A Machine Learning Framework
to Improve Storage System Performance

Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez Zadok
Stony Brook University

ABSTRACT

Storage systems and their OS components are designed to
accommodate a wide variety of applications and dynamic
workloads. Storage components inside the OS contain var-
ious heuristic algorithms to provide high performance and
adaptability for different workloads. These heuristics may be
tunable via parameters, and some system calls allow users
to optimize their system performance. These parameters are
often predetermined based on experiments with limited appli-
cations and hardware. Thus, storage systems often run with
these predetermined and possibly suboptimal values. Tun-
ing these parameters manually is impractical: one needs an
adaptive, intelligent system to handle dynamic and complex
workloads. Machine learning (ML) techniques are capable of
recognizing patterns, abstracting them, and making predic-
tions on new data. ML can be akey component to optimize and
adapt storage systems. In this position paper, we propose KML,
an ML framework for storage systems. We implemented a pro-
totype and demonstrated its capabilities on the well-known
problem of tuning optimal readahead values. Our results show
that KML has a small memory footprint, introduces negligible
overhead, and yet enhances throughput by as much as 2.3x.

CCS CONCEPTS

« Software and its engineering — Operating systems;
File systems management; . Computing methodologies
— Machine learning.

KEYWORDS

Operating Systems, Storage Systems, Machine Learning, Stor-
age Performance Optimization

ACM Reference Format:
Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Ve-
likov, and Erez Zadok. 2021. A Machine Learning Framework to

Improve Storage System Performance . In 13th ACM Workshop on
Hot Topics in Storage and File Systems (HotStorage °21), July 27—
28, 2021, Virtual, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3465332.3470875

1 INTRODUCTION

Motivation. Computer systems are ever-changing. Storage
performance depends heavily on workloads and precise sys-
tem configuration [6, 56]. They include many parameters that
can affect overall storage performance significantly [5, 7]. Yet,
users often do not have the time or expertise to tune system
parameters to optimize performance. Worse, the systems com-
munity is fairly conservative, resisting software changes that
may cause instability or data loss. For that reason, many OS
heuristics are relatively simple, and were developed based on
human intuition after studying several workloads historically;
but such heuristics cannot easily adapt to the ever-changing
complex workloads. We propose a versatile, low-overhead, and
light-weight system called KML, for conducting ML training
and prediction for storage systems.

(o)

System calls /
mmap

Block device
layer

update
readahead
(#sectors)

train/inference
data collection

update
readahead
(#ra_pages)

Build_model /|

add_layer

Memory Management
(filemap, page-writeback)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotStorage 21, July 27-28, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8550-3/21/07...$15.00

https://doi.org/ 10.1145/3465332.3470875

94

Data processing and
normalization

Figure 1: Kernel space training/inference architecture.

KML overview. Figure 1 shows KML’s architecture where
OS developers perform training and inference in the kernel. To
show KML’s usefulness, we describe a case study using KML
to improve readahead in Section 4. In Figure 1, KML compo-
nents are shown in yellow. We also show components specific
to the readahead case study: the memory management sub-
system is where we control readahead values using the block

https://doi.org/10.1145/3465332.3470875
https://doi.org/10.1145/3465332.3470875
https://doi.org/10.1145/3465332.3470875

HotStorage '21, July 27-28, 2021, Virtual, USA

device layer, as well as updating ra_pages for open files. The
target component and how we apply ML to it depends on the
problem athand (see Section 3.2). InFigure 1, the green arrows
show the execution flow when KML is enabled and is training
and inferencing. Orange arrows denote the initialization flow
of the readahead neural network. Users can configure when
KML switches between training and inferencing. The green
arrows show a closed-circuit flow in the system: when we take
action on the system based on ML predictions, it affects the
memory management system; thereafter, when the memory
management’s state changes, it affects future ML predictions.

Library design. We wrote KML’s core ML parts from scratch.
To make KML run inside the kernel, we implemented the re-
quired math and matrix operations, and other ML internals
(see Section 2). KML currently supports the most commonly
used layers and loss functions, and its versatile architecture
is extensible.

OS integration. KML is an ML framework to run inside
the OS. Thus, it was designed to conserve resources (see
Section 3.1). KML’s programming model is flexible which
frees users from writing difficult kernel code directly (see
Section 3.3).

2 MACHINE LEARNING LIBRARY DESIGN

One goal in designing KML is to provide modularity in build-
ing ML solutions. This requires (i) developing the required
math functionality, (ii) creating a modular, extensible struc-
ture to implement new functionality, (iii) implementing back-
propagation algorithms for training neural networks, and (iv)
providing a flexible and high-fidelity environment for model
development and debugging.

Math and matrix operations. Many standard math opera-
tions from libc are not available in the kernel. Hence, we
implemented commonly used matrix manipulation and linear
algebra functions. We also implemented must-have functions
such as logarithm, softmax, and logistic from scratch using
approximation algorithms.

Layer and loss functions. Neural networks use differentiable
components, each performing a certain critical ML operation.
For example, a fully connected layer performs matrix multi-
plication between the given input and the layer parameters
(i.e., weights), while a sigmoid layer performs the sigmoid
function (#) for given matrix (or vector). This component
modularity is important in KML. For each layer type and loss
function, we implemented a function for forward propagation
(i.e., inference), and another for back-propagation.

Inference and training. We perform inference by creating
a computation directed acyclic graph (DAG) of the individual
layers; we traverse this DAG during inference and propagate
the outputs of previous layers to successive ones. We compute
gradients using reverse mode automatic differentiation (e.g.,
back-propagation [54]). We used the back-propagation [54]

95

1. Akgun et al.

chain rule to compute the gradients for each parameter ef-
ficiently. Once gradients are computed, KML optimizes the
neural network’s parameters using Stochastic Gradient De-
scent (SGD) [61].

Extensibility. Other neural network components and loss
functions can be easily added to KML. One has to implement 3
main functions, similar to the existing layer and loss functions:
(i) building and initializing the layer, (ii) forward propagation
for inferencing, and (iii) backward propagation for training.

Interoperability between kernel and user space. It is easier to
develop and test software in user space than in the kernel. We
enable quick and easy user space development for ML models
that can then run seamlessly in the kernel. To ensure inter-
operability between user and kernel, we use the exact same
code in both—only wrapping functions with a thin portability
layer (see Section 3.3).

3 OPERATING SYSTEM INTEGRATION

In this section, we describe how KML is designed to: (i) re-
duce ML overheads, (ii) collect data efficiently and train on
it with minimal system interference, and (iii) have a versatile
architecture.

3.1 Reducing ML Overheads

OSs are sensitive environments where precious CPU and
memory resources must be carefully managed. Therefore, any
ML implementation inside the OS must be efficient. However,
there is a critical trade-off between how much accuracy can be
obtained from an ML model vs. how much CPU and memory
is used for ML: more memory and CPU usage produces more
accurate ML models. KML lets users balance these trade-offs.

Reducing computational overheads. ML computational over-
heads mainly arise when multiplying floating-point (FP) ma-
trices. Most OSs disable FP operations in kernel space to re-
duce computational and context-switching overheads. To
improve compatibility, KML supports multiple data types for
matrix operations. One way to represent matrices compactly
is using quantization [14, 18, 29, 31, 55]. Quantization can
reduce both computational and memory overheads, but often
reduces accuracy [34]. Another way to perform FP operations
in a kernel is to use a fixed-point representation. Operations
on fixed-point representations can be faster and do not require
an FP unit in the running processor [12, 45]. However, fixed-
point representations cannot emulate large ranges, which can
lead to numerical instability issues [41].

To improve versatility, KML supports integer, floating-point,
and double precision matrices. To enable and disable the FP
unit (FPU) in the Linux kernel, we used kernel_fpu_begin
and kernel_fpu_end, respectively. We minimize the number
of code blocks using FPs, to reduce the number of context-
switches that would also have to save and restore floating-
point registers.

A Machine Learning Framework
to Improve Storage System Performance

Reducing memory overheads. KML’s memory consumption
mainly comes from storing neural network specific data (e.g.,
weights, biases, hyper-parameters, layer structures) and col-
lecting training data. The size of the neural network specific
data depends on the ML model depth and layer sizes. We de-
signed KML to be as efficient as possible: we use a lock-free
circular buffer to process and asynchronously train on input
data. The circular buffer’s size is configurable to cap memory
usage. Since losing part of the training data could reduce the
model’s accuracy, users must carefully configure the circular
buffer size based on the sampling rate of data collection. Sec-
tion 4 evaluates total memory usage in our readahead case
study. When the system is running under memory pressure,
allocating memory might itself take a long time or even fail,
which could hurt KML’s performance and accuracy. KML thus
supports memory reservation to ensure predictable perfor-
mance and accuracy.

3.2 Data Collection and Async Training

Data normalization and processing is essential in ML. KML of-
fers several data normalization and statistical functions: mov-
ing average, standard deviation, and Z-score calculation. The
data normalization phase is usually computation-intensive
and likely requires floating-point (FP) operations. Hence, we
offload data normalization to a separate asynchronous ker-
nel thread, which is also responsible for training. This avoids
enabling FP operations in other thread contexts where we
collect data for training: namely the I/O and data paths, which
are highly sensitive to additional latencies.

KML creates a training thread during the model initializa-
tion stage. KML also abstracts all complicated data commu-
nications with the circular buffer. The only information users
need to provide in the model-initialization code is a pointer to
the model’s training function. Using a separate training thread
might have performance implications. If the training thread
is not scheduled frequently enough, it could hurt KML’s per-
formance and accuracy, due to lost data samples. We recom-
mend leaving at least one available CPU core for the training
thread. KML currently supports only one asynchronous train-
ing thread, since our current prototype supports only chain
computation graphs that have to be processed serially.

3.3 Versatile Architecture

KML development APL Kernel programming is challenging.
We designed KML’s development API to abstract away exter-
nal functionality (e.g., threading, memory-allocation). KML
can be compiled in both user and kernel space with identical
behavior. The KML development API has five parts: (i) system
memory allocation, (ii) threading, (iii) logging, (iv) atomic
operations, and (v) file operations. KML’s development API

96

HotStorage ’21, July 27-28, 2021, Virtual, USA

has 27 functions to support KML’s needs. For example, we im-
plemented a simple kml_malloc wrapper API that calls malloc
in the user level and kmalloc in the kernel.

Training in user space. KML runs identically in both user
and kernel space to ease model development. Users can collect
data using KML’s data processing and normalization com-
ponents and then train ML models on collected trace data in
user space. Other adjustments, such as trying different neural
network architectures or hyper-parameters, can also run in
user space. Facilitating model development and debugging in
user space accelerates both. When the neural network model
is ready to be deployed, the user can save the model to a file
that has a KML-specific file format. The user can then load the
neural network model with a given path to the deployment file
in the kernel module. In this paper, the target neural network
model we discuss was trained and tested in user space and de-
ployed for inference into kernel space. First, we make KML API
calls to collect data inside the memory management system
(i.e, filemap.c and page-writeback.c). We then process, nor-
malize, and store the collected data. Data collection is followed
by feature selection. After we get the training data as our in-
put, we start building our model to improve readahead perfor-
mance. When we finalize the model design, we save the model
toafiletobe deployed later in the kernel. Users need to write or
modify their kernel module using KML APIs (see Table 1). KML
APISs define the interfaces between KML models and kernel.

loss *build_loss(void *internal, loss_type type);
void add_layer(layers xlayers, layer xlayer);
void create_async_thread(model_multithreading *multithreading
model_data *data, kml_thread_func func, void *param);
sgd_optimizer *build_sgd_optimizer(float learning_rate,
float momentum, layers *layer_list, loss *loss);

Table 1: KML API examples.

After we deploy the model, we configure KML for inference.
When the system and the neural network model are operating
in inference mode, execution proceeds as follows: (1) KML
starts collecting data from the memory management compo-
nent; (2) the collected data is processed and normalized, and
the data processing and normalization unit generates suitable
features; (3) features are passed to the KML engine for infer-
ence; (4) KML’s engine inferences and generates predictions;
and (5) finally, the KML application takes actions based on
the predictions just made—e.g., the KML application changes
readahead sizes using block device layer ioctls and updates
the readahead values in struct files.

Although the example demonstrated here focuses on the
case where training is performed in the user space and the in-
ference is performed in the kernel space, KML supports other
modes of operation. KML can do either training or inference
in user or kernel spaces. Also, one can switch between train-
ing and inference modes as needed to adapt automatically to
ever-changing conditions in the kernel.

)

HotStorage '21, July 27-28, 2021, Virtual, USA

Training in kernel space. There are two critical reasons why
we support in-kernel training: performance and accuracy.
One of the most crucial parts of the machine learning flow is
collecting the training data. Tracing OSs at a high sampling
rate is challenging. Tracing tools like LT Tng [46] use user-
kernel shared memory and gather tracing data in user-space.
However, research shows that these tracing tools introduce
overhead—from 5% to 2x—and may lose tracing data to cap
these tracing overheads [2]. We also plan to build a user-kernel
co-operation mode for KML for cases that do not require high
sampling rate data collection. In our readahead use case, we
collected data and trained in user-space. We then deployed
in the kernel. But, we also tried training same neural net-
works directly in the kernel without having separate data
collection. Because our readahead use-case does not require
high sampling rate data collection, both the in-kernel trained
readahead model and the user-space one performed well.

In-kernel training also allows OS developers to build ML
solutions using reinforcement learning [35]. Using reinforce-
ment learning, we can build ML approaches that can adapt
themselves based on the feedback from the system. For ex-
ample, when we apply our readahead neural network on
applications that use different file access patterns—and hence
not represented in our training dataset—the readahead neural
network may not perform as well. In that case, we can build
a feedback system in the kernel and transform our readahead
neural network model to reinforcement learning model.

Safety in KML’s programming model. KML ensures that
inline data collection operations of KML do not cause any
deadlock. KML uses lock-free data structures to avoid dead-
lock and to reduce the overhead of data collection operations.
KML uses dynamic memory allocation during the inference
phase. Since the inference thread runs on a separate thread
context and gets the collected data from lock-free data struc-
tures, even if it gets blocked during the memory allocation, it
does not affect any other threads. Furthermore, KML'’s train-
ing is just computation that involves memory allocation and
no I/0, hence cannot block or deadlock.

OS developers can be skeptical about ML solutions’ stability.
KML itself is just an OS framework for enabling ML in kernel
and is not directly responsible for an ML solution’s stability
and accuracy. ML stability and accuracy, rather, depend on
how these ML approaches are trained and their architecture.
Nevertheless, we used standard techniques to validate the
stability and accuracy of our ML solution, which we discuss
in Section 4.

4 USE CASE: IMPROVING READAHEAD

We now explain how we improved readahead using KML. We
start by describing the problem, then how we constructed the
neural network, and finally illustrate our evaluation results.

97

1. Akgun et al.

Motivation. Readahead is a storage prefetching system. Its
main objective is to improve I/O performance by caching “fu-
ture” storage data based on tunable per-disk and per-file read-
ahead values, as well as hints that users can provide through
system calls such as fadvise and madvise. Users can tune the
OS’s use of certain files with these system calls (e.g., hinting
of expected sequential vs. random access). Our goal was to
replace these manual or programmer-driven heuristics with
an automated ML technique that quickly adapts to changing
workloads to tune readahead values as needed.

Studying the problem. We studied the readahead problem
empirically. We tested RocksDB [26] with four different work-
loads, 20 different readahead sizes (ranging from 8 to 1024),
and two different storage media (NVMe and SSD). We then
built a mapping from the workload type to the readahead
value that provided the best throughput. The results showed
that no single readahead value maximized throughput for all
workloads. Moreover, the relationship between readahead
values was not linear and at times exhibited long tails. Clearly,
traditional or naive techniques could not optimize readahead
values for each disk, file, and changing workload. We de-
signed a readahead neural network model to classify which
workload is running on the system; then, based on the neu-
ral network’s workload type predictions, we configured the
readahead size that we obtained through our experiments to
optimize throughput.

Data collection. We collected training data from the Linux
kernel using LT Tng tracepoints [2, 46]. To model readahead
behavior accurately, we used built-in kernel tracepoints (e.g.,
add_to_page_cache,writeback_dirty_page). These tracepoints
track file-backed pages. Next, we investigated the collected
traces to find the correlations between file access patterns and
workload types. We then chose data points that have high cor-
relations with workload types. At runtime, these data points
are collected on-the-fly by data-collection hook functions,
which KML users need to implement. Readahead data collec-
tion functions record the inode number, page offset of the files
that are accessed, and time difference from the beginning of
the execution of KML kernel module.

Data pre-processing and feature extraction. One of our pri-
mary goals for adapting ML approaches into the storage stack
is building more generalizable and adaptable solutions. There-
fore, data pre-processing and normalization are crucial. In
the readahead model, we process the collected data points
every second and then extract features at runtime. We tried a
total of eight features which we selected based on our domain
expertise (storage workloads and readahead). We then exper-
imentally narrowed them down to just five features that had
the most predictive accuracy, also confirmed using Pearson
correlation analysis [51]: (i) the number of tracepoints that

A Machine Learning Framework
to Improve Storage System Performance

were traced, (ii) the cumulative moving average of page off-
sets, (iii) the cumulative moving standard deviation of page
offsets, (iv) the mean absolute page offset differences for con-
secutive tracepoints, and (v) the current readahead value. We
then calculated the Z-score for each feature to normalize the
input data of our readahead neural network model.

Neural network model. We designed our readahead neu-
ral network as a multi-class classification model. Our model
has three linear layers, and these layers are connected with
sigmoid activation functions to model the non-linearity exhib-
ited by the readahead-vs-throughput curves we investigated.
We used the cross-entropy loss function and optimized our
network using an SGD optimizer [36, 53], configured with
a (conventional) learning rate of 0.01 and a momentum of
0.99 [4]. We trained on the data we collected by running
only four workloads (readrandom, readseq, readreverse, and
readrandomwriterandom) on NVMe. We picked these training
workloads because they were sufficiently diverse in sequen-
tiality vs. randomness. We measured the performance of our
neural network using k-fold cross-validation with k=10, and
found that our model reached an average accuracy of 95.5%.

Performance evaluation. Our evaluation goals were to prove
that using ML-based solutions inside the OS can offer more
generalizable and adaptable solutions than aging heuristics—
and hence improve performance with minimal overhead. To
prove that our neural network model can learn abstract pat-
terns, we tested our model under the workloads we trained
on as well as never-seen before workloads that include a com-
plex mixed workload (mixgraph) [9]. Moreover, while training
workloads ran on an NVMe, our evaluations tried those and
new workloads on an SSD. The results show that the read-
ahead neural network can reach up to 2.3x better performance
(see summary Table 2). As Table 2 shows, only for readseq on
NVMe, KML actually lost 4% performance; all other workloads
improved. This is because readseq maxes out the underlying
hardware throughput and there was little opportunity to im-
prove throughput: KML’s attempts to learn and optimize read-
ahead only interfered with an already optimal throughput.

KML currently supports neural networks and decision trees.
We have also implemented a decision tree for the readahead
use-case to show how different ML approaches perform on
the same problem. The readahead decision-tree model im-
proved performance for SSD 55% and NVMe 26% on average.
For brevity, we provide details only for the (superior) neural
network results in this paper.

Another crucial part of our evaluation is to show that, with
KML, we can build highly efficient and low overhead ML so-
lutions for OS problems. Note that the numbers presented in
this paper are specific to the readahead model: KML’s neural
network models’ overhead is correlated with the ML model’s

98

HotStorage ’21, July 27-28, 2021, Virtual, USA

Benchmarks NVMe | SSD
readseq 0.96x |1.02%
readrandom 1.65% | 2.30%X
readreverse 1.04x |1.12%
readrandomwriterandom| 1.55X |2.20X
updaterandom 1.53%x | 2.22X
mixgraph 1.51X |2.09%

Table 2: KML readahead neural network model im-
proved RocksDB I/0 performance under six workloads
across two device types: average performance gain for
SSD was 82.5% and for NVMe was 37.3%.

vanilla —— kml readahead

1000
800
600

400

Readahead size (sectors)

200

w A U O N ® ©

Throughput (1000s ops/sec)

0

0 2 4 6 8
Runtime (minutes)

Figure 2: Timeline of performance comparison be-
tween running RockDB’s mixgraph workload on vanilla
and with KML optimizations enabled.

complexity. Figure 2 shows how the readahead neural net-
work changes the readahead size (Y2 axis) during RocksDB’s
mixgraph workload on an NVMe device, and how performance
(ops/sec, Y1 axis) improves overall. We ran the same bench-
mark 15 times and averaged the performance improvements.
As Figure 2 shows, there are fluctuations on the readahead
size tuning. The reason for these fluctuations is that we clear
the cache after every run, and that when the benchmark starts,
read-access patterns are different than the rest of the execu-
tion. Still, while the readahead neural network predicts the
readahead size inaccurately for short time periods, overall
performance improvement is around 2.09X.

Our readahead model’s average data collection and normal-
ization overhead for each transaction was a mere 49 nanosec-
onds. The readahead neural network executes an inference
in 21pus and one training iteration in 51us on average. Since
our readahead model’s input data is designed to be processed
and fed to the readahead neural network for every second,
we run inference in a different thread context once a second.
Therefore, the overhead of inference for our readahead model
is 21pus for every second which is negligible. The readahead
model consumed 3,916 bytes of dynamic memory to initialize
the model and it temporarily used another 676 bytes of mem-
ory while inferencing. These results prove that KML is viable
for solving I/O problems that often run in milliseconds.

5 RELATED WORK

Machine learning in systems and storage. In afollow up work
to Mittos [30], the authors implemented a custom neural net-
work to perform inference inside the OS’s I/O scheduler queue,

HotStorage '21, July 27-28, 2021, Virtual, USA

deciding synchronously whether to submit requests to the
device or not (using binary classification) [31]. Their system
trained offline using TensorFlow, only in user space, tested
for inference only on SSDs, and could not be easily re-trained.
Lastly, the two layers in their neural network were custom
built. Conversely, KML offers a flexible architecture that can
train, normalize, and infer repeatedly, online or offline, syn-
chronously or asynchronously—with equal ease. KML can
easily support any number of generalizable neural network
layers and other ML models (e.g., decision trees). Our exper-
iments demonstrate more complex classification abilities on
a wider range of devices.

Laga et al. [40] implemented Markov chain models to im-
prove readahead performance in the Linux kernel. They pre-
sented 50% betterI/O performance for a database system under
TPC-H [64] benchmarks on SSDs. In comparison, we exper-
imented with our readahead model using a broader range
of workloads and storage media (NVMe and SSD), and our
results show that our readahead model improved I/O through-
put by as much as 2.3x. Moreover, our readahead model’s
kernel memory consumption is less than 4KB, compared to
Laga et al.’s Markov model which consumed 94MB.

Some researchers have tried to integrate ML techniques
into the OS task scheduler [12, 49]. But the performance im-
provements that they reported were negligible (0.1-6%). Nev-
ertheless, there is a growing trend in using ML techniques
to solve storage and OS problems: predicting index struc-
tures in key-value stores [17, 38], memory allocation [47],
TCP congestion control [24], offline black-box optimization
for storage parameters [8], database query optimization [37],
local and distributed caching [60, 66] and cloud resource man-
agement [16, 19, 20].

Machine learning libraries for resource-constrained systems.
A variety of ML libraries are available to help develop ML-
enabled applications for various settings. Some of these ML
libraries are mainstream libraries without a particular focus
area, such as PyTorch [50], Tensorflow [1], and CNTK [15].
Other libraries are targeted at constrained or on-device en-
vironments, such as ELL [25], Tensorflow Lite [62], SOD [59],
and Dlib [22]. ELL is targeted at deployment of ML models for
inference, while the other libraries can also be used for infer-
ence. KML differs from these because it targets OS-level appli-
cations, where prediction accuracy is important but must be
carefully balanced with overheads and resource consumption.

Adaptivereadahead & prefetching. Readahead and prefetch-
ing techniques are well studied problems [21, 39, 57, 58] and
are useful in distributed systems [11, 13, 23, 42-44, 48, 63].
Several works try to build statistical models to tune the sys-
tems [27, 57, 58]. The main limitation of statistical models is
their inability to adjust to new or changing workloads and
devices. Conversely, we have shown that our model can adapt

99

1. Akgun et al.

to never-seen before workloads and different devices. Predict-
ing individual I/O requests and file accesses based on patterns
generated by the workloads is another way to improve read-
ahead [3,21,33,39,65,67,69,71]. Predicting file accesses using
hand-crafted algorithms is a well-known approach. However,
it does not scale with the number of workloads that such hand-
crafted algorithms need to recognize. ML models, however, are
more capable of scaling aslong as we have the training data for
workloads. Simulated environments also helped researchers
to build solutions for readahead and prefetching [10, 28, 52,
70, 73]. However, simulations are limited to datasets that the
models are trained and tested with, and they can be compu-
tationally intensive. Since the simulated environment models
are not designed for resource-constrained environments, it is
also difficult to port them to the kernel. Some use a user-space
library to intercept file accesses [68] and even require appli-
cation changes [72]. Conversely, KML does not require appli-
cation changes and also intercepts mmap-based file accesses.

6 CONCLUSION

OSs and storage systems are evolving to support an ever diver-
sifying range of devices and workloads. For best performance,
storage systems need to optimize for specific workloads and
devices. Traditional heuristics, however, cannot adapt quickly
enough. Limitations of the existing solutions led us to develop
KML—an ML framework for OSs that adapts quickly to opti-
mize storage performance. Our preliminary results show that,
for a readahead case study, we can improve I/O throughput
by up to 2.3x with negligible overhead.

Future work. We plan to apply KML to other storage sub-
systems: e.g., I/O schedulers, storage networking (e.g., pack-
et/flow scheduling), network file systems, and the page cache.
We are expanding KML to support other ML approaches (e.g.,
reinforcement learning [35], which can solve certain problems
better than classification approaches). We also plan to support
arbitrary computation DAGs (e.g., Recurrent Neural Networks
(RNNs) [35]) and Long Short-Term Memory (LSTM) [32]. This
would require spawning several parallel training threads.

7 ACKNOWLEDGMENTS

We thank the ACM HotStorage anonymous reviewers and our
shepherd Young-ri Choi for their helpful feedback. This work
was made possible in part thanks to Dell-EMC, NetApp, and
IBM support; and NSF awards CCF-1918225, CNS-1900706,
CNS-1729939, and CNS-1730726.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation

A Machine Learning Framework
to Improve Storage System Performance

(2]

—
=)
[

[10

[t

(11]

(12]

[13

=

(14]

(17]

(OSDI 2016), pages 265-283, Savannah, GA, November 2016.

Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. Re-animator:
Versatile high-fidelity storage-system tracing and replaying. In
Proceedings of the 13th ACM International Systems and Storage
Conference (SYSTOR °20), Haifa, Israel, June 2020. ACM.

Ahmed Amer, Darrell DE Long, J-F Paris, and Randal C Burns. File
access prediction with adjustable accuracy. In Conference Proceedings
of the IEEE International Performance, Computing, and Communications
Conference (Cat. No. 02CH37326), pages 131-140. IEEE, 2002.

Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural Networks: Tricks of the Trade, pages
437-478. Springer, 2012.

Zhen Cao, Geoff Kuenning, and Erez Zadok. Carver: Finding important
parameters for storage system tuning. In Proceedings of the 18th
USENIX Conference on File and Storage Technologies (FAST), Santa Clara,
CA, February 2020. USENIX Association.

Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez
Zadok. On the performance variation in modern storage stacks.
In Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST), pages 329-343, Santa Clara, CA, February-March
2017. USENIX Association.

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards
better understanding of black-box auto-tuning: A comparative analysis
for storage systems. In Proceedings of the Annual USENIX Technical
Conference, Boston, MA, July 2018. USENIX Association. Data set
at http://download.filesystems.org/ auto-tune/ ATC-2018-auto-
tune-data.sql.gz.

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards
better understanding of black-box auto-tuning: A comparative analysis
for storage systems. In USENIX Annual Technical Conference, (ATC),
pages 893-907, Boston, MA, July 2018.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Character-
izing, modeling, and benchmarking RocksDB key-value workloads at
Facebook. In 18th USENIX Conference on File and Storage Technologies
(FAST), pages 209-223, 2020.

Chandranil Chakraborttii and Heiner Litz. Learning i/o access patterns
to improve prefetching in ssds. ICML-PKDD, 2020.

Hui Chen, Enqgiang Zhou, Jie Liu, and Zhicheng Zhang. An rnn based
mechanism for file prefetching. In 2019 18th International Symposium
on Distributed Computing and Applications for Business Engineering
and Science (DCABES), pages 13-16. IEEE, 2019.

Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. Machine learning for load balancing in the linux kernel.
In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems,
APSys ’20, Tsukuba, Japan, 2020. Association for Computing Machinery.
Giovanni Cherubini, Yusik Kim, Mark Lantz, and Vinodh Venkatesan.
Data prefetching for large tiered storage systems. In 2017 IEEE
International Conference on Data Mining (ICDM), pages 823-828,
November 2017.

Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan,
Kailash Gopalakrishnan, Zhuo Wang, and Pierce Chuang. Accurate
and efficient 2-bit quantized neural networks. In Proceedings of the 2nd
SysML Conference, 2019.

CNTK, September 2020. https:// github.com/microsoft/ CNTK.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 153-167, Shanghai, China, 2017.

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan,
Brian Kroth, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
From WiscKey to bourbon: A learned index for log-structured merge

100

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

HotStorage '21, July 27-28, 2021, Virtual, USA

trees. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, November 2020.
Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev,
Christopher R. Aberger, Kunle Olukotun, and Christopher Ré. High-
accuracy low-precision training, 2018. arXiv preprint arXiv:1803.03383.
Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’13, pages 77-88,
New York, NY, USA, 2013. Association for Computing Machinery.
Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 127-144, New
York, NY, USA, 2014. Association for Computing Machinery.

Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang.
DiskSeen: Exploiting disk layout and access history to enhance I/O
prefetch. In USENIX Annual Technical Conference, pages 261-274, 2007.
dlib C++ Library, September 2020. http:// dlib.net/.

Bo Dong, Xiao Zhong, Qinghua Zheng, Lirong Jian, Jian Liu, Jie Qiu,
and Ying Li. Correlation based file prefetching approach for hadoop.
In 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pages 41-48. IEEE, 2010.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. PCC vivace: Online-learning
congestion control. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 343-356, 2018.
Embedded Learning Library (ELL), January 2020.

// microsoft.github.io/ELL/.

Facebook. RocksDB. https://rocksdb.org/, September 2019.
Cory Fox, Dragan Lojpur, and An-I Andy Wang. Quantifying temporal
and spatial localities in storage workloads and transformations by data
path components. In 2008 IEEE International Symposium on Modeling,
Analysis and Simulation of Computers and Telecommunication Systems,
pages 1-10. IEEE, 2008.

Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and
Wei-Kuan Shih. Deepprefetcher: A deep learning framework for data
prefetching in flash storage devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11):3311-3322, 2020.
Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on Machine Learning
(ICML), pages 1737-1746, Lille, France, 2015.

Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi.
MittOS: Supporting millisecond tail tolerance with fast rejecting SLO-
aware OS interface. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 168—183, Shanghai, China, October 2017.
Mingzhe Hao, Levent Toksoz, Nanqingin Li, Edward Edberg, Henry
Hoffmann, and Haryadi S. Gunawi. LinnOS: Predictability on
unpredictable flash storage. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Banff, Alberta, November
2020. USENIX Association.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Haiyan Hu, Yi Liu, and Depei Qian. I/o feature-based file prefetching
for multi-applications. In 2010 Ninth International Conference on Grid
and Cloud Computing, pages 213-217. IEEE, 2010.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869-6898, 2017.

htl‘ps:

http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
https://github.com/microsoft/CNTK
http://dlib.net/
https://microsoft.github.io/ELL/
https://microsoft.github.io/ELL/
https://rocksdb.org/

HotStorage '21, July 27-28, 2021, Virtual, USA

(35]

(36

—

(37]

(38]

[39

—

(40

-

(41

—

[42

—

[43

[t

[44

[l

(45

=

[46]

(47

—

(48

[t

—
'S
O

=

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: a survey. Journal of Artificial Intelligence
Research, pages 237-285, 1996.

Jack Kiefer, Jacob Wolfowitz, et al.
maximum of a regression function.
Statistics, 23(3):462-466, 1952.

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
SageDB: A learned database system. In 9th Biennial Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA, January 2019.
Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
The case for learned index structures. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, pages 489-504. ACM, 2018.
Thomas M. Kroeger and Darrell D. E. Long. Design and implementation
of a predictive file prefetching algorithm. In USENIX Annual Technical
Conference, pages 105-118, Boston, MA, June 2001.

Arezki Laga, Jalil Boukhobza, M. Koskas, and Frank Singhoff. Lynx:
A learning Linux prefetching mechanism for SSD performance model.
In 5th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), pages 1-6, August 2016.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional
neural network inference with floating-point weights and fixed-point
activations, 2017. arXiv preprint arXiv:1703.03073.

Sangmin Lee, Soon J Hyun, Hong-Yeon Kim, and Young-Kyun Kim.
Aps: adaptable prefetching scheme to different running environments
for concurrent read streams in distributed file systems. The Journal
of Supercomputing, 74(6):2870-2902, 2018.

Shuang Liang, Song Jiang, and Xiaodong Zhang. Step: Sequentiality
and thrashing detection based prefetching to improve performance
of networked storage servers. In 27th International Conference on
Distributed Computing Systems (ICDCS’07), pages 64-64. IEEE, 2007.
Jianwei Liao, Francois Trahay, Guogiang Xiao, Li Li, and Yutaka
Ishikawa. Performing initiative data prefetching in distributed file
systems for cloud computing. IEEE Transactions on cloud computing,
5(3):550-562, 2015.

Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed
point quantization of deep convolutional networks. In International
Conference on Machine Learning, pages 2849-2858, June 2016.

LTTng. LTTng: an open source tracing framework for Linux.
https://lttng.org, April 2019.

Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. Learning-based
memory allocation for C++ server workloads. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
541-556, Lausanne, Switzerland, March 2020.

Anusha Nalajala, T Ragunathan, Sri Harsha Tavidisetty Rajendra,
Nagamlla Venkata Sai Nikhith, and Rathnamma Gopisetty. Improving
performance of distributed file system through frequent block access
pattern-based prefetching algorithm. In 2019 10th International
Conference on Computing, Communication and Networking Technologies
(ICCCNT), pages 1-7.IEEE, 2019.

Atul Negi and P Kishore Kumar. Applying machine learning techniques
to improve Linux process scheduling. In TENCON 2005-2005 IEEE
Region 10 Conference, pages 1-6. IEEE, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: Annual Conference on

Stochastic estimation of the
The Annals of Mathematical

101

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

1. Akgun et al.

Neural Information Processing Systems (NeurIPS 2019), pages 8024-8035,
Vancouver, BC, Canada, December 2019.

Karl Pearson. Note on regression and inheritance in the case of two
parents. Proceedings of the Royal Society of London, 58(347-352):240-242,
1895.

Natarajan Ravichandran and Jehan-Francois Paris. Making early
predictions of file accesses. PhD thesis, University of Houston, 2005.
Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400-407, 1951.
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature,
323(6088):533-536, 1986.

Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. Understanding and optimizing asynchronous low-precision
stochastic gradient descent. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, (ISCA), pages
561-574, Toronto, ON, Canada, June 2017.

Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating performance
and energy in file system server workloads. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), pages
253-266, San Jose, CA, February 2010. USENIX Association.

Elizabeth Shriver, Arif Merchant, and John Wilkes. An analytic
behavior model for disk drives with readahead caches and request
reordering. In SIGMETRICS, June 1998.

Elizabeth AM Shriver, Christopher Small, and Keith A Smith. Why does
file system prefetching work? In USENIX Annual Technical Conference,
General Track, pages 71-84, 1999.

SOD - An Embedded, Modern Computer Vision and Machine Learning
Library, September 2020. https://sod.pixlab.io/.

Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth
Kolla, and Manish Parashar. Stacker: An autonomic data movement
engine for extreme-scale data staging-based in-situ workflows. In SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 920-930. IEEE, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International Conference on Machine Learning, pages 1139-1147, 2013.
TensorFlow lite, January 2020. https:// www.tensorflow.org/ lite.
Nancy Tran and Daniel A Reed. Automatic arima time series modeling
for adaptive i/o prefetching. IEEE Transactions on parallel and
distributed systems, 15(4):362-377, 2004.

Transaction Processing Performance Council. TPC benchmark H
(decision support). www.tpc.org/tpch, 1999.

Ahsen J Uppal, Ron C Chiang, and H Howie Huang. Flashy prefetching
for high-performance flash drives. In 2012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1-12. IEEE, 2012.
Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.
Driving cache replacement with ML-based LeCaR. In HotStorage ’18:
Proceedings of the 10th USENLX Workshop on Hot Topics in Storage,
Boston, MA, July 2019. USENIX.

Gary AS Whittle, J-F Paris, Ahmed Amer, Darrell DE Long, and Randal
Burns. Using multiple predictors to improve the accuracy of file access
predictions. In 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies, 2003.(MSST 2003). Proceedings., pages
230-240. IEEE, 2003.

[68] Jiwoong Won, Oseok Kwon, Junhee Ryu, Dongeun Lee, and Kyungtae

[69]

Kang. ifetcher: User-level prefetching framework with file-system
event monitoring for linux. IEEE Access, 6:46213-46226, 2018.

Fengguang Wu, Hongsheng Xi, and Chenfeng Xu. On the design of anew
Linux readahead framework. Operating Systems Review, 42:75-84, 2008.

https://lttng.org
https://sod.pixlab.io/
https://www.tensorflow.org/lite
www.tpc.org/tpch

A Machine Learning Framework

to Improve Storage System Performance HotStorage '21, July 27-28, 2021, Virtual, USA

[70] Chenfeng Xu, Hongsheng Xi, and Fengguang Wu. Evaluation and Demetriou, editor, Proceedings of the FREENIX Track: 2002 USENIX
optimization of kernel file readaheads based on markov decision Annual Technical Conference, June 10-15, 2002, Monterey, California,
models. The Computer Journal, 54(11):1741-1755, 2011. USA, pages 157-170. USENIX, 2002.

[71] Xiaofei Xu, Zhigang Cai, Jianwei Liao, and Yutaka Ishiakwa. Frequent [73] Shengan Zheng, Hong Mei, Linpeng Huang, Yanyan Shen, and Yanmin
access pattern-based prefetching inside of solid-state drives. In 2020 Zhu. Adaptive prefetching for accelerating read and write in nvm-based
Design, Automation & Test in Europe Conference & Exhibition (DATE), file systems. In 2017 IEEE International Conference on Computer Design
pages 720-725. IEEE, 2020. (ICCD), pages 49-56. IEEE, 2017.

[72] Chuan-Kai Yang, Tulika Mitra, and Tzi-cker Chiueh. A decoupled
architecture for application-specific file prefetching. In Chris G.

102

	Abstract
	1 Introduction
	2 Machine Learning Library Design
	3 Operating System Integration
	3.1 Reducing ML Overheads
	3.2 Data Collection and Async Training
	3.3 Versatile Architecture

	4 Use Case: Improving Readahead
	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

