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I. INTRODUCTION

The development and application of continuum kinetic codes to solve Vlasov-Poisson and

Vlasov-Maxwell systems has increased in recent years,1–3 as has the need for standardized

benchmark problems to evaluate code accuracy. Most existing benchmark problems are

based on the electrostatic assumption and are suitable for Vlasov-Poisson solvers.1 However,

there is a dearth of benchmark problems for the more general electromagnetic theory used

for Vlasov-Maxwell solvers. One such candidate problem is the Dory-Guest-Harris (DGH)

instability, which is a phenomenon closely related to Bernstein modes.4 The DGH instabil-

ity is known to arise from electrostatic waves propagating perpendicular to a magnetic field

for certain probability distribution functions of a plasma, causing strong resonances at ion

and electron cyclotron frequencies.5,6 The probability distribution functions are often of loss

cone or ring-type in velocity space and are found in various situations ranging from mag-

netic mirror confinement devices7,8 to Earth’s magnetosphere.9–11 The excitation of waves at

harmonics of the cyclotron frequency arising from the DGH instability can also be used to

heat plasmas in magnetic confinement devices such as tokamaks12 as well as for diagnostics

to measure electron temperatures in these types of devices13 or the magnetic field strength

in the ionosphere.14

Previous work used the DGH instability as a benchmark for a 1D2V continuum Vlasov-

Poisson finite volume method by deriving a closed-form integral representation of the disper-

sion relation for perpendicular electrostatic waves and then comparing numerical solutions

to quantify agreement and convergence.1 This study is expanded to include electromagnetic

effects by analyzing the DGH instability in the context of a Vlasov-Maxwell plasma model.

The results show where the instability deviates from electrostatic behavior and produces

electromagnetic effects associated with perturbations to the magnetic field. The rest of this

paper is outlined as follows. Section II gives an overview of the Vlasov-Maxwell model for

kinetic plasmas. Section III derives the electromagnetic dispersion relation associated with

perpendicular waves for probability distribution functions of the form f(v⊥). The electro-

magnetic and electrostatic dispersion relations are compared for several illustrative cases in

Sec. IV. Section V summarizes a numerical method used to solve the full Vlasov-Maxwell

system using a continuum Eulerian discontinuous Galerkin method. Section VI highlights

results from simulations and comparisons with the electromagnetic and electrostatic disper-
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sion relations. Conclusions are given in Sec. VII.

II. GOVERNING EQUATIONS OF THE VLASOV-MAXWELL SYSTEM

The Vlasov-Maxwell system is described by the Vlasov equation

∂fs
∂t

+ v · ∇fs + (ωcτ)
Zs
As

(E + v ×B) · ∇vfs =0, (1)

written for each species s in phase space, and Maxwell’s equations in physical space, given

by Ampere’s law

∂E

∂t
− (ωpτ)2

(ωcτ)2∇×B =− (ωpτ)2

(ωcτ)
j = −(ωpτ)2

(ωcτ)

∑
s

Zs

∫
vfs (x,v, t) dv, (2)

and Faraday’s law

∂B

∂t
+∇×E =0. (3)

These equations are written in a normalized form, involving a non-dimensional mass

As = ms
m0

and non-dimensional charge Zs = qs
q0

. Normalized reference plasma frequency

ωpτ =
√

q20n0

m0ε0
τ and cyclotron frequency ωcτ = q0B0

m0
τ are introduced, where τ is a reference

timescale. The reference velocity is tied to the thermal speed, which also specifies a reference

length scale such that v0 = L
τ

=
√

T0
m0

, where T0 is expressed in units of energy. The relation
B2

0

µ0
= n0T0 connects B0 to n0 and T0. This normalization is advantageous for this problem

as neither the plasma oscillation nor the cyclotron frequency is inherently favored over the

other in this formulation. Further details on this normalization can be found in Ref. [15].

Since the electron dynamics are the focus of the DGH instability, the normalizing mass is

that of the electrons, m0 = me, and the normalizing charge is the elementary charge, q0 = e.

In cases where the ion dynamics are of interest, the analysis can be repeated using ions as

the normalizing species.

III. LINEAR ANALYSIS OF ELECTROMAGNETIC k‖ = 0 WAVES IN

UNIFORMLY MAGNETIZED PLASMA

The electromagnetic dispersion relation for the DGH instability is derived by perturbing

the Vlasov-Maxwell system about a spatially uniform equilibrium plasma state, f 0
s (v), and
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a uniform magnetic field, B0, which leads to equilibrium cyclotron motion. The response

of this equilibrium can be analyzed using the linearized form of the governing Eqs. (1),

(2), and (3). In the linearization procedure, the fields and probability distribution function

are expressed as a sum of the equilibrium and perturbation components: E = E0 + E1,

B = B0 +B1, fs = f 0
s +f 1

s , where the perturbed quantities are assumed to be much smaller

in magnitude than the equilibrium quantities such that nonlinear products of perturbations

can be neglected.1 For the electric field, it is sufficient to assume there is no equilibrium

component (E = E1). Except for strong equilibrium electric fields (E0 ≥ c
v0
B0), it is

always possible to set E0 to any arbitrary value by transforming to a different frame of

reference16 using the relationship E0 +v×B0 = 0, where v is the parameter for the Galilean

transform of the distribution function. With the probability distribution function and fields

being expressed through the summation of the equilibrium and perturbation components,

the first-order linearized expansions of Eqs. (1), (2), and (3) are

∂f 1
s

∂t
+ v · ∇f 1

s + (ωcτ)
Zs
As

(
v ×B0

)
· ∇vf

1
s + (ωcτ)

Zs
As

(
E1 + v ×B1

)
· ∇vf

0
s =0, (4)

∂E1

∂t
− (ωpτ)2

(ωcτ)2∇×B1 =− (ωpτ)2

(ωcτ)
j1 = −(ωpτ)2

(ωcτ)

∑
s

Zs

∫
vf 1

s (x,v, t) dv, (5)

∂B1

∂t
+∇×E1 =0. (6)

The azimuthal symmetry established by the equilibrium cyclotron motion about B0 leads to

a more convenient formulation of the governing equations based on cylindrical velocity-space

coordinates (v⊥, φ, v‖) with B0 = B0ẑ along the z-axis. This cylindrical velocity space can

also be written using Cartesian coordinates through the transformation

v =v⊥ cosφx̂ + v⊥ sinφŷ + v‖ẑ, (7)

which is aligned without loss of generality such that waves emanating from the perturbed

system can be described by a wave vector given by k = k⊥x̂ + k‖ẑ. Following the trans-

formation shown in Ref. [16], the third term in Eq. (4) can be written in terms of the φ

coordinate, yielding a modified version of this equation given by

∂f 1
s

∂t
+ v · ∇f 1

s − ωcs (ωcτ)
∂f 1

s

∂φ
+ (ωcτ)

Zs
As

(
E1 + v ×B1

)
· ∇vf

0
s =0, (8)
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where a species cyclotron frequency is defined as

ωcs ≡
Zs
As
B0. (9)

All perturbed quantities can be expressed in terms of Fourier-transformed plane waves

at a particular wave number and frequency, e.g. f 1
s = f̃ 1

s exp [i (k · r − ωt)], E1 =

Ẽ
1

exp [i (k · r − ωt)], where r = xx̂ + yŷ + zẑ. Substitution of these forms of the pertur-

bations into Eqs. (8), (5), and (6) leads to

(−iω + ik · v) f̃ 1
s − ωcs (ωcτ)

∂f̃ 1
s

∂φ
+
Zs
As

(ωcτ)
(
Ẽ

1
+ v × B̃

1
)
· ∇vf

0
s =0, (10)

−iωẼ1
=

(ωpτ)2

(ωcτ)2 ik × B̃
1 − (ωpτ)2

(ωcτ)
j̃

1
, (11)

−iωB̃1
=− ik × Ẽ

1
. (12)

The dispersion relation is obtained by eliminating B̃
1

from Eqs. (10) and (11) using

Eq. (12), solving Eq. (10) for f̃ 1
s , and substituting into Eq. (11) through the current density

term, calculated as

j̃
1

=
∑
s

Zs

2π∫
0

∞∫
−∞

∞∫
0

vf̃ 1
s v⊥dv⊥dv‖dφ ≡ σ · Ẽ1

. (13)

This leads to an equation of the form

(
I + χ

)
· Ẽ1

+
(ωpτ)2

(ωcτ)2

k × k × Ẽ
1

ω2
=0, (14)

where χ is the susceptibility tensor and is related to the conductivity tensor σ through the

relation

χ =− (ωpτ)2

iω (ωcτ)
σ. (15)

Evaluation of Eq. (14) requires the solution to Eq. (10). In this work, the problem of interest

is described by an equilibrium distribution of the form f 0
s (v⊥) which is independent of v‖ such

that ∂f0s
∂v‖

= 0. In addition, only waves propagating perpendicular to B0 are considered such

that k‖ = 0. These simplifications, combined with the elimination of B̃
1

through Eq. (12)
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as discussed above and some mathematical manipulation leads to a form of Eq. (10) given

by

∂f̃ 1
s

∂φ
− i (−αs + βs cosφ) f̃ 1

s =
ω2
ps

Zsωcs

∂F 0
s

∂v⊥

[(
Ẽ1
x +

k⊥v‖
ω

Ẽ1
z

)
cosφ+ Ẽ1

y sinφ

]
, (16)

where the following variables have been defined:

αs ≡
ω

(ωcτ)ωcs
, (17a)

βs ≡
k⊥v⊥

(ωcτ)ωcs
, (17b)

F 0
s ≡

f 0
s

ns
, (17c)

ω2
ps ≡

Z2
sns
As

. (17d)

After multiplying Eq. (16) with an integrating factor, the expression is then integrated over

an unperturbed cyclotron orbit. The resulting integral is evaluated by expanding exponential

terms into infinite series of Bessel functions using the identity

exp (−iβs sinφ) =
∞∑

n=−∞

exp (−inφ) Jn (βs) , (18)

where Jn is the Bessel function of the first kind of order n. The expansion simplifies the

expression for the perturbed distribution function through the orthogonality property of the

Bessel functions.16,17 The result of the integration is

f̃ 1
s =i

ω2
ps

Zsωcs
exp (iβs sinφ)

∞∑
n=−∞

exp (−inφ)

−αs + n

∂F 0
s

∂v⊥

[
n

βs
Jn (βs) Ẽ

1
x + iJ

′

n (βs) Ẽ
1
y +

n

βs

k⊥v‖
ω

Jn (βs) Ẽ
1
z

]
.

(19)

Equation (19) is then substituted into Eq. (13) and combined with Eq. (15) to yield

χ =− 2π (ωpτ)2

ω (ωcτ)

∑
s

ω2
ps

ωcs

∞∑
n=−∞

∞∫
0

∂F 0
s

∂v⊥

 n2

β2
s
J2
n (βs) i n

βs
Jn (βs) J

′
n (βs)

−i n
βs
Jn (βs) J

′
n (βs) J

′
n (βs) J

′
n (βs)

 v2
⊥

−αs + n
dv⊥,

(20)

where in this work, all physics of interest is independent of v‖, which is thus set to 0.

Substitution of Eq. (20) into Eq. (14) yields
K11 K12 0

K21 K22 − (ωpτ)2

(ωcτ)2
k2⊥
ω2 0

0 0 1− (ωpτ)2

(ωcτ)2
k2⊥
ω2

 · Ẽ1 =0, (21)
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where

K11 =1 + χ11, (22a)

K12 =χ12, (22b)

K21 =χ21, (22c)

K22 =1 + χ22. (22d)

Note the z-component of Eq. (21) decouples and produces a dispersion relation describing

the propagation of light waves,

ω2

k2
⊥

=
(ωpτ)2

(ωcτ)2 =

q20n0

ε0m0

q20B
2
0

m2
0

=
n0m0

ε0B2
0

=
c2µ0n0m0

B2
0

=
c2

v2
0

. (23)

If the assumption of v‖ = 0 is not made, the z-component of Eq. (21) would produce an

additional term leading to the “ordinary” wave (O-wave), but would still decouple from the

rest of the system.18 Taking the determinant of the remaining 2×2 matrix in Eq. (21) yields

another dispersion relation given by

D(ω, k⊥) ≡K11

(
K22 −

(ωpτ)2

(ωcτ)2

k2
⊥
ω2

)
−K12K21 = 0. (24)

By inspection, Eq. (24) has poles at n = αs corresponding to resonances of the cyclotron

frequency as well as a double pole at ω = 0. Comparison with the electrostatic dispersion

relation presented in Ref. [1] shows that this pole at ω = 0 does not exist in the electrostatic

limit.

The solution to Eq. (24) requires the evaluation of Eq. (20), for which the infinite series

in χ must be truncated to some finite number of terms. However, the series can be removed

entirely in favor of Bessel functions of specific orders by employing the Lerche-Newberger

sum rule, given by

∞∑
n=−∞

(−1)n Ja−cn (z) Jb+cn (z)

n+ d
=

π

sin (πd)
Ja+cd (z) Jb−cd (z) , (25)

where d is any non-integer complex number, Re(a+ b) > −1, and 0 < c ≤ 1.19–23 Manipula-

tions of the Lerche-Newberger sum rule to remove each infinite series in Eq. (20) are shown
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in Ref. [24]. The invocation of the infinite series could also be avoided entirely in solving for

f̃ 1
s in Eq. (16) by taking advantage of the symmetry in particle orbit around the magnetic

field during the integration, as shown in Refs. [25,26]. Either approach leads to a form of χ

given by

χ =− 2π (ωpτ)2

ω (ωcτ)

∑
s

ω2
ps

ωcs

∞∫
0

∂F 0
s

∂v⊥

αs
β2
s

(1−Qs) − i
2βs
Q′s

i
2βs
Q′s −

(
π

sin(παs)
J

′
−αs (βs) J

′
αs (βs) + αs

β2
s

) v2
⊥dv⊥,

(26)

where

Qs ≡
παs

sin (παs)
J−αs (βs) Jαs (βs) , (27a)

Q′s ≡
παs

sin (παs)

∂

∂βs
[J−αs (βs) Jαs (βs)] . (27b)

Equation (26) is identical to Eq. (20), but has the advantage of removal of the infinite

series. Resonances at integer multiples of the cyclotron frequency are also readily apparent

through the sin (παs) terms in the denominators,25 higher multiples of which would need a

large number of terms in the series expansion to accurately resolve χ.

The expressions for Qs, Q
′
s, and J ′−αsJ

′
αs can be recast in a more convenient form in terms

of integrals of real low-order Bessel functions, given by

J−αs (βs) Jαs (βs) =
2

π

π
2∫

0

J0 (2βs cos θ) cos (2αsθ) dθ, (28a)

∂

∂βs
[J−αs (βs) Jαs (βs)] =− 4

π

π
2∫

0

J1 (2βs cos θ) cos θ cos (2αsθ) dθ, (28b)

J
′

−αs (βs) J
′

αs (βs) =
1

π


π
2∫

0

cos (2αsθ) [J2 (2βs cos θ)− J0 (2βs cos θ) cos (2θ)] dθ − αs
β2
s

sin (παs)

 .
(28c)

Details of this derivation can be found in Appendix A.

By specifying the equilibrium distribution functions, specifically ∂f0s
∂v⊥

, the system of equa-

tions given by Eqs. (22), (24), and (26) provides a closed-form implicit expression for the
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electromagnetic dispersion relation for the DGH instability. The integrals in Eq. (28), which

are needed by Eq. (26), can be evaluated to arbitrary accuracy using numerical quadrature.

While the derivation in this section is restricted to k‖ = 0 waves and to distributions of

the form f 0
s (v⊥), the procedure can be extended to evaluate the full susceptibility tensor,

written for infinite sums of real integer order Bessel functions as shown in Ref. [ 16] or

products of complex order Bessel functions as shown in Ref. [25], where these restrictions

are not made. The integrals in Eq. (28) are sufficient to calculate the full susceptibility tensor

shown in Ref. [25] where k‖v‖ is incorporated into Eq. (17a) and where a parallel velocity

dependence is added to the equilibrium distribution function such that f 0
s = f 0

s (v⊥, v‖). The

numerical integration of the resulting equation similar to Eq. (26) would have the added

complication of poles resulting from v‖ in denominators when there is finite k‖, which can

be handled using analytic continuation techniques as shown by Landau27 and Bernstein4 for

unmagnetized and magnetized waves, respectively.

The generalization of the wave vector from k = k⊥x̂ and the distribution function velocity

dependence from f 0
s (v⊥) also provides a natural development path to benchmark kinetic

codes in higher dimensions beyond 1D2V. The extension to two spatial dimensions can

be realized by generalizing k⊥ to the x − y plane such that k = k⊥,xx̂ + k⊥,yŷ, which

allows for benchmarking of 2D2V codes. Allowing for parallel velocity dependence of the

equilibrium distribution function, such that f 0
s = f 0

s (v⊥, v‖) = f 0
s (vx, vy, vz), and adding a

parallel component to the wave vector such that it lies in the x−z plane where k = k⊥x̂+k‖ẑ

leads to a 3×3 susceptibility tensor that can be calculated as described above and can be

used to benchmark 2D3V codes simulating oblique wave propagation. Further generalization

of the wave vector such that k = k⊥,xx̂+k⊥,yŷ+k‖ẑ analogous to the extension from 1D2V

to 2D2V can also allow for benchmarking of 3D3V codes.

IV. CALCULATION OF THE DISPERSION RELATION FOR SPECIFIC

FORMS OF f 0
s (v⊥), VALUES OF k⊥, AND ωp/ωc RATIO

The electromagnetic dispersion relation derived in Sec. III can be used to determine

the linear behavior of an equilibrium ring distribution in conditions leading to the DGH
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FIG. 1. Equilibrium ring distribution function for the DGH instability for various j. The distribu-

tion is peaked at v⊥0 = j1/2α⊥. The thickness of the distribution can be measured by its half-width

at half-maximum, approximated by α⊥/2, which scales with j−1/2 for a given v⊥0. Distribution

functions with j = 1, 2, 6 correspond to cases A-D where v⊥0 =
√

2 as described in Table I.

instability. The specific form of the ring distribution studied by Dory et al.7 is given by

f 0(v⊥) =
1

πα2
⊥j!

(
v2
⊥
α2
⊥

)j
exp

(
− v

2
⊥
α2
⊥

)
, (29)

which has a derivative which can be calculated analytically, yielding

∂f 0

∂v⊥
=

1

πα2
⊥j!

2v⊥
α2
⊥

exp

(
− v

2
⊥
α2
⊥

)(
v2
⊥
α2
⊥

)j−1 [
j −

(
v2
⊥
α2
⊥

)]
. (30)

The peak velocity of the distribution is given by v⊥0 = j1/2α⊥ while the half-width at half-

maximum (HWHM) is approximated by α⊥/2
28 which is incorrectly presented in Ref. [1] and

in Ref. [7]. This relationship between j and distribution width for a fixed v⊥0 can be seen

in Fig. 1. The distribution is found to be unstable if sufficiently peaked, the ratio of plasma

frequency to cyclotron frequency is above a certain value known as the density threshold,

and the wave number falls within a specified range.1,7

To illustrate the electromagnetic extension of the DGH instability, four specific cases are

examined of a ring distribution of electrons in the presence of a static neutralizing back-

ground of ions (Ae = 1, Ze = −1, f 0
e = f 0, f 1

i = 0). The parameters of this distribution

for these cases are shown in Table I where k̃ ≡ k⊥v⊥0
ωp
ωc

is a normalized wave number. For

all cases v⊥0 =
√

2 and B0 = 1. Cases A-C are identical to cases examined in Ref. [1],
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Case j ωp/ωc k̃ α⊥ HWHM β

A 6 20 3.15
√

1/3
√

1/3/2 1/6

B 6 20 4.65
√

1/3
√

1/3/2 1/6

C 2 10 2.12 1 1/2 1/2

D 1 1 2.12
√

2
√

2/2 1

TABLE I. Parameters for distribution f0 for the various cases under consideration, each with

v⊥0 =
√

2 and B0 = 1. Cases A-C correspond to cases in Ref. [1] while Case D is introduced

with lower j and ωp/ωc, which is stable according to both the electromagnetic and electrostatic

dispersion relations.

where case A was found to have a purely growing instability, case B was found to be un-

stable with an oscillatory behavior, and case C was found to be stable according to the

electrostatic dispersion relation. These same cases are re-examined using the more general

electromagnetic theory. Case D is introduced with decreased j, widening the distribution

which reduces peakedness, and a lower plasma to cyclotron frequency ratio which further

moves the plasma below the density threshold for instability. The DGH mode is completely

stabilized when j = 0, corresponding to Maxwellian distribution functions.1,7 Table I also

calculates plasma beta of the electrons, given by

β =
2nT

(B0)2 =
nα2
⊥A

2 (B0)2 , (31)

where T is calculated from the thermal velocity which is approximated by the half-width

at half-maximum of the distribution given by vth =
√
T/A = α⊥/2, and where n = 1 and

A = 1 for electrons. The electrostatic approximation is valid for β << 1,29 which inspection

of Eq. (31) shows becomes less accurate for hotter distributions.

The electromagnetic dispersion relation for each case is examined and compared with the

electrostatic dispersion relation derived in Ref. [1]. The characteristic time is set to τ ≡ ω−1
p ,

leading to ωpτ = 1 and ωcτ = (ωp/ωc)
−1. Integrations required in the electromagnetic dis-

persion relation as derived in Sec. III as well as those required in the electrostatic dispersion

relation as derived in Ref. [1] are performed using the second-order accurate trapezoidal

rule30 using 100 points. The electromagnetic and electrostatic dispersion relations for cases

A, B, C, and D are plotted in Figs. 2, 3, 4, and 5, respectively, where the frequencies are

normalized to the cyclotron frequency (ω̃ = ω ωp
ωc

). Shown also are zero contours of the real
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(a) Case A EM, ω̃ = 0.4912i
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FIG. 2. Filled contours for normalized magnitudes of the electromagnetic (EM) and electrostatic

(ES) dispersion relations for case A plotted on a 320 × 320 grid with ω̃r ∈ [−0.1, 3.0] and ω̃i ∈

[−0.1, 1.5] with line contours of Re(D) = 0 and Im(D) = 0 overlaid. These contour lines cross at

roots of D(ω, k⊥) = 0 as well as poles of D(ω, k⊥). Solutions to the dispersion relation exist at the

roots but not at the poles. The poles exist at real integer multiples of the cyclotron frequency for

both the EM and ES dispersion relations, with an extra pole at 0 for the EM dispersion relation.

For this case, the largest growing mode written as ω̃ underneath each contour plot, given by the root

of D(ω, k⊥) = 0 with the largest imaginary component, agrees well for the EM and ES dispersion

relations and is purely imaginary.

and imaginary components of the dispersion relation. Solutions exist where the real and

imaginary zero contours intersect, satisfying D(ω, k⊥) = 0, but not at the poles of D(ω, k⊥)

indicated by |D| / |D|max approaching unity. After the general vicinity of a solution is

found, more precise calculations are performed with a Newton–Raphson method, using more

points in the trapezoidal rule of integration until convergence to ω̃ within 10−4 is reached.

The complex frequencies from the electrostatic and electromagnetic dispersion relations

are found to be close for cases A and B. However for case C, the results and behavior

characteristics deviate. The electromagnetic dispersion relation shows growth and oscillation

while the electrostatic dispersion relation produces multiple purely real frequencies. This

discrepancy can by understood by the high plasma beta of the distribution, as seen in

Table I, indicating the inaccuracy of the electrostatic theory. Case D yields purely real
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(a) Case B EM, ω̃ = 1.0363 + 0.2900i
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(b) Case B ES, ω̃ = 1.0361 + 0.2899i

FIG. 3. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case

B with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, the root of

D(ω, k⊥) = 0 corresponding to the largest growing mode agrees well for the ES and EM dispersion

relations and has mixed oscillatory and imaginary components.
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(a) Case C EM, ω̃ = 0.8426 + 0.1242i
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(b) Case C ES, multiple oscillatory solutions

FIG. 4. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case

C with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, the root of

D(ω, k⊥) = 0 for the EM dispersion relation corresponding to the largest growing mode has mixed

oscillatory and imaginary components while the ES dispersion relation has no growing solutions.
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(a) Case D EM, multiple oscillatory solutions
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(b) Case D ES, multiple oscillatory solutions

FIG. 5. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case

D with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, no growing

roots of D(ω, k⊥) = 0 exist for either the EM or ES dispersion relations.

frequencies for both the electrostatic and electromagnetic dispersion relations. The absence

of growth can be explained by the further widening of the distribution and decreased plasma

to cyclotron frequency ratio compared to the other cases. Even with the increased plasma

beta of this distribution indicating inaccuracy of the electrostatic theory, the combination

of increased temperature and reduced frequency ratio makes this case stable even using the

electromagnetic dispersion relation, which is not true in case C.

The next sections verify these observations using continuum kinetic simulations of the

Vlasov-Maxwell system.

V. NUMERICAL METHOD FOR THE VLASOV-MAXWELL SYSTEM

The Vlasov equation as described in Eq. (1) is rewritten in conservative form,

∂fs
∂t

+∇ · (vfs) +∇v ·
[
(ωcτ)

Zs
As

(E + v ×B) fs

]
=0. (32)

Maxwell’s equations, Eqs. (2) and (3), can also be written in conservative form, such that

the entire governing equation system can be expressed compactly as

∂q

∂t
+∇ ·F =S, (33)
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where q is the solution vector for the equation set, F is the flux tensor, and S represents

source terms. The x coordinate is generalized to position x and velocity v for the Vlasov

equation, Eq. (32).

Expressing the governing equation system in the form of Eq. (33) facilitates solution

with the discontinuous Galerkin finite element method using the WARPXM (Washington

Approximate Riemann Plasma) framework.31 The framework provides algorithms that solve

plasma physics problems on unstructured grids using fluid models as well as the continuum

kinetic model described by the Vlasov-Maxwell equation system. The code subdivides a

simulation domain into discrete elements and projects conservation variables onto a set of

basis functions φm of order m such that the numerical approximation is represented as

q =
∑
m

qmφm. (34)

Equation (33) is then multiplied by each basis function and integrated over each element

volume Ω, yielding the weak form integral equation for each basis function given by∫
Ω

∂q

∂t
φmdV +

∮
∂Ω

F · nφmdS −
∫

Ω

F · ∇φmdV =

∫
Ω

SφmdV , (35)

where the divergence theorem has been applied to the flux tensor term. Equation (35) is

solved using an explicit Runge-Kutta (ERK) time-stepping method. This combination of

spatial and temporal discretizations produces a compact, high-order scheme with an optimal

convergence rate of O(hN+1) for element size h and polynomial basis order N .32 Lagrange

interpolating polynomials based on Legendre-Gauss-Lobatto quadrature node locations are

used for the basis functions, yielding a nodal scheme in which the coefficients in Eq. (34)

correspond to solution values at the node locations. Further details of the discontinuous

Galerkin method used in the WARPXM framework can be found in Refs. [33,34]. A discus-

sion on the appropriate fluxes in the surface integral for the Vlasov and Maxwell equations

as well as of the ERK time-stepping algorithm used to evolve Eq. (35) can be found in

Ref. [15]. For the ERK schemes, the allowable timestep is determined by the CFL condition

∆t ≤C

(
D∑
d=1

ad
hd

)−1

, (36)

where C is the Courant number, D = 3 is the number of phase-space dimensions, ad is the

maximum advection speed in direction d, and hd is a measure of the element spacing in

direction d. Courant numbers are set based on those defined for various combinations of

ERK scheme and basis order.35
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VI. NUMERICAL SIMULATIONS OF THE DGH INSTABILITY AND

COMPARISON TO THEORY

The four cases described in Sec. IV are simulated using the discontinuous Galerkin algo-

rithm described in Sec. V. For each simulation, the electric field energy, given by

UE =
1

2

∫
E2dx (37)

is calculated and plotted on a semi-log scale from which the growth rate, ω̃i and oscillation

frequency, ω̃r can be measured. The ring distribution given in Eq. (29) is initialized on a

Cartesian grid of x ∈ [0, 2π
k⊥

] and vx, vy ∈ [−4, 4] with a perturbation such that the initial

electron distribution is given by

f(x, vx, vy)|t=0 =
1

πα2
⊥j!

(
v2
x + v2

y

α2
⊥

)j
exp

(
−
v2
x + v2

y

α2
⊥

)[
1 + ε sin

(
4 arctan

(
vy
vx

)
− k⊥x

)]
,

(38)

where ε = 10−4. Reference [1] uses the same perturbed distribution and demonstrated

effective excitation of the dominant mode. Simulations are performed on a phase-space grid

of resolutions given by Nx × Nvx × Nvy : 48 × 24 × 24, 56 × 28 × 28, 64 × 32 × 32, and

80× 40× 40. Second-order polynomial basis elements characterized by third-order optimal

spatial convergence32 are used with fourth-order ERK time-stepping. The Courant number

used in all simulations is 0.235 in accordance with Ref. [35].

Figure 6a shows a plot of the electric field energy measured at every t = 5 for the

80 × 40 × 40 resolution simulation for all cases, where the growth rates given by ω̃i are

measured using the slopes of line fits through the data. The growth rates for cases A-C

are in line with the theoretical values predicted by the electromagnetic dispersion relation,

while a small growth is seen for case D despite no prediction of growth from the theory. This

small growth seen for case D may be a nonlinear effect due to the coupling of real frequency

solutions to the dispersion relation excited from the perturbation profile in Eq. (38). Fast

Fourier transforms (FFTs) are calculated for each case after the linear growth has been

subtracted to determine the oscillation frequencies given by ω̃r, which are shown in Fig. 6b.

Mixed growth and oscillation is expected for cases B and C according to the electromagnetic

dispersion relation as shown in Sec. IV. The oscillation frequencies are found to be at the

peaks of the FFT spectra. For case B, the oscillation frequency is calculated as the average
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Case ω̃th,EM
i ω̃th,ES

i ω̃num
i εEM

i ω̃th,EM
r ω̃th,ES

r ω̃num
r εEM

r

A 0.4912 0.4912 0.4956 0.9% - - - -

B 0.2900 0.2899 0.2965 2.2% 1.0363 1.0361 1.0357 ± 0.0690 <6.7%

C 0.1242 - 0.1239 0.2% 0.8426 - 0.8240 ± 0.0515 <6.1%

D - - 0.0018 - - - - -

TABLE II. Theoretical growth rates and oscillation frequencies of the electromagnetic and electro-

static dispersion relations as calculated in Sec. IV as well as numerical results from discontinuous

Galerkin simulations of the Vlasov-Maxwell system. Growth rates are converged values as shown

in Fig. 7, and oscillation frequencies for cases B and C are calculated from FFTs of the 80×40×40

simulation. The errors between numerical results and electromagnetic theory are calculated as

εEM
i,r =

∣∣∣ω̃num
i,r − ω̃

th,EM
i,r

∣∣∣ /ω̃th,EM
i,r .

of the first peak, found to be at ω̃Br = 1.0357 ± 0.0690 while for case C, the peak is found

at ω̃Cr = 0.8240 ± 0.0515, where in both cases half the frequency bin size is specified as

the uncertainty. These frequencies are found to be independent of resolution. The growth

rates however can be compared for various resolutions to obtain converged values. Figure 7

shows the convergence from the simulations performed at the four resolutions described by

plotting growth versus velocity-space resolution and line fitting to find the limit as element

size approaches zero. The converged results are summarized in Table II along with theoretical

values for the electromagnetic and electrostatic dispersion relations calculated in Sec. IV.

Theoretical oscillation frequencies and those measured from the simulation results with the

FFTs are also given in Table II. The growth rate convergence is calculated assuming a rate of

order 3 for second-order basis functions used in simulations. The growth rate discrepancies

for cases A and C are less than 1% while the discrepancy for case B is 2.2%. The error in

oscillation frequency as measured by the FFT should be less than 6.7% for case B and less

than 6.1% for case C, based on the frequency resolution.

The simulation results show agreement with the theoretical predictions from the electro-

magnetic dispersion relations. They also confirm the agreement between the electrostatic

approximation and the electromagnetic model for the cases of lower plasma beta in A and

B. The agreement between electromagnetic theory and simulation in case C shows that with

increased plasma beta, the electrostatic approximation is inadequate to accurately predict
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FIG. 6. Simulations of the DGH instability with the Vlasov-Maxwell system using 80 × 40 × 40

second-order polynomial elements. Figure 6a shows the growth of the electric field energy for cases

A-D, where t is normalized by ωp. Line fits showing the slope yielding ω̃i are also shown for the

times during which the linear growth is measured. The measurement durations are t ∈ [150, 350],

[50, 500], [200, 500], and [250, 500] for cases A, B, C, and D, respectively. For case B, the line

fit is based on the peaks of the oscillation. Figure 6b shows absolute values of the fast Fourier

transforms for each case for these times, after the linear growth has been subtracted to remove the

zero-frequency component and the result at negative frequencies are combined with those at positive

frequencies. The peaks in the FFT plots correspond to the oscillation frequency, ω̃r. For case B, the

oscillation frequency is calculated as the average of the first peak, yielding ω̃Br = 1.0357± 0.0690.

For case C, the oscillation frequency is found at the first peak to be ω̃Cr = 0.8240± 0.0515.

instabilities involving perpendicular waves. In case D, both theories predict stability and a

small growth is seen in simulation.

VII. CONCLUSIONS

A closed-form integral representation of the electromagnetic dispersion relation for the

DGH instability is derived using electromagnetic theory, which is more complete than the

electrostatic approximation that is only valid for low-beta plasmas. Theoretical growth rates

and oscillation frequencies are computed for four cases of equilibrium electron ring distribu-
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FIG. 7. Convergence of growth rates ω̃i for cases A-D. The growth rates are plotted for various

resolutions against a velocity-space element length (hv) normalized to the reference element length

of a 48× 24× 24 velocity-space element (hrv) with the expected cubic spatial convergence. Line fits

are constructed to determine the y-intercepts corresponding to the lim
hv→0

ω̃i.

tions using electromagnetic and electrostatic dispersion relations. As predicted, agreement

between the electromagnetic and electrostatic dispersion relations is found in the growth

rates and oscillation frequencies for cases characterized by low plasma beta. A case with

increased temperature (and corresponding increased plasma beta) and reduced plasma to

cyclotron frequency ratio to further move the plasma below the density threshold for in-

stability was predicted by the electrostatic dispersion relation to be stable but unstable

according to electromagnetic theory. Simulations using WARPXM to solve the continuum
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kinetic Vlasov-Maxwell system in 1D2V confirm the electromagnetic dispersion results. A

case with further increased temperature reducing the peakedness of the distribution and re-

duced plasma to cyclotron frequency ratio is found to be stable according to both theories,

even though less confidence can be given to the electrostatic dispersion relation due to the

corresponding increased plasma beta. The Vlasov-Maxwell simulations for this case show a

small growth, possibly due to nonlinear effects.

The agreement between simulation results and theory confirm the use of the DGH insta-

bility as a viable benchmark for continuum kinetic codes solving the Vlasov-Maxwell system

for plasmas subject to dynamic magnetic fields and currents. The electromagnetic gener-

alization extends the analysis of the DGH instability using the electrostatic approximation

confined to plasmas characterized by small beta such as those of cold ring distributions to

include higher beta plasmas with higher temperatures. In addition, the closed-form inte-

gral representation of the electromagnetic dispersion relation derived in this work can be

used as a benchmark for other numerical treatments of the Vlasov-Maxwell system, such as

electromagnetic particle-in-cell methods.
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Appendix A: Recasting products of Bessel functions of complex order in terms

of integrals of Bessel functions of real order

The electromagnetic susceptibility in Eq. (26) of the DGH instability resulted in an

expression containing products of complex order Bessel functions which are difficult to treat
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numerically. However, by applying Neumann’s formula36,37

Jν (z) Jµ (z) =
2

π

π
2∫

0

Jν+µ (2z cos θ) cos [(µ− ν) θ] dθ (A1)

Re (ν + µ) >− 1,

these products can be recast in terms of integrals of real order Bessel functions. Application

of Eq. (A1) on the product J−αs (βs) Jαs (βs) leads to

J−αs (βs) Jαs (βs) =
2

π

π
2∫

0

J0 (2βs cos θ) cos (2αsθ) dθ. (A2)

Differentiation of Eq. (A2) yields

∂

∂βs
[J−αs (βs) Jαs (βs)] =

2

π

∂

∂βs

π
2∫

0

J0 (2βs cos θ) cos (2αsθ) dθ

=
2

π

π
2∫

0

∂J0 (2βs cos θ)

∂ (2βs cos θ)

∂ (2βs cos θ)

∂βs
cos (2αsθ) dθ

=
2

π

π
2∫

0

∂J0 (2βs cos θ)

∂ (2βs cos θ)
2 cos θ cos (2αsθ) dθ. (A3)

Application of the recurrence relation

Jν−1(z)− Jν+1(z) =2
∂

∂z
[Jν(z)] , (A4)

and identity for integer n37

J−n(z) = (−1)n Jn(z), (A5)

on the derivative term yields

∂J0 (2βs cos θ)

∂ (2βs cos θ)
=

1

2
[J−1 (2βs cos θ)− J1 (2βs cos θ)]

=
1

2
[−J1 (2βs cos θ)− J1 (2βs cos θ)]

=− J1 (2βs cos θ) . (A6)
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Substitution of Eq. (A6) into Eq. (A3) results in

∂

∂βs
[J−αs (βs) Jαs (βs)] =− 4

π

π
2∫

0

J1 (2βs cos θ) cos θ cos (2αsθ) dθ. (A7)

J
′
−αs (βs) J

′
αs (βs) can also be simplified, first by substitution of Eq. (A4), yielding

J
′

−αs (βs) J
′

αs (βs) =
1

2
[J−αs−1 (βs)− J−αs+1 (βs)]

1

2
[Jαs−1 (βs)− Jαs+1 (βs)]

=
1

4

J−αs−1 (βs) Jαs−1 (βs)︸ ︷︷ ︸
A

− J−αs−1 (βs) Jαs+1 (βs)︸ ︷︷ ︸
B

− J−αs+1 (βs) Jαs−1 (βs)︸ ︷︷ ︸
C

+ J−αs+1 (βs) Jαs+1 (βs)︸ ︷︷ ︸
D

 , (A8)

where the terms A-D have been defined for convenience and will be treated separately using

Eq. (A1). However for the term A = J−αs−1 (βs) Jαs−1 (βs), Eq. (A1) cannot be used directly

because Re (ν + µ) = −2 < −1. This term can be rewritten using the recurrence relation

for complex ν37

Jν+1 (z) + Jν−1 (z) =
2ν

z
Jν (z) , (A9)

yielding

A =J−αs−1 (βs) Jαs−1 (βs) =

[
−2αs
βs

J−αs (βs)− J−αs+1 (βs)

] [
2αs
βs

Jαs (βs)− Jαs+1 (βs)

]
=
−4α2

s

β2
s

J−αs (βs) Jαs (βs)︸ ︷︷ ︸
E

+
2αs
βs

J−αs (βs) Jαs+1 (βs)︸ ︷︷ ︸
F

− 2αs
βs

J−αs+1 (βs) Jαs (βs)︸ ︷︷ ︸
G

+ J−αs+1 (βs) Jαs+1 (βs)︸ ︷︷ ︸
D

, (A10)

where terms E-G have also been defined for convenience. Term E is given by Eq. (A2).

Application of Eq. (A1) on the remaining terms yields

B =J−αs−1 (βs) Jαs+1 (βs) =
2

π

π
2∫

0

J0 (2βs cos θ) cos [(2αs + 2) θ] dθ, (A11)

C =J−αs+1 (βs) Jαs−1 (βs) =
2

π

π
2∫

0

J0 (2βs cos θ) cos [(2αs − 2) θ] dθ, (A12)
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D =J−αs+1 (βs) Jαs+1 (βs) =
2

π

π
2∫

0

J2 (2βs cos θ) cos (2αsθ) dθ, (A13)

F =J−αs (βs) Jαs+1 (βs) =
2

π

π
2∫

0

J1 (2βs cos θ) cos [(2αs + 1) θ] dθ, (A14)

G =J−αs+1 (βs) Jαs (βs) =
2

π

π
2∫

0

J1 (2βs cos θ) cos [(2αs − 1) θ] dθ. (A15)

Substitution of Eqs. (A2) and (A10)-(A15) into Eq. (A8) produces

J
′

−αs (βs) J
′

αs (βs) =
1

4
(A− B − C +D)

=
1

4

[
−4α2

s

β2
s

E +
2αs
βs

F − 2αs
βs

G+D − B − C +D

]
=

1

4

[
−4α2

s

β2
s

E − B − C +
2αs
βs

(F −G) + 2D

]

=
1

2π

−
π
2∫

0

J0 (2βs cos θ)

[
4α2

s

β2
s

cos (2αsθ) + cos [(2αs + 2) θ] + cos [(2αs − 2) θ]

]
dθ

+
2αs
βs

π
2∫

0

J1 (2βs cos θ) {cos [(2αs + 1) θ]− cos [(2αs − 1) θ]} dθ

+ 2

π
2∫

0

J2 (2βs cos θ) cos (2αsθ) dθ

 . (A16)

The integrals involving J0 and J1 can be further simplified by using the cosine sum trigono-

metric identity

cos (a+ b) = cos a cos b− sin a sin b, (A17)
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yielding

J
′

−αs (βs) J
′

αs (βs) =
1

π

−
π
2∫

0

J0 (2βs cos θ) cos (2αsθ)

[
2α2

s

β2
s

+ cos (2θ)

]
dθ

− 2αs
βs

π
2∫

0

J1 (2βs cos θ) sin θ sin (2αsθ) dθ

+

π
2∫

0

J2 (2βs cos θ) cos (2αsθ) dθ

 . (A18)

The integral involving J1 can be removed by relating it to an integral involving J0 by

integrating Eq. (A2) by parts and employing Eq. (A6), yielding

π
2∫

0

J1 (2βs cos θ) sin θ sin (2αsθ) dθ =
sin (παs)

2βs
− αs
βs

π
2∫

0

J0 (2βs cos θ) cos (2αsθ) dθ. (A19)

Substitution of Eq. (A19) into Eq. (A18) yields

J
′

−αs (βs) J
′

αs (βs) =
1

π


π
2∫

0

cos (2αsθ) [J2 (2βs cos θ)− J0 (2βs cos θ) cos (2θ)] dθ − αs
β2
s

sin (παs)

 .
(A20)

Equations (A2), (A7), and (A20) recast the products of complex-order Bessel functions

in the susceptibility tensor in Eq. (26) as integrals of real integer-order Bessel functions

which can be evaluated using standard scientific computing packages. This allows for nu-

merical evaluation of the electromagnetic dispersion relation for the DGH instability given

in Eq. (24).
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