics. Appendix B collects the relevant facts and notation
concerning pseudo-differential calculus at this generality.

Throughout this article, for any frequency µ ≥ 1 we write

αµ := µ−1/2.

The parameter µ will eventually be the smaller of the two frequencies in products of the
form uλvµ ∈ Xs,θ

λ ·Xs,θ
µ , and in this context, αµ represents the smallest angular scale in the

bilinear decomposition of the product.
If α ∈ [αµ, 1], write Ωα for the collection of half-open dyadic intervals on S1 = R/Z of

width α.
For θ ∈ Ωα, let s

α
θ (ξ) be a 0-homogeneous function supported in the sector defined by

ξ̂ := ξ/|ξ| ∈ Cθ, where Cθ denotes the dilate of the interval θ about its center by some
(fixed) factor C > 1, and define time-dependent symbols ϕα,±

θ by transporting sαθ along the

flows Φ
αµ,±
t :

ϕα,±
θ (t, x, ξ) := sαθ ◦ Φαµ,±

−t . (5.3)

By the previous Lemma, we observe

Lemma 5.2. The symbols ϕα,±
θ satisfy ∂x,ξϕ

α,±
θ ∈ S((α|ξ|)−1, gαµ).

The notation S(m, g) refers to the symbol classes in Definition B.1.

Remark 5.3. A very similar construction was proposed by Geba-Tataru [11, Section 4].

However, here the time dependent symbols are defined using the same flows Φ
αµ,±
t for all

angular widths α ≥ αµ, whereas in that article the initial symbols sαθ are transported along
the flows Φα,±

t . Consequently their symbols satisfy the better bounds ∂ϕα,±
θ ∈ S(α|ξ|−1, gα).

For each λ ≥ µ, define the symbols at frequency λ by

ϕα,±
θ,λ (t, x, ξ) := P<λ/8(Dx)ϕ

α,±
θ (t, x, ξ)sλ(ξ), (5.4)

where sλ(ξ) is a smooth cutoff supported in the annulus |ξ| ∈ [λ/4, 4λ] and equal to 1 for
|ξ| ∈ [λ/2, 2λ].

Lemma 5.4. The symbols ϕα,±
θ,λ satisfy ∂ϕα,±

θ,λ ∈ S((αλ)−1, gαµ), and also

{τ + a±
<α−1

µ
, ϕ±,α

θ,λ } ∈ S(1, gαµ).

Proof. The fact that ϕα,±
θ,λ ∈ S(1, αµ) is straightforward. Since ϕ

α,±
θ is transported along the

Hamilton flow for a<α−1
µ
(t, x, ξ), the Poisson bracket takes the form

−(∂xa<α−1
µ
∂ξs̃λ(ξ))ϕ

α,±
θ,λ (t, x, ξ) + sλ(ξ)[Ha±

<α−1
µ

, P<λ/8(Dx)]ϕ
α,±
θ (t, x, ξ),

where s̃λ is a fattened version of sλ and Ha = ⟨ax, ∂x⟩ − ⟨aξ, ∂ξ⟩ denotes the Hamiltonian
vector field for a symbol a. The first term belongs to S(λ−1, gαµ). Now for any k1, k2, one
has

∂k1x ∂
k2
ξ [∂ξa

±
<α−1

µ
, P<λ/8]∂xϕ

α,±
θ =

k1∑
j1=0

k2∑
j2=0

[∂j1x ∂
j2
ξ ∂ξa

±
<α−1

µ
, P<λ/8]∂

k1−j1
x ∂k2−j2

ξ (∂xϕ
α,±
θ )
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As ∂x∂ξa
±
<α−1

µ
is gαµ-smooth, for any y1, . . . , yk1 , η1, . . . , ηk2 with g(yj, 0) = g(0, ηj) = 1,

∥[⟨y1, ∂x⟩ · · · ⟨yj1 , ∂x⟩⟨η1, ∂ξ⟩ . . . ⟨ηj2 , ∂ξ⟩∂ξa±<α−1
µ
, P<λ/8]∥Lp→Lp ≲ λ−1.

Consequently⏐⏐⏐ k1∏
j1=1

k2∏
j2=1

⟨yj1 , ∂x⟩⟨ηj2 , ∂ξ⟩[∂ξa±<α−1
µ
, P<λ/8]∂xϕ

α,±
θ (t, x, ξ)

⏐⏐⏐ ≲ λ−1(α|ξ|)−1,

therefore

[∂ξa
±
<α−1

µ
, P<λ/8](∂xϕ

α,±
θ ) ∈ S((αλ|ξ|)−1, gαµ).

Similarly, as Bernstein implies that ∂2xa
±
<α−1

µ
∈ S(α

− 1
2

µ |ξ|, gαµ), we have

[∂xa
±
<α−1

µ
, P<λ/8](∂ξϕ

α,±
θ ∈ S((αµ)

− 1
2 (αλ)−1, gαµ).

□

For each x, the symbol ϕα,±
θ (t, x, ξ) is supported in a sector |ξ̂ − ξ̂

αµ

θ (t, x)| ≤ cα, where

ξ̂ := ξ/|ξ| and
(x, θ) ↦→

(
(x

αµ

θ (t, x), θ) ↦→ (x, ξ
αµ

θ (t, x))

parametrizes the graph of the canonical transformation Φ
αµ,±
t (the dependence on ± is sup-

pressed in the notation ξ
αµ

θ (t, x)). The mollified symbol ϕα,±
θ,λ is no longer sharply localized

to the sector |ξ̂ − ξ̂
αµ

θ (t, x)| ≤ cα, but we can write

ϕα,±
θ,λ (t, x, ξ) = ϕα,±

θ,λ χ<2cα(|ξ̂ − ξ̂
αµ

θ (t, x)|) + rα,±θ,λ , (5.5)

where the first symbol has the same regularity as ϕα,±
θ,λ and rα,±θ,λ = O(λ−∞).

For each θ, let

mθ(t, x, ξ) := ⟨α−1(|ξ̂ − ξ̂
αµ

θ (t, x))⟩−1.

In the notation of Section B one has

ϕα,±
θ , ϕα,±

θ,λ ∈ S1
α(m

∞
θ , gαµ).

For future reference, we also record a technical lemma regarding the time-regularity of
symbols.

Lemma 5.5. There is a decomposition

∂tϕ
α,±
θ = ψ1 + ψ2,

where ψ1 ∈ S(1, gαµ) and ψ2 satisfies the estimates

|ψ2| ≲N α−1mN
θ for all N,

∂xψ2 ∈ α
− 1

2
µ α−1S(m∞

θ , gαµ) + α−1
µ S(m∞

θ , gαµ),

∂ξψ2 ∈ α−1(αµ|ξ|)−1S(m∞
θ , gαµ);

in particular ∂tϕ
α,±
θ ∈ α−1S(1, gαµ). Also,

∂t{τ + a±
<α−1

µ
, ϕα,±

θ,λ } ∈ S(α
− 1

2
µ (α2

µλ)
−1m∞

θ , gαµ).
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Proof. The definition of the symbol implies that

∂tϕ
α,±
θ = ⟨aξ, ∂x⟩ϕα,±

θ − ⟨ax, ∂ξ⟩ϕα,±
θ .

The first term evidently belongs to S(1, gαµ). The second term is pointwise bounded by α−1

and satisfies

∂x(⟨ax, ∂ξ⟩ϕ±,α
θ ) = ⟨axx, ∂ξ⟩ϕα,±

θ + ⟨ax, ∂ξ⟩∂xϕα,±
θ ∈ α

− 1
2

µ α−1S(m∞
θ , gαµ) + α−1

µ S(m∞
θ , gαµ),

∂ξ(⟨ax, ∂ξ⟩ϕα,±
θ ) = ⟨aξx, ∂ξ⟩ϕα,±

θ + ⟨ax, ∂ξ⟩∂ξϕα,±
θ ∈ α−1

µ (α|ξ|)−1S(m∞
θ , gαµ),

where Bernstein is used for pointwise bounds axx and further derivatives as in (1.28). These
estimates are preserved by the mollifier P<λ/8(Dx).

The second claim is proved by inspecting the Poisson bracket estimates in the previous
lemma:

∂t{τ + a±
<α−1

µ
, ϕα,±

θ,λ } = −(∂x∂ta<α−1
µ
∂ξs̃λ(ξ))ϕ

±,α
θ,λ − (∂xa<α−1

µ
∂ξs̃λ(ξ))∂tϕ

α,±
θ,λ (t, x, ξ)

+ sλ(ξ)[H∂ta
±
<α−1

µ

, P<λ/8(Dx)]ϕ
α,±
θ + sλ(ξ)[Ha±

<α−1
µ

, P<λ/8(Dx)]∂tϕ
α,±
θ

∈ S(α
− 1

2
µ (α2

µλ)
−1, gαµ),

where we have used the Bernstein type estimates ∂x∂ξ∂ta
±
<α−1

µ
∈ S(α

− 1
4

µ , gαµ), respectively

∂2x∂ta
±
<α−1

µ
∈ S(α

− 3
2

µ |ξ|, gαµ). □

Proposition 5.6. Suppose α ≥ αµ. If u is a function at frequency λ > α−2, then∑
θ∈Ωα

∥ϕ±,α
θ,λ (t,X,D)u∥2X± ∼ ∥u∥2X± ,

where

∥u∥2X± := ∥u∥2L2
t,x

+ ∥(Dt + A±)u∥2L2
t,x
,

and a± are the half wave symbols for the mollified wave operator

p = τ 2 − 2g0j
<
√
λ
τξj − gab

<
√
λ
ξaξb.

More precisely, we have∑
θ

∥ϕ±,α
θ,λ (t,X,D)u∥2L2 ∼ ∥u∥2L2 ,∑

θ

∥(Dt + A±)ϕ±,α
θ,λ (t,X,D)u∥2L2 ∼ ∥(Dt + A±)u∥2L2 +O(∥u∥2L2).

In practice we shall usually need only the “≲” direction. The following terminology will
be convenient for describing the size of various operators.

Definition 5.7. We say a collection of operators χθ : L2
x → L2

x is square-summable with
respect to θ if

∑
θ ∥χθu∥2L2

x
≲ ∥u∥2L2

x
; that is, if

∑
θ χ

∗
θχθ is bounded on L2

x.

If the operators χθ depend on t, it will be clear from the context whether the implicit
constants are uniform or merely square-integrable with respect to t; for the latter case we
use the term “L2

t,x-square-summable”.
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From the pseudo-differential calculus in Section B and the Cotlar-Stein almost orthogo-
nality criterion, one immediately deduces

Lemma 5.8. If symbols ϕθ ∈ S(m∞
θ , gαµ) are supported in |ξ| ∼ λ ≥ α−2

µ , then the operators
Pλ(D)ϕθ(X,D) are square-summable with respect to θ.

Proof of Proposition. Consider first the L2 component. The previous lemma already shows
that ∑

θ

∥ϕ±,α
θ,λ (t,X,D)u∥2L2 ≲ ∥u∥2L2 .

For the other direction, we note first that if u is localized at frequency λ, then

∥u∥L2 ∼
∑
θ∈Ωα

ϕ±,α
θ,λ (t,X,D)u


L2
.

As ϕ±,α
θ,λ ∈ S(1, gαµ) and localized to frequency λ in both input and output, the direc-

tion “≳” follows directly from Lemma B.5. For the opposite direction, use the first order
calculus (B.1) to write

u = Pλ(D)
(∑

θ

ϕα
θ,λ

)−1

(t,X,D)
∑
θ

ϕα
θ,λ(t,X,D)u+ Pλ(D)r(t,X,D)u,

where r ∈ S((αλ)−2, gαµ), and apply Lemma B.5 to obtain

∥u∥L2 ≲
∑

θ

ϕα
θ,λu


L2

+ (αλ)−2∥u∥L2 .

(Of course there is nothing to prove if
∑

θ ϕ
±,α
θ ≡ 1 but recall that according to our con-

struction of the symbols, for a fixed angular scale α the sum is in general merely bounded
above and below.)

Hence we may write

∥u∥2L2 ≲
∑
θ,θ′

⟨χθu, χθ′u⟩,

The pseudo-differential calculus yields the estimates

∥χ∗
θχθ′∥L2→L2 ≲ ⟨dα(θ, θ′)⟩−N , dα(θ, θ

′) := |α−1(θ − θ′)|.
Splitting ∑

θ,θ′

⟨χθu, χθ′u⟩ =
∑

dα(θ,θ′)≤M

⟨χθu, χθ′u⟩+
∑

dα(θ,θ′)>M

⟨χθu, χθ′u⟩,

for M large enough the second sum may be absorbed into the left side, while the remaining
terms are handled by Cauchy-Schwarz.

Next consider the half-wave component. Without loss of generality we consider just the
“+” case and set ϕα

θ,λ := ϕ+
θ,λ, a := a+, A := A+. Writing

(Dt + A)ϕα
θ,λ = ϕθ,λ(Dt + A)ϕα

θ,λ + [Dt + A, ϕα
θ,λ],

it suffices by the first part and energy estimates to show that∑
θ

∥[Dt + A, ϕα
θ,λ]u∥2L2 ≲ ∥u∥2L∞L2 .
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Consider the first the low-frequency portion Aµ, where A is the corresponding half-wave
operator for the low-frequency metric g<√

µ. By the second-order symbol expansion (B.1),
the commutator [Dt + Aµ, ϕ

α
θ,λ] has symbol

1

i
{τ + aµ, ϕ

α
θ,λ} −

1

2

∫ 1

0

rs ds,

where

rs(t, x, ξ) =
∑
j,k

eis⟨Dy ,Dη⟩
[
∂ηj∂ηka(x, η)∂yj∂ykϕ

α
θ,λ(y, ξ)

− ∂ηj∂ηkϕ
α
θ,λ(x, η)∂yj∂yka(y, ξ)

]
|y=x

η=ξ
.

The Poisson bracket belongs to S(m∞
θ , gαµ). Hence Pλ(D){τ + aµ, ϕ

α
θ,λ}(t,X,D) is square-

summable by the pseudo-differential calculus. The other frequency outputs result from
{P>λ/16(Dx)aµ, ϕ

α
θ,λ}(t,X,D) ∈ λ−NOPS(m∞

θ , gαµ), and are therefore square-summable by
a brute force bound using Lemma B.6 and the triangle inequality.

To evaluate the remainder, note that as

∂2ξa ∈ S(|ξ|−1, gαµ), ∂2xϕ
α
θ,λ ∈ α−2

µ S(m∞
θ , gαµ),

∂2xa ∈ L2S(|ξ|, gαµ), ∂2ξϕ
α
θ,λ ∈ (αλ)−1(αµλ)

−1S(m∞
θ , gαµ),

by Lemma B.3 one has

rs ∈ (α2
µλ)

−1S(m∞
θ , gαµ) + (α2λ)−

1
2 (α2

µλ)
− 1

2L2S(m∞
θ , gα).

So rs(t,X,D) are L2
t,x-square-summable by considering the operators Pλ(D)rs(t,X,D) and

(1− Pλ(D))rs(t,X,D) separately as before.
It remains to show that ∑

θ

∥[A− Aµ, ϕ
α
θ,λ]u∥2L2 ≲ ∥u∥2L2 .

From the computations

∂ξ(a− aµ) ∈ S(α2
µ, gαµ), ∂xϕ

α
θ,λ ∈ S(1, gαµ),

∂x(a− aµ) ∈ S(α2
µ|ξ|, gαµ), ∂ξϕ

α
θ,λ ∈ S((αλ)−1, gαµ)

the formula

a ◦ b = ab+
1

i

∫ 1

0

eis⟨Dy ,Dη⟩⟨∂ηa(x, η), ∂yb(y, ξ)⟩|y=x

η=ξ
ds,

and Lemma B.3, it follows that the symbol of [A − Aµ, ϕ
α
θ,λ] belongs to S(α2

µα
−1, gαµ). As

before this implies that [A− Aµ, ϕ
α
θ,λ] = α2

µα
−1χθ for some square-summable χθ. □

5.2. Characteristic energy estimates. The purpose of this section is to prove energy
estimates for directionally localized half-waves along certain null surfaces.

We begin by recalling the usual characteristic energy estimate for a general function v.
For further details, see for instance Alinhac’s book [1]. Suppose Ω is a spacetime domain
whose boundary ∂Ω = Λ ∪ Σ− ∪ Σ+ decomposes into a null hypersurface Λ and the time
slices Σ± = {t = t±} ∩ Ω, where t− < t+. Let L be a geodesic generator for Λ which is
extended to a null frame {L,L,E} on Ω, so that L,E are tangent to Λ.
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By contracting the stress energy tensor

T = dv ⊗ dv − 1

2
g−1(dv, dv)g

with ∂t and applying the divergence theorem, one controls on Λ the derivatives of v tangential
to Λ: ∫

Λ

|Lv|2 + |Ev|2 dσ ≲
∫
Σ±

|∇t,xu|2 dx+
∫
Ω

|□u||∂tu| dxdt+ |⟨T, π(∂t)⟩| dxdt

≲ (1 + |t+ − t−|)∥∇t,xv∥2L∞L2 + ∥□v∥2L1L2

(5.6)

where π(Z)(X, Y ) = ⟨∇XZ, Y ⟩+ ⟨∇YZ,X⟩ is the deformation tensor of a vector field Z.
Suppose further that v is microlocalized such that Lv and Ev are smaller than a generic

derivative ∇v. Then by contracting the stress energy tensor instead with L, one deduces∫
Λ

|Lv|2 dσ ≲
∫
Σ±

|Lv(t±, x)|2 + |E(t±, x)|2 dx+
∫
Ω

|□v||Lv|+ |⟨T, π(L)⟩| dxdt. (5.7)

This yields a tighter estimate for Lv along Λ since the worst component TLL = TLL = |Lv|2

is paired with π
(L)
LL = 0.

Now factor the symbol

τ 2 − 2g0j
<
√
λ
τξj − gjk√

λ
ξaξb = (τ + a+)(τ + a−).

In the sequel we redenote a := a+ and let A = a(t,X,D) denote the corresponding half-wave
operator.

For each direction θ, introduce the associated + null foliation Λθ = Λλ
θ , defined by the

Hamiltonian flow for the half-wave symbol τ + a, and let {L,L,E} denote the associated
null frame. As before, we parametrize the graph of the flow (x0, ξ0) ↦→ (xt, ξt) by the

variables (xt, ξ0), and write ξξ0(t, xt) := ξt(x0, ξ0). Combining (5.1) with α =
√
λ and the

computation (3.2), one deduces

∂k(x0, ξt)

∂(xt, ξ0)k
= O(λ

|k|−1
2 ), |k| ≥ 1.

The operators L, E therefore belong to OPS1
1, 3

4

when restricted to input frequencies ≥ λ.

To obtain estimates for ∂tξθ, we use the equation

∂tξθ = −⟨aξ(t, x, ξθ), ∂xξθ⟩ − ax(t, x, ξθ), (5.8)

obtained by differentiating the definition with respect to t, to deduce

|∂kx∂tξθ| ≲ λ
k
2 + λ

k−1
2 λ

1
4 , k ≥ 1. (5.9)

where we used the Bernstein-type estimate (1.28) to bound axx and higher order x derivatives

(one could alternatively replace the λ
1
4 by M(∥∂2g(t)∥L∞

x
)).

The main result of this section is

Proposition 5.9. Let u = Pλ(Dx)u be supported in |t| ≤ 2 and satisfy

∥∇t,xu∥L2 + ∥□g<
√

λ
u∥L2 <∞,
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and let u = u+ + u− be the half-wave decomposition from Corollary 2.20. Suppose ϕα
θ,λ is

a pseudo-differential localization operator of the form (5.4), defined via the + flow of the
metric g<√

µ with µ ≤ λ. Assume that α ≥ αµ := µ−1/2, and set β := |θ − θ′|.
(1) If L = L+

θ′ is the null generator for the foliation Λθ′, then

sup
h

∫
Λh,θ′

|Lϕα
θ,λu

+|2 dσ ≲ (α + β)2∥χ1
θu

+∥2L2 .

(2) If β ≥ Cα for sufficiently large C > 0, then for any ε > 0 one has

sup
h

∫
Λε
h,θ′

|ϕα
θ,λu

+|2 dxdt ≲ (ε+ (αλ)−2)β−2∥χ0
θu

+∥2L2 ,

where Λε
h,θ′ denotes an ε-neighborhood of Λh,θ′, and χ

j
θ are operators such that∑

θ∈Ωα

∥χj
θu

+∥2L2 ≲ λ2(j−1)
(
∥∇u∥2L2 + ∥□g<

√
λ
u∥2L2

)
. (5.10)

These are variable-coefficient analogues of the estimates on null hyperplanes proved in [39,
Section 3], and shall play an essential role in the proof of the algebra property. The small
angle case β ∼ α arises when studying low-modulation outputs, while the transversal case
β ∼ 1 is used for high-modulation outputs.

In view of the relation a+(t, x,−ξ) = −a−(t, x, ξ), the null foliations and generators are
related by Λ−

−θ = Λ+
θ , L

−
−θ = −L+

θ . Indeed the optical functions satisfy Φ−
−θ = −Φ+

θ .
Consequently one has

Corollary 5.10. Assume the setup of the previous proposition.

(1) If L = L−
−θ′ is the null generator for the − foliation Λ−

−θ′, then

sup
h

∫
Λ−
h,−θ′

|Lϕα
θ,λu

+|2 dσ ≲ (α + β)2∥χ1
θu

+∥2L2 .

(2) If β ≥ Cα for sufficiently large C > 0, then for any ε > 0 one has

sup
h

∫
(Λ−

h,−θ′ )
ε

|ϕα
θ,λu

+|2 dxdt ≲ (ε+ (αλ)−2)β−2∥χ0
θu

+∥2L2 ,

Later we shall consider bilinear estimates of the form ∥(ϕα
θ,λu)vT∥L2 and ∥Q(ϕθ,λu, vT )∥L2 ,

where vT is a frequency µ wave packet concentrating in some tube T ∈ T ±
µ,±θ′ . As each T is

contained in a union
⋃

|h−h0|≲µ−1 Λ
±
h,±θ′ of null surfaces, we deduce

Corollary 5.11. Assume the setup of the previous corollary, and let T± ∈ T ±
±θ′,µ be a

frequency-µ “tube” with initial direction ±θ′.
(1) If L± = L±

±θ′ is the null generator for the foliation Λ±
±θ′, then

∥L±ϕα
θ,λu

+∥L2(T±) ≲ µ− 1
2 (α + β)∥χ1

θu
+∥L2 .

(2) If β ≥ Cα for sufficiently large C > 0, then

∥ϕα
θ,λu

+∥L2(T±) ≲ µ− 1
2β−1∥χ0

θu
+∥L2 .
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Proof of Proposition 5.9, part (1). We begin by recording the symbol estimates that under-
pin the gain or loss in the angular separation. By a harmless abuse of notation we ignore
the prefactor σ in L (see Lemma 3.6) and redenote

L = Dt + ∂ξa(t, x, ξθ′(t, x)) ·Dx = Dt + Ã.

The difference between L and the half-wave operator Dt + A is

(Dt + A)− L = (A− Ã),

whose symbol is

a− ã = a(t, x, ξ)− ⟨aξ(t, x, ξθ′(t, x)), ξ⟩ ∼ |ξ|∠(ξ̂, ξ̂θ′)2. (5.11)

Indeed, put ω := ˆξθ′(t, x), and let f(ξ) := a(t, x, ξ), which is 1-homogeneous and fξξ(ξ) is

positive-definite in the orthogonal complement of ξ. When ∠(ξ̂,−ω) ≥ cmin|ω|=1 f(ω) for a
small constant c > 0, one computes

f(ξ)− fξ(ω) · ξ = |ξ|⟨fξ(ξ̂)− fξ(ω), ξ̂⟩

=

∫ 1

0

|ξ|⟨fξξ(ω + s(ξ̂ − ω)) (ξ̂ − ω), ξ̂ − ω − s(ξ̂ − ω)⟩ ds

= |ξ|
∫ 1

0

(1− s)⟨fξξ(ω + s(ξ̂ − ω)) (ξ̂ − ω), ξ̂ − ω⟩ ds

∼ |ξ|∠(ξ̂, ω)2

In the remaining region, where ξ̂ and ω are nearly antipodal,

f(ξ)− fξ(ω) · ξ = f(−ξ)− fξ(ω) · (−ξ)− 2fξ(ω) · ξ

= 2|ξ|(f(ω)−O(∠(ξ̂,−ω)))
≳ |ξ|.

Further, in view of the identity (3.7), the symbol of E is 1-homogeneous and satisfies

e(t, x, ξ) = |ξ|⟨e(t, x), ξ̂⟩ = |ξ|⟨e(t, x), ξ̂ − ξ̂θ′⟩. (5.12)

Recall that the symbol ϕα,+
θ,λ is essentially supported in the sector {ξ : ∠(ξ, ξµθ (t, x)) ≲ α},

where ξµθ is defined by the metric g<√
µ mollified at frequency µ. Precisely, we can decompose

ϕα,+
θ,λ = χα

θ + rθ,

where χα
θ is essentially ϕα,+

θ (t, x, ξ)sλ(ξ) before mollification in the x variable–see (5.4)–and
has the required support, while ∥rθ∥L2→L2 = O(λ−∞).

Thus since |ξθ(t, x)− ξθ′(t, x)| ∼ |θ − θ′| and |ξ̂θ − ξ̂µθ | ≲ µ−1/2 ≤ α, one has

|(a− ã)ϕα
θ,λ| ≲ (α + |θ − θ′|)2λ, |eϕα

θ,λ| ≲ (α + |θ − θ′|)λ. (5.13)

On the other hand, if |θ− θ′| ≥ Cα for some large C such that Cα dominates the angular
width of the cutoff χα

θ , the symbol a− ã is then microelliptic:

|ξ̂ − ξ̂µθ | ≲ α ⇒ |(a− ã)| ∼ (α + |θ − θ′|)2λ, |e| ≲ (α + |θ − θ′|)λ. (5.14)

Without loss of generality we prove the estimate on the surface Λ0,θ′ . In the sequel we
write □ := □g<

√
λ
.
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We apply the estimate (5.7) to the spacetime region

Ω =
⋃
h≤0

Λh,θ′ ∩ {|t| ≤ 5},

whose boundary is

∂Ω = (Λ0,θ′ ∩ {|t| ≤ 5}) ∪ {t = ±5}.

In terms of the null frame, we have∫
Λ0,θ′

|Lv|2 dσ ≲
∑
±

∫
|Lv(±5, x)|2 + |Ev(±5, x)|2 dx+

∫
Ω

|□vLv| dxdt+
∫
Ω

|⟨T, π⟩| dxdt,

where π(X, Y ) = ⟨∇XL, Y ⟩+ ⟨∇YL,X⟩ is the deformation tensor for L.
Put v = ϕα

θ,λu
+. The boundary terms vanish since the half-wave u+ is assumed to be

supported in |t| ≤ 3.
For the other terms, write

⟨T, π⟩ = TLLπLL + TLLπLL + 2TLLπLL + 2TLEπLE + 2TLEπLE + TEEπEE

The components of the deformation tensor are

πLL = 2⟨∇LL,L⟩ = 0,

πLE = ⟨∇LL,E⟩+ ⟨∇EL,L⟩ = 0,

πLL = ⟨∇LL,L⟩+ ⟨∇LL,L⟩ = 0,

πLE = O(1),

πLL = O(1),

πEE = O(1);

the last three are a consequence of the derivative estimates (3.2) for the optical function.
Thus

|⟨T, π⟩| ≲ |LvLv|+ |LvEv|+ |EvEv|.

Altogether we obtain∫
Λθ,0

|Lϕα
θ,λu

+|2 dσ ≲ ∥□ϕα
θ,λu

+∥L2∥Lϕα
θ,λu

+∥L2 + ∥Lϕα
θ,λu

+∥2L2 + ∥Eϕα
θ,λu

+∥2L2 .

The claim now follows from the next lemma. □

Lemma 5.12. If {L,L,E} is the null frame for the foliation Λθ′, then

Lϕα
θ,λ = (Dt + A)ϕα

θ,λ + (α + |θ − θ′|)2λχθ,

Eϕα
θ,λ = (α + |θ − θ′|)λχθ,

where χθ are L2
x-square-summable with constants uniform in time. Also∑

θ∈Ωα

∥□ϕα
θ,λu

+∥2L2 ≲ ∥∇t,xu∥2L2 + ∥□u∥2L2 .
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Proof. The second term on the right side of Lϕα
θ,λ is

(Ã− A)ϕα
θ,λ = Pλ(Ã− A)ϕθ,λ + (ã>λ/16 − a>λ/16)(t,X,D)ϕθ,λ.

Since the first term is localized in output frequency, the symbol estimates (5.13) and
pseudo-differential calculus (Lemmas B.3 and B.5) imply that the first term is α2λχθ for
some square-summable operator χθ. On the other hand, a, ã ∈ S1

1,3/4 in the region |ξ| ≥ λ,

one has a>λ/16, ã>λ/16 ∈
⋂

N λ
−NS1

1,3/4, so

∥(ã>λ/16 − a>λ/16)(t,X,D)Pλ(D)∥L2→L2 ≲ λ−N for any N.

The estimate for Eϕα
θ,λ is similar, writing Eϕα

θ,λ = Pλ(D)Eϕα
θ,λ+Rϕ

α
θ,λ, where ∥R∥L2→L2 =

O(λ−N) for any N , and using (5.13) for the main term.
As ϕα

θ,λ are square-summable in θ, it suffices to prove that∑
θ

∥[□, ϕα
θ,λu

+∥2L2 ≲ ∥∇t,xu∥2L2 + ∥□u∥2L2 .

To this end we note first of all that∑
θ

∥[□− (Dt + A−)(Dt + A+)]ϕα
θ,λu

+∥2L2 ≲
∑
θ

∥∇t,xϕ
α
θ,λu

+∥2L2 ≲ ∥∇t,xu∥2L2 ,

and write

[(Dt + A−)(Dt + A+), ϕα
θ,λ] = (Dt + A−)[Dt + A+, ϕα

θ,λ] + [Dt + A−, ϕα
θ,λ](Dt + A+).

For the first term we split A+ = Aµ + A+ − Aµ, where Aµ is the corresponding + operator
for the low-frequency metric g<√

µ. Recall from the proof of Proposition 5.6 that

[Dt + Aµ, ϕ
α
θ,λ] =

1

i
{τ + aµ, ϕ

α
θ,λ}(t,X,D) + r(t,X,D),

where {τ + aµ, ϕ
α
θ,λ} ∈ S(m∞

θ , gαµ), r ∈ (α2
µλ)

−1L2S(m∞
θ , gαµ), P>λ/8(Dx)r ∈ λ−NL2S(m∞

θ )
for any N , and ∂tr ∈ µS(m∞

θ , gαµ). The last claim uses the modified computations

∂2ξ∂ta ∈ S(|ξ|−1, gαµ), ∂2x∂tϕ
α
θ,λ ∈ α−4

µ S(m∞
θ , gαµ),

∂2x∂ta ∈ S(µ
3
4 |ξ|, gαµ), ∂2ξ∂tϕ

α
θ,λ ∈ α−1(αµλ)

−2S(m∞
θ , gαµ).

Then

(Dt + A−){τ + aµ, ϕ
α
θ,λ}(t,X,D) = (Dt{τ + aµ, ϕ

α
θ,λ})(t,X,D) + {τ + aµ, ϕ

α
θ,λ}(t,X,D)Dt

+ A−{τ + aµ, ϕ
α
θ,λ}(t,X,D).

By Lemma 5.5 the first term belongs to α−1OPS(m∞
θ , gαµ). Modulo a negligible remainder

we may restrict each term to output frequency λ, and write

(Dt + A−){τ + aµ, ϕ
α
θ,λ}(t,X,D) = λT 1

θ + T 2
θDt

where T 1
θ and T 2

θ are square-summable.

(Dt + A−)r(t,X,D) = (Dtr)(t,X,D) + r(t,X,D)Dt + A−r(t,X,D)

= µT 1
θ + f(t)T 2

θDt + λT 3
θ ,
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where f(t) =M(∥∂2g∥L∞) ∈ L2
t and T j

θ are square-summable. This is acceptable in view of
the energy estimate ∥∇u∥L∞L2 ≲ ∥∇u∥L2 + ∥□u∥L2 .
For the term (Dt + A−)[A − Aµ, ϕ

α
θ,λ], we simply recall from the proof of Proposition 5.6

that the commutator belongs to α2
µα

−1OPS(m∞
θ , gαµ) and outputs essentially at frequency

λ, so that A−[A− Aµ, ϕ
α
θ,λ] ∈ λχθ for some square-summable χθ, and

Dt[A− Aµ, ϕ
α
θ,λ] = [∂tA− ∂tAµ, ϕ

α
θ,λ] + [A− Aµ, Dtϕ

α
θ,λ] + [A− Aµ, ϕ

α
θ,λ]Dt,

is acceptable as well. This shows that∑
θ

∥(Dt + A−)[Dt + A+, ϕα
θ,λ]u

+∥2L2 ≲ ∥∇u+∥2L2 + ∥□u+∥2L2 .

Next we write

[Dt + A−, ϕα
θ,λ] = (Dtϕ

α
θ,λ)(t,X,D) + [A−, ϕα

θ,λ] = α−1χθ

for some square summable χθ, so that∑
θ

∥[Dt + A−, ϕα
θ,λ](Dt + A+)u+∥2L2 ≲ α−2∥(Dt + A+)u+∥2L2 ≲ ∥∇u+∥2L2 + ∥□u+∥2L2 ,

Finally, recall from Proposition 2.19 that ∥∇u+∥L2 + ∥□u+∥L2 ≲ ∥∇u∥L2 + ∥□u∥L2 . □

For future reference, we collect the key estimates for ϕα
θ,λu in the following

Corollary 5.13. If {L,L,E} is the null frame for the + foliation Λθ′, and |θ−θ′| ∼ α ≥ αµ,
then: (∑

θ

∥ϕα
θ,λu∥2L∞L2

) 1
2 ≲ ∥u∥X+ (5.15)

(∑
θ

∥□g<
√
λ
ϕα
θ,λu∥2L2L2

) 1
2 ≲ ∥∇u∥L2 + ∥□g<

√
λ
u∥L2 (5.16)

(∑
θ

∥Eϕα
θ,λu∥2L2

x

) 1
2 ≲ λα∥u∥X+ (5.17)

(∑
θ

∥Lϕα
θ,λu∥2L2L2

) 1
2 ≲ λα2∥u∥X+ (5.18)

(∑
θ

∥∇t,xϕ
α
θ,λu∥2L∞L2

) 1
2 ≲ λ∥u∥X+ (5.19)

Remark 5.14. For split metrics g0j = 0, the same estimates hold with the replacements
Λθ′ → Λ−

−θ′ , X+ → X−, and α ∼ |θ + θ′|.

Proof. (5.15) follows from the energy estimate on bounded time intervals ∥v∥L∞L2 ≲ ∥v∥L2 +
∥(Dt + A±)v∥L2 .

For the next estimate (5.19) we simply note that by Lemma (5.5), the commutator
[∇t,x, λ

−1ϕα
θ,λ] = λ−1(∇t,xϕ

α
θ,λ) is square-summable, and apply (5.15).

Finally, (5.16), (5.17), (5.18) were proved in the preceding lemma. □

We turn to the L2 estimate in Proposition 5.9, which is slightly more involved. Roughly
speaking, the angular separation allows one to microlocally invert the vector field L for the
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foliation Λθ′ on the support of the cutoff ϕα
θ,λ. A similar ellipticity argument was employed

previously in [11, Lemma 5.2].

Proof of Prop. 5.9, part (2). Recall from (5.11), (5.14), that the difference Dt + A − L =
A− Ã satisfies

q := a− ã ≈ β2λ (5.20)

on a neighborhood of the support of χα
θ . We construct a microlocal inverse for A − Ã. Let

χ̃α
θ be a slightly wider version of χα

θ supported where (5.20) holds. Define

l̃(t, x, ξ) := q−1χ̃α
θ ,

and define

L̃ := Pλ(D)l̃(t, x,D).

Lemma 5.15. On the support of χ̃α
θ , one has

|(βλ∂ξ)m⟨ξ, ∂ξ⟩m
′
q|+ |(βλ∂x)k(β∂x)(βλ∂ξ)m⟨ξ, ∂ξ⟩m

′
q| ≲ (β2λ), αλ := λ−

1
2 ,

|(αλ∂x)
k(βλ∂ξ)

m⟨ξ, ∂ξ⟩m
′
∂tq| ≲ β−1(β2λ).

In conjunction with χ̃α
θ ∈ S1

α(m
∞
θ , gαµ), this quickly leads to

Corollary 5.16. The symbol l̃ satisfies

l̃, β∂xl̃, αλ∂ξ l̃ ∈ (β2λ)−1S(m∞
θ , gαλ

),

where as before mθ(t, x, ξ) := ⟨α−1(|ξ̂ − ξ̂µθ (t, x))⟩−1.

Remark 5.17. The worse regularity of l̃ with respect to ξ is due to the factor χ̃α
θ .

Proof of Lemma. For simplicity of notation we suppress the t, x variables in the arguments
to a. We have

∂kxq(ξ) = ∂kxa(ξ)− ⟨∂kxaξ(ξθ′), ξ⟩ −
∑
j≥1

⟨∂k−j
x aξξ(ξθ′)(∂

j
xξθ′), ξ − |ξ|ξ̂θ′⟩

−
∑
j≥1

[
∂k−j
x ∂2ξaξ(ξθ′)B2(∂xξθ′) + · · ·+ ∂k−j

x ∂jξaξ(ξθ′)Bj(∂xξθ′)
]
,

where Bj(∂xξθ′) denotes a j-linear quantity in ∂xξθ′ and its higher x derivatives such that
the total order of the derivatives equals j. This yields

|∂xq| ≲ β2λ+ βλ,

and when k ≥ 2

|∂kxq| ≲ λ
k−2
2 f(t)β2λ|+

k−2∑
j=1

λ
k−j−2

2 f(t)(λ
j−1
2 βλ+ λmax( j−2

2
,0)λ)

+ λ
k−1
2 βλ+ λmax( k−2

2
,0)λ,

where f := M(∥∂2g∥L∞
x
) ∈ L2

t . Since the metric is localized to frequencies <
√
λ, we may

replace f(t) by the uniform bound λ
1
4 as in (1.28), so that the dominant term when λ ≥ α−2

is α1−k
λ βλ = α1−k

λ β−1(β2λ).
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The estimates for the ξ derivatives follow easily from the explicit form of q, and similar
considerations handle

∂tq = at(ξ)− ⟨atξ(ξθ′), ξ⟩ − ⟨aξξ(ξθ′)∂tξθ′ , ξ⟩.
□

Some basic properties of the parametrix L̃ are recorded in

Lemma 5.18. The operator L̃ satisfies

∥L̃∥L2→L2 ≲ (β2λ)−1

∥Pλ(D)[Dt + A, L̃]Pλ(D)∥L2→L2 ≲ (β2λ)−1

(A− Ã)L̃− χ̃α,+
θ (t,X,D) = (αβλ)−1Φθ,

where the operators Pλ(D)Φθ : L
2 → L2 are square-summable in θ.

Proof. The first follows directly from the estimates for the symbol l̃ and Lemma B.5.
For the third estimate, use the first-order symbol expansion (B.1) and Lemmas 5.15, B.3

to see that

(A− Ã)L̃ = χ̃α,+
θ (t,X,D) + r(t,X,D), r ∈ (αβλ)−1S(m∞

θ , gαµ),

and apply Lemma B.5 to the remainder.
For the commutator estimate we essentially follow the proof of [11, Lemma 5.2]. From the

second order symbol expansion (B.1), the symbol of the commutator is

1

i
{τ + a, l̃} − 1

2

∫ 1

0

rs(t, x, ξ) ds,

rs(t, x, ξ) =
∑
j,k

eis⟨Dy ,Dη⟩[∂ηj∂ηka(x, η)∂yj∂yk l(y, ξ)− ∂ηj∂ηk l(x, η)∂yj∂yka(y, ξ)]|y=x

η=ξ
. (5.21)

We claim that

rs ∈ L2S((β2λ)−1(α2
µλ)

−1, gαλ
) + S(((α2

µλ)
−1 + (β2λ)−

1
2 )(β2λ)−1, gαλ

),

and is therefore acceptable. This would follow from Lemma B.3 and the symbol estimates

∂2x l̃ ∈ S((α−2
µ + α−1

λ β−1)(β2λ)−1, gαλ
), ∂2ξa ∈ S(|ξ|−1, gαλ

)

∂2ξ l̃ ∈ S((αλ)−1(β2λ)−1(αµλ)
−1, gαλ

), ∂2xa ∈ L2S(|ξ|, gαλ
).

(5.22)

The bounds for a follow directly from the hypotheses on the metric, so we consider next

∂2x l̃ = ∂2xχ̃
α
θ q

−1 + 2∂xχ̃
α
θ ∂xq

−1 + χ̃α
θ ∂

2
xq

−1.

From Lemma 5.15 one sees that on the support of χ̃α
θ ,

∂x(q
−1) ∈ β−1S((β2λ)−1, gαλ

), ∂2x(q
−1) = β−1α−1

λ S((β2λ)−1, gαλ
),

thus

∂2x l̃ ∈ S((α−2
µ + α−1

λ β−1)(β2λ)−1, gαλ
)

Similarly

∂2ξ l̃ = ∂2ξ χ̃
α
θ q

−1 + 2∂ξχ̃
α
θ ∂ξq

−1 + χ̃α
θ ∂

2
ξ q

−1 ∈ S((αλ)−1(αµλ)
−1(β2λ)−1, gαλ

)

as claimed.
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It remains to estimate the Poisson bracket. Letting aµ denote the half-wave symbol cor-
responding to the low-frequency metric g<√

µ, we write

{τ + a, l̃} = χ̃α
θ q

−2{τ + a, q}+ q−1{τ + aµ, χ̃
α
θ }+ q−1{a− aµ, χ̃

α
θ }. (5.23)

The symbol q vanishes to second order on the submanifold

{(t, x, ξθ(t, x))} ⊂ Rt × (T ∗R2
x \ 0),

which is invariant under the Hamiltonian flow. Hence its derivative along the flow {τ + a, q}
vanishes to second order as well, and is smooth and 1-homogeneous ξ. Therefore we see that

{τ + a, q} ∈ S((β2|ξ|), gαλ
).

The argument of Lemma 5.4 shows that {τ + aµ, χ̃
α
θ } ∈ S(1, gαµ).

Finally, by a direct computation {a−aµ, χ̃α
θ } ∈ S((α2

µλ)(αλ)
−1, gαµ). Altogether we obtain

{τ + a, l̃} ∈ S((β2λ)−1, gαλ
).

□

Later it will be useful to have a more computational proof of the Poisson bracket bound
{τ + a, q} ∈ S(α2λ, gαλ

). Using the equation (5.8) for ∂tξθ′ , we compute

{τ + a, q} = ∂tq + ⟨aξ, ∂xq⟩ − ⟨ax, ∂ξq⟩
= at(ξ)− ⟨atξ(ξθ′), ξ⟩+

⟨
⟨aξ(ξ), (ax(ξ)− ⟨axξ(ξθ′), ξ⟩)

⟩
+ |ξ|⟨aξξ(ξθ′)(ξ̂ − ξ̂θ′), ⟨aξ(ξθ′)− aξ(ξ), ∂x⟩ξ̂θ′⟩

+ |ξ|⟨aξ(ξ)− aξ(ξ0), ax(ξ̂θ′)− ax(ξ̂)⟩

− |ξ|⟨aξξ(aξ(ξ̂)− aξ(ξ̂θ′)− aξξ(ξ̂θ′)(ξ̂ − ξ̂θ′)⟩,
and an inductive argument similar to the proof of Lemma 5.15 yields the estimates on the
support of χ̃α

θ

|(αλ∂x)
k(βλ∂ξ)

m⟨ξ, ∂ξ⟩m
′{τ + a, q}| ≲ β2λ,

|(αλ∂x)
k(βλ∂ξ)

m⟨ξ, ∂ξ⟩m
′
∂t{τ + a, q}| ≲ α−1

λ (β2λ).
(5.24)

Using the expansion (5.23) and Lemma 5.15, one deduces that

∂t{τ + a, l̃} ∈ α−1
λ S((β2λ)−1, gαλ

). (5.25)

We continue the proof of the proposition. Write

ϕα
θ,λu

+ = Pλ(D)(Dt + A− L)L̃ϕα
θ,λu

+ + Pλ(D)[χ̃α
θ − (A− Ã)L̃]ϕα

θ,λu
+ + Pλ(D)(1− χ̃α

θ )ϕ
α
θ,λu

+

= Pλ(D)(Dt + A− L)L̃ϕα
θ,λu

+ +R1u
+ +R2u

+.

By the previous lemma and the pseudo-differential calculus, the second and third terms both
take the form (λ−1/2 +(α2λ)−1)χθ where χθ is square-summable. Consequently, we estimate

∥(Rju
+)∥L2(Λε

0,θ)
≲ (αβλ)−1∥χθu

+∥L2 .

Also,

Pλ(Dt + A)L̃ϕα
θ,λu

+ = L̃(Dt + A)ϕα
θ,λu

+ + Pλ(D)[Dt + A, L̃]ϕα
θ,λu

+.
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By the previous lemma, this is bounded in L2 by

(β2λ)−1∥(Dt + A)ϕα
θ,λu

+∥L2 + (β2λ)−1∥ϕα
θ,λu

+∥L2

≲ (β2λ)−1(∥ϕα
θ,λu

+∥L2 + ∥(Dt + A)ϕα
θ,λu

+∥L2).

which is sufficient.
The remaining term is

Pλ(D)LL̃ϕα
θ,λu

+ = LL̃ϕα
θ,λu

+ + [Pλ, L]L̃ϕ
α
θ,λu

+.

As the commutator [Pλ, L] = [Pλ, Ã] is bounded on L2 at frequency λ,

∥([Pλ, L]L̃ϕ
α
θ,λu

+)∥L2 ≲ ∥L̃ϕα
θ,λu

+∥L2 ≲ (α2λ)−1∥ϕα
θ,λu

+∥L2 ,

which is acceptable.
The remaining term is

∥Lϕα
θ,λu

+∥2L2(Λε
0,θ′ )

≲
∫
|h|≤ε

∥Lϕα
θ,λu

+∥2L2(Λh,θ′ )
dh.

For each null surface Λh,θ′ , we have∫
Λh,θ′

|LL̃ϕα
θ,λu

+|2 dσ ≲
∫

|□L̃ϕα
θ,λu

+||Lϕα
θ,λu

+| dxdt+
∫

|⟨T, π⟩| dxdt.

For the second term, write

⟨T, π⟩ = TLLπLL + TLLπLL + 2TLLπLL + 2TLEπLE + 2TLEπLE + TEEπEE

≲ |LL̃ϕα
θ,λu

+LL̃ϕα
θ,λu

+|+ |LL̃ϕα
θ,λu

+EL̃ϕα
θ,λu

+|+ |EL̃ϕα
θ,λu

+EL̃ϕα
θ,λu

+|,

so

∥(LL̃ϕα
θ,λu

+)vT∥2L2(Λε
0,θ′ )

≲ ε
(
∥□L̃ϕα

θ,λu
+∥L2∥LL̃ϕα

θ,λu
+∥L2 + ∥LL̃ϕα

θ,λu
+∥2L2 + ∥EL̃ϕα

θ,λu
+∥2L2

)
≲ ε(β2λ)−2

(
∥□ϕα

θ,λu
+∥L2∥Lϕα

θ,λu
+∥L2 + ∥Lϕα

θ,λu
+∥2L2 + ∥Eϕα

θ,λu
+∥2L2

)
+ ε

(
∥[□, L̃]ϕα

θ,λu
+∥L2

(
(β2λ)−1∥Lϕα

θ,λu
+∥L2 + ∥[L, L̃]ϕα

θ,λu
+∥L2

)
+
(
(β2λ)−1∥□ϕα

θ,λu
+∥L2 + ∥[□, L̃]ϕα

θ,λu
+∥L2

)
∥[L, L̃]ϕα

θ,λu
+∥|L2

+ ∥[L, L̃]ϕα
θ,λu

+∥|2L2 + ∥[E, L̃]ϕα
θ,λu

+∥|2L2

)
,

and appeal to Lemmas 5.12 and 5.19. □

Lemma 5.19. If {L,L,E} is the null frame for the foliation Λθ′, then

∥[E, L̃]∥L2→L2 ≲ α−1(β2λ)−1,

∥[L, L̃]∥L2→L2 ≲ (β2λ)−1,

∥[□, L̃]u∥L2→L2 ≲ (β2λ)−1(∥∇t,xu∥L2 + λ∥(Dt + A)u∥L2) if u = Pλ(Dx)u.
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Proof. The estimate for [E, L̃] is simplest, using the first order symbol expansion (B.1), the
computations

∂xe ∈ S(|ξ|, gαµ), ∂ξe ∈ S(1, gαµ),

∂xl̃ ∈ S(β−1(β2λ)−1, gαµ) ∂ξ l̃ ∈ S((αλ)−1(β2λ)−1, gαµ),

and Lemmas B.3 and B.5 (again considering the outputs at frequency λ and ̸= λ separately).
Next, write [L, L̃] = [D + A, L̃] + [Ã − A, L̃]. The first term was studied in the previous

lemma, while the second again follows from first order calculus.
The commutator estimate for □ is proven similarly as the lemma in the previous section,

differing mainly in the symbol estimates involved.
It remains to consider [□, L̃]. As usual we first replace □ with (Dt +A−)(Dt +A+) at the

cost of an acceptable error, and write

[(Dt + A−)(D + A+), L̃] = (Dt + A−)[Dt + A+, L̃] + [Dt + A−, L̃](Dt + A+). (5.26)

We proceed similarly as in the proof of Lemma 5.18 but first gather symbol bounds
for ∂tl̃. This is a routine computation using Lemmas 5.5 and 5.15 which leads to ∂tl̃ ∈
S(α−1(β2λ)−1, gαλ

),

∂x∂tl̃ ∈ S((α−2
µ + α−1α−1

λ )(β2λ)−1, gαλ
), ∂2x∂tl̃ ∈ S((α−4

µ + α−1α−2
λ )(β2λ)−1, gαλ

),

∂ξ∂tl̃ ∈ S((αµαλ)
−1(β2λ)−1, gαλ

), ∂2ξ∂tl̃ ∈ S((αλ)−1(α2
µλ)

−1(β2λ)−1, gαλ
);

(5.27)

the factors of α arise from derivatives that land on the χα
θ factor. Also note that

∂x∂ta ∈ f(t)S(|ξ|, gαλ
), ∂2x∂ta ∈ α−1

λ f(t)S(|ξ|, gαλ
),

∂ξ∂ta ∈ S(1, gαλ
), ∂2ξ∂ta ∈ S(|ξ|−1, gαλ

),
(5.28)

where as usual f(t) =M(∥∂2g(t)∥L∞
x
).

The second term on the right side of (5.26) is handled by the first order estimates

∥Pλ(D)(∂tl̃)(t,X,D)∥L2→L2 ≲ α−1(β2λ)−1, ∥[A−, L̃]∥L2→L2 ≲ α−1(β2λ)−1.

Also recall from the proof of Lemma 5.18 that the symbol of [Dt + A, L̃] is

1

i
{τ + a, l̃}+ r,

where

r ∈ f(t)S((β2λ)−1(α2
µλ)

−1, gαλ
) + S(((α2

µλ)
−1 + (β2λ)−

1
2 )(β2λ)−1, gαλ

).

Combining the estimates (5.22), (5.27), (5.28) with the explicit form (5.21) of the second
order commutator expansion and Lemma B.3, one obtains ∂tr = r1 + r2 + r3 + r4, where

r1 ∈ α−1f(t)S((αµαλλ)
−1(β2λ)−1, gαλ

), r2 ∈ α−1f(t)S((α2
µλ)

−1(β2λ)−1, gαλ
),

r3 ∈ S((α2
µλ)

−1 + (β2λ)−
1
2 )(β2λ)−1, gαλ

), r4 ∈ S(((α−2
µ (α2

µλ)
−1 + α−1)(β2λ)−1, gαλ

).
(5.29)

These correspond to the pairings {∂2ξ l̃, ∂2x∂ta}, {∂2ξ∂tl̃, ∂2xa}, {∂2x l̃, ∂2ξ∂ta}, and {∂2x∂tl̃, ∂2ξa}.
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For the first term on the right side of of (5.26), we have[
(Dt + A−), [Dt + A+, L̃]

]
=

1

i
(Dt{τ + a+, l̃})(t,X,D) + (Dtr)(t,X,D)

+
1

i
[A−, {τ + a+, l̃}(t,X,D)] + [A−, r(t,X,D)].

The bounds (5.29) imply that

∥(Dtr)(t,X,D)u∥L2 ≲ α−1(β2λ)−1∥u∥L∞L2 + µ(β2λ)−1∥u∥L2

which is acceptable in view of the energy estimate ∥u∥L∞L2 ≲ ∥u∥L2 + ∥(Dt + A+)u∥L2 .

By first order estimates, recalling that {τ + a+, l̃} ∈ S((β2λ)−1, gαλ
) the last two terms of

the commutator satisfy

∥[A−, {τ + a+, l̃}(t,X,D)]∥L2→L2 ≲ β−2

∥[A−, r(t,X,D)]∥L2→L2 ≲ β−2f(t)(α2
µλ)

−1 + β−2
(
(α2

µλ)
−1 + (β2λ)−

1
2

)
,

which is also acceptable by the energy estimate.
Finally, the Poisson bracket estimate (5.25) shows that

∥(Dt{τ + a+, l̃})(t,X,D)∥L2→L2 ≲ β−1(β2λ)−
1
2 .

This completes the proof of the lemma. □

6. The algebra property (1.15)

In this section we prove the estimate (1.15).

Proposition 6.1. Assume that θ > 1
2
and s > θ + 1

2
. Then the space Xs,θ is an algebra.

Moreover, for σ > s we have

∥u · v∥Xσ,θ ≲ ∥u∥Xσ,θ∥v∥Xs,θ + ∥u∥Xs,θ∥v∥Xσ,θ (6.1)

The proof of this algebra property will be based on the estimates in the following two
propositions. The next Proposition is the crux of our result and is the variable coefficients
analogue of Theorem 3 from [39] since, due to the low modulations, we may think of uλ,1, vµ,1
as being approximately free waves.

Proposition 6.2. Let uλ,1, vµ,1, vλ′,1 be functions localized at frequency ≃ λ, ≃ µ, resp. ≃ λ′

and let d0 = min(µ, λ
µ
). Then

(1) In the high-low case µ≪ λ we have:

∥uλ,1 · vµ,1∥
X

0, 14
λ′,≤µ,∞

≲ µ
3
4∥uλ,1∥

X
0, 12
λ,1

∥vµ,1∥
X

0, 12
µ,1

(6.2)

(2) In the high-high to low case µ ≲ λ ≃ λ′ we have

∥Pµ(uλ,1 · vλ′,1)∥
X

1, 14
µ,[d0,µ],∞

+(X̃
1, 14
µ,µ ∩λ

µ
X

1, 14
µ,µ )

≲
µ

3
4

λ
∥uλ,1∥

X
1, 12
λ,1

∥vλ′,1∥
X

1, 12
λ′,1

(6.3)
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Here, due to the selection of modulation 1 inputs, the index 1
2
on the right is superfluous.

We have kept it in order to make it easier to compare the above result with the next result.
One can easily go from modulation 1 to any larger modulations by a rescaling and time

orthogonality argument. This is accomplished in the next proposition.

Proposition 6.3. Let uλ,d1 , vµ,d2, vλ′,d2 be functions localized at frequency ≃ λ, ≃ µ,
respectively ≃ λ′ where d1, d2 ≥ 1 and denote dmax = max(d1, d2).

(1) (Low modulations) For 1 ≤ d1, d2 ≤ µ < λ ≃ λ′, denoting d0 = min
(

λ
µ
, µ
dmax

)
∥uλ,d1 · vµ,d2∥

X
1, 12
λ′,[dmax,µ]

≲ ∥uλ,d1∥
X

1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

(6.4)

∥Pµ(uλ,d1 · vλ′,d2)∥
X

1, 12
µ,[dmaxd0,µ]

+(X̃
1, 12
µ,µ ∩λ

µ
X

1, 12
µ,µ )

≲
µ

λ
∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

(6.5)

(2) (High modulations) For 1 ≤ d2 ≤ µ ≤ d1 ≤ λ ≃ λ′ we have

∥uλ,d1 · vµ,d2∥
X

1, 12
λ,d1

≲ ∥uλ,d1∥
X

1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

(6.6)

For 1 ≤ µ ≤ dmax ≤ λ ≃ λ′ we have

∥Pµ(uλ,d1 · vλ′,d2)∥λ
µ
X

1, 12
µ,µ ∩X̃

1, 12
µ,µ

≲
µ

λ
∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

(6.7)

6.1. Proof of Proposition 6.1. The proof consists of a simple summation argument based
on Proposition 6.3. Let u1, u2 ∈ Xs,θ and write

ui =
∑
λ≥1

Pλu
i
λ, ∥ui∥2Xs,θ ≃

∑
λ≥1

∥uiλ∥2Xs,θ
λ

, i ∈ 1, 2.

By Remark 2.6 we may assume that the uiλ are localized in frequency. By the standard
Littlewood-Paley decomposition we write

u1 · u2 =
∑

λ1,λ2,λ3≥1

Pλ3(Pλ1u
1
λ1

· Pλ2u
2
λ2
).

By splitting the sum into three terms corresponding to the three cases: λ1 ≪ λ2 ≃ λ3,
λ2 ≪ λ1 ≃ λ3, λ3 ≲ λ1 ≃ λ2 we obtain u1 · u2 ∈ Xs,θ from the following estimates, stated
for any frequency localized functions uλ, vµ: Let s = θ + 1

2
+ ε for ε > 0. For µ≪ λ, λ′ ≃ λ

we have

∥Pλuλ · Pµvµ∥Xs,θ

λ′
≲

1

µε
∥uλ∥Xs,θ

λ
∥vµ∥Xs,θ

µ
(6.8)

For µ ≲ λ, λ′ ≃ λ we have

∥Pµ(Pλuλ · Pλ′vλ′)∥Xs,θ
µ

≲
µs−1

λs−1+ε
∥uλ∥Xs,θ

λ
∥vλ′∥Xs,θ

λ′
(6.9)

Here it is essential that we are in the subcritical case s > 1 which allows us to have the
the power µ−ε in (6.8). We write

uλ =
λ∑

d=1

uλ,d ∥uλ∥2Xs,θ
λ

≃
λ∑

d=1

∥uλ,d∥2Xs,θ
λ,d

.
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and the similar decompositions for vµ, vλ′ . Then, using (6.4), (6.6) we have

∥Pλuλ · Pµvµ∥Xs,θ

λ′
≲

∑
d1,d2≤µ

∥Pλuλ,d1 · Pµvµ,d2∥Xs,θ

λ′,[dmax,µ]

+
∑
d2≤µ

∥Pλuλ,≥µ · Pµvµ,d2∥Xs,θ

λ′,≥µ

≲ λs−1µθ− 1
2

∑
d1,d2≤µ

∥uλ,d1∥
X

1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

+ λs−1∥uλ∥X1,θ
λ,[µ,λ]

∑
d2≤µ

∥vµ,d2∥
X

1, 12
µ,d2

≲
µθ− 1

2

µs−1
∥uλ∥Xs,θ

λ
∥vµ∥Xs,θ

µ
+

1

µs−1
∥uλ∥Xs,θ

λ
∥vµ∥Xs,θ

µ
≲

1

µε
∥uλ∥Xs,θ

λ
∥vµ∥Xs,θ

µ

In this argument we have used the factors d
1
2
−θ

i to get square sums in di ≤ µ while the

modulation square summability of Xs,θ
λ′,≥µ is inherited from ∥uλ∥X1,θ

λ,[µ,λ]
due to (6.6). The

proof of (6.9) is similar, using (6.5), (6.7):

∥Pµ(Pλuλ · Pλ′vλ′)∥Xs,θ
µ

≲ µs−1µθ− 1
2

∑
d1,d2

∥Pµ(Pλuλ,d1 · Pλ′vλ′,d2)∥
X

1, 12
µ

≲ µs−1µθ− 1
2

∑
d1,d2

∥uλ,d1∥
X

1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

≲
µs−1

λs−1

µθ− 1
2

λs−1
∥uλ∥Xs,θ

λ
∥vλ′∥Xs,θ

λ′
≲

µs−1

λs−1+ε
∥uλ∥Xs,θ

λ
∥vλ′∥Xs,θ

λ′
.

Finally, (6.1) also follows from (6.8), (6.9) by readjusting the weights.

6.2. Proof of Proposition 6.2. To be able to use the wave packet decomposition from
Proposition 4.7 and Corollary 4.8 we need to be on a small interval such as [kδ, (k+1)δ]. We
fix δ and without loss of generality we prove (6.2), (6.3) on I = [0, δ]. We sum these bounds
by brute force treating 1/δ = D as a universal constant and then ∥vη∥

X
0, 12
η,D [I]

≃ ∥vη∥
X

0, 12
η,1 [I]

.

Let η ∈ {µ, λ′} and we refer to η = µ, (6.2) as Case 1, and to η = λ′, (6.3) as Case 2. For
the remainder of this proof, we normalize the norms of the inputs as follows:

∥uλ,1∥
X

0, 12
λ,1 [I]

= ∥vη,1∥
X

0, 12
η,1 [I]

= 1, η ∈ {µ, λ′} (6.10)

We first give an overview of the estimates needed to establish (6.2), (6.3).

Step 1. (Bilinear angular decomposition)
We may apply appropriate multipliers such that Pλuλ,1 = uλ,1, Pηvη,1 = vη,1, η ∈ {µ, λ′}.

The terms where µ ≃ 1 of Case 1 and λ ≃ λ′ ≃ µ ≃ 1 of Case 2 are easily treated by
Hölder’s inequality and the chain rule. Thus we may assume µ, λ′ ≫ 1 are large enough and
Corollary 4.8 is applicable, providing a decomposition

vη,1 = v+ + v− + vR, η ∈ {µ, λ′}.

The terms uλ,1 · vR are estimated by (4.32) and (4.33) in Corollary 4.9. We collect

v± =
∑

ω∈Ωαη

vω,±, vω,± = Pη

∑
T∈T ±

η ,ωT=ω

cT (t)uT (t). (6.11)
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Next, by Proposition 2.19 and its corollary we decompose

uλ,1 = u+ + u−

Recalling [39, Theorem 3], if u and v are free waves on a Minkowski background, the
modulation of the product uv depends on their relative positions on the null cone τ 2 =
|ξ|2. Accordingly, we perform a bilinear angular decomposition of the products u±1v±2 with
angular separation ≃ α. The bilinear decomposition is nonstandard since the two factors are
localized differently: the high-frequency input will be split pseudo-differentially, while for
the low-frequency input we use a wave packet decomposition to leverage the characteristic
energy estimates from the previous section.

Let Ωα be a partition of the unit circle into angle α arcs and let αη = η−
1
2 . At time t = 0,

for any ω ∈ Ωαη we invoke the partition of unity from the Appendix - Proposition C.1:

1 =
∑
j

ϕ
αj ,kj(ω)
θj

(ξ), t = 0, kj(ω) ∈ {1, 2, 3, 4}.

For each interval ω ∈ Ωαη and (θ, k) ∈ Ωα× [1, 4], define the relation ω ∼α (θ, k) if the triple
(α, θ, k) appears in the above partition of unity. Then ω ∼α (θ, k) only if |θ − ω| ∼ α or
|θ − ω| ≲ αη, and for each scale α there are at most O(1) intervals θ ∈ Ωα related to ω.

Let Φ
αη ,±
t denote the Hamiltonian flows for the half-wave symbols τ + a±

<α−1
η

in the factor-

ization gαβ<√
ηξαξβ = (τ + a+

<α−1
η
)(τ + a−

<α−1
η
). Pulling back both sides by this flow as in (5.3)

and mollifying in the x variable as in (5.4), we obtain a time-dependent partition of unity
for functions localized at frequency λ

Pλ(ξ) =
∑
j

(P<λ/8(Dx)ϕ
αj ,±,kj(ω)
θj

)(t, x, ξ)Pλ(ξ)

=
∑
j

ϕ
αj ,±,kj(ω)
θj ,λ

(t, x, ξ) (6.12)

=
∑
j

ϕ̃
αj ,±,kj(ω)
θj ,λ

(t, x, ξ), (6.13)

where ϕ̃θ(t, x, ξ) := ϕθ(t, x,−ξ) (recall that the multipliers sλ are assumed radial). Note that

in general ϕ̃±
θ ̸= ϕ±

−θ.
For any signs ±1,±2 let ± = ±1±2. One has

u±1v±2 =
∑

ω∈Ωαη

u±1vω,±2 =
∑
ω

∑
j

(ϕ
αj ,±1,kj(ω)
θj ,λ

u±1)vω,±2

=
∑

α∈[αη ,1]

∑
θ∈Ωα

4∑
k=1

ϕα,±1,k
θ,λ u±1

∑
ω∼(α,±θ,k)

vω,±2

=
∑

α∈[αη ,1]

∑
θ∈Ωα

4∑
k=1

(ϕα,±1,k
θ,λ u±1)vα,±2,k

±θ .
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Thus for α ̸≃ αη, v
α,±2,k
±θ contains packets uT corresponding to T = (xT , ωT ) ∈ T ±2

η which
have angular separation of α relative to ±θ: ∠(ωT ,±θ) ≃ α:

v±2,α,k
θ (t) = Pη

∑
T∈T ±2

η ,ωT∼(α,±θ,k)

cT (t)uT (t). (6.14)

Since the ωT ’s are separated by ≃ η−
1
2 , for every θ we have roughly α

η−
1
2
= αη

1
2 directions ω

which obey this condition.
The index k is a technical artifact of our construction and can be safely ignored. Hence

we shall hereafter simply write

u±1v±2 =
∑

α∈[αη ,1]

∑
θ∈Ωα

(ϕα,±1

θ,λ u±1)vα,±2

±θ . (6.15)

A typical term (ϕα,+
θ,λ u)v

α,±
±θ intuitively involves waves propagating at relative angle α.

For studying nonresonant interactions of the form Pµ

(
Pλu

±Pλv
±), we need a modified

decomposition using instead the partition (6.13):

u±1v±2 =
∑

α∈[αη ,1]

∑
θ∈Ωα

(ϕ̃α,±1

θ,λ u±1)vα,±2

θ . (6.16)

Note that both terms of the form (ϕα,+
θ,λ u)v

α,−
−θ and (ϕ̃α,+

θ,λ u)v
+,α
θ only involve interactions

between pairs of frequencies (ξ1, ξ2) with ∠(ξ1,−ξ2) ∼ α.
Finally, we sometimes write vα,±2

θ,η to clarify the frequency of the packets constituting vα,±2

θ .

Step 2. (Small angles interactions)

We first consider the minimal angle case consisting of the α ≃ αη = η−
1
2 terms in (6.15) ,

which will mostly follow from Hölder’s inequality.

Proposition 6.4. Let λ ≳ η ∈ {µ, λ′}. Under normalization (6.10), on I, one has:∑
θ∈Ωαη

∥ϕαη ,±1

θ,λ u±1 · vαη ,±2

θ ∥L2 ≲ η
3
4 (6.17)

∑
θ∈Ωαη

∥Qg<
√
λ

(
ϕ
αη ,±1

θ,λ u±1 · vαη ,±2

θ

)
∥L2 ≲ λη

3
4 (6.18)

∑
θ∈Ωαη

∥Qg<
√

λ

(
ϕ
αη ,±1

θ,λ u±1 · vαη ,±2

θ

)
∥L2L1 ≲ λ (6.19)

For any α ≥ αη, under (6.10), one has:∑
θ∈Ωα

∥□g<
√
λ
ϕα,±1

θ,λ u±1 · vα,±2

θ ∥L2 + ∥ϕα,±1

θ,λ u±1 ·□g<
√
λ
vα,±2

θ ∥L2 ≲ ληα
1
2 (6.20)∑

θ∈Ωα

∥□g<
√
λ
ϕα,±1

θ,λ u±1 · vα,±2

θ ∥L2L1 + ∥ϕα,±1

θ,λ u±1 ·□g<
√
λ
vα,±2

θ ∥L2L1 ≲ λ (6.21)

As a consequence we will obtain the following estimates in low modulation spaces, which
take care of the terms in (6.15) with α ≃ αη.
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Corollary 6.5. In Case 1, resp. Case 2, under normalization (6.10), one has:∑
θ∈Ωαη

∥ϕαµ,±1

θ,λ u±1 · vαµ,±2

θ,µ ∥
X

0, 14
λ′,1[I]

≲ µ
3
4 (6.22)

∑
θ∈Ωαη

∥Pµ

(
ϕ
αλ′ ,±1

θ,λ u±1 · vαλ′ ,±2

θ,λ′

)
∥
X

0, 14
µ,d0

[I]
≲

λ

µ
1
4

(6.23)

Step 3. (Non-resonant interactions)
We continue with the non-resonant parts of Case 2 (η = λ′), which include u+ · v+, u− · v−

and the terms of u± · v∓ in (6.15) where α > max(µ
λ
, αλ). Here we have the following

estimates, which are responsible for the λ
µ
loss in the high modulation bound X

1, 1
4

µ,µ in (6.3)2

Proposition 6.6. Let D ≤ µ≪ λ ≃ λ′ and let ± be a sign. Suppose u± = Pλu
±, v = Pλ′v±.

Then:

∥Pµ(u
± · v±)∥

X
1, 14
µ,µ [I]

≲ µ− 1
4∥u±∥

X
1, 12
λ,1

∥v±∥
X

1, 12
λ,1

. (6.24)

More precisely,

µ
1
4∥∇t,xPµ(u

± · v±)∥L2 ≲ µ− 1
4
µ

λ
∥u±∥

X
1, 12
λ,1

∥v±∥
X

1, 12
λ,1

,

µ
1
4
−1∥□g<√

µ
Pµ(u

± · v±)∥L2 ≲ µ− 1
4∥u±∥

X
1, 12
λ,1

∥v±∥
X

1, 12
λ,1

.

For α > max(µ
λ
, αλ) one has:∑

θ∈Ωα

∥Pµ

(
ϕα
θ,λu

± · v∓,α
−θ

)
∥
X

1, 14
µ,µ [I]

≲N µ− 1
4

(µ
λ

)
∥u±∥

X
1, 12
λ,1

∥v∓∥
X

1, 12
λ,1

(6.25)

The bounds (6.24), (6.25) are used for the X
1, 1

4
µ,µ part of (6.3). To prove the X̃

1, 1
4

µ,µ part
we also need L∞L2 estimates, but these follow easily by Bernstein PµL

∞L1 → µL∞L2 and
Hölder L∞L2 × L∞L2 → L∞L1.

The proof of this proposition uses several technical lemmas, whose proofs are deferred to
a later section. We begin with a pseudo-differential calculus estimate.

Lemma 6.7. Let u± = Pλu
±, v± = Pλv

±, where v = v± =
∑

ω∈Ωαλ
vω,± is a superposition

of frequency λ packets. Consider the bilinear decompositions

u±v∓ =
∑
α

∑
θ

(ϕα,±
θ,λ u)v

α,∓
−θ , u±v± =

∑
α

∑
θ

(ϕ̃α,±
θ,λ u)v

α,±
θ

as in (6.15), (6.16). If µ≪ αλ and α ≫ λ−
1
2 , then there is a rapidly converging expansion

Pµ(ϕ
α
θ,λuv

α
−θ,λ) =

∑
j=1,2

∑
k⃗

(αλ)−1Pµ,⃗k(ϕ
j,α

θ,⃗k
uψj,α

−θ,⃗k
v) + P̃µ(ϕ

α
θ,λur

α
−θ),

2The loss of λ
µ in (6.3) caused by (6.24) is essentially due to our choice of spaces. Assuming constant

coefficients, a ++ high-high to low (λ, λ) → µ interaction would have output modulation λ, while we force
our modulation weights to be at most equal to the frequency (µ). To compensate for this, we introduced the

X̃
1, 14
µ,µ norms which retain the expected µ

λ factor.
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where ϕj,α

θ,⃗k
, ψj,α

−θ,⃗k
∈ ⟨k⃗⟩−NS(1, gαλ

) are square-summable in θ, Pµ,⃗k are Fourier multipliers

supported in |ξ| ≲ µ with L2 → L2 norm O(⟨k⟩−N) and rα−θ =
∑

|ω∓θ|≲α

∑
T cT rT is a

superposition of packets rT with ∥rT∥WP = O((α2λ)−∞) uniformly in T . Here WP denotes
any weighted norm WPN

T as defined in (4.3).

The next lemma gives a variable-coefficient version of some L2 null form estimates con-
sidered by Foschi and Klainerman [8]. Observe that µ

1
2 on the right side is consistent with

scaling.

Lemma 6.8. For µ≪ λ and any pair of signs ±1,±2 ∈ {±},

∥PµQg<
√
λ
(u±1 , v±2)∥L2 ≲ µ

1
2∥u±1∥

X
1, 12
λ,1

∥v±2∥
X

1, 12
λ,1

, (6.26)

∥Pµ(u
±1v±2)∥L2 ≲ µ

1
2∥u±1∥

X
0, 12
λ,1

∥v±2∥
X

0, 12
λ,1

, (6.27)

∥∂tPµ(u
±1v±2)∥L2 ≲ µ

1
2λ∥u±1∥

X
0, 12
λ,1

∥v±2∥
X

0, 12
λ,1

. (6.28)

Finally, the last part of Proposition 6.6 utilizes

Lemma 6.9. For α > max(µ
λ
, λ−

1
2 ) in the bilinear decomposition,∑

θ

µ1+ 1
2∥Pµ(ϕ

α,∓
θ,λ uv

α,±
−θ )∥L2 ≲N [(αλ)−1 + (α2λ)−N ]

(µ
λ

)2

∥u∥
X

1, 12
λ,1

∥v∥
X

1, 12
λ,1

,

∑
θ

µ
1
2
−1∥PµQ(ϕ

α,∓
θ,λ u, v

α,±
−θ )∥L2 ≲N [α

1
2µ− 1

2 + (α2λ)−N ]
(λ 1

2

µ

)µ
λ
∥u∥

X
1, 12
λ,1

∥v∥
X

1, 12
λ,1

.

Now we show how these claims imply Proposition 6.6. Consider (6.24). The preceding
lemmas imply the L2 bound in (6.24). The □ part of the norm is bounded by

µ
1
4
−1
(
∥Pµ□g<

√
λ
(u+λ , v

+
λ )∥L2 + ∥[Pµ,□g<

√
λ
](u+λ v

+
λ )∥L2 + ∥(□g<√

µ
−□g<

√
λ
)Pµ(u

+
λ v

+
λ )∥L2

)
.

For the last term we use the estimate (1.29), Bernstein, and the energy estimate to infer

∥(□g<√
µ
−□g<

√
λ
)Pµ(u

+
λ v

+
λ )∥L2 ≲ ∥Pµ∂t(u

+
λ v

+
λ )∥L∞L2 + µ∥Pµ(u

+
λ v

+
λ )∥L∞L2

≲ µ∥∇t,xu∥L∞L2∥v∥L∞L2 + µ∥u∥L∞L2∥∇t,xv∥L∞L2

≲
µ

λ
∥u+λ ∥

X
1, 12
λ,1

∥v+λ ∥
X

1, 12
λ,1

.

Writing the commutator as

[Pµ,□g<
√
λ
] =

(
[Pµ, g<µ]P<8µ +

∑
ν∈[µ,

√
λ]

[Pµ, gν ]P̃ν

)
(∂2x + ∂x∂t),

one deduces as above that

∥[Pµ,□g<
√
λ
](u+λ v

+
λ )∥L2 ≲

µ

λ
∥u+λ ∥

X
1, 12
λ,1

∥v+λ ∥
X

1, 12
λ,1

.

For the first term, write

∥Pµ□g<
√
λ
(u+λ v

+
λ )∥L2 ≲ ∥Pµ(□g<

√
λ
u+λ v

+
λ )∥L2 + ∥Pµ(u

+
λ□g<

√
λ
v+λ )∥L2

+ ∥PµQ<
√
λ(u

+
λ , v

+
λ )∥L2 .
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By Bernstein, Hölder, and energy estimates, the first two terms are bounded by

µ∥□g<
√
λ
u+λ v

+
λ ∥L2L1 + µ∥u+λ□g<

√
λ
v+λ ∥L2L1 ≲

µ

λ
∥u+λ ∥

X
1, 12
λ,1

∥v+λ ∥
X

1, 12
λ,1

.

The main null form term is estimated using Lemma 6.8. Collecting all the estimates we
obtain the □g<√

µ
part of (6.24).

The estimate (6.25) is proved similarly. For the L2 part we appeal to Lemma 6.9, while
for the □g<√

µ
part we argue as above to first bound

∑
θ

µ
1
2
−1∥(□g<√

µ
Pµ − Pµ□g<

√
λ
)(ϕα

θ,λuv
α
−θ,λ)∥L2 ≲ µ− 1

2 [
µ

λ
+ λ−

3
2 ]∥u∥

X
1, 12
λ,1

∥v∥
X

1, 12
λ,1

,

and estimate ∥Pµ□g<
√
λ
(ϕα

θ,λuv
α
−θ,λ)∥L2 as before. Modulo the preceding lemmas, the proof

of Proposition 6.6 is complete.

Step 4. (Almost resonant interactions)
We have arrived at the key part of the argument, involving (6.15) for any signs ±1,±2

in Case 1, respectively the signs ±1±2 = − in Case 2, with the sum restricted to αλ =
λ−

1
2 < α ≤ µ

λ
. Thus, in Case 2 we may assume

√
λ < µ. The remaining parts of Case 2 are

non-resonant and were treated in Step 3.

To show that u±1 · v±2 lies in X
0, 1

4

λ′,≤µ,∞[I], respectively X
0, 1

4

µ,[d0,µ],∞[I] it suffices to use the

decomposition (6.15) and for each α to define an appropriate modulation d such that the

α-term is in X
0, 1

4

λ′,d[I], resp. X
0, 1

4
µ,d [I], which proceeds as follows:

Case 1. (η = µ). Define3 d = µα2. When α ranges from αµ to 1, d ranges from D to µ
and it suffices to prove, under (6.10):∑

θ∈Ωα

∥ϕα,±1

θ,λ u±1 · vα,±2

θ,µ ∥
X

0, 14
λ′,µα2 [I]

≲ µ
3
4 (6.29)

Case 2. (η = λ′ ≃ λ). Define3 d = λ2α2

µ
. When α ranges from αλ to µ

λ
, d ranges from

d0 =
λ
µ
to µ and it suffices to prove, under (6.10):

∑
θ∈Ωα

∥Pµ

(
ϕα,±1

θ,λ u±1 · vα,±2

θ,λ′

)
∥
X

0, 14

µ, λ
2α2
µ

[I]
≲

λ

µ
1
4

(6.30)

Both cases are based on the following proposition, which incorporates the characteristic
energy estimate from Section 5.2 and the uniform bounds on wave packets.

3 The choice of d is motivated by the Fourier analysis of the constant coefficients case, see [39]
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Proposition 6.10. Let α > αη. In decomposition (6.15), under (6.10) we have4∑
θ∈Ωα

∥ϕα,±1

θ,λ u±1 · vα,±2

θ ∥L2[I] ≲
η

1
2

α
1
2

(6.31)

∑
θ∈Ωα

∥Qg<
√
λ

(
ϕα,±1

θ,λ u±1 · vα,±2

θ

)
∥L2[I] ≲ (ληα2)

η
1
2

α
1
2

. (6.32)

The L2 part of both (6.29) and (6.30) follows immediately from (6.31), by discarding the
multiplier Pµ if needed. For the □g<√

µ
part of (6.30) we write

□g<√
µ
Pµ = Pµ□g<

√
λ
+
(
□g<√

µ
−□g<

√
λ

)
Pµ + [□g<

√
λ
, Pµ]. (6.33)

For the first term, we discard Pµ and write

□g<
√
λ

(
ϕα,±1

θ,λ u±1 · vα,±2

θ

)
= 2 Qg<

√
λ

(
ϕα,±1

θ,λ u±1 · vα,±2

θ

)
+ (6.34)

□g<
√
λ
ϕα,±1

θ,λ u±1 · vα,±2

θ + ϕα,±1

θ,λ u±1 ·□g<
√
λ
vα,±2

θ

In both (6.29) and (6.30), the bound for the Qg<
√
λ
term follows from (6.32), while the bounds

for the other terms follow from (6.20).
For the other two terms in (6.33), we note first of all that as

µ−1d
1
4
−1∥(□g<√

µ
−□g<

√
λ
)Pµw∥L2 ≲ µ−1d

1
4
−1∥∇t,xPµw∥L∞L2 ≲ d−

1
2∥Pµw∥

X
0, 14

µ, λ
2α2
µ

[I]
,

the second term may be absorbed in the left side of (6.30) so long as µ≪ λ, which guarantees
that d≫ 1.

Also, since µ >
√
λ we may estimate

∥[□g<
√
λ
, Pµ]w∥L2 ≲ µ∥P[µ/2,2µ]w∥L2 + ∥∂tP[µ/2,2µ]w∥L2 , (6.35)

and again use (2.1) to obtain∑
θ∈Ωα

∥Pµ(ϕ
α,±1

θ,λ u±1 · vα,±2

θ,λ′ )∥
X

0, 14

µ, λ
2α2
µ

[I]
(6.36)

≲
λ

µ
1
4

+
∑
θ∈Ωα

µ−1d
1
4
−1∥∂tP[µ/2,2µ](ϕ

α,±1

θ,λ u±1 · vα,±2

θ,λ′ )∥L2

≲
λ

µ
1
4

+
∑
θ∈Ωα

d−1∥P[µ/2,2µ](ϕ
α,±1

θ,λ u±1 · vα,±2

θ,λ′ )∥|
X

0, 14

µ, λ
2α2
µ

[I]
.

The summation on the right side is handled by another perturbative argument. For fixed
α > λ−

1
2 and a small constant c > 0, let M be the best constant in (6.30) which is uniform

in µ ≤ cλ. Invoking Proposition 6.6 and (6.29) for µ < αλ and µ > cλ, respectively, we have
M ≲ 1 + d−1

cλM , where dµ := λ2α2/µ, and the right term may be absorbed into the left side
if c is sufficiently small.

4 The estimate (6.32) shows that the effect of the null form Qg<
√

λ
is ληα2 which is a familiar factor from

the constant coefficients case, given the angular localization.
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In what follows we complete the proof of Proposition 6.2 by establishing Proposition 6.4,
Corollary 6.5, Proposition 6.10, Lemma 6.7 and Lemmas 6.8, 6.9.

6.2.1. Proof of Proposition 6.10. We successively consider the two estimates in the propo-
sition.

(1) Using (5.10) and (4.28) the estimate (6.31) reduces to proving

∥ϕα,±1

θ,λ u±1 · vα,±2

θ ∥L2 ≲
η

1
2

α
1
2

∥χ0
θu

±1∥L2

( ∑
T,ωT∼(α,±θ)

|cT |2L∞
t

) 1
2 (6.37)

for any θ ∈ Ωα. Recall

vα,±2

θ =
∑

ω,ω∼(α,±θ)

vω,±2 (6.38)

where vω,±2 is given by (6.11). Since there are ≃ αη
1
2 directions ω in the (6.38) sum, (6.37)

follows from summing the following with Cauchy-Schwarz in ω:

∥ϕα,±1

θ,λ u±1 · vω,±2∥L2 ≲
η

1
4

α
∥χ0

θu
±1∥L2

( ∑
T,ωT=ω

|cT |2L∞
t

) 1
2 (6.39)

Since for any ω we have

I × R2 =
⋃

T,xT∈Ξω
η

T

and the T ’s are finitely overlapping, we obtain (6.39) if we have

∥ϕα,±1

θ,λ u±1 · PηcTuT∥L2(T ′) ≲
1

⟨d(T, T ′)⟩N
η

1
4

α
∥χ0

θu
±1∥L2 |cT |L∞

t
(6.40)

for any T, T ′ with ωT = ωT ′ = ω. This follows from (4.10) and Corollary 5.11.

(2) The proof of (6.32) proceeds similarly by reducing to

∥Qg<
√
λ

(
ϕα,±1

θ,λ u±1 · vω,±2
)
∥L2 ≲ (ληα2)

η
1
4

α
∥χ1

θu
±1∥

( ∑
T,ωT=ω

|cT |2L∞
t
+ |c′T |

2
L2
t

) 1
2 (6.41)

for every ω, based on (4.28), (4.29), (5.10) with j = 1. Associated to g√λ and to ω we
consider vector fields L,L,E which form a null frame as in section 3.2. Then we can express
the null form as

2Qg<
√

λ

(
u, v

)
= Lu · Lv + Lu · Lv − 2Eu · Ev.

For the term Lϕα,±1

θ,λ u±1 · Lvω,±2 we proceed as before, reducing to

∥Lϕα,±1

θ,λ u±1 · LPηcTuT∥L2(T ′) ≲ ∥Lϕα,±1

θ,λ u±1∥L2(T ′)∥LPη

(
cTuT

)
∥L∞(T ′)

≲ λη
5
4α

1

⟨d(T, T ′)⟩N
∥χ1

θu
±1∥L2 |cT |L∞

t

which holds due to (4.31) and Corollary 5.11.
The terms

Lϕα,±1

θ,λ u±1 · Lvω,±2 and Eϕα,±1

θ,λ u±1 · Evω,±2
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are easier, as here we obtain the corresponding part of (6.41) by Hölder using (4.37), (4.36),

(5.17), (5.19) and using the fact that α ≥ η−
1
2 .

6.2.2. Proof of Proposition 6.4. For (6.17) - (6.19) we may assume without loss of gen-

erality that v
αη ,±2

θ = vω,±2 .

(1) For (6.17) we use Hölder’s inequality

∥ϕαη ,±1

θ,λ u±1 · vω,±2∥L2 ≲ ∥ϕαη ,±1

θ,λ u±1∥L2∥vω,±2∥L∞

Square summing this with (4.35) and Prop. 5.6 we obtain (6.17).

(2) By square summing and Cauchy-Schwarz we reduce (6.18) to

∥Qg<
√

λ

(
ϕ
αη ,±1

θ,λ u±1 · vω,±2
)
∥L2 ≲ λη

3
4∥χαη

θ u
±1∥L2

( ∑
T,ωT=ω

|cT |2L∞
t
+ |c′T |

2
L2
t

) 1
2

for some square-summable χ
αη

θ . Associated to g√λ and to ω we consider vector fields L,L,E
which form a null frame as in section 3.2. Then we express the null form as

2Qg<
√

λ

(
u, v

)
= Lu · Lv + Lu · Lv − 2Eu · Ev

We use Hölder’s inequality: L2L2 × L∞L∞ → L2L2 and (5.18), (4.38) for LuLv; L∞L2 ×
L2L∞ → L2L2 with (5.19), (4.37) for the second term; and L2L2 × L∞L∞ → L2L2 with
(5.17), (4.36) for the third term.

(3) For (6.19) we use Hölder L∞L2 × L2L2 → L2L1 together with the null frame L,L,E
associated to g√λ and to θ, using (5.17), (5.19), (5.18) and

∥Evω,±2∥2L∞L2[I] ≲
∑

T,ωT=ω

η |cT |2L∞
t

∥Lvω,±2∥2L2[I] ≲
∑

T,ωT=ω

|cT |2L∞
t
+ |c′T |

2
L2
t

∥Lvω,±2∥2L∞L2[I] ≲
∑

T,ωT=ω

η2 |cT |2L∞
t
.

(4) The first part of (6.20) follows from L2 × L∞ → L2 with Prop. 5.12, (4.28) and

∥vα,±2

θ ∥L∞ ≲ ηα
1
2

( ∑
T,ωT∼(α,±θ)

|cT |2L∞
t

) 1
2 . (6.42)

The second part of (6.20) follows from L∞L2 × L2L∞ → L2L2 based on (5.15) and( ∑
θ∈Ωα

∥□g<
√
λ
vα,±2

θ ∥2L2L∞

) 1
2
≲ η2α

1
2 . (6.43)

66



This estimate is obtained by decomposing as in (6.38), using Cauchy-Schwarz in ω, using
(4.28)-(4.30) and

∥□g<
√
λ
vω,±2∥L2L∞ ≲ η

7
4

( ∑
T,ωT=ω

|cT |2L∞
t
+ |c′T |

2
L2
t
+ η−2 |c′′T |

2
L2
t

) 1
2

(5) Finally, the proof of (6.21) is similar to the proof of (6.20) in (4), except that we use
L2L2×L∞L2 → L2L1 for the first part and L∞L2×L2L2 → L2L1 for the second part. Here
(6.42) is replaced by

∥vα,±2

θ ∥L∞L2 ≲
( ∑
T,ωT∼(α,±θ)

|cT |2L∞
t

) 1
2

while (6.43) is replaced by ( ∑
θ∈Ωα

∥□g<
√
λ
vα,±2

θ ∥2L2L2

) 1
2
≲ η.

6.2.3. Proof of Corollary 6.5. The estimate (6.22) follows immediately from (6.17), (6.34),
(6.18) and (6.20) for α = αµ. For (6.23) we consider two cases:

(1) λ
1
2 ≤ µ and d0 =

λ
µ

(2) µ ≤ λ
1
2 and d0 = µ.

The L2 part of (6.23) also follows from (6.17) in both cases (in Case (2) we use µ
1
2 ≤ λ

1
4 ).

For the □g<√
µ
Pµ part of Case (1), since λ

1
2 ≤ µ we may freely replace □g<√

µ
Pµ by □g<

√
λ
Pµ.

We estimate the Pµ□g<
√

λ
by (6.34), (6.18) and (6.20) for α = αλ′ . Then we treat [Pµ,□g<

√
λ
]

by the argument used to prove (6.35), (6.36).

For the □g<√
µ
Pµ part of Case (2) we denote w = ϕ

αλ′ ,±1

θ,λ u±1 · vαλ′ ,±2

θ,λ′ and write

□g<√
µ
Pµw = Pµ□g<

√
λ
w −

∑
ν∈[√µ,

√
λ]

Pµ

(
gν · ∂x∂t,xP≲max(ν,µ)w

)
+ [□g<√

µ
, Pµ]w

We will use Bernstein’s inequality Pµ : L2L1 → µL2L2. For the first term we invoke the
L2L1 estimates (6.19) and (6.21) for α = αλ′ .

For the second term we discard the Pµ and write

∥gν · ∂x∂t,xP≲max(ν,µ)w∥L2L1 ≲
1

ν2
max(ν, µ)∥∂2gν∥L2L∞×

×
(
∥∂t,xϕ

αλ′ ,±1

θ,λ u±1∥L∞L2∥vαλ′ ,±2

θ,λ′ ∥L∞L2 + ∥ϕαλ′ ,±1

θ,λ u±1∥L∞L2∥∂t,xv
αλ′ ,±2

θ,λ′ ∥L∞L2

)
.

which is more than enough. The third term is estimated similarly since it is of the form
≈ µ−1∇g∂x∂t,x.

6.2.4. Proof of Lemma 6.7. We remark first of all that by standard pseudo-differential
calculus arguments (see for example [12]), if A(x, ξ) ∈ S(1, gα) with α ≥ αλ := λ−1/2 and vT
is a frequency λ packet, then so is A(X,D)vT .

From this one infers
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Lemma 6.11. Let vT be a frequency λ packet with initial direction ω. Suppose |θ−ω| ≤ α/4

and ϕθ(t, x, ξ) = χ
( |ξ̂−ξ̂θ(t,x)|

α

)
Pλ(ξ) where χ is smooth and supported in [−1, 1]. Then

∥(1− ϕθ(t,X,D))vT∥WP = O((α2λ)−∞).

Proof. Put ψ = 1−ϕ. Without loss of generality assume vT is centered at x = 0. Let χ(x) be a
bump function supported in ball |x| ≤ α/16. Then χψ only admits input frequencies outside
the sector ∠(ξ, ω) ≲ α, so ∥χψ(t,X,D)vT∥WP = O((α2λ)−∞). On the other hand, the spatial
decay of ψvT by our initial remark implies that ∥(1− χ)ψ(t,X,D)vT∥WP = O((α2λ)−∞) as
well. □

Using Lemma 6.11 we may write

vα−θ,λ = ψα
−θv

α
−θ,λ + rαθ ,

where ψα
−θ = χ

( |ξ̂+ξ̂θ(t,x)|
α

)
sλ(ξ) for smooth cutoff function χ, and where rαθ =

∑
T aT rT is a

sum of packets with ∥rT∥WP = O((α2λ)−∞).
It remains to decompose the psuedo-differential term Pµ(ϕ

α
θ,λu · ψα

−θv
α
−θ,λ). We write v :=

vα−θ,λ and omit the dependence on α, λ, and t in the other notations. For any w ∈ L2,

⟨Pµ(ϕθuψ−θv), w⟩ =
∫
ei⟨x,ξ+η+ζ⟩ϕθ(x, ξ)ψ−θ(x, η)sµ(ζ)û(ξ)v̂(η)ŵ(ζ) dξdηdζdx

= i

∫
ei⟨x,ξ+η+ζ⟩⟨∂x, F (ξ, η, ζ)⟩ϕθ(x, ξ)ψ−θ(x, η)sµ(ζ)

× û(ξ)v̂(η)ŵ(ζ) dξdηdζdx,

where F = ξ+η+ζ
|ξ+η+ζ|2 . As µ ≪ αλ, the denominator of F is bounded below |ξ + η + ζ| ≳ αλ

on the support of the integrand.
Introducing slightly wider cutoffs ϕ̃θ, ψ̃−θ so that ϕ̃±θϕ±θ = ϕ±θ, we separate variables, for

instance using Fourier series expansion

ϕ̃θψ̃−θs<2µF = (αλ)−1
∑
k⃗

ak⃗(x)e1,k1(ξ)e2,k2(η)e3,k3(ζ),

where e1,k1 and e3,k3 are Fourier characters adapted to λ × (αλ) rectangles and e2,k2 are

adapted to µ × µ rectangles. By the derivative bounds (5.1) with α =
√
λ, the coefficients

ak⃗ = (αλ)⟨ϕ̃θψ̃−θs<2µF, ek⃗⟩ satisfy

∂jxak⃗ = O(λ
j−1
2 |⃗k|−N), j ≥ 1. (6.44)

Consequently, the integral takes the form

(αλ)−1
∑
k⃗

∫
ei⟨x,ξ+η+ζ⟩ak⃗(x)

[
(∂xϕθ)(x, ξ)ψ−θ(x, η) + ϕθ(x, ξ)(∂xψ)(x, η)]

× sµ(ζ)e1,k1(ξ)e2,k2(η)e3,k3(ζ)û(ξ)v̂(η)ŵ(ζ) dξdηdζdx

=
⟨∑
j=1,2

∑
k⃗

(αλ)−1ϕj

θ,⃗k
uψj

−θ,⃗k
v, Pµ,⃗k(D)w

⟩
,
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where

ϕ1
θ,⃗k
(x, ξ) = |k|2N/3ak⃗(x)(∂xϕθ)e1,k1(ξ), ϕ2

θ,⃗k
(x, ξ) = |k|2N/3ak⃗(x)ϕθe1,k1(ξ)

ψ1
−θ,⃗k

(x, η) = |k|−N/3ψ−θ(x, η)e2,k2(η), ψ2
−θ,⃗k

(x, η) = |k|−N/3(∂xψ−θ)(x, η)e2,k2(η)

Pµ,⃗k(ζ) = |k|−N/3sµ(ζ)e3,k3(ζ)

The ∂x is harmless since ϕθ, ψ−θ are Lipschitz in x, so we have a rapidly converging series
expansion

Pµ(ϕθuψ−θv) =
∑
j=1,2

∑
k⃗

(αλ)−1Pµ,⃗k(D)(ϕj

θ,⃗k
uψj

−θ,⃗k
v)

where ϕj

θ,⃗k
, ψj

−θ,⃗k
∈ ⟨k⃗⟩−NS(1, gαλ

) and retain the angular localization of ϕθ, ψ−θ. Although

these are not quite localized in output frequency, the bounds (6.44) imply rapid decay from

frequency λ on the
√
λ scale. By Lemma B.5 these tails are negligible for square summability

in θ.

6.2.5. Proof of Lemmas 6.8 and 6.9. Both parts can be proved in parallel. Without loss
of generality we consider just the ++ and +− interactions. Begin with the decompositions

u+v− =
∑

λ−1/2≤α≤1

∑
θ

(ϕα
θ,λu)v

α
−θ,λ, u

+v+ =
∑
α

∑
θ

(ϕ̃α,±
θ,λ u)v

α,±
θ,λ

where vα±θ,λ =
∑

|ω∓θ|∼α v
ω is a sum of frequency λ packets. The arguments involved depend

on the relation between α, µ/λ, λ−1/2, and for each of the following cases we discuss the
null form estimates (Cases 1a, 2a, 3a, 4) and the L2 estimates (Cases 1b, 2b, 3b, 4) for both
++ and +− interactions. Note that Lemma 6.9 is covered by Cases 2 and 4 below. Denote
Q := Qg<

√
λ
.

Case 1: λ−1/2 ≤ α ≤ µ/λ.
Case 1a++: We can use Cauchy-Schwartz in ω to obtain

∥PµQ(ϕ̃
α
θ,λu, v

α
θ,λ)∥L2 ≲ (α2λ)

1
4

( ∑
|ω−θ|∼α

∥PµQ(ϕ̃
α
θ,λu, v

ω)∥2L2

)1/2

For each ω we expandQ using the null frame adapted to the direction ω and discard the molli-
fier Pµ. For the term Lϕ̃α

θ,λuLv
ω, Hölder, energy estimates, and the wave packet bounds (4.37)

imply

∥Lϕ̃α
θ,λuLv

ω∥L2 ≲ ∥Lϕ̃α
θ,λu∥L∞L2∥Lvω∥L2L∞ ≲ λ−

1
4∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

∥vω∥
X

1, 12
λ,1

.
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For the other terms we use the characteristic energy estimate (5.6) and the packet bounds (4.10)
through (4.13) to get

∥Eϕ̃α
θ,λuEv

ω∥2L2 ≲
(∑

T

|cT |2L∞
t
λ

3
2
+1
)
· sup

T
∥Eϕ̃α

θ,λu∥2L2(T )

≲ λ−
1
2∥ϕ̃α

θ,λu∥2
X

1, 12
λ,1

∑
ωT=ω

λ2|cT |2L∞
t
,

∥Lϕ̃α
θ,λuLv

ω∥2L2 ≲ ∥
∑
T

cTLϕ̃
α
θ,λuLuT∥2L2 +

Lϕ̃α
θ,λu

∑
T

c′TvT
2

L2

≲
(∑

T

|cT |2L∞λ
3
2
+2
)
· sup

T
∥Lϕ̃α

θ,λu∥2L2(T ) + ∥Lϕ̃α
θ,λu∥2L∞L2∥

∑
T

c′TuT∥2L2L∞

≲ λ
1
2∥ϕ̃α

θ,λu∥2
X

1, 12
λ,1

∑
ωT=ω

λ2|cT |2L∞
t
+ ∥ϕ̃α

θ,λu∥2
X

1, 12
λ,1

∑
ωT=ω

λ
3
2 |c′T |2L2

t

Overall

∥PµQ(ϕ̃
α
θ,λu, v

ω)∥L2 ≲ λ
1
4∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

(∑
ωT=ω

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2
,

∥PµQ(ϕ̃
α
θ,λu, v

α
−θ,λ)∥L2 ≲ µ

1
2

(αλ
µ

) 1
2∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

( ∑
|ω−θ|∼α

∑
ωT=ω∼α

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2
,

which can be summed in α when α ∈ [λ−1/2, µ/λ].
Case 1a+−: In this case the waves ϕα

θ,λu and vω propagate at small relative angles, so
by Proposition 5.9 the characteristic energy estimate for the term Lϕα

θ,λuLv
ω improves by a

factor of α. The previous estimates are replaced by

∥PµQ(ϕ
α
θ,λu, v

ω)∥L2 ≲ αλ
1
4∥ϕα

θ,λu∥
X

1, 12
λ,1

(∑
ωT=ω

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2
,

∥PµQ(ϕ
α
θ,λu, v

α
−θ,λ)∥L2 ≲ αµ

1
2

(αλ
µ

) 1
2∥ϕα

−θ,λu∥
X

1, 12
λ,1

( ∑
|ω+θ|∼α

∑
ωT=ω∼α

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2

≲ µ
1
2
µ

λ

(αλ
µ

) 3
2
( ∑
|ω+θ|∼α

∑
ωT=ω∼α

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2
.

Case 1b++: For the L2 estimate we also write

∥Pµ(ϕ̃
α
θ,λuv

α
θ,λ)∥L2 ≲ (α2λ)

1
4

( ∑
|ω−θ|∼α

∥Pµ(ϕ̃
α
θ,λuv

ω)∥2L2

)1/2

For each ω, discard Pµ and use the pointwise bounds for the packets in vω and the charac-
teristic L2 estimate for ϕα

θ,λu along characteristic surfaces for vω (the second part of Propo-
sition 5.9 with β ∼ 1).

∥ϕ̃α
θ,λuv

ω∥L2 ≲ sup
T

∥ϕ̃α
θ,λu∥L2(T ) · λ

1
4

(∑
T

|cT |2L∞
t

) 1
2
≲ λ

1
4∥χα

θu∥L2

(∑
T

|cT |2L∞
t

) 1
2
,
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where χα
θ are square-summable in θ. Thus

∥ϕ̃α
θ,λuv

α
θ,λ∥L2 ≲ (αλ)

1
2∥χα

θu∥L2

( ∑
|ω−θ|∼α

∑
ω(T )=ω

|cT |2L∞
t

) 1
2

≲ µ
1
2

(αλ
µ

) 1
2∥χα

θu∥L2

( ∑
|ω−θ|∼α

∑
ω(T )=ω

|cT |2L∞
t

) 1
2
.

Case 1b+−: The argument of the ++ case would yield a loss of α−1 due to small angles
(β = α in Corollary 6.9):

∥ϕα
θ,λuv

α
−θ,λ∥L2 ≲ µ

1
2

(αλ
µ

) 1
2
α−1∥χα

θu∥L2

( ∑
|ω+θ|∼α

∑
ω(T )=ω

|cT |2L∞
t

) 1
2
.

Instead we use the method of Case 3 below with a null foliation tranverse to ϕα
θ,λu to estimate

∥Pµ(ϕ
α
θ,λuv

α
−θ,λ)∥L2 ≲ µ

(∑
j

∥ϕα
θ,λu∥2L2(Σj)

∥vα−θ,λ∥L∞L2(Σj)

) 1
2

≲ µ
1
2∥χα

θu∥L2

( ∑
|ω+θ|∼α

∑
ωT=ω

|cT |2L∞
t

) 1
2
.

Case 2: α > µ/λ ≥ λ−1/2.
Case 2a++: By Lemma 6.7, the estimates of the previous case hold with an additional

factor of (αλ)−1 + (α2λ)−N for any N :

∥PµQ(ϕ̃
α
θ,λu, v

α
θ,λ)∥L2

≲ [(αλ)−1 + (α2λ)−N ]µ
1
2

(αλ
µ

) 1
2∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

( ∑
|ω−θ|∼α

∑
ωT=ω

λ2|cT |2L∞ + λ|c′T |2L2
t

) 1
2
,

which is summable in α.
Case 2a+−:

∥PµQ(ϕ
α
θ,λu, v

α
−θ,λ)∥L2

≲ [(αλ)−1 + (α2λ)−N ]µ
1
2
µ

λ

(αλ
µ

) 3
2∥ϕα

θ,λu∥
X

1, 12
λ,1

( ∑
|ω+θ|∼α

∑
ωT=ω

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2

≲ µ
1
2
µ

λ

(
α

1
2µ− 1

2
λ

1
2

µ
+ (α2λ)−N+ 3

4

(λ 1
2

µ

) 3
2
)
∥ϕα

θ,λu∥
X

1, 12
λ,1

( ∑
|ω+θ|∼α

∑
ωT=ω

λ2|cT |2L∞
t
+ λ|c′T |2L2

t

) 1
2

Case 2b++: The same considerations as for the null form estimate yield

∥Pµ(ϕ̃
α
θ,λuv

α
θ,λ)∥L2 ≲ [(αλ)−1 + (α2λ)−N ]µ

1
2

(αλ
µ

) 1
2∥χα

θu∥L2

( ∑
|ω−θ|∼α

∑
ωT=ω

|cT |2L∞
t

) 1
2
.

Case 2b−:

∥Pµ(ϕ
α
θ,λuv

α
−θ,λ)∥L2 ≲ [(αλ)−1 + (α2λ)−N ]µ

1
2∥χα

−θu∥L2

( ∑
|ω−θ|∼α

∑
ωT=ω

|cT |2L∞
t

) 1
2
.
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Case 3: µ ≤ λ1/2, α ≈ λ−1/2.
Case 3a++: A direct application of Bernstein and energy estimates would yield

∥PµQ(ϕ̃
α
θ,λu, v

α
θ,λ)∥L2 ≲ µ∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

∥vαθ,λ∥
X

1, 12
λ,1

.

The additional µ− 1
2 gain required is precisely what would result from a characteristic energy

estimate over a µ−1 neighborhood of a null surface.
Using the null foliation Λh adapted to vα−θ,λ, we partition spacetime into “null slabs” of

thickness µ−1

R1+2 =
⋃
j

⋃
h∈[jµ−1,(j+1)µ−1]

Λh =:
⋃
j

Σj

Since the mollifier Pµ averages functions on the µ−1 spatial scale, we have roughly

∥Pµf∥L2(Σj)“ ≲′′ µ∥f∥L2L1(Σj). (6.45)

This is not quite accurate since the kernel of Pµ is not compactly supported. However, by
partitioning the kernel one can decompose Pµ =

∑
k P

k
µ where for any function f(x) and any

set K ⊂ R2 one has

∥P k
µf∥L2(K) ≲N 2−kNµ∥f∥L1(K+B(0,2kµ−1)) for any N.

Hence in the sequel we shall ignore the imprecision in the above Bernstein estimate.
We write

∥PµQ(ϕ
α
θ,λu, v

α
−θ,λ)∥2L2 ≲

∑
j

∥PµQ(ϕ
α
θ,λu, v

α
−θ,λ)∥2L2(Σj)

.

Using the “space-localized” Bernstein (6.45) and the null frame for Λ, we estimate

∥PµQ(ϕ̃
α
θ,λu, v

α
θ,λ)∥L2(Σj) ≲ µ∥Q(ϕ̃α

θ,λu, v
α
θ,λ)∥L2L1(Σj)

≲ µ∥Lϕ̃α
θ,λu∥L2(Σj)∥Lvαθ,λ∥L∞L2(Σj)

+ µ∥Eϕ̃α
θ,λu∥L2(Σj)∥Evαθ,λ∥L∞L2(Σj)

+ µ∥Lϕ̃α
θu∥L∞L2(Σj)∥Lvαθ,λ∥L2(Σj).

Apply the characteristic energy estimate (5.6) to ϕα
θ,λu for the first two terms and to vα−θ,λ

for the third term, thus obtaining a factor of µ− 1
2 . Since each of the resulting three products

remains localized to Σj in one factor, we may square-sum both sides in j to conclude that

∥PµQ(ϕ̃
α
θ,λu, v

α
θ,λ)∥L2 ≲ µ

1
2 (∥∇ϕ̃α

θ,λu∥L∞L2 + ∥□u∥L1L2)(∥∇vαθ,λ∥L∞L2 + ∥□vα−θ,λ∥L1L2)

≲ µ
1
2∥ϕ̃α

θ,λu∥
X

1, 12
λ,1

∥vα−θ,λ∥
X

1, 12
λ,1

.
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Case 3a+−: In this case we omit the spacetime partition and directly apply Bernstein,
Hölder, and the following small-angle improvements of the above estimates:

λ∥Lϕα
θ,λu∥L2 + λ

1
2∥Eϕα

θ,λu∥L2 ≲ ∥ϕα
θ,λu∥

X
1, 12
λ,1

(by Lemma 5.12),

∥Lvα−θ,λ∥L∞L2 + λ
1
2∥Evα−θ,λ∥L∞L2 ≲ ∥vα−θ,λ∥

X
1, 12
λ,1

(by (4.12)),(∑
j

∥Lvα−θ,λ∥2L∞L2(Σj)

) 1
2
≲ λ−1∥vα−θ,λ∥

X
1, 12
λ,1

by (4.11).

Consequently

∥PµQ(ϕ
α
θ,λu, v

α
−θ,λ)∥L2 ≲

µ

λ
∥ϕα

θ,λu∥
X

1, 12
λ,1

∥vα−θ,λ∥
X

1, 12
λ,1

.

Case 3b+±: For the L2 estimate we also use (6.45) and invoking the second part of
Corollary 5.10, with β ∼ 1,

∥Pµ(ϕ
α
θ,λuv

α
−θ,λ)∥L2(Σj) ≲ µ∥ϕα

θ,λu∥L2(Σj)v
α
−θ,λ∥L∞L2(Σj),

≲ µ
1
2∥χα

θu∥L2∥vα−θ,λ∥L∞L2(Σj),

which can then be square-summed in j and then in θ.
Case 4: µ ≤ λ−1/2, α > λ−1/2. Combine the arguments from Cases 2 and 3.

Finally, to deduce (6.28) we write uλ := u±1 , vλ := v±2 , and use the Leibniz rule to
bound (6.28) by

∥Pµ(∂tuλvλ)∥L2 + ∥Pµ(u∂tvλ)∥L2 .

To estimate the first term, decompose

uλ = P≤8λ(Dt)uλ + P>8λ(Dt)uλ = u<λ
λ + u>λ

λ

The high-frequency piece satisfies the elliptic estimate

∥∇t,xu
>λ
λ ∥L2 ≲ λ−1(∥∇uλ∥L2 + ∥□uλ∥L2),

whose proof is similar to that of Proposition 2.19. Then by Bernstein and Hölder,

∥Pµ(∂tu
>λ
λ vλ)∥L2 ≲ µ∥∂tu>λ

λ ∥L2∥vλ∥L∞L2

≲ µ∥uλ∥
X

0, 12
λ,1

∥vλ∥
X

0, 12
λ,1

,

which is more than acceptable. On the other hand, the estimate (6.27)

∥Pµ(∂tu
<λ
λ vλ)∥L2 ≲ µ

1
2∥∂tuλ∥

X
0, 12
λ,1

∥vλ∥
X

0, 12
λ,1

,

and by a simple commutation argument ∥∂tu<λ
λ ∥

X
0, 12
λ,1

≲ λ∥uλ∥
X

0, 12
λ,1

.

To treat the term ∥Pµ(uλ∂tv)∥L2 , we repeat the proofs of Case 1b, 2b, 3b, 4 and use (4.13)
as well as the Bernstein estimates (4.30), (4.34) for the wave packet coefficients.

73



6.3. Proof of Proposition 6.3. We succesively consider the bounds in the proposition:

(1) First we consider the low modulation cases (6.4) and (6.5).
Let (χj)j be a partition of unity with respect to time intervals (Ij)j of length ≃ d−1

max and

let (χ̃j)j, ( ˜̃χ
j)j be similar families such that χ̃j = 1 on Ij and ˜̃χ = 1 on the support of χ̃j.

By rescaling from Prop. 6.2 using (2.8) we obtain the product estimates for frequency
localized functions:

X
1, 1

2
λ,dmax

[Ij] ·X
1, 1

2
µ,dmax

[Ij] −→ X
1, 1

2

λ′,[dmax,µ]
[Ij] (6.46)

Note that the regularity of the metric’s coefficients improves with the rescaling. Suppose,
for instance, that d1 ≤ d2 = dmax. Using properties (2.6), (2.7), (2.5) we have

∥uλ,d1 · vµ,d2∥2
X

1, 12
λ′,[dmax,µ]

≲
∑
j

∥χj(uλ,d1 · vµ,d2)∥2
X

1, 12
λ′,[dmax,µ]

≲
∑
j

∥χ̃juλ,d1 · χ̃jvµ,d2∥2
X

1, 12
λ′,[dmax,µ]

[Ij ]

≲
∑
j

∥ ˜̃χjχ̃juλ,d1∥2
X

1, 12
λ,dmax

[Ij ]
∥ ˜̃χjχ̃jvµ,d2∥2

X
1, 12
µ,dmax

[Ij ]

≲ ∥uλ,d1∥2
X

1, 12
λ,d1

∑
j

∥χ̃jvµ,d2∥2
X

1, 12
µ,d2

≲ ∥uλ,d1∥2
X

1, 12
λ,d1

∥vµ,d2∥2
X

1, 12
µ,d2

.

The same argument gives (6.5).

Remark 6.12. Note that between the rescaled (6.2) and (6.46) we have used the factors
(
d
µ

) 1
4

to sum over d- which is the modulation of the output. If we choose to keep this factor, the
same argument gives decompositions

Pλ′(uλ,d1 · vµ,d2) =
µ∑

d=dmax

wλ′,d, Pµ(uλ,d1 · vλ′,d2) =

µ/2∑
d=dmaxd0/2

wµ,d + wµ,µ,

for 1 ≤ d1, d2 ≤ µ, under the assumptions of Prop 6.3 (1), such that

∥wλ′,d∥
X

1, 12
λ′,d

≲
(d
µ

) 1
4∥uλ,d1∥

X
1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

(6.47)

∥wµ,d∥
X

1, 12
µ,d

≲
µ

λ

(d
µ

) 1
4∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

(6.48)

∥wµ,µ∥
X̃

1, 12
µ,µ

≲
µ

λ
∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

(6.49)

These will be useful in the proof of the Moser-type estimate.

(2) Recall that by Bernstein’s inequality and the energy estimate (2.3) we have

∥vµ∥L∞
t,x

≲ ∥vµ∥
X

1, 12
µ,d2

We now prove (6.6). We have

λd
1
2
1 ∥uλ,d1 · vµ,d2∥L2 ≲

(
λd

1
2
1 ∥uλ,d1∥L2

)
∥vµ,d2∥L∞ ≲ ∥uλ,d1∥

X
1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

.
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For □g
<
√
λ′
(uλ,d1 · vµ,d2) we consider

d
− 1

2
1 ∥□g<

√
λ
uλ,d1 · vµ,d2∥L2 ≲ d

− 1
2

1 ∥□g<
√
λ
uλ,d1∥L2∥vµ,d2∥L∞

d
− 1

2
1 ∥(□g

<
√
λ′
−□g<

√
λ
)uλ,d1 · vµ,d2∥L2 ≲ λ∥uλ,d1∥L2∥vµ,d2∥L∞

d
− 1

2
1 ∥uλ,d1 ·□g<√

µ
vµ,d2∥L2 ≲ d

− 1
2

1 ∥uλ,d1∥L∞L2∥□g<√
µ
vµ,d2∥L2L∞

≲
µ

λ
∥∇uλ,d1∥L∞L2d

− 1
2

2 ∥□g<√
µ
vµ,d2∥L2

d
− 1

2
1 ∥uλ,d1 · (□g

<
√
λ′
−□g<√

µ
)vµ,d2∥L2 ≲ d

− 1
2

1 ∥uλ,d1∥L2µ∥vµ,d2∥L∞

d
− 1

2
1 ∥∂uλ,d1 · ∂vµ,d2∥L2 ≲ d

− 1
2

1 ∥∂uλ,d1∥L2∥∂vµ,d2∥L∞

≲
µ

d1
∥uλ,d1∥

X
1, 12
λ,d1

∥∂vµ,d2∥L∞L2

Each of the five terms above is ≲ ∥uλ,d1∥
X

1, 12
λ,d1

∥vµ,d2∥
X

1, 12
µ,d2

.

We continue with the proof of (6.7). Here we will use Bernstein’s inequality

∥Pµw∥L2
t,x

≲ µ∥w∥L2L1 .

Assume without loss of generality that d1 = dmax. We have

µ
5
2∥uλ,d1 · vλ′,d2∥L2L1 ≲ µ

5
2∥uλ,d1∥L2∥vλ′,d2∥L∞L2

≲
(µ
λ

)2( µ

dmax

) 1
2∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

. (6.50)

The same argument applies for the ∇t,x in the L2 part of X̃
1, 1

2
µ,µ . For the L∞L2 parts we use

Bernstein, the chain rule and L∞L2 × L∞L2 → L∞L1.
For □g<√

µ
(uλ,d1 · vλ′,d2) we split as before

∥□g<
√
λ
uλ,d1 · vλ′,d2∥L2L1 ≲ ∥□g<

√
λ
uλ,d1∥L2∥vλ′,d2∥L∞L2

∥uλ,d1 ·□g
<
√

λ′
vλ′,d2∥L2L1 ≲ ∥uλ,d1∥L∞L2∥□g

<
√
λ′
vλ′,d2∥L2

∥∂uλ,d1 · ∂vλ′,d2∥L2L1 ≲ ∥∂uλ,d1∥L2∥∂vλ′,d2∥L∞L2

∥(□g<√
µ
−□g<

√
λ
)uλ,d1 · vλ′,d2∥L2L1 ≲

λ

µ
∥∂uλ,d1∥L2∥vλ′,d2∥L∞L2

∥uλ,d1 · (□g<√
µ
−□g

<
√
λ′
)vλ′,d2∥L2L1 ≲ ∥uλ,d1∥L2

λ′

µ
∥∂vλ′,d2∥L∞L2

Each of the five terms times µ
1
2 is ≲ ∥uλ,d1∥

X
1, 12
λ,d1

∥vλ′,d2∥
X

1, 12
λ′,d2

, which completes the proof.

7. The product estimate (1.16)

We now turn our attention to the proof of (1.16). We recall the notations X = Xs,θ and
N = Xs−1,θ−1 with θ = 1

2
+ ε′ and s = 1 + ε′ + ε. The duality property (2.13) states

N = (X−ε′−ε, 1
2
−ε′ + L2H

1
2
−2ε′−ε)′.
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Therefore, by duality, to obtain (1.16) it suffices to prove

∥u1 · u2∥
X−ε′−ε, 12−ε′+L2H

1
2−2ε′−ε ≲ ∥u1∥Xs,θ∥u2∥

X−ε′−ε, 12−ε′+L2H
1
2−2ε′−ε .

We reduce this estimate to the following bounds:

∥u1 · u2∥
L2H

1
2−2ε′−ε ≲ ∥u1∥Xs,θ∥u2∥

L2H
1
2−2ε′−ε (7.1)

∥u1 · u2∥
X−ε′−ε, 12−ε′+L2H

1
2−2ε′−ε ≲ ∥u1∥Xs,θ∥u2∥

X−ε′−ε, 12−ε′ (7.2)

For both estimates we use the Littlewood-Paley trichotomy and reduce to estimates for
terms Pλ3(u

1
λ1

· u2λ2
).

Be begin with (7.1). In the high-high to low case λ1 ≃ λ2 and in the low-high case
λ1 ≪ λ2 ≃ λ3 we use Hölder’s inequality L∞L∞ × L2L2 → L2L2 together with Bernstein’s
inequality P̃λ1L

∞L2 → λ1L
∞L∞. In the high-low case λ2 ≪ λ1 ≃ λ3 we use Hölder’s

inequality L∞L2 × L2L∞ → L2L2 together with Bernstein’s inequality P̃λ2L
2L2 → λ2L

2L∞.

Now we turn to the proof of (7.2). We write

u1λ1
=

λ1∑
d1=1

u1λ1,d1
∥u1λ1

∥2
Xs,θ

λ1

≃
λ1∑

d1=1

∥u1λ1,d1
∥2
Xs,θ

λ1,d1

.

and the similar decomposition of u2λ2
relative to the space X−ε′−ε, 1

2
−ε′ .

In the low-high case λ1 ≪ λ2 it suffices to prove

∥u1λ1
· u2λ2

∥
X

0, 12−ε′
λ2

≲
1

λε1
∥u1λ1

∥
X

1+ε′+ε, 12+ε′
λ1

∥u2λ2
∥
X

0, 12−ε′
λ2

.

We estimate u1λ1,d1
u2λ2,d2

in X
0, 1

2
−ε′

λ2,[max(d1,d2),λ1]
for d1, d2 ≤ λ1 using (6.4) and computing the

weights we note that there is enough room to sum the modulations ≤ λ1. For λ1 ≤ d2 ≤ λ2
we use (6.6) instead and we obtain square-summability in d2.

In the high-low case λ2 ≪ λ1 we follow the same argument and here we have a better
factor including a power of λ2/λ1

In the high-high to low case λ1 ≃ λ2 we have

∥Pλ3(u
1
λ1

· u2λ2
)∥

X
−ε′−ε, 12−ε′
λ3

+L2H
1
2−2ε′−ε

≲
1

λε3
∥u1λ1

∥
X

1, 12+ε′
λ1

∥u2λ2
∥
X

0, 12−ε′
λ2

.

For d1, d2 ≤ λ3 we estimate Pλ3(u
1
λ1,d1

u2λ2,d2
) using (6.5): with appropriate weights the

X
1. 1

2

µ,[dmax,µ]
bound transfers to X

−ε′−ε, 1
2
−ε′

λ3
, while the X̃

1. 1
2

µ,µ one transfers to L2H
1
2
−2ε′−ε. For

max(d1, d2) ≥ λ3 we use Bernstein and (6.50) to place the output into L2H
1
2
−2ε′−ε.

Remark 7.1 (Higher regularity). Let σ > s. By applying the product estimate with a slightly
lower s′ < s (say s′ = 1+ ε′ + ε/2) and considering the Littlwood-Paley trichotomy in terms
of uµFλ, uλFµ (µ≪ λ) and Pµ(uλFλ′) (µ ≲ λ ≃ λ′) we obtain inequalities of type

∥uµFλ∥Xσ−1,θ−1 ≃ λσ−s′∥uµFλ∥Xs′−1,θ−1 ≲ µ−ε/2∥uµ∥Xs,θ∥Fλ∥Xσ−1,θ−1

∥Pµ(uλFλ′)∥Xσ−1,θ−1 ≲ (µ/λ)σ−s∥uλ∥Xs,θ∥Fλ′∥Xσ−1,θ−1
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Putting all these estimates together with the similar one for uλFµ we obtain

∥u · F∥Xσ−1,θ−1 ≲ ∥u∥Xs,θ∥F∥Xσ−1,θ−1 + ∥u∥Xσ,θ∥F∥Xs−1,θ−1 (7.3)

Remark 7.2 (Higher regularity, Corollaries of (7.3)). Assuming higher regularity of the metric
g, by Remark 2.15, which gives ∥□gu∥Xσ−1,θ−1 ≲ ∥u∥Xσ,θ for σ ≤ k + 1 and the identity

2Qg(u, v) = 2gαβ∂αu∂βv = □g(uv)− u□gv − v□gu,

from (7.3) and (6.1) we obtain the null form bound

∥Qg(u, v)∥Xσ−1,θ−1 ≲ ∥u∥Xs,θ∥v∥Xσ,θ + ∥u∥Xσ,θ∥v∥Xs,θ . (7.4)

Furthermore, when u, v are bounded in Xs,θ we have the Moser estimates in the form
∥Γ(u)∥Xσ,θ ≲ ∥u∥Xσ,θ and

∥Γ(u)− Γ(v)∥Xσ,θ ≲ ∥u− v∥Xσ,θ + ∥u− v∥Xs,θ(∥u∥Xσ,θ + ∥v∥Xσ,θ) (7.5)

Using this together with (7.3), (7.4), (1.17), (1.18) we obtain

∥Γ(u)Qg(u, u)∥Xσ−1,θ−1 ≲ ∥u∥2Xs,θ∥u∥Xσ,θ . (7.6)

Similarly one obtains a bound for Γ(u)Qg(u, u)− Γ(v)Qg(v, v) in X
σ−1,θ−1.

8. The Moser estimate (1.18)

In this section we prove the nonlinear estimate (1.18), which resembles the Moser-type
estimates in the context of Sobolev spaces (sometimes referred to as Schauder estimates)
that can be proved using paradifferential calculus and the chain rule (see [35, Lemma A.9]).
Here we will use the iterated paradifferential expansion strategy from [43] to leverage the
product estimates from Section 6.

Proposition 8.1. Let F be a smooth bounded function with uniformly bounded derivatives
with ∂(j)F (0) = 0 for |j| ≤ C. If u ∈ Xs,θ then F (u) ∈ X̃s,θ and

∥F (u)∥X̃s,θ ≲ ∥u∥Xs,θ

(
1 + ∥u∥15Xs,θ

)
(8.1)

Moreover, F (u) ∈ Xs,θ and

∥F (u)∥Xs,θ ≲ ∥u∥Xs,θ

(
1 + ∥u∥15Xs,θ

)
(8.2)

Remark 8.2. The bound (8.1) should be seen as a key intermediate step in the proof of (8.2).
The space X̃s,θ is defined in Definition 2.16 and Xs,θ ⊂ X̃s,θ. The only difference between the
two spaces occurs at high modulations, where we discarded the terms λs+θ−2∥□g<

√
λ
uλ,λ∥L2 ,

making the norm X̃s,θ smaller. This allows us to have the factor (λ/λ0)
s in Lemma 8.5,

based on the better factors µ/λ for X̃
1, 1

2
µ,µ compared to X

1, 1
2

µ,µ in the estimates (6.5), (6.7), thus
making (8.1) easier to prove.

Notation-wise, we focus the proof on the case of functions F of a scalar argument and note
that it is easy to see that the same argument applies for the case of multivariate arguments
F (u1, . . . , ud).
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8.1. Reduction of (8.2) to (8.1). In light of Lemma 2.17 it suffices to show that □gF (u) ∈
L2Hs+θ−2:

Lemma 8.3. If u ∈ Xs,θ then

∥□gF (u)∥L2Hs+θ−2 ≲ ∥u∥Xs,θ

(
1 + ∥u∥3Xs,θ

)
Proof. We split □gF (u) into F

′(u)□gu and F ′′(u)Qg(u, u). Let G be either one of the terms
F ′(u), F ′′(u) and let f be □gu or Qg(u, u).

By Lemma 2.13, (1.17) and (2.16) we have

∥f∥L2Hs+θ−2 ≲ ∥u∥Xs,θ

(
1 + ∥u∥Xs,θ

)
. (8.3)

To place Gf in L2Hs+θ−2 we use a Littlewood decomposition and bound Pλ(Gfν) using
(8.3). When ν ≲ λ we place G ∈ L∞ and get the factor (ν/λ)2−s−θ. When ν ≫ λ, for
the term Pλ(Gνfν) we first use Bernstein Pλ : L2L1 → λL2L2, then we use the fact that
G ∈ L∞Hs by classical Moser/Schauder estimates (see [35, Lemma A.9]), obtaining the
factor (λ/ν)s+θ−1. □

We continue towards the proof of (8.1) by setting up some preliminaries.

8.2. Iterated paradifferential expansions. We write

F (u)− F (v) = (u− v)h(v, u)

and
h(v, u)− h(x, y) = (v − x)h1(x, y, v, u) + (u− y)h2(x, y, v, u)

and so on, where the h’s are generic smooth functions with uniformly bounded derivatives.
For ν < µ ≤ ∞ we may decompose

F (u<µ) = F (u<ν) +

µ/2∑
λ0=ν

F (u<2λ0)− F (u<λ0)

= F (u<ν) +

µ/2∑
λ0=ν

uλ0h(u<λ0 , u<2λ0).

Repeating the same argument for h(u<λ0 , u<2λ0) and denoting

h(.., u<λ1 , ..) = h1(u<λ1 , u<2λ1 , u<2λ1 , u<4λ1) + h2(u<λ1/2, u<λ1 , u<λ1 , u<2λ1)

we further decompose

F (u<µ) = F (u<ν) +

µ/2∑
λ0=ν

uλ0h(u1, u≤2) +

µ/2∑
λ0=ν

λ0/2∑
λ1=2

uλ0uλ1h(.., u<λ1 , ..)

Iterating this argument we can write F (u<µ) as a sum of three types of terms:

(1) F (u<ν)
(2) uλ0h(u1, u≤2), uλ0uλ1h(u1, u≤2, . . . ), . . . , uλ0uλ1 · · ·uλN−1

h(u1, . . . , u≤C)
(3) uλ0uλ1 · · ·uλN

h(u<λN/c, . . . , u<λN
, . . . , u<cλN

)

for ν ≤ λ0 < µ and λ0 ≥ λ1 ≥ · · · ≥ λN ≥ 1.
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8.3. Bilinear estimates involving X̃ spaces. Here we supplement the estimates from
Propositions 6.2 and 6.3 with some bounds in terms of the X̃s,θ

µ,µ norms.

Lemma 8.4. Let µ ≤ d < λ and uµ,µ ∈ X̃s,θ
µ,µ. Then there exists a decomposition

uµ,µ = u<λ
µ,µ + u>λ

µ,µ

such that

∥uλ,d · u<λ
µ,µ∥Xs,θ

λ,d
≲ ∥uλ,d∥Xs,θ

λ,d

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
(8.4)

∥uλ,d · u>λ
µ,µ∥X̃s,θ

λ,λ
≲

(µ
d

)θ

∥uλ,d∥Xs,θ
λ,d

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
(8.5)

Moreover, one has

∥uλ,≤µ · u<λ
µ,µ∥Xs,θ

λ,µ
≲ ∥uλ,≤µ∥Xs,θ

λ,≤µ

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
(8.6)

∥uλ,≤µ · u>λ
µ,µ∥X̃s,θ

λ,λ
≲ ∥uλ,≤µ∥Xs,θ

λ,≤µ

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
(8.7)

and

∥uλ,λ · uµ∥X̃s,θ
λ,λ

≲ ∥uλ,λ∥X̃s,θ
λ,λ

1

µε
∥uµ∥X̃s,θ

µ
(8.8)

Proof. We define u<λ
µ,µ by averaging uµ,µ in time on the λ−1 scale.

(1) We begin with (8.4) and (8.5). Similarly to the proof of (6.6), for all terms occurring
in each of the products we place the higher frequency term in L2 and the lower frequency
term in L∞. For (8.4) this works because

∥□g<
√
λ
u<λ
µ,µ∥L∞ ≲ λµ

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
,

while for (8.5) we use

∥u>λ
µ,µ∥L∞ ≲ λ−1∥∂tuµ,µ∥L∞ ≲

µ

λ

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
, (8.9)

and we recall that the X̃s,θ
λ,λ norm does not contain □g<

√
λ
terms.

(2) In the case of (8.6) we use L∞L2 × L2L∞ → L2L2 and Bernstein for the terms
uλ,≤µ · u<λ

µ,µ, ∇t,xuλ,≤µ · ∇t,xu
<λ
µ,µ and uλ,≤µ · □g<

√
λ
u<λ
µ,µ. We use L2L2 × L∞L∞ → L2L2 for

□g<
√

λ
uλ,≤µ · u<λ

µ,µ. The place where we use the <λ smoothness is

λ−1µθ∥□g<
√

λ
u<λ
µ,µ∥L2 ≲ µθ∥∇t,xuµ,µ∥L2 ≲

1

µε
∥uµ,µ∥X̃s,θ

µ,µ
.

Finally, in the case of (8.7) we always place the λ-frequency terms in L∞L2, using either
L∞L2×L2L∞ → L2L2 or L∞L2×L∞L∞ → L∞L2 and Bernstein for the µ-frequency terms.
This works because of (8.9) and

∥u>λ
µ,µ∥L2L∞ ≲

µ

λ
∥∂tu>λ

µ,µ∥L2 ≲
µ

λ

1

µθ+ε
∥uµ,µ∥X̃s,θ

µ,µ
.

(3) The proof of (8.8) is straightforward by bounding the µ-frequency terms in L∞. □
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8.4. Multilinear estimates. The next order of business is to obtain effective bounds for
the products uλ0uλ1 · · ·uλN

in the expansion from section 8.2, while the effect of multiplying
by h(..u<λN

..) is studied in the next subsection.

Lemma 8.5. Let λ0 ≥ λ1 ≥ · · · ≥ λN for N ≥ 1 and let u ∈ X̃s,θ. For any λ ≲ λ0

∥Pλ

(
uλ0 . . . uλN

)
∥X̃s,θ

λ
≲
λs

λs0
∥uλ0∥X̃s,θ

λ0

N∏
i=1

1

λεi
∥uλi

∥X̃s,θ
λi

(8.10)

More precisely, there exists a decomposition

Pλ

(
uλ0 . . . uλN

)
=

λ∑
d=1

vλ,d

such that

∥vλ,d∥X̃s,θ
λ,d

≲
λs

λs0

min(3,N)∏
i=1

min
(
1,

d

min(λ, λi)

) 1
4∥uλ0∥X̃s,θ

λ0

N∏
i=1

1

λεi
∥uλi

∥X̃s,θ
λi

(8.11)

Moreover, if λ > d > λ1 then we can replace ∥uλ0∥X̃s,θ
λ0

by ∥uλ0,d∥Xs,θ
λ0,d

.

Remark 8.6. We recall that for 1 ≤ d < λ the norms of X̃s,θ
λ,d and Xs,θ

λ,d coincide.

Corollary 8.7. Under the assumptions of Lemma 8.5, for N ≥ 3 and any γ ≤ min(λ, λ3),
one has

∥vλ,≤γ∥X̃s,θ
λ,γ

≲
λs

λs0
∥uλ0∥X̃s,θ

λ0

N∏
i=1

1

λεi
∥uλi

∥X̃s,θ
λi

(8.12)

Proof of Corollary 8.7. Using (8.11) with N ≥ 3 to sum the norms of ∥vλ,d∥L2 and

∥□g<
√

λ
vλ,d∥L2 over d ∈ 1, γ we obtain a favorable factor, since

(
d

λmin

) 3
4 can be used to

always have a positive power of d on the RHS. When γ = λ we use energy estimates. □

Proof of Lemma 8.5. We prove the statement by induction with respect to N .
(1) For N = 1 we use Remark 6.12, Prop. 6.3 (2) and Lemma 8.4 to obtain the decom-

position. We split

Pλ(uλ0uλ1) =
∑

1≤di≤λi,i=0,1

Pλ(uλ0,d0uλ1,d1)

where for both λi, i = 0, 1 we write, by Definition 2.16,

uλi
=

λi/2∑
di=1

uλi,di + uλi,λi
∥uλi

∥2
Xs,θ

λi

≃
λi/2∑
di=1

∥uλi,di∥2Xs,θ
λi,di

+ ∥uλi,λi
∥2
X̃s,θ

λi,λi

.

We obtain the desired estimate by a summation of d0, d1 argument as in the proof of Prop.
6.1, as follows:
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(1) In the high-low case λ ≃ λ0 ≫ λ1: for d0, d1 ≤ d < λ1 we use (6.47) to obtain

∥vλ,d∥Xs,θ
λ,d

≲
( d

λ1

) 1
4 1

λε1
∥uλ0,≤d∥Xs,θ

λ0,≤d
∥uλ1,≤d∥Xs,θ

λ1,≤d
(8.13)

while when λ1 < d = d0 < λ, λ0 we have

∥vλ,d∥Xs,θ
λ,d

≲
1

λε1
∥uλ0,d∥Xs,θ

λ0,d
∥uλ1∥X̃s,θ

λ1

(8.14)

based on (6.6), (8.4) and defining vλ,d = Pλ(uλ0,duλ1,<λ1) + Pλ(uλ0,du
<λ0
λ1,λ1

), where

u<λ0
λ1,λ1

is defined in Lemma 8.4.

When d = λ1 we define vλ,λ1 = Pλ(uλ0,λ1uλ1,<λ1)+Pλ(uλ0,≤λ1u
<λ0
λ1,λ1

) and using (6.6),
(8.6) we have

∥vλ,λ1∥Xs,θ
λ,λ1

≲
1

λε1
∥uλ0,≤λ1∥Xs,θ

λ0,≤λ1

∥uλ1∥X̃s,θ
λ1

(8.15)

Finally, when d = λ we define vλ,λ = Pλ(uλ0,<λ0u
>λ0
λ1,λ1

) +
∑

d≃λ0
Pλ0(uλ0,duλ1) and

using (8.5), (8.7), (8.8) we have

∥vλ,λ∥X̃s,θ
λ,λ

≲
1

λε1
∥uλ0∥X̃s,θ

λ0

∥uλ1∥X̃s,θ
λ1

(8.16)

(2) In the high-high to low case λ ≲ λ0 ≃ λ1: for d ∈ [1, λ), by (6.48) we have

∥vλ,d∥Xs,θ
λ,d

≲
λs

λs0

(d
λ

) 1
4 1

λε1
∥uλ0,≤d∥Xs,θ

λ0,≤d
∥uλ1,≤d∥Xs,θ

λ1,≤d
(8.17)

while for d = λ, vλ,λ contains the contributions of uλ0,d0uλ1,d1 when max(d0, d1) ≥ λ
(use (6.7)) and the contributions when d0, d1 ≤ λ given by (6.49) obtaining

∥vλ,λ∥X̃s,θ
λ,λ

≲
λs

λs0

1

λε1
∥uλ0∥X̃s,θ

λ0

∥uλ1∥X̃s,θ
λ1

(8.18)

(2) Now we assume the statement holds for N − 1 and prove it for N . Letting v(N−1) =

uλ0 . . . uλN−1
, summing the induction hypothesis for v

(N−1)
ν,d′ over d′ ≤ d for d ≤ min(ν, λ1) we

obtain

∥v(N−1)
ν,≤d ∥X̃s,θ

ν,≤d
≲
νs

λs0

min(3,N−1)∏
i=1

min
(
1,

d

min(ν, λi)

) 1
4∥uλ0∥X̃s,θ

λ0

N−1∏
i=1

1

λεi
∥uλi

∥X̃s,θ
λi

(8.19)

We consider three cases:

(1) λ≪ λN . We have

Pλ

(
uλ0 . . . uλN

)
= Pλ

(
P̃λN

v(N−1)uλN

)
.

For d < λ we apply (8.17) to P̃λN
v(N−1) and uλN

and then use (8.19) for ν ≃ λN .
When d = λ we use (8.18) instead of (8.17), and then (8.10) for N − 1 and Pν for
ν ≃ λN , as no powers of d/λ are necessary.
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(2) λ ≃ λN . We decompose

Pλ

(
uλ0 . . . uλN

)
=

∑
ν≲λ

Pλ

(
Pνv

(N−1)uλN

)
For d ≤ ν we apply (8.13) and (8.15) for uλN

and Pνv
(N−1) together with (8.19),

while for d > ν we use (8.14), (8.16) together with (8.10) for Pνv
(N−1). Summing the

factors that contain ν we obtain∑
ν≲λ

νs

λs0

1

νε
min

(
1,
d

ν

) 1
4
min(3,N)

≃ λs

λs0

1

λε

(d
λ

) 1
4
min(3,N)

which is favorable.
(3) λ≫ λN . We write

Pλ

(
uλ0 . . . uλN

)
= Pλ

(
P̃λv

(N−1)uλN

)
.

For d ≤ λN we apply (8.13) and (8.15) to P̃λv
(N−1) and uλN

and then use (8.19) for

ν ≃ λ. In the case λN < d < λ (8.14) applies with ∥v(N−1)
ν,d ∥Xs,θ

ν,d
on the RHS, ν ≃ λ,

and this norm is estimated by the induction hypothesis. Finally, when d = λ we use
(8.16) and then (8.10) for N − 1. □

For the sum of the output frequencies and modulations of the products we have:

Corollary 8.8. For N ≥ 4, let λ0 ≥ λ1 ≥ · · · ≥ λN and let u ∈ Xs,θ. Denoting w =
uλ0 . . . uλN

and M = ∥uλ0∥X̃s,θ
λ0

∏N
i=1

1
λε
i
∥uλi

∥X̃s,θ
λi

, one has

∥w∥L2 + λ
− 1

2
N ∥w∥L∞L2 + λ−1

N ∥∇t,xw∥L2 + λ
− 3

2
N ∥∇t,xw∥L∞L2 ≲ λ−s−θ

N M

Proof. First consider λN ≲ λ. By summing (8.11) and using also the argument of Cor. 8.7,
together with (2.1), (2.3) we obtain

∥wλ∥L2 + λ
− 1

2
N ∥wλ∥L∞L2 + λ−1∥∇t,xwλ∥L2 + λ

− 1
2

N λ−1∥∇t,xwλ∥L∞L2 ≲ λ−sλ−θ
N M (8.20)

Summing in λ ≥ λN/C one obtains

∥w≥λN
∥L2 + λ

− 1
2

N ∥w≥λN
∥L∞L2 + λ−1

N ∥∇t,xw≥λN
∥L2 + λ

− 3
2

N ∥∇t,xw≥λN
∥L∞L2 ≲ λ−s−θ

N M

Now we consider frequencies ≪ λN and write

P≪λN
w = P̃λN

(
uλ0 . . . uλN−1

)
uλN

.

We place uλN
,∇t,xuλN

in L∞ while for P̃λN

(
uλ0 . . . uλN−1

)
we use the argument of the previous

step used to obtain (8.20). □

8.5. Multiplicative properties. Now that we have bounds for multilinear terms in X̃s,θ
λ,d, in

order to make use of the expansion in terms uλ0uλ1 · · ·uλN
h(..u<λN

..) we need to investigate

which multiplications by h leave the X̃s,θ
λ,d spaces unchanged.

Definition 8.9. For d ≤ λ the norm of Mλ,d is defined by

∥h∥Mλ,d
= ∥h∥L∞ +

1

d
∥∇t,xh∥L∞ +

1

dλ
∥□g<

√
λ
h∥

L∞+d−
1
2L2L∞
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and for µ ≤ λ the norm of Nλ,µ is defined by

∥h∥Nλ,µ
= ∥h∥L∞ +

1

λ
∥∇t,xh∥L∞ +

1

λ
∥□g<

√
λ
h∥

L∞L2+µ− 1
2L2

.

We also define the following version of the X̃s,θ
λ,λ norm adapted for function not assumed to

be frequency localized:

∥w∥Y s,θ
λ

= λs+θ
(
∥w∥L2 + λ−

1
2∥w∥L∞L2 + λ−1∥∇t,xw∥L2 + λ−

3
2∥∇t,xw∥L∞L2

)
.

Then we have the following multiplication properties.

Lemma 8.10. For any function u localized at frequency ≃ λ one has

∥u · h∥Xs,θ
λ,d

≲ ∥u∥Xs,θ
λ,d
∥h∥Mλ,d

. (8.21)

and similarly with Xs,θ
λ,d replaced by X̃s,θ

λ,d.
For any function v localized at frequency ≃ µ ≤ λ one has

∥v · h∥Xs,θ
λ,µ

≲
λs

µs
∥v∥Xs,θ

µ,µ
∥h∥Nλ,µ

(8.22)

∥v · h∥Xs,θ
λ,µ

≲
λs

µs

[
∥v∥X̃s,θ

µ,µ
+ µθλ−1∥∂2t v∥L2Hs−1

]
∥h∥Nλ,µ

(8.23)

∥v · h∥X̃s,θ
λ,λ

≲ λs+θ∥(v, λ−1∇t,xv)∥L2∩µ
1
2L∞L2

∥h∥Nλ,µ
. (8.24)

For functions w not assumed to be frequency localized one has:

∥w · h∥X̃s,θ
λ,λ

≲ ∥w∥Y s,θ
λ

∥h∥Mλ,λ
. (8.25)

Proof. The proof is straightforward, based on Leibniz’s rule, Hölder’s inequality and the
energy estimate (2.3). For (8.22) we also use Bernstein’s inequality L2

x → µL∞
x for v. □

This property is used in conjunction with the following lemma.

Lemma 8.11. Let µ ≤ d ≤ λ and c ≃ 1. For any smooth, bounded function h with uniformly
bounded derivatives one has:

∥P≲µh(u<µ)∥Mλ,d
≲ 1 + ∥u∥2Xs,θ (8.26)

∥P̃λh(u<cλ)∥Nλ,µ
≲ 1 + ∥u∥2Xs,θ (8.27)

∥P̃λh(u<µ)∥Mλ,λ
≲

(
1 + ∥u∥2Xs,θ

)
max
0≤k≤2

∥P̃λ(∂
kh)(u<µ)∥L∞ , µ≪ λ. (8.28)

The same statement holds for multivariate functions h(u<µ/c, · · · , u<µ, · · · , u<cµ).

Proof. The same argument applies for the scalar or multivariate case; however, for brevity
we will simply use the notation h(u<µ) for both cases.

We begin with the ∇t,xh(·) terms since the ∥h∥L∞ bound is clear. By the chain rule, for
ν ∈ {µ, cλ}, we write schematically

∇t,xh(u<ν) =
∑

∂h · ∇t,xu<ciν .
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We have ∥∂h∥L∞ ≲ 1 and ∥∇t,xu<ciν∥L∞ ≲ ν∥u∥Xs,θ , which suffices for all three bounds.
Next, we write

□g<
√

λ
Ph(u<ν) = [□g<

√
λ
, P ]h(u<ν) + P

∑
g<

√
λ∂

2h∇u<ciν∇u<cjν + P
∑

∂h□g<
√
λ
u<ciν

In the case of (8.28), since µ ≪ λ for P = P̃λ, the only parts of ∂2h, ∂h that contribute to
this equality are P̃λ∂

2h, P̃λ∂h for a frequency λ multiplier P̃λ. By Bernstein we have

∥g∂2h∇u<ciµ∇u<cjµ∥L∞ ≲ µ2∥∂2h∥L∞∥∇u≲µ∥2L∞L2 ≲ µ2∥∂2h∥L∞∥u∥2Xs,θ

∥g∂2h∇u<ciλ∇u<cjλ∥L∞L2 ≲ λ∥∇u≲λ∥2L∞L2 ≲ λ∥u∥2Xs,θ

Similarly, for P ∈ {P≲µ, P̃λ} by writing [□g<
√
λ
, P ] = [g<

√
λ, P ]∂t,x∂x and using a standard

commutator estimate we obtain

∥[□g<
√
λ
, P≲µ]h(u<µ)∥L∞ ≲ µ2∥∂t,xu≲µ∥2L∞L2 + µ∥∂t,x∂xu≲µ∥L∞L2 ≲ µ2

(
1 + ∥u∥2Xs,θ

)
∥[□g<

√
λ
, P̃λ]h(u<µ)∥L∞ ≲ µ2∥P̃λ∂

2h∥L∞∥∂t,xu≲µ∥2L∞L2 + µ∥P̃λ∂h∥L∞∥∂t,x∂xu≲µ∥L∞L2

≲ µ2max
(
∥P̃λ∂h∥L∞ , ∥P̃λ∂

2h∥L∞
)(
1 + ∥u∥2Xs,θ

)
∥[□g<

√
λ
, P̃λ]h(u<cλ)∥L∞L2 ≲ λ∥∂t,xu≲λ∥2L∞L2 + ∥∂t,x∂xu≲λ∥L∞L2 ≲ λ

(
1 + ∥u∥2Xs,θ

)
Using Definitions 2.1, 2.3 of the Xs,θ

λ,d, X
s,θ spaces, the hypothesis ∂2g ∈ L2L∞, Bernstein

and a summation argument in frequencies and modulations one obtains

∥□g<
√

λ
u<cµ∥L2L∞ ≲ µ

3
2∥u∥Xs,θ

∥□g<
√
λ
u<cλ∥L2 ≲ λ

1
2∥u∥Xs,θ

Using these we get

∥(P̃ )∂h□g<
√

λ
u<cµ∥L2L∞ ≲ µ

3
2∥(P̃ )∂h∥L∞∥u∥Xs,θ

∥∂h□g<
√
λ
u<cλ∥L2 ≲ λ

1
2∥u∥Xs,θ

Putting all the above inequalities together completes the proof of (8.26)-(8.28). □

The main application of the multiplication properties above is:

Lemma 8.12. Let λ ≃ λ0 ≥ λ1 ≥ · · · ≥ λN for N ≥ 3 and v = uλ0 . . . uλN
. For any smooth,

bounded function h with uniformly bounded derivatives one has:

∥Pλ

(
v · P≲λN

h(u<λN
)
)
∥X̃s,θ

λ
≲ ∥uλ0∥Xs,θ

λ0

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λ
ε/2
i

∥uλi
∥Xs,θ

λi

(8.29)

Proof. We decompose

Pλ

(
v · P≲λN

h(u<λN
)
)
=

∑
λ′≃λ

Pλ

(
vλ′ · P≲λN

h(u<λN
)
)
+

∑
µ≪λ

Pλ

(
vµ · P̃λP≲λN

h(u<λN
)

where the second sum is non-zero only when λN ≃ λ, in which case we can redenote P̃λP≲λN

by P̃λ. We separately consider the terms with:
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(1) λ′ ≃ λ. We use Lemma 8.5 and Corollary 8.7 to decompose vλ′ . Applying (8.21)
together with (8.26) (with µ = λN , d = λN , resp. d > λN) and (8.12), resp. (8.11) we obtain

∥vλ′,≤λN
· P≲λN

h(u<λN
)∥Xs,θ

λ,λN

≲ ∥uλ0∥Xs,θ
λ0

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

∥vλ′,d · P≲λN
h(u<λN

)∥Xs,θ
λ,d

≲
( d

λ1

) 1
4∥uλ0∥Xs,θ

λ0

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

for d ∈ [λN , λ1], while for d ∈ (λ1, λ) we have

∥vλ′,d · P≲λN
h(u<λN

)∥Xs,θ
λ,d

≲ ∥uλ0,d∥Xs,θ
λ0,d

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

∥vλ′,λ′ · P≲λN
h(u<λN

)∥X̃s,θ
λ,λ

≲ ∥uλ0∥Xs,θ
λ0

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

We square-sum these bounds to obtain the conclusion for the vλ′ terms.

(2) µ ≪ λ, in the case λN ≃ λN−1 ≃ · · · ≃ λ0 ≃ λ. By (8.12) from Corollary 8.7 and
(8.11) we have

∥vµ,<µ∥Xs,θ
µ,µ

+ ∥vµ,µ∥X̃s,θ
µ,µ

≲
µs

λs0
∥uλ0∥Xs,θ

λ0

N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

.

Using this together with (8.22) and (8.27) (with cλ = λN) we obtain :

∥vµ,<µ · P̃λh(u<λN
)∥Xs,θ

λ,µ
≲ ∥uλ0∥Xs,θ

λ0

(
1 + ∥u∥2Xs,θ

) N∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

.

Summing µ ≤ λ/C gives a factor of log λ which is overpowered by 1
λε/2 ≃ 1

λ
ε/2
i

.

We regularize vµ,µ in time on the λ−1 scale to split vµ,µ = v<λ
µ,µ + v>λ

µ,µ. We have

∥∂2t v<λ
µ,µ∥L2Hs−1 ≲ λµ−θ∥vµ,µ∥X̃s,θ

µ,µ
,

so we can use this together with (8.23). Finally, we have

∥(v>λ, λ−1∇t,xv
>λ)∥

L2∩µ
1
2L∞L2

≲ λ−1∥∇t,xv
>λ∥

L2∩µ
1
2L∞L2

≲ λ−1µ1−s−θ∥vµ,µ∥X̃s,θ
µ,µ

and we use this with (8.24) to conclude. □

8.6. Nonlinear low frequency input → high frequency output estimates.
Low → high frequency interactions do not occur in bilinear or multilinear expressions,

thus one expects their effect to be under control for nonlinear interactions as well. We begin
with L∞ bounds.
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Lemma 8.13. Let λ ≥ µ and let h be a smooth, bounded function h with uniformly bounded
derivatives. Then, for any even N ≥ 2

∥Pλh(u<µ)∥L∞ ≲
(µ
λ

)N

∥u∥Xs,θ

(
1 + ∥u∥N−1

Xs,θ

)
(8.30)

∥∇t,xPλh(u<µ)∥L∞ ≲ µ
(µ
λ

)N

∥u∥Xs,θ

(
1 + ∥u∥NXs,θ

)
(8.31)

Proof. For any nonzero multi-index β we may use the chain rule to write

∂βxh(u<µ) =

|β|∑
j=1

∑
β1+···+βj=β

h(j)(u<µ)∂
β1
x u<µ . . . ∂

βj
x u<µ, βi ̸= 0.

Using ∥∂βxu<µ∥L∞ ≲ µ|β|∥u∥Xs,θ we obtain

∥Pλh(u<µ)∥L∞ ≲
1

λN
∥∆N/2Pλh(u<µ)∥L∞ ≲

(µ
λ

)N

∥u∥Xs,θ

(
1 + ∥u∥N−1

Xs,θ

)
.

The same argument is used for ∇t,xPλh(u<µ). □

For very low frequency terms we have:

Lemma 8.14. Let h be a smooth, bounded function with uniformly bounded derivatives such
that h(0) = 0. Then, for all λ ≥ 1 and even N ≥ 2 one has

∥P̃λh(u1)∥Xs,θ
λ,λ

≲
1

λN
∥u1∥Xs,θ

1

(
1 + ∥u1∥N+1

Xs,θ
1

)
. (8.32)

The same statement holds for h(u≤C) and for multivariate functions h(u1, u≤2, · · · , u≤2k).

Proof. When λ = 1 we use the Lipschitz property |h(u1)| ≲ |u1| to control ∥h(u1)∥L2 . For
∥□g<1P̃1h(u1)∥L2 we use the chain rule.
Now we assume λ > 1. We have

∥P̃λh(u1)∥L2 ≲
1

λN+2
∥∆

N
2
+1h(u1)∥L2

Using the chain rule we write

∆
N
2
+1h(u1) =

∑
h(j)(u1)∂

β1
x u1 · · · ∂βj

x u1

We use the L2 norm for ∂β1
x u1 and L∞ for the other terms. The same type of argument

applies for bounding ∥□g<
√
λ
P̃λh(u1)∥L2 . □

With all the preparations above we are ready to treat high frequency outputs in high
modulation spaces X̃s,θ

λ,λ.

Proposition 8.15. Let F be a smooth, bounded function with uniformly bounded derivatives
such that F (j)(0) = 0 for j ≤ 4. Then, for any even N ≥ 2 and any µ≪ λ one has

∥PλF (u<µ)∥X̃s,θ
λ,λ

≲
(µ
λ

)N(
1 + ∥u∥N+8

Xs,θ

)
sup
ν≤µ

(ν
µ

)N

∥uν∥Xs,θ
ν
. (8.33)

We same result applies for multivariate functions Pλh(u<µ/c, . . . , u<µ, . . . , u<cµ).
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Proof. We use the iterated paradifferential expansion from Section 8.2 with ν = 2 to express
F (u<µ) as a sum of terms of type:

(1) F (u1), uλ0h(u1, u≤2), . . . , uλ0uλ1uλ2uλ3h(u1, . . . , u≤C) for λ3 ≤ λ2 ≤ λ1 ≤ λ0 ≤ µ≪ λ.
Using (8.32), (8.8) we get

∥PλF (u1)∥X̃s,θ
λ,λ

≲
1

λN
(
1 + ∥u∥N+1

Xs,θ

)
∥u1∥Xs,θ

1

∥uλ0P̃λh(u1, u≤2)∥X̃s,θ
λ,λ

≲ ∥P̃λh(u1, u≤2)∥X̃s,θ
λ,λ

1

λε0
∥uλ0∥Xs,θ

λ0

≲
1

λN
1

λε0
∥uλ0∥Xs,θ

λ0

(
1 + ∥u∥N+1

Xs,θ

)
∥u≤2∥Xs,θ

. . . (8.34)

∥uλ0uλ1uλ2uλ3P̃λh(u1, . . . , u≤C)∥X̃s,θ
λ,λ

≲
1

λN
(
1 + ∥u∥N+1

Xs,θ

) 3∏
i=0

1

λεi
∥uλi

∥Xs,θ
λi

∥u≤C∥Xs,θ

Then we may sum λ0, . . . , λ3.
(2) uλ0uλ1uλ2uλ3uλ4h(u<λ4/c, . . . , u<λ4 , . . . , u<cλ4) for λ4 ≤ · · · ≤ λ0 ≤ µ≪ λ.
By abuse of notation we denote

h(u<λ4) = h(u<λ4/c, . . . , u<λ4 , . . . , u<cλ4), w = uλ0uλ1uλ2uλ3uλ4

Then

Pλ

(
w · h(u<λ4)

)
= Pλ

(
w · P̃λh(u<λ4)

)
We discard the Pλ and use (8.25):

∥Pλ

(
w · h(u<λ4)

)
∥X̃s,θ

λ,λ
≲ ∥w∥Y s,θ

λ
∥P̃λh(u<λ4)∥Mλ,λ

By Corollary 8.8 we obtain

∥w∥Y s,θ
λ

≲
( λ
λ4

)s+θ

∥uλ0∥Xs,θ
λ0

4∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

Using (8.28) together with (8.30) (for h, ∂h and ∂2h) we obtain

∥P̃λh(u<λ4)∥Mλ,λ
≲

(λ4
λ

)N+2

∥u∥Xs,θ

(
1 + ∥u∥N+3

Xs,θ

)
We put these together and sum over all but λ4. It remains to bound∑

λ4≤µ

log
( µ
λ4

)(λ4
λ

)N+2−s−θ

∥uλ4∥
(
1 + ∥u∥N+8

Xs,θ

)
≲

≲
(µ
λ

)N[
sup
λ4≤µ

(λ4
µ

)N

∥uλ4∥Xs,θ
λ4

] ∑
λ4≤µ

(λ4
λ

)2−s−θ−ε(
1 + ∥u∥N+8

Xs,θ

)
which completes the proof. □
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8.7. Conclusion - Proof of Proposition 8.1. It remains to prove (8.1). We use the
iterated paradifferential expansion from section 8.2 with µ = ∞ and ν = λ/C to express
F (u) as a sum of terms of type:

(1) F (u≪λ)
(2) uλ0h(u1, u≤2), uλ0uλ1h(u1, u≤2, . . . ), . . . , uλ0uλ1uλ2uλ3h(u1, . . . , u≤C)
(3) uλ0uλ1uλ2uλ3uλ4h(u<λ4/c, . . . , u<λ4 , . . . , u<cλ4)

for λ ≲ λ0 and λ0 ≥ λ1 ≥ · · · ≥ λ4 ≥ 1.
The term ∥PλF (u≪λ)∥X̃s,θ

λ
is estimated by (8.33). Note that the RHS is square-summable

in λ.
For the terms in (2) we use (8.10), for η ≲ λ0

∥Pλ

[
Πiuλi

Pηh(u1, ..)
]
∥X̃s,θ

λ
≲
λs

λs0
∥uλ0∥X̃s,θ

λ0

∥Pηh(u1, ..)

X̃s,θ

η

∏
i ̸=0

1

λεi
∥uλi

∥X̃s,θ
λi

Then we apply Lemma 8.14 and sum in η, λi, i ≥ 1. We have square-summability in λ due
to the factors λsλ−s

0 ∥uλ0∥X̃s,θ
λ0

.

We continue with the term (3). For η ≫ λ4 we use (8.10) and Prop. 8.15 for

Pλ

[
uλ0uλ1uλ2uλ3uλ4Pηh(u<λ4/c, . . . , u<λ4 , . . . , u<cλ4)

]
,

and then sum η ≥ Cλ4 to obtain

∥Pλ

[
Πiuλi

P≫λ4h(..u<λ4 ..)
]
∥X̃s,θ

λ
≲
λs

λs0
∥uλ0∥Xs,θ

λ0

(
1 + ∥u∥11Xs,θ

) 4∏
i=1

1

λεi
∥uλi

∥Xs,θ
λi

.

It remains to consider

Pλ

[
uλ0uλ1uλ2uλ3uλ4P≲λ4h(u<λ4/c, . . . , u<λ4 , . . . , u<cλ4)

]
For λ0 ≃ λ we use Lemma 8.12. Now we assume λ0 ≫ λ, in which case λ1 ≃ λ0 and

Pλ

[
Πiuλi

P≲λ4h(..u<λ4 ..)
]
= Pλ

[
uλ0P̃λ0

(
uλ1uλ2uλ3uλ4P≲λ4h(..u<λ4 ..)

)]
We bound this by first using the estimate (8.10) for the two terms and then Lemma 8.12
applied to P̃λ0

(
uλ1uλ2uλ3uλ4P≲λ4h(..u<λ4 ..)

)
. This concludes the proof of Proposition 8.1. □

Appendix A. Smith’s wave packets

We briefly review Smith’s wave packet parametrix construction for wave equations

(∂2t − gab(t, x)∂a∂b)u = 0, u[0] = (u0, u1)

with C1,1 coefficients [29]. This construction works as well for coefficients gij satisfying
∂2g ∈ L2L∞. Begin with a partition of unity on Rn

ξ :

1 = |h1(ξ)|2 +
∑
λ≥2

∑
ω

|hωλ(ξ)|
2

where, for each frequency λ ≥ 2, the ω’s are summed over ≃ λ
n−1
2 directions that are

uniformly separated on the unit sphere. The smooth functions hωλ(ξ) vanish outside the
annular sectors

{ |ξ| ≃ λ, |ξ/ |ξ| − ω| ≲ λ−
1
2 }
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and satisfy the natural bounds⏐⏐(ω · ∇ξ)
j∂αξ h

ω
λ(ξ)

⏐⏐ ≲ λ−j− |α|
2 .

Thus each hωλ(ξ) is supported in a rectangle of size ≃ (λ
1
2 )n−1×λ oriented in the ω direction.

To each of them we associate a lattice Ξω
λ in the physical space Rn

x on the dual scale, i.e.

spaced λ−1 in the ω direction and spaced λ−
1
2 in directions in ω⊥. For each λ we denote

Tλ = {T = (x, ω) | x ∈ Ξω
λ}

and to each T we will associate a ”tube” and a function φT defined by

φ̂T (ξ) = (2π)−
n
2 λ−

n+1
4 e−ix·ξhωλ(ξ).

This function is concentrated in phase space around (x, λω). Thus, we have⏐⏐(ω · ∇y)
j(ω⊥ · ∇y)

α φT (y)
⏐⏐ ≲ λj+

|α|
2
+n+1

4
1

(1 + λ |ω · (y − x)|+ λ |y − x|2)N

These properties imply that for any sum we have∫
Rn

⏐⏐ ∑
λ,T∈Tλ

dTφT

⏐⏐2 dy ≲
∑

λ,T∈Tλ

|dT |2 .

The family (φT )T,λ is used to decompose arbitrary functions into highly localized components.
Indeed, for any f ∈ L2(Rn) we have

f =
∑

λ,T∈Tλ

cTφT , cT :=

∫
Rn

φTf dy

In addition, we have ∫
Rn

|f |2 dy =
∑

λ,T∈Tλ

|cT |2 .

Note that if f is localized at frequencies ≃ λ, then it’s decomposition only contains terms
φT with T ∈ Tλ′ where λ′ ≃ λ. By abuse of notation we will sometimes write simply the sum
over T ∈ Tλ. The decomposition is, in general, not unique since the φT ’s are not linearly
independent.

Let T = (xT , ωT ) ∈ Tλ and fix a sign ±. Let (xT (t), ωT (t)) be the projection to S∗(Rn)

of the bicharacteristic initialized at (xT , ωT ). In other words, we set ωT (t) =
ξ(t)
|ξ(t)| and then

(xT (t), ωT (t)) solves{
dx
dt

= ±∂ξa(t, x, ω)
dω
dt

= ∓∂xa(t, x, ω)± ⟨ω, ∂xa(t, x, ω)⟩ω,
a(t, x, ξ) := (gab<λ1/2ξaξb)

1/2. (A.1)

Define the orthogonal matrix Θ±(t) by the ODE

Θ̇± = ∓Θ±[ω ⊗ ax(t, x, ω)− (ax)(t, x, ω)⊗ ω],
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where v ⊗ w is the linear map x ↦→ v⟨w, x⟩; by construction, Θ±(t)ωT (t) = ωT . Set

u±T (t, y) = φT (Θ
±(t)(y − xT (t)) + xT ),

v±T (t, y) =
1

a(0, xT , ωT )
ψT (Θ

±(t)(y − x±T (t)) + xT ),

where

ψ̂T (ξ) := −λ⟨ωT , ξ⟩−1φ̂T (ξ).

A parametrix for initial data u[0] := (u0, u1) is then given by

w(t) :=
1

2

∑
λ

∑
T∈Tλ

(u+T (t) + u−T (t))⟨φT , u0⟩L2
x

+
1

2

[∑
λ≤λ0

∑
T∈Tλ

λ−1(v+T (t)− v−T (t))⟨φT , (I + E)u1⟩L2
x

]
+ tP<λ0(I + E)u1

=: c(t, 0)u0 + s(t, 0)u1,

where λ0 ≫ 1 is an absolute constant, and the operator E satisfies ∥E∥L2→L2 ≲ λ
− 1

2
0 and

ensures that ∂ts|t=0 = I. The operators c(t, 0), s(t, 0) are approximations of the usual wave
propagators cos t

√
−∆, (

√
−∆)−1 sin t

√
−∆.

The functions u±T , λ
−1v±T then satisfy the definitions of the packets in Section 4, and shall

hereafter be denoted generically by uT . If (u0, u1) is localized at frequency λ ≫ λ0, then
the frequency-λ part of the solution u to □gu = 0 is approximated in the sense of (4.4),
(4.5), (4.6), (4.7), by retaining just the terms in w with frequencies comparable to λ; see [29,
Theorem 4.3].

As

⟨Θ±(t)(y − xT (t)), ωT ⟩ = ⟨y − xT (t), ωT (t)⟩,
for any N ≥ 0 we have⏐⏐(ωT (t)∇y)

j(ωT (t)
⊥∇y)

α uT (t, y)
⏐⏐

≲ λj+
|α|
2
+n+1

4
1

(1 + λ |ωT (t) · (y − xT (t))|+ λ |y − xT (t)|2)N
. (A.2)

Thus, uT (t, ·) are concentrated on spatial rectangles of size λ−1× (λ
1
2 )n−1 that get rotated

according to ωT (t) as time evolves and are centered around xT (t). By slight abuse of notation,
we will also denote by T this space-time region, called a tube, where uT is concentrated. For
fixed ω and a sign ±, corresponding to the lattice Ξω

λ we obtain a family T ±
λ,ω of spacetime

tubes which are finitely overlapping.
We introduce the null foliation Λθ with direction θ associated to the metric g<λ1/2 , and

construct a null frame {L,L,E} as before.
The following computation is a variation of the proof of [29, Lemma 3.4].

Lemma A.1. LuT satisfies the decay estimate (4.1).

Proof. By Lemma 3.6, we can replace L with the operator ∂t + ⟨aξ(t, y, ξ̂(t, y)), ∂y⟩.
Assume WLOG that xT = 0. Then we have
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(∂t + ⟨aξ(t, x(t), ξ̂(t)), ∂y⟩)uT (t, y) = ⟨ξ̂(t), y − x(t)⟩⟨ax(t, x(t), ξ̂(t)), ∂y⟩u(t, y)

− ⟨ξ̂(t)), y − x(t)⟩⟨ξ̂(t), ∂y⟩u(t, y).
Therefore

(∂t + ⟨aξ(t, y, ξ̂(t, y)), ∂y⟩)uT = ⟨aξ(t, y, ξ̂(t, y))− aξ(t, x(t), ξ̂(t, x(t))), ∂y⟩uT
− ⟨ax(t, x(t), ξ̂(t, x(t))), y − x(t)⟩⟨ξ̂(t, x(t)), ∂y⟩uT
+ ⟨ξ̂(t), y − x(t)⟩⟨ax(t, x(t), ξ̂(t)), ∂y⟩uT .

The third term is µ|⟨y − x(t), ξ̂(t)⟩| times an order 0 packet, therefore is also order 0.
To estimate the first two terms, for simplicity of notation we drop the dependence in t

and write x := x(t), ξ(y) := ξ(t, y), a(y, ξ̂(y)) := a(t, y, ξ̂(t, y)). The first two terms can then
be written as

⟨aξ(y, ξ̂(y))− aξ(x, ξ̂(x))− ⟨ax(x, ξ̂(x)), y − x⟩ξ̂(x), ∂y⟩uT
= ⟨aξ(y, ξ̂(y))− aξ(y, ξ̂(x)), ∂y⟩uT
+ ⟨aξ(y, ξ̂(x))− aξ(x, ξ̂(x))− ⟨ax(x, ξ̂(x)), y − x⟩ξ̂(x), ∂y⟩uT .

For the first term, write aξ(y, ξ̂(y))−aξ(y, ξ̂(x)) = aξξ(y, ξ̂(x))[ξ̂(y)− ξ̂(x)]+O(|ξ̂(y)− ξ̂(x)|2).
The remainder is O(|y − x|2), while the linear term has size O(|y − x|) and is orthogonal to

ξ̂(x) by homogeneity:

⟨aξξ(y, ξ̂(x))[ξ̂(y)− ξ̂(x)], ξ̂(x)⟩ = ⟨ξ̂(y)− ξ̂(x), aξξ(y, ξ̂(x))ξ̂(x)⟩ = 0.

Therefore

⟨aξ(y, ξ̂(y))− aξ(y, ξ̂(x)), ∂y⟩uT = µ1/2|y − x|vT + µ|y − x|2wT ,

where vT and wT satisfy order 0 decay, hence is also order 0. Finally, the remaining term is
acceptable since

⟨ξ̂(x), aξ(y, ξ̂(x))− aξ(x, ξ̂(x))− ⟨ax(x, ξ̂(x)), y − x⟩ξ̂(x)⟩

= a(y, ξ̂(x))− a(x, ξ̂(x))− ⟨ax(x, ξ̂(x)), y − x⟩
= O(∥∂2g(t)∥L∞

x
|y − x|2),

while the component orthogonal to ξ̂(x) has size O(|y − x|). □

A.1. General metrics. Smith’s construction adapts, with minor modifications, to more
general equations of the form

gαβ∂α∂βu = 0, u[0] = (u0, u1).

Here we will harmlessly assume that g00 = 1.
For each frequency λ≫ 1, factor the principal symbol of the mollified operator gαβ

<λ1/2∂α∂β
as (τ − a+)(τ − a−), where

a±(t, x, ξ) := g0b<λ1/2ξb ±
[
(g0b<λ1/2ξb)

2 + gab<λ1/2ξaξb
]1/2

.

are smooth convex/concave symbols in view of the hyperbolicity condition.
91



Then the analogue of (A.1) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= ∂ξa

±(t, x, ω)

dω

dt
= −∂xa±(t, x, ω)± ⟨ω, ∂xa±(t, x, ω)⟩ω,

dΘ±

dt
= −Θ±[ω ⊗ a±x (t, x, ω)− (a±x )(t, x, ω)⊗ ω],

(A.3)

and the analogues of u±T and v±T are furnished by the following construction.

Lemma A.2. Fix (xT , ωT ), and let φT be as before. Then for all sufficiently large frequencies
λ≫ 1, there exist functions φ±

T , ψ
±
T with similar properties as φT such that

u±T (t, y) := φ±
T (Θ

±(t)(y − xT (t))), v±T (t, y) := ψ±
T (Θ

±(t)(y − xT (t))),

satisfy the same estimates as before, and{
u+T (0) + u−T (0) = φT + λ−1/2φ̃T

∂tu
+
T (0) + ∂tu

−
T (0) = λ−1/2φ̃T

{
v+T (0)− v−T (0) = λ−1/2φ̃T

∂tv
+
T (0)− ∂tv

−
T (0) = φT + λ−1/2φ̃T ,

,

where φ̃T denotes generic function with similar smoothness and decay as φT .

Proof. Without loss of generality consider the first system. Using equations (A.3), and
writing ΦT = (φ+

T , φ
−
T )

∗, FT = (φT , 0)
∗, the system takes the form

[MT (D) +RT (X,D)]ΦT = FT +O(λ−1/2).

where

MT (D) =

(
1 1

−⟨a+ξ (0, zT ), ∂x⟩ −⟨a−ξ (0, zT ), ∂x⟩

)
, zT = (xT , ωT )

RT (X,D) =

(
0 0

⟨Θ̇+(0)(x− xT ), ∂x⟩ ⟨Θ̇−(0)(x− xT ), ∂x⟩

)
.

When ξ is restricted to a small sector centered at ωT the main term is elliptic:

| detMT (ξ)| = |⟨(a+ξ (0, zT )− a−ξ (0, zT )), ξ⟩| ∼ |ξ|(a+ − a−)(0, zT ) ∼ |ξ|.

Further, in view of spatial localization the operator RT (X,D) has order 1
2
when acting on

functions of the form φ̃T . Thus it suffices to set ΦT :=MT (D)−1FT . □

For each frequency λ > 1 and time t, let Φλ(t) : L2 × λ−1L2 → L2 × λ−1L2 denote the
operator

Φλ(t)

(
f

g

)
:=

∑
T∈Tλ

ΦT (t)

(
fT
gT

)
,

ΦT (t) :=

(
u+T + u−T v+T − v−T

∂tu
+
T + ∂tu

−
T ∂tv

+
T − ∂tv

−
T

)
(t),

(
fT
gT

)
=

(
⟨f, φT ⟩
⟨g, φT ⟩

)
,
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and set

Φ(t) :=
∑
λ>λ0

Φλ(t)Pλ +

(
1 t
0 1

)
P≤λ0 .

Then as ∥Φ(0)−I∥L2×H−1→L2×H−1 = O(λ
−1/2
0 ), by choosing λ0 sufficiently large the operator

Φ(0) is invertible on L2 ×H−1. Hence

Φ̃(t) := Φ(t)Φ(0)−1

is a parametrix in the sense of Property 4.1.

Appendix B. Microlocal analysis tools

B.1. Symbols and phase space metrics. We begin by briefly reviewing the framework
of Hormander metrics; for further details consult [12, Section 18.4].

Let g be a slowly varying metric on phase space W := T ∗Rn = Rn
x × (Rn)∗ξ . This induces

norms on tensors in the usual manner; in particular, if l ∈ TzW × · · ·TzW → R is k-linear
for some z ∈ (x, ξ), set

|lz|gk := sup
0̸=tj∈TzW

|lz(t1, . . . , tk)|∏k
j=1 gz(tj)

1/2
.

Definition B.1. If m is a slowly varying function on W , write S(m, g) for the space of
functions u on W such that

sup
z

|∇ku|gk(z)/m(z) ≤ Ck for all z ∈ W.

Definition B.2. A map χ : W → W is g-smooth if the pullback χ∗S(1, g) ⊂ S(1, g).

By the chain rule and induction, this definition is equivalent to requiring that

|Dkχ(z; t1, . . . , tk)|gχ(z)
≤ Ck

k∏
j=1

gz(tj)
1
2 for all tj ∈ TzW, uniformly in z.

B.2. Pseudo-differential calculus. Suppose A be the quadratic form on W given by
A(y, η) = ⟨y, η⟩, and for α ≤ 1 let gα denote the phase space metric (5.2). Let Uα de-
note the phase space region

Uα := {(x, ξ) : |ξ| ≥ α−2}
In the language of Hormander 18.4, the phase space metric g is A-temperate in Uα in the
sense that there exist constants C,N

gw(t) ≤ Cgz(t)(1 + gAw(z − w))N , for all z, w ∈ Uα,

where for a general quadratic form A one has

gAw(Aζ) := sup
η∈Im(A)

|⟨η, ζ⟩|2

gw(η)

and gAw(β) := ∞ for β /∈ Im(A). In the present case,

gA(x,ξ)(y, η) = g−1
(x,ξ)(η, y) = α4|⟨η, ξ̂⟩|2 + α2|η ∧ ξ̂|2 + |ξ|2|⟨y, ξ̂⟩|2 + α2|ξ|2|y ∧ ξ̂|2,

where we write ξ̂ := ξ/|ξ|.
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Similarly, a slowly varying function m is A-temperate with respect to z ∈ Uα if

m(w) ≤ Cm(z)(1 + gAw(z − w))N for all w ∈ Uα.

For a symbol a, we define the corresponding pseudo-differential operator using right-
quantization

a(X,D) = (2π)−n

∫
Rn

ei⟨x−y,ξ⟩a(x, ξ) dξ,

and write OPS(m, g) for the quantizations of symbols in S(m, g).
Recall that if a and b are symbols, then formally

a(X,D)b(X,D) = (a ◦ b)(X,D),

where

a ◦ b(x, ξ) := ei⟨Dη ,Dy⟩[a(x, η)b(y, ξ)]|y=x

η=ξ
.

In particular, we have the first order and second order symbol expansions:

a ◦ b = ab+
1

i

∫ 1

0

r1,s ds

= ab+
1

i
aξbx −

1

2

∫ 1

0

r2,s ds,

(B.1)

where

rj,s(x, ξ) = eis⟨Dy ,Dη⟩⟨∂y, ∂η⟩j[a(x, η)b(y, ξ)]y=x

η=ξ
.

The remainder can be estimated as in [12, Section 18.4]. For a real parameter t ≥ 0, define

a ◦t b(x, ξ) := eit⟨Dη ,Dy⟩[a(x, η)b(y, ξ)]|y=x

η=ξ
.

Lemma B.3. Suppose m1,m2 are slowly varying and A-temperate in the region Uα. If
a ∈ S(m1, gα), b ∈ S(m2, gα) are symbols supported in Uα, then

a ◦t b ∈ S(m1m2, gα)

with constants uniform in 0 ≤ t ≤ 1.

Proof sketch. Follow the proof of Theorem 18.4.10 and Proposition 18.5.2 in Hormander [12].
The main point is that estimates for the Gauss transform eitA(D) only improve when t ≤ 1
since gtA = t−2gA ≥ gA.
Let Bt : denote the quadratic form on W ⊕W defined by Bt(x, η), (y, ξ)) := t⟨y, η⟩, then

one needs to verify that

• The metric G := gα ⊕ gα is slowly varying and Bt-temperate with respect to the
diagonal (x, ξ, x, ξ) in Uα × Uα, and G ≤ GBt .

• The weight function M := m1 ⊗m2 is slowly varying and temperate with respect to
Bt at the diagonal where |ξ| ≥ α−2.

□
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We hereafter denote by S(m, gα) those symbols supported in the region |ξ| ≥ α−2/8.
The corresponding operators a(X,D) ∈ OPS(m, gα) accept input frequencies ≳ α−2. The
previous lemma shows that OPS(m1, gα) ·OPS(m2, gα) ⊂ OPS(m1m2, gα).

In our applications we encounter a slightly more complicated class of symbols associated
to two angular scales. For β ≥ α, let

S1
β(m, gα) := {ϕ ∈ S(m, gα) : ∂xϕ ∈ S(m, gα), ∂ξϕ ∈ S((β|ξ|)−1m, gα)}.

In view of Lemma B.3 and the identities

∂x(a ◦ b) = (∂xa) ◦ b+ a ◦ (i∂xb),
∂ξ(a ◦ b) = (i∂ξa) ◦ b+ a ◦ (∂ξb),

one sees that

OPS1
β(m1, gα) ·OPS1

β(m2, gα) ⊂ OPS1
β(m1m2, gα).

However, we do not quite have the usual pseudo-differential calculus since OPS(m, gα)
is not closed under taking adjoints. One remedy is to consider the subclass of operators in
OPS(m, gα) which output at frequencies ≥ α−2.

Lemma B.4. Suppose m is slowly varying and temperate with respect to gα. If ϕ ∈ S(m, gα)
satisfies ϕ(X,D) = S≥α−2(D)ϕ(X,D)S≥α−2(D) then

ϕ∗(x, ξ) = [ei⟨Dy ,Dη⟩ϕ(y, η)]y=x

η=ξ
∈ S(m, gα)

and is supported in |ξ| ≥ α−2/8.

This leads to the main L2 estimate:

Lemma B.5. [10, Theorem 4.8] If a ∈ S(1, gα) in addition satisfies

|S<λ(Dx + ξ)a(x, ξ)| ≤ CN

( λ

⟨ξ⟩

)N

, 1 ≤ λ ≤ ⟨ξ⟩,

then a(X,D) is continuous on L2. In particular, the conclusion holds for operators of the
form

a(X,D) = S>λ/8(D)a(X,D)Sλ(D), λ ≥ α−2.

Proof. For the last statement, note that since

ˆa(X,D)u(η) =

∫
â(η − ξ, ξ)û(ξ) dξ,

the hypothesis implies that S<λ/8(Dx + ξ)a(x, ξ) = 0. □

We also need bounds for certain pseudo-differential operators which are strongly localized
in input frequency but do not quite satisfy the hypotheses of the previous lemma. For a
direction field x ↦→ Θ(x) ∈ Sn−1 on Rn, let

m = mΘ(x, ξ) := ⟨α−1(ξ̂ −Θ(x))⟩−1, ξ̂ := ξ/|ξ|.
To express the angular localization of various symbols it will be convenient to introduce the
following

Notation. For a weight function m, write S(m∞, gα) :=
⋂

N S(m
N , gα).
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Lemma B.6. Suppose x ↦→ Θ(x) ∈ Sn−1 ⊂ Rn is Lipschitz, and let ϕ ∈ S(m∞, gα) be
supported in an annulus |ξ| ∼ λ ≥ α−2. Then ϕ(X,D) is bounded on Lp for all 1 ≤ p ≤ ∞.

Proof. We use Schur’s test on the kernel K(x, y) = (2π)−n
∫
ei⟨x−y,ξ⟩ϕ(x, ξ) dξ = F−1

2 ϕ(x, x−
y) of ϕ(X,D). For fixed x, ξ ↦→ ϕ(x, ξ) is a Schwartz function with height 1 and adapted to

the sector |ξ̂ −Θ(x)| ≲ α, |ξ| ∼ λ. Therefore

|K(x, y)| ≲ λ(αλ)n−1⟨λ|⟨x− y,Θ(x)⟩|+ αλ|x− y ∧Θ(x)|⟩−N for any N,

so

sup
x

∫
|K(x, y)| dy <∞.

To evaluate

sup
y

∫
|K(x, y)| dx,

decompose ϕ =
∑
ϕω
ν , where ω ranges over a partition of the annulus |ξ| ∼ λ into λ ×

(αλ)n−1 sectors, and for each ω, ν ranges over a partition of space into parallel α2 × (α)n−1

parallelpipeds Rω
ν with orientation ω. The kernel decomposes as

K(x, y) =
∑
ω

∑
ν

F−1
2 ϕω

ν (x, x− y) =
∑
ω

∑
ν

Kω
ν (x, y).

Then

|Kω
ν (x, y)| ≲ 1Rω

ν
(x)⟨α−1(ω −Θ(xων ))⟩−Nλ(αλ)n−1⟨λ|⟨x− y, ω⟩|+ αλ|x− y ∧ ω|⟩−N .

For a constant c depending on the Lipschitz constant of Θ,∫
|K(x, y)| dx ≲

∑
|xω

ν−y|≤c(|ω−Θ(y)|+α)

⟨α−1(ω −Θ(y))⟩−N

×
∫
Rω

ν

λ(αλ)n−1⟨λ|⟨x− y, ω⟩|+ αλ|x− y ∧ ω|⟩−2N dx

+
∑

|xω
ν−y|>c(|ω−Θ(y)|+α)

⟨α−1(ω −Θ(xων ))⟩−N⟨αλ|ω −Θ(y)|⟩−N

×
∫
Rω

ν

λ(αλ)n−1⟨λ|⟨x− y, ω⟩|+ αλ|x− y ∧ ω|⟩−N dx

≲
∑
ω

⟨α−1(ω −Θ(y))⟩−N <∞.

□

Appendix C. An angular partition of unity

Throughout this discussion we fix a minimum angular scale αµ ≪ 1.
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Choose 0 ≤ η ∈ C∞
0

(
(−1, 1)

)
with

∫
η = 1, and let ηh = h−1η(h−1·). For each θ ∈ Ωα,

with θ = [a.b), define the scale functions

h1(ξ) =

{
1
8
α, ξ ≤ a+b

2
,

1
16
α, ξ > a+b

2

h2(ξ) =

{
1
16
α, ξ ≤ a+b

2
,

1
8
α, ξ > a+b

2

h3(ξ) =

{
1
16
α, ξ ≤ a+b

2
,

1
16
α, ξ > a+b

2

h4(ξ) =

{
1
8
α, ξ ≤ a+b

2
,

1
8
α, ξ > a+b

2

and for k = 1, 2, 3, 4, define ϕα,k
θ by mollifying the characteristic functions of θ on a position-

dependent scale:

ϕα,k
θ (ξ) := 1θ ∗ ηhk(ξ)(ξ).

Then each ϕα,k
θ is smooth on the α scale and supported in a 1

8
|θ| neighborhood of the

interval θ, and there exist c1, c2 > 0 such that

c1 ≤
∑
θ∈Ωα

ϕ
α,k(θ)
θ ≤ c2 (C.1)

for any sequence k(θ) ∈ {1, 2, 3, 4}.

Proposition C.1. Fix a small dyadic number αµ < 1/4. For each ω ∈ Ωαµ, there exist
dyadic intervals θ0 = ω, θ1, . . . on the circle from the families Ωα with, |θj − ω| ∼ αj when
j ≥ 1, such that we have the (fixed time) partition of unity

1 =
∑
j

ϕ
αj ,k(ω)
θj

,

where k(ω) ∈ {1, 2, 3, 4}, and the scales αj satisfy

• 1
2
αj−1 ≤ αj ≤ 2αj−1, and

• at most O(1) consecutive αj’s are equal.

The families Ωα are independent of ω.

Before the proof, we consider

Lemma C.2. Given ω ∈ Ωα0, there exists a sequence ω = θ0, θ1, θ2, . . . of dyadic intervals
in R with the following properties:

• θj is right-adjacent to θj−1.
• 2|θj−1| ≤ |θj| ≤ |θj+1| for all j.
• If |θj−1| = |θj|, then |θj+1| = 2|θj|.
•
∑J

j=1 |θj| ≤ 4|θJ | for all J .

The analogous statement with “right” and “left” interchanged also holds.

Proof. The idea of the construction is to “double whenever possible while moving right.”
Using the usual tree terminology, define the sequence θj inductively as follows:

• If θj is the left-child of its parent, let θj+1 be its sibling.
• Else let θj+1 be the right neighbor of θj’s parent.

Then |θj+1| = |θj| in the first case and |θj+1| = 2|θj| in the second. Since each interval has
only two children, there cannot be more than two consecutive intervals of the same width.
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The inequality
∑J

j=1 |θj| ≤ 4|θJ | is verified inductively. Assume it holds for all smaller J .

If |θJ+1| = 2|θJ |, then
J+1∑
j=1

|θj| ≤ 4|θJ |+ 2|θJ | ≤ 4|θJ+1|,

while if |θJ+1| = |θJ |, then |θJ | = 2|θJ−1| and we have

J+1∑
j=1

|θj| ≤ 4|θJ−1|+ 2|θJ−1|+ 2|θJ−1| ≤ 4|θJ+1|.

□

Proof of Prop. C.1. Starting with ω, we construct dyadic intervals θr1, θ
r
2, . . . and θl1, θ

l
2, . . .

to the right and left of ω, respectively, according to the lemma. Choose Jr and J l maximal
such that

Jr∑
j=1

|θrj | ≤
1

2
− |ω|,

J l∑
j=1

|θlj| ≤
1

2
− |ω|.

By the lemma one must have

1

8
− |ω|

4
≤ |θrJr |, |θlJ l | ≤

1

2
− |ω|;

that is,

|θrJr |, |θlJ l | ∈
{ 1

16
,
1

8
,
1

4

}
.

Assume with loss of generality that |θl
J l | ≤ |θrJr |.

• If |θl
J l | = 1

16
, |θrJr | = 1

4
, then θrJr and θl

J l are separated modulo 1 by less than 10

dyadic intervals of width 1
16

(the worst case being when |θl
J l+1

| = 1
8
and |θrJr+1| = 1

2
).

We replace θrJr by its two children θr,1Jr , θ
r,2
Jr of width 1

8
, and reindex the intervals by

defining θrJr := θr,1Jr , θrJr+1 := θr,2Jr , and replacing Jr by Jr + 1.
• If |θl

J l | and |θrJr | differ by at most one dyadic scale, then they are separated modulo
1 by at less than 6 dyadic intervals of width |θl

J l |.
Let θ′1, . . . , θ

′
n ∈ Ω|θl

Jl |
, n < 10 be the intervening intervals. Projecting the intervals to R/Z,

we relabel the sequence

θ0, θ
r
1, . . . , θ

r
Jr , θ′1, . . . , θ

′
n, θ

l
J l , . . . , θ

l
1

as

θ0, θ1, . . . , θM−1,

and write

αj := |θj|.
Then, interpreting the indices modulo M , we have

• 1
2
αj−1 ≤ αj ≤ 2αj−1, and

• at most O(1) consecutive αj’s are equal.
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For each θj = [aj, bj) (mod 1), define the scales

hj(ξ) =

{ αj

8
, αj ≤ αj+1

αj

16
, αj > αj+1

and define ϕ
αj

θj
by mollifying the characteristic functions of θj near the junction points.

ϕ
αj

θj
(ξ) =

⎧⎨⎩ 1θj ∗ ηhj−1
(ξ), aj − αj

8
≤ ξ ≤ aj+bj

2
,

1θj ∗ ηhj
(ξ),

aj+bj
2

< ξ ≤ bj +
αj

8
,

0, otherwise

This function has one of the four forms asserted in the proposition, and

1 =
M−1∑
j=0

ϕ
αj

θj

since the same is true for the sum of characteristic functions 1θj and the mollification scale
is the same near the boundary between θj and θj+1. □
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