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I. INTRODUCTION

The development and application of continuum kinetic codes to solve Vlasov-Poisson and
Vlasov-Maxwell systems has increased in recent years,!™ as has the need for standardized
benchmark problems to evaluate code accuracy. Most existing benchmark problems are
based on the electrostatic assumption and are suitable for Vlasov-Poisson solvers.! However,
there is a dearth of benchmark problems for the more general electromagnetic theory used
for Vlasov-Maxwell solvers. One such candidate problem is the Dory-Guest-Harris (DGH)
instability, which is a phenomenon closely related to Bernstein modes.* The DGH instabil-
ity is known to arise from electrostatic waves propagating perpendicular to a magnetic field
for certain probability distribution functions of a plasma, causing strong resonances at ion
and electron cyclotron frequencies.®% The probability distribution functions are often of loss
cone or ring-type in velocity space and are found in various situations ranging from mag-
netic mirror confinement devices”® to Earth’s magnetosphere.® ! The excitation of waves at
harmonics of the cyclotron frequency arising from the DGH instability can also be used to
heat plasmas in magnetic confinement devices such as tokamaks'? as well as for diagnostics
to measure electron temperatures in these types of devices!® or the magnetic field strength

in the ionosphere.'*

Previous work used the DGH instability as a benchmark for a 1D2V continuum Vlasov-
Poisson finite volume method by deriving a closed-form integral representation of the disper-
sion relation for perpendicular electrostatic waves and then comparing numerical solutions
to quantify agreement and convergence.! This study is expanded to include electromagnetic
effects by analyzing the DGH instability in the context of a Vlasov-Maxwell plasma model.
The results show where the instability deviates from electrostatic behavior and produces
electromagnetic effects associated with perturbations to the magnetic field. The rest of this
paper is outlined as follows. Section II gives an overview of the Vlasov-Maxwell model for
kinetic plasmas. Section III derives the electromagnetic dispersion relation associated with
perpendicular waves for probability distribution functions of the form f(v,). The electro-
magnetic and electrostatic dispersion relations are compared for several illustrative cases in
Sec. IV. Section V summarizes a numerical method used to solve the full Vlasov-Maxwell
system using a continuum Eulerian discontinuous Galerkin method. Section VI highlights

results from simulations and comparisons with the electromagnetic and electrostatic disper-



sion relations. Conclusions are given in Sec. VII.

II. GOVERNING EQUATIONS OF THE VLASOV-MAXWELL SYSTEM

The Vlasov-Maxwell system is described by the Vlasov equation

A
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written for each species s in phase space, and Maxwell’s equations in physical space, given

by Ampere’s law
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and Faraday’s law
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These equations are written in a normalized form, involving a non-dimensional mass

A, = s and non-dimensional charge Z, = %‘ Normalized reference plasma frequency
2
n . .

WpT = %7’ and cyclotron frequency w.m = %7’ are introduced, where 7 is a reference

timescale. The reference velocity is tied to the thermal speed, which also specifies a reference
L _

length scale such that vg = 2 =
2
% = noTp connects By to ng and Ty. This normalization is advantageous for this problem

37;—%, where Ty is expressed in units of energy. The relation

as neither the plasma oscillation nor the cyclotron frequency is inherently favored over the
other in this formulation. Further details on this normalization can be found in Ref. [15].
Since the electron dynamics are the focus of the DGH instability, the normalizing mass is
that of the electrons, my = m,, and the normalizing charge is the elementary charge, gy = e.
In cases where the ion dynamics are of interest, the analysis can be repeated using ions as

the normalizing species.

III. LINEAR ANALYSIS OF ELECTROMAGNETIC k=0 WAVES IN
UNIFORMLY MAGNETIZED PLASMA

The electromagnetic dispersion relation for the DGH instability is derived by perturbing

the Vlasov-Maxwell system about a spatially uniform equilibrium plasma state, f°(v), and
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a uniform magnetic field, B°, which leads to equilibrium cyclotron motion. The response
of this equilibrium can be analyzed using the linearized form of the governing Eqs. (1),
(2), and (3). In the linearization procedure, the fields and probability distribution function
are expressed as a sum of the equilibrium and perturbation components: E = E° + E*,
B =B+ B!, f, = fO+ f!, where the perturbed quantities are assumed to be much smaller
in magnitude than the equilibrium quantities such that nonlinear products of perturbations
can be neglected.! For the electric field, it is sufficient to assume there is no equilibrium
component (E = E'). Except for strong equilibrium electric fields (E° > %BO), it is
always possible to set E® to any arbitrary value by transforming to a different frame of

16 using the relationship E+wv x B® = 0, where v is the parameter for the Galilean

reference
transform of the distribution function. With the probability distribution function and fields
being expressed through the summation of the equilibrium and perturbation components,

the first-order linearized expansions of Eqs. (1), (2), and (3) are
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The azimuthal symmetry established by the equilibrium cyclotron motion about B leads to
a more convenient formulation of the governing equations based on cylindrical velocity-space
coordinates (v, ¢,v|) with B° = B%% along the z-axis. This cylindrical velocity space can

also be written using Cartesian coordinates through the transformation
v =V coS OF + vy sin oY + v 2, (7)

which is aligned without loss of generality such that waves emanating from the perturbed
system can be described by a wave vector given by k = k& + k2. Following the trans-
formation shown in Ref. [16], the third term in Eq. (4) can be written in terms of the ¢

coordinate, yielding a modified version of this equation given by
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where a species cyclotron frequency is defined as

Zs
We, = A—BO. (9)

All perturbed quantities can be expressed in terms of Fourier-transformed plane waves
at a particular wave number and frequency, e.g. f! = fsl expli(k-r—wt)], E' =

E' exp [i (k- r —wt)], where r = & + yg + 2Z. Substitution of these forms of the pertur-
bations into Egs. (8), (5), and (6) leads to

off  z
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The dispersion relation is obtained by eliminating B' from Egs. (10) and (11) using
Eq. (12), solving Eq. (10) for f!, and substituting into Eq. (11) through the current density
term, calculated as

2r oo 0o
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This leads to an equation of the form
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where Y is the susceptibility tensor and is related to the conductivity tensor @ through the

relation

(pr)2 =
iw (wer)

T=- (15)

Evaluation of Eq. (14) requires the solution to Eq. (10). In this work, the problem of interest
is described by an equilibrium distribution of the form f2(v, ) which is independent of v such

of2
that oo,

= 0. In addition, only waves propagating perpendicular to B° are considered such

that k£ = 0. These simplifications, combined with the elimination of B through Eq. (12)
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as discussed above and some mathematical manipulation leads to a form of Eq. (10) given

by
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After multiplying Eq. (16) with an integrating factor, the expression is then integrated over
an unperturbed cyclotron orbit. The resulting integral is evaluated by expanding exponential
terms into infinite series of Bessel functions using the identity

exp (—if; sin ¢) = Z exp (—ing) Jn (Bs) . (18)

n=—oo
where J,, is the Bessel function of the first kind of order n. The expansion simplifies the
expression for the perturbed distribution function through the orthogonality property of the

Bessel functions.'®!” The result of the integration is
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Equation (19) is then substituted into Eq. (13) and combined with Eq. (15) to yield

= n_zJ2 (ﬁs) Zl (ﬁs) l (ﬁs) Uﬁ_
— ——dv,
* ; Wes n—Z / aUL - (ﬁs) (ﬂs) (65) (65) st n

(20)
where in this work, all physics of interest is independent of vj, which is thus set to 0.

Substitution of Eq. (20) into Eq. (14) yields
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where

K =1+ Xy, (22a)
K12 =X19, (22Dh)
K31 =Xo1, (22¢)

Koz =1 + Xop. (22d)

Note the z-component of Eq. (21) decouples and produces a dispersion relation describing

the propagation of light waves,

[

2
2 @no
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0
If the assumption of vy = 0 is not made, the z-component of Eq. (21) would produce an

additional term leading to the “ordinary” wave (O-wave), but would still decouple from the
rest of the system.'® Taking the determinant of the remaining 2x2 matrix in Eq. (21) yields

another dispersion relation given by

(Wp7)2 Kt
D(w, kJ_) EKH K22 - | — K12K21 =0. (24)

(WCT)Q w?

By inspection, Eq. (24) has poles at n = a5 corresponding to resonances of the cyclotron
frequency as well as a double pole at w = 0. Comparison with the electrostatic dispersion
relation presented in Ref. [1] shows that this pole at w = 0 does not exist in the electrostatic
limit.

The solution to Eq. (24) requires the evaluation of Eq. (20), for which the infinite series
in Y must be truncated to some finite number of terms. However, the series can be removed
entirely in favor of Bessel functions of specific orders by employing the Lerche-Newberger

sum rule, given by

oo

Z — Jar(;n—lfzd) Pt " sin 7(T7rd) Jated (2) Jp—ca (2) (25)

where d is any non-integer complex number, Re(a +b) > —1, and 0 < ¢ < 1.1923 Manipula-

tions of the Lerche-Newberger sum rule to remove each infinite series in Eq. (20) are shown
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in Ref. [24]. The invocation of the infinite series could also be avoided entirely in solving for

f1in Eq. (16) by taking advantage of the symmetry in particle orbit around the magnetic

s

field during the integration, as shown in Refs. [25,26]. Either approach leads to a form of Y

given by
_ ) 2w [OFY [%(1-Q,) 55 Q.
X=- WE%T; Z_p/a_s " iy 7 P ' a vidvy,
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(26)
where
T
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, Tas 0
Q =~ [J_Oés (ﬁs) Jas (/88)] . (27b)

* “sin (ra,) 0f,
Equation (26) is identical to Eq. (20), but has the advantage of removal of the infinite
series. Resonances at integer multiples of the cyclotron frequency are also readily apparent
through the sin (ray) terms in the denominators,? higher multiples of which would need a
large number of terms in the series expansion to accurately resolve .
The expressions for @y, ()}, and J’ , J, can be recast in a more convenient form in terms

of integrals of real low-order Bessel functions, given by

Jus

T oo (B) T (B) :% / Jo (28, c0s 0) cos (20.0) do, (28a)
0
a%s oo () Ja. (B)] = — % / Ty (28, c03.0) cos 0 cos (2,0) db, (28b)
0

T o, (Bs) T, (Bs) =

2
s
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0

(28c¢)

Details of this derivation can be found in Appendix A.
2
1

gv , the system of equa-

By specifying the equilibrium distribution functions, specifically

tions given by Egs. (22), (24), and (26) provides a closed-form implicit expression for the
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electromagnetic dispersion relation for the DGH instability. The integrals in Eq. (28), which

are needed by Eq. (26), can be evaluated to arbitrary accuracy using numerical quadrature.

While the derivation in this section is restricted to & = 0 waves and to distributions of
the form f2(v,), the procedure can be extended to evaluate the full susceptibility tensor,
written for infinite sums of real integer order Bessel functions as shown in Ref. [16] or
products of complex order Bessel functions as shown in Ref. [25], where these restrictions
are not made. The integrals in Eq. (28) are sufficient to calculate the full susceptibility tensor
shown in Ref. [25] where kjv| is incorporated into Eq. (17a) and where a parallel velocity
dependence is added to the equilibrium distribution function such that f = f2(v.,v)). The
numerical integration of the resulting equation similar to Eq. (26) would have the added
complication of poles resulting from v in denominators when there is finite kj;, which can
be handled using analytic continuation techniques as shown by Landau?” and Bernstein? for

unmagnetized and magnetized waves, respectively.

The generalization of the wave vector from k = k; & and the distribution function velocity
dependence from f%(v,) also provides a natural development path to benchmark kinetic
codes in higher dimensions beyond 1D2V. The extension to two spatial dimensions can
be realized by generalizing k£, to the x — y plane such that k = &k, ,& + k, ,9, which
allows for benchmarking of 2D2V codes. Allowing for parallel velocity dependence of the
equilibrium distribution function, such that [0 = f2(vi,v)) = f2(vs,vy,v,), and adding a
parallel component to the wave vector such that it lies in the x — 2 plane where k = £, +k 2
leads to a 3x3 susceptibility tensor that can be calculated as described above and can be
used to benchmark 2D3V codes simulating oblique wave propagation. Further generalization
of the wave vector such that k =k, ,& +k, ,§+ k2 analogous to the extension from 1D2V

to 2D2V can also allow for benchmarking of 3D3V codes.

IV. CALCULATION OF THE DISPERSION RELATION FOR SPECIFIC
FORMS OF /°(v,), VALUES OF k,, AND w,/w. RATIO

The electromagnetic dispersion relation derived in Sec. III can be used to determine

the linear behavior of an equilibrium ring distribution in conditions leading to the DGH
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FIG. 1. Equilibrium ring distribution function for the DGH instability for various j. The distribu-
tion is peaked at v, g = j1/2a | . The thickness of the distribution can be measured by its half-width
at half-maximum, approximated by « /2, which scales with 712 for a given v, . Distribution

functions with j = 1,2, 6 correspond to cases A-D where v,y = v/2 as described in Table 1.

instability. The specific form of the ring distribution studied by Dory et al.” is given by

P = () e (-2). (29

2.1\ o2
maf gl \ o

which has a derivative which can be calculated analytically, yielding

of° 1 2v, v? w2\ 7T v?
5 = a2 OXP ——= ) = i—=)1- (30)
L maljla? a? ) \a? a?

The peak velocity of the distribution is given by v, = j/2a;; while the half-width at half-

maximum (HWHM) is approximated by «, /2% which is incorrectly presented in Ref. [1] and
in Ref. [7]. This relationship between j and distribution width for a fixed v o can be seen
in Fig. 1. The distribution is found to be unstable if sufficiently peaked, the ratio of plasma
frequency to cyclotron frequency is above a certain value known as the density threshold,
and the wave number falls within a specified range.”

To illustrate the electromagnetic extension of the DGH instability, four specific cases are
examined of a ring distribution of electrons in the presence of a static neutralizing back-
ground of ions (4, = 1, Z, = —1, f0 = f° f! = 0). The parameters of this distribution
for these cases are shown in Table I where k = k v M% is a normalized wave number. For

all cases v19 = v/2 and B® = 1. Cases A-C are identical to cases examined in Ref. [1],
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Case|j|wp/we| k | oy |HWHM| S

j
A 6] 20 |3.15\/1/3|\/1/3/2[1/6
6| 20 |4.65\/1/3|\/1/3/2|1/6

B
C [2] 10 |2.12]| 1 1/2 |1/2
D (1| 1 (212 v2 | v2/2 |1

TABLE 1. Parameters for distribution f° for the various cases under consideration, each with
vig = v2 and B® = 1. Cases A-C correspond to cases in Ref. [1] while Case D is introduced
with lower j and wy/w., which is stable according to both the electromagnetic and electrostatic

dispersion relations.

where case A was found to have a purely growing instability, case B was found to be un-
stable with an oscillatory behavior, and case C was found to be stable according to the
electrostatic dispersion relation. These same cases are re-examined using the more general
electromagnetic theory. Case D is introduced with decreased j, widening the distribution
which reduces peakedness, and a lower plasma to cyclotron frequency ratio which further
moves the plasma below the density threshold for instability. The DGH mode is completely
stabilized when j = 0, corresponding to Maxwellian distribution functions.'” Table I also
calculates plasma beta of the electrons, given by
2

5 :(2;07)72 = 2”54501?2’ (31)
where T is calculated from the thermal velocity which is approximated by the half-width
at half-maximum of the distribution given by vy, = \/m = «a /2, and where n = 1 and

A =1 for electrons. The electrostatic approximation is valid for 8 << 1,2 which inspection
of Eq. (31) shows becomes less accurate for hotter distributions.

The electromagnetic dispersion relation for each case is examined and compared with the
electrostatic dispersion relation derived in Ref. [1]. The characteristic time is set to 7 = w,’ L
leading to w,7 = 1 and w.T = (w, /wc)fl. Integrations required in the electromagnetic dis-
persion relation as derived in Sec. III as well as those required in the electrostatic dispersion
relation as derived in Ref. [1] are performed using the second-order accurate trapezoidal
rule®” using 100 points. The electromagnetic and electrostatic dispersion relations for cases

A, B, C, and D are plotted in Figs. 2, 3, 4, and 5, respectively, where the frequencies are

normalized to the cyclotron frequency (@ = w=2). Shown also are zero contours of the real
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(a) Case A EM, & = 0.4912: (b) Case A ES, @ = 0.4912;

FIG. 2. Filled contours for normalized magnitudes of the electromagnetic (EM) and electrostatic
(ES) dispersion relations for case A plotted on a 320 x 320 grid with @, € [-0.1,3.0] and @; €
[—0.1,1.5] with line contours of Re(D) = 0 and Im(D) = 0 overlaid. These contour lines cross at
roots of D(w, k) = 0 as well as poles of D(w, k). Solutions to the dispersion relation exist at the
roots but not at the poles. The poles exist at real integer multiples of the cyclotron frequency for
both the EM and ES dispersion relations, with an extra pole at 0 for the EM dispersion relation.
For this case, the largest growing mode written as @ underneath each contour plot, given by the root
of D(w, k) = 0 with the largest imaginary component, agrees well for the EM and ES dispersion

relations and is purely imaginary.

and imaginary components of the dispersion relation. Solutions exist where the real and
imaginary zero contours intersect, satisfying D(w, k,) = 0, but not at the poles of D(w, k)

indicated by |D|/|D| ., approaching unity.  After the general vicinity of a solution is

max
found, more precise calculations are performed with a Newton—Raphson method, using more

points in the trapezoidal rule of integration until convergence to & within 10~* is reached.

The complex frequencies from the electrostatic and electromagnetic dispersion relations
are found to be close for cases A and B. However for case C, the results and behavior
characteristics deviate. The electromagnetic dispersion relation shows growth and oscillation
while the electrostatic dispersion relation produces multiple purely real frequencies. This
discrepancy can by understood by the high plasma beta of the distribution, as seen in

Table I, indicating the inaccuracy of the electrostatic theory. Case D yields purely real
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G G
(a) Case B EM, @ = 1.0363 + 0.2900i (b) Case B ES, @ = 1.0361 + 0.2899

FIG. 3. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case
B with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, the root of
D(w, k) = 0 corresponding to the largest growing mode agrees well for the ES and EM dispersion

relations and has mixed oscillatory and imaginary components.

10° 10°
—— Re(D)=0 . —— Re(D)=0

--- Im(D)=0 10 --- Im(D)=0 10-1

102 . 102

103 1073
L E W E
1074 3 3 1074 a
a a
107> — 1075 —

10°° 107

1077 1077

108 1078

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
& &
(a) Case C EM, @ = 0.8426 + 0.1242; (b) Case C ES, multiple oscillatory solutions

FIG. 4. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case
C with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, the root of
D(w, k) = 0 for the EM dispersion relation corresponding to the largest growing mode has mixed

oscillatory and imaginary components while the ES dispersion relation has no growing solutions.
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wr

(a) Case D EM, multiple oscillatory solutions (b) Case D ES, multiple oscillatory solutions

FIG. 5. Filled contours for normalized magnitudes of the EM and ES dispersion relations for case
D with line contours of Re(D) = 0 and Im(D) = 0 overlaid as in Fig. 2. For this case, no growing

roots of D(w, k) = 0 exist for either the EM or ES dispersion relations.

frequencies for both the electrostatic and electromagnetic dispersion relations. The absence
of growth can be explained by the further widening of the distribution and decreased plasma
to cyclotron frequency ratio compared to the other cases. Even with the increased plasma
beta of this distribution indicating inaccuracy of the electrostatic theory, the combination
of increased temperature and reduced frequency ratio makes this case stable even using the
electromagnetic dispersion relation, which is not true in case C.

The next sections verify these observations using continuum kinetic simulations of the

Vlasov-Maxwell system.

V. NUMERICAL METHOD FOR THE VLASOV-MAXWELL SYSTEM

The Vlasov equation as described in Eq. (1) is rewritten in conservative form,

Ofs
ot

LV (0f,) + V- (WCT)%(EHxB)fS ~0. (32)

Maxwell’s equations, Eqgs. (2) and (3), can also be written in conservative form, such that

the entire governing equation system can be expressed compactly as

99

SV F =S, (33)
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where q is the solution vector for the equation set, F is the flux tensor, and & represents
source terms. The x coordinate is generalized to position x and velocity v for the Vlasov
equation, Eq. (32).

Expressing the governing equation system in the form of Eq. (33) facilitates solution
with the discontinuous Galerkin finite element method using the WARPXM (Washington
Approximate Riemann Plasma) framework.3! The framework provides algorithms that solve
plasma physics problems on unstructured grids using fluid models as well as the continuum
kinetic model described by the Vlasov-Maxwell equation system. The code subdivides a
simulation domain into discrete elements and projects conservation variables onto a set of

basis functions ¢,, of order m such that the numerical approximation is represented as
9= q,0m (34)

Equation (33) is then multiplied by each basis function and integrated over each element

volume (2, yielding the weak form integral equation for each basis function given by

/Qg—?qﬁmdv + aQ.’F- no,,dS — /Q.’F - Vo,,dV :/QS(/szdV, (35)
where the divergence theorem has been applied to the flux tensor term. Equation (35) is
solved using an explicit Runge-Kutta (ERK) time-stepping method. This combination of
spatial and temporal discretizations produces a compact, high-order scheme with an optimal
convergence rate of O(hN*1) for element size h and polynomial basis order N.3? Lagrange
interpolating polynomials based on Legendre-Gauss-Lobatto quadrature node locations are
used for the basis functions, yielding a nodal scheme in which the coefficients in Eq. (34)
correspond to solution values at the node locations. Further details of the discontinuous
Galerkin method used in the WARPXM framework can be found in Refs. [33,34]. A discus-
sion on the appropriate fluxes in the surface integral for the Vlasov and Maxwell equations
as well as of the ERK time-stepping algorithm used to evolve Eq. (35) can be found in
Ref. [15]. For the ERK schemes, the allowable timestep is determined by the CFL condition

At <C (i %) : (36)

d
d=1
where C' is the Courant number, D = 3 is the number of phase-space dimensions, a, is the

maximum advection speed in direction d, and hy is a measure of the element spacing in
direction d. Courant numbers are set based on those defined for various combinations of

ERK scheme and basis order.3®
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VI. NUMERICAL SIMULATIONS OF THE DGH INSTABILITY AND
COMPARISON TO THEORY

The four cases described in Sec. IV are simulated using the discontinuous Galerkin algo-

rithm described in Sec. V. For each simulation, the electric field energy, given by

1
Us =3 / E?dx (37)
is calculated and plotted on a semi-log scale from which the growth rate, w; and oscillation
frequency, @, can be measured. The ring distribution given in Eq. (29) is initialized on a

Cartesian grid of x € |0, Z_I] and v,,v, € [—4,4] with a perturbation such that the initial

electron distribution is given by

1 02402\’ v2 + 02
f(z,vz,0)|4=0 = , Y1) exp ( — Y ) |1 + esin | 4arctan ) _ kixz )|,
y o i 2 2
19! af af Uy

(38)

where ¢ = 107*. Reference [1] uses the same perturbed distribution and demonstrated
effective excitation of the dominant mode. Simulations are performed on a phase-space grid
of resolutions given by N, X N,, x N, : 48 x 24 x 24, 56 x 28 x 28, 64 x 32 x 32, and
80 x 40 x 40. Second-order polynomial basis elements characterized by third-order optimal

32 are used with fourth-order ERK time-stepping. The Courant number

spatial convergence
used in all simulations is 0.235 in accordance with Ref. [35].

Figure 6a shows a plot of the electric field energy measured at every t = 5 for the
80 x 40 x 40 resolution simulation for all cases, where the growth rates given by w; are
measured using the slopes of line fits through the data. The growth rates for cases A-C
are in line with the theoretical values predicted by the electromagnetic dispersion relation,
while a small growth is seen for case D despite no prediction of growth from the theory. This
small growth seen for case D may be a nonlinear effect due to the coupling of real frequency
solutions to the dispersion relation excited from the perturbation profile in Eq. (38). Fast
Fourier transforms (FFTs) are calculated for each case after the linear growth has been
subtracted to determine the oscillation frequencies given by @,, which are shown in Fig. 6b.
Mixed growth and oscillation is expected for cases B and C according to the electromagnetic

dispersion relation as shown in Sec. IV. The oscillation frequencies are found to be at the

peaks of the FFT spectra. For case B, the oscillation frequency is calculated as the average
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~th,EM| ~th,ES | ~ ~th,EM| ~th,ES
@; , w; , wzr'lum EIM O o

0.4912]0.4912|0.49560.9%| - - - -

Case num EM

B |0.2900|0.2899(0.2965|2.2%| 1.0363|1.0361|1.0357 + 0.0690| <6.7%
C 01242 - [0.1239]0.2%|0.8426] - |0.8240 + 0.0515|<6.1%
D | - - Jo.o018] - | - - - -

TABLE II. Theoretical growth rates and oscillation frequencies of the electromagnetic and electro-
static dispersion relations as calculated in Sec. IV as well as numerical results from discontinuous
Galerkin simulations of the Vlasov-Maxwell system. Growth rates are converged values as shown
in Fig. 7, and oscillation frequencies for cases B and C are calculated from FFTs of the 80 x 40 x 40
simulation. The errors between numerical results and electromagnetic theory are calculated as
et = o — | fa

of the first peak, found to be at @? = 1.0357 + 0.0690 while for case C, the peak is found
at @Y = 0.8240 4 0.0515, where in both cases half the frequency bin size is specified as
the uncertainty. These frequencies are found to be independent of resolution. The growth
rates however can be compared for various resolutions to obtain converged values. Figure 7
shows the convergence from the simulations performed at the four resolutions described by
plotting growth versus velocity-space resolution and line fitting to find the limit as element
size approaches zero. The converged results are summarized in Table I along with theoretical
values for the electromagnetic and electrostatic dispersion relations calculated in Sec. V.
Theoretical oscillation frequencies and those measured from the simulation results with the
FFTs are also given in Table II. The growth rate convergence is calculated assuming a rate of
order 3 for second-order basis functions used in simulations. The growth rate discrepancies
for cases A and C are less than 1% while the discrepancy for case B is 2.2%. The error in
oscillation frequency as measured by the FFT should be less than 6.7% for case B and less

than 6.1% for case C, based on the frequency resolution.

The simulation results show agreement with the theoretical predictions from the electro-
magnetic dispersion relations. They also confirm the agreement between the electrostatic
approximation and the electromagnetic model for the cases of lower plasma beta in A and
B. The agreement between electromagnetic theory and simulation in case C shows that with

increased plasma beta, the electrostatic approximation is inadequate to accurately predict
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FIG. 6. Simulations of the DGH instability with the Vlasov-Maxwell system using 80 x 40 x 40
second-order polynomial elements. Figure 6a shows the growth of the electric field energy for cases
A-D, where t is normalized by w),. Line fits showing the slope yielding @; are also shown for the
times during which the linear growth is measured. The measurement durations are ¢ € [150, 350],
[50, 500], [200,500], and [250,500] for cases A, B, C, and D, respectively. For case B, the line
fit is based on the peaks of the oscillation. Figure 6b shows absolute values of the fast Fourier
transforms for each case for these times, after the linear growth has been subtracted to remove the
zero-frequency component and the result at negative frequencies are combined with those at positive
frequencies. The peaks in the FFT plots correspond to the oscillation frequency, @,.. For case B, the
oscillation frequency is calculated as the average of the first peak, yielding & = 1.0357 4 0.0690.

For case C, the oscillation frequency is found at the first peak to be & = 0.8240 + 0.0515.

instabilities involving perpendicular waves. In case D, both theories predict stability and a

small growth is seen in simulation.

VII. CONCLUSIONS

A closed-form integral representation of the electromagnetic dispersion relation for the
DGH instability is derived using electromagnetic theory, which is more complete than the
electrostatic approximation that is only valid for low-beta plasmas. Theoretical growth rates

and oscillation frequencies are computed for four cases of equilibrium electron ring distribu-

18



0.4955 4 — Fit: ;- 0.4956 — Fit: ;> 0.2965
o 48x24x24 o 48x24x24
0.2900
0.4950 1 56x 28 x 28 56 x 28 x 28
o 64x32x32 o 64x32x32
° ® 80x40x40 ° ® 80x40x40
0.4945 - 0.2800
0.4940
5 5 02700
0.4935 -
0.4930 0.2600
0.4925 -
0.2500
0.4920
0.4915 : : : : 0-24001 : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(huth})? (huthy)?
(a) Case A (b) Case B
0.1239 — Fit: 5, 0.1239 — Fit: (5~ 0.0018
o 48x24x24 0,001 | o 48x24x24
56 x 28 x 28 : 56 x 28 X 28
0.12381 e 64x32x32 o 64x32x32
o e 80x40x40 ® 80x40x40
0.1237 0.0017 A
5 0.1236 5
0.0016
0.1235
0.0015
0.1234 -
0.1233 1 0.0014
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
(hy/h)? (hy/h)?
(c) Case C (d) Case D

FIG. 7. Convergence of growth rates @; for cases A-D. The growth rates are plotted for various
resolutions against a velocity-space element length (h,) normalized to the reference element length
of a 48 x 24 x 24 velocity-space element (h!) with the expected cubic spatial convergence. Line fits

are constructed to determine the y-intercepts corresponding to the hhmo W
v

tions using electromagnetic and electrostatic dispersion relations. As predicted, agreement
between the electromagnetic and electrostatic dispersion relations is found in the growth
rates and oscillation frequencies for cases characterized by low plasma beta. A case with
increased temperature (and corresponding increased plasma beta) and reduced plasma to
cyclotron frequency ratio to further move the plasma below the density threshold for in-
stability was predicted by the electrostatic dispersion relation to be stable but unstable

according to electromagnetic theory. Simulations using WARPXM to solve the continuum
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kinetic Vlasov-Maxwell system in 1D2V confirm the electromagnetic dispersion results. A
case with further increased temperature reducing the peakedness of the distribution and re-
duced plasma to cyclotron frequency ratio is found to be stable according to both theories,
even though less confidence can be given to the electrostatic dispersion relation due to the
corresponding increased plasma beta. The Vlasov-Maxwell simulations for this case show a
small growth, possibly due to nonlinear effects.

The agreement between simulation results and theory confirm the use of the DGH insta-
bility as a viable benchmark for continuum kinetic codes solving the Vlasov-Maxwell system
for plasmas subject to dynamic magnetic fields and currents. The electromagnetic gener-
alization extends the analysis of the DGH instability using the electrostatic approximation
confined to plasmas characterized by small beta such as those of cold ring distributions to
include higher beta plasmas with higher temperatures. In addition, the closed-form inte-
gral representation of the electromagnetic dispersion relation derived in this work can be
used as a benchmark for other numerical treatments of the Vlasov-Maxwell system, such as

electromagnetic particle-in-cell methods.
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Appendix A: Recasting products of Bessel functions of complex order in terms

of integrals of Bessel functions of real order

The electromagnetic susceptibility in Eq. (26) of the DGH instability resulted in an

expression containing products of complex order Bessel functions which are difficult to treat
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numerically. However, by applying Neumann’s formula36-37

s

Jy (2) Ju (2) _2 / Jy4p (22 cos @) cos [(n — v) 0] df (A1)

™
0

Re(v+p) >—1,

these products can be recast in terms of integrals of real order Bessel functions. Application

of Eq. (A1) on the product J_,, (Bs) Ja, (Bs) leads to

Jus

T (50 o (5 = [ o (2, cos) cos (20.6) 0 (A2)

™
0

Differentiation of Eq. (A2) yields

5 2 0
95, [P-a: (B) Jou (B =52

2 i 0Jo (285 cos ) 0 (2P cos )
B / 0 (205 cos ) 0Bs
0

Jo (285 cos 0) cos (2a,0) db

(=)
[ME]

cos (2a50) db

3 |

2 i 0Jo (28 cos 6)
- 5 (2. cos0) 2 cos B cos (2a40) db. (A3)
0

Application of the recurrence relation

0
Toa() = Jona(2) =25 2], (A1)
and identity for integer n’

on the derivative term yields

0Jo (2Bscos) 1
% =3 [J_1 (285 cosf) — Jy (2, cos 6)]

_1 [—J1 (285 cos @) — Jy (265 cos 0)]

(]

= — J1 (2065 cosb). (A6)
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Substitution of Eq. (A6) into Eq. (A3) results in

8i65 [J-a, (Bs) Ja, (Bs)] = — %/Jl (285 cos 8) cos 0 cos (2a50) db. (A7)
0

J_o. (Bs) Jo,. (Bs) can also be simplified, first by substitution of Eq. (A4), yielding

T (B) Ja, (B5) —% [Joan1 (Bs) = J-aus1 (B5)] % o1 (B5) = Josr (8]
Ii a1 (Bs) Ja—1 (Bs) = T-a,-1 (Bs) Ja, 1 (Bs)
A 5
— Joaut1 (Bs) Jag—1 (Bs) + Toapi1 (Bs) Jass1 (Bs) | (A8)
c D

where the terms A-D have been defined for convenience and will be treated separately using

Eq. (A1). However for the term A = J_,, 1 (Bs) Ja.—1 (Bs), Eq. (A1) cannot be used directly

because Re (v 4+ u) = —2 < —1. This term can be rewritten using the recurrence relation
for complex 37
2v
Jot1(2) + S (2) :7<]V (2), (A9)
yielding
—20 200
A :Jfasfl (ﬁs) Jasfl (ﬁs) = —Jfas (ﬁs) - Jfas+1 (ﬂs):| |:B_=]as (55) - Jaerl (ﬁs)
—4a? 2004
= 62 i]fas (ﬁs) Jas (ﬂs) _'_6_ :]fas (Bs) Jaerl (63)/
° E ’ b
20
- ﬁ :77045+1 (58) Jas (ﬁsZ""i}faerl (55) Jas+1 (ﬂs)/a (Al())
G D

where terms E-G have also been defined for convenience. Term E is given by Eq. (A2).

Application of Eq. (A1) on the remaining terms yields

B =J_n,-1(Bs) Ja,+1 (Bs) = % / Jo (265 cos 0) cos [(2as + 2) 0] d6, (A11)
0
) 3
C =J_0.11(Bs) Ja.—1 (Bs) = - / Jo (285 cos 0) cos [(2as — 2) 0] d6, (A12)
0
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D =T i1 (B) Jass (B) = % / Ty (2, cos 0) cos (20,0) df), (A13)
0
) 3
F=J_,,(Bs) Ja.41(Bs) = - / J1 (285 cos ) cos [(2a5 + 1) 0] d6, (A14)
0
) 3
G =J 0.1 (Bs) Ja. (Bs) = /J1 (285 cosB) cos [(2as — 1) 0] d6. (A15)
0

Substitution of Egs. (A2) and (A10)-(A15) into Eq. (A8) produces

_a5<ﬁs) (ﬁs)_ (A_B_C+D)

UJ[O

Dj

2a 2a
‘F— SG+D—B—C+D}
B Bs

4a 2x
SE—-B—-C+ ==
B2 Bs

us

Q»Jk
ENN)

A;I»— »lklr—wlklri

(F - Q) +2D}

¥ =

- / Jo (285 cos 0) {4;5 cos (2a50) + cos [(2as + 2) 0] + cos [(2as — 2) 0] | db

s
0

J1 (265 cos 0) {cos [(2as + 1) 0] — cos [(2as — 1) 0]} db

+
DO
&S
»
O\NH

+2 / J2 (25 cos B) cos (2a50) db | . (A16)
0

The integrals involving Jy and J; can be further simplified by using the cosine sum trigono-

metric identity

cos (a+b) =cosacosb —sinasinb, (A17)
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yielding

Jl,as (Bs) J;S (Bs) :l — / Jo (285 cos 0) cos (2a50) l2o§ + cos (29)} do

n s

20,

Bs

J1 (2085 cos 0) sin 6 sin (2a56) db

o
vE O

—i—/JZ (285 cos 8) cos (2a50) dO | . (A18)
0

The integral involving .J; can be removed by relating it to an integral involving J, by
integrating Eq. (A2) by parts and employing Eq. (A6), yielding

s
sin(mas)  a

2B cosf)sinfsin (2a,0) d) =———— — —
J1 (285 cos 0) sin 6 sin (2a50) 2%, 5.

o\
VB

/Jg (205 cos B) cos (2a:0) df.  (A19)
0

Substitution of Eq. (A19) into Eq. (A18) yields

s

Jl_as (Bs) J;S (Bs) :l /cos (2050) [Jo (285 cos ) — Jo (28, cos ) cos (20)] db — % sin (7o)

T s
0

(A20)

Equations (A2), (A7), and (A20) recast the products of complex-order Bessel functions
in the susceptibility tensor in Eq. (26) as integrals of real integer-order Bessel functions
which can be evaluated using standard scientific computing packages. This allows for nu-
merical evaluation of the electromagnetic dispersion relation for the DGH instability given

in Eq. (24).
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