Environmental Modelling and Software 137 (2021) 104958

ELSEVIER

Contents lists available at ScienceDirect
Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

Check for

Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black | e

successive over relaxation wind-field solver

Behnam Bozorgmehr ?, Pete Willemsen ”, Jeremy A. Gibbs *, Rob Stoll %, Jae-Jin Kim ¢,

Eric R. Pardyjak *

& Department of Mechanical Engineering, University of Utah, USA
Y Department of Computer Science, University of Minnesota Duluth, USA
¢ NOAA/OAR National Severe Storms Laboratory, Norman, OK, USA

4 Department of Environmental Atmospheric Sciences, Pukyong National University, Republic of Korea

ARTICLE INFO ABSTRACT

Keywords:
QES-Winds
Poisson equation
Fast-response
Wind modeling
Iterative method
Staggered grid

QES-Winds is a fast-response wind modeling platform for simulating high-resolution mean wind fields for
optimization and prediction. The code uses a variational analysis technique to solve the Poisson equation for
Lagrange multipliers to obtain a mean wind field and GPU parallelization to accelerate the numerical solution of
the Poisson equation. QES-Winds benefits from CUDA dynamic parallelism (launching the kernel from the GPU)
to speed up calculations by a factor of 128 compared to the serial solver for a domain with 145 million cells. The
dynamic parallelism enables QES-Winds to calculate mean velocity fields for domains with sizes of 10km?* and

horizontal resolutions of 1 — 3 m in under 1 min. As a result, QES-Winds is a numerical code suitable for
computing high-resolution wind fields on large domains in real time, which can be used to model a wide range of
real-world problems including wildfires and urban air quality.

1. Introduction

The urban population of the world has grown rapidly from 751
million in 1950 to 4.2 billion in 2018. In 2018, cities contained 55% of
the world’s population and by 2050, urban areas will account for 68% of
the world’s population (United Nations and Department of Economic
and Social Affairs, 2019). This rapid urbanization creates multiple
meteorological and climate related phenomena linked to negative
human-health outcomes, including air pollution (Shukla and Parikh,
1992) and urban heat island effects (Akbari and Kolokotsa, 2016).
Additionally, urban population growth expands the wildland-urban
interface increasing the risk to life and property from wildfires (Radel-
off et al., 2018; Calkin et al., 2014). The risk is compounded by the
increased number of wildfires over the past three decades. Since 2000, at
least 10 states in the United States have had their largest fires on record
and currently fire seasons are 78 days longer than in the 1970s, while
over 70,000 communities are at risk of wildfires (USDA, 2019).

Proper modeling of the physics of wildfires (Moody et al., 2019; Linn
et al., 2020) and pollution dispersion in cities (Pardyjak and Brown,
2001; Williams et al., 2004; Singh et al., 2008) requires high-resolution

* Corresponding author.
E-mail address: pardyjak@eng.utah.edu (E.R. Pardyjak).

https://doi.org/10.1016/j.envsoft.2021.104958
Accepted 30 December 2020

Available online 13 January 2021

1364-8152/© 2021 Elsevier Ltd. All rights reserved.

representation of wind fields in natural and urban areas. For the purpose
of prediction, where model run-times should be near or faster than real
time or for design optimization problems where thousands of simula-
tions must be performed in a short period of time, traditional compu-
tational fluid dynamics (CFD) models such as Reynolds-averaged
Navier-Stokes (RANS) simulations and large-eddy simulations (LES) are
not fast enough (Hayati et al., 2019). Another option is to use a
semi-empirical fast-response approach.

The complexity of urban and natural land-surface geometries, along
with the complicated resulting wind flow, requires sophisticated phys-
ical models. However, more detailed models require a significant in-
crease in computational costs (time and computational power). As a
result, fast-response wind flow simulators are needed that compromise
some accuracy to shorten computation time.

The Quick Environmental Simulation (QES) tool is a microclimate
simulation platform for computing the transport of three-dimensional
environmental scalars in urban areas and over complex topography.
QES is organized into separate components each designed to simulate a
different aspect of environmental transport. QES-Winds is the fast-
response 3D diagnostic wind modeling module written in C++, based

mailto:pardyjak@eng.utah.edu
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.104958
https://doi.org/10.1016/j.envsoft.2021.104958
https://doi.org/10.1016/j.envsoft.2021.104958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.104958&domain=pdf

B. Bozorgmehr et al.

on the often-used FORTRAN code QUIC-URB (Quick Urban and Indus-
trial Complex-Urban) (Brown et al., 2013; Pardyjak and Brown, 2003).
QES-Winds solves a mass-conservation equation for the wind field rather
than the slower and more physics-based solvers that include conserva-
tion of momentum. While QES-Winds uses reduced-order physics to
simulate urban flows, the solutions are rapid and compare quite favor-
ably with higher-order physics-based models in both idealized (Hayati
et al., 2017, 2019) and realistic cities (Neophytou et al., 2011).

The QES-Winds model is based on the 3D diagnostic urban wind
model proposed by Rockle (1990). First, an initial wind field is pre-
scribed by combining an incident flow with localized flows that account
for the effects of building geometries via empirical parameterizations
(Singh et al., 2008). Conservation of mass is then enforced using a
variational analysis (a type of data assimilation) technique (Sasaki,
1958; Sasaki, 1970; Sasaki, 1970) to minimize the differences between
the initial guess field and the final mass-conserving wind field. This
technique requires the solution of a Poisson equation for Lagrange
multipliers and results in calculating a quasi-time-averaged velocity
field. The resulting complex 3D wind field resembles time-averaged
experimental data (Hayati et al., 2017, 2019).

The Poisson equation is discretized over the computational domain
and rearranged into matrix form creating a system of linear equations.
The matrix form of the Poisson equation can theoretically be solved
using sparse direct solvers, which should be fast compared to iterative
solvers. However, after applying the complex boundary conditions
specific to our case, the coefficient matrix (A) becomes a sparse, non-
diagonal, non-banded, non-triangular, non-symmetric, and not real
positive diagonal matrix. As a result, the matrix must be solved using the
MAS57 algorithm (Duff, 2004) (sparse symmetric system: multifrontal
method), which is numerically expensive and quite slow for our pur-
poses. To overcome these shortcomings, the Poisson equation in
QES-Winds is solved using the Successive Over-Relaxation (SOR)
method, a variant the of Gauss-Seidel method with faster convergence
(Young, 1954; Varga, 1962). The SOR method is a sequential iterative
method (Adams, 1982), which means that it is not fast enough for the
purpose of optimization and prediction for domains with a high number
of cells when a large number of iterations is required for convergence. To
reduce the execution time of QES-Winds, the SOR method must be
parallelized.

Despite the sequential nature of SOR Poisson solvers, they can be
executed in parallel if the discretized equations are ordered according to
the classical red-black coloring scheme (Hayes, 1974; Lambiotte, 1975).
As illustrated in Fig. 1, in the red-black scheme, cells are divided into
two partitions such that all of the neighboring cells of a red cell are
black, and vice versa. As a result, the discretized equation can be solved
for two sub-iterations in parallel: once for all of the red cells and once for
all of the black cells inside the domain (Adams, 1982; Evans, 1984).

Environmental Modelling and Software 137 (2021) 104958

Utilizing parallel computing on CPUs (Central Processing Units)
(Zapata et al., 2018; Krupka and Simecek, 2010) and GPUs (Graphics
Processing Units) (Helfenstein and Koko, 2012; Li and Saad, 2013;
Cotronis et al., 2014; Konstantinidis and Cotronis, 2011; Itu et al., 2011)
to accelerate the SOR solver has been the subject of extensive research.
Kruptka and Simecek (2010) showed that the achievable speedup by
parallelizing on the CPU depends on the number of computational nodes
available and size of the computational domain. Their results indicated
that the maximum speedup for red-black SOR is equal to the number of
computational nodes available. On the GPU, finding the maximum
speedup is not as easy since various factors are involved. All codes that
run on the GPU need to be launched from the CPU, and all data required
for calculations must be copied from the CPU’s memory to the GPU’s
global memory. Memory access time on the GPU and the bidirectional
data transfer between the CPU and GPU are the most important pa-
rameters that affect the potential speedup. All of the aforementioned
research mainly focused on reducing memory access time on the GPU by
using shared memory or padded global memory (Itu et al., 2011).
Cotronis et al. (2014) reported ~11 times speedup using the global
memory of an NVIDIA GTX480 GPU (with 480 computational cores)
over a sequential solver on a CPU for a domain size of 2882 x 2882 cells.
In this paper, we focus on reducing the copy overhead between the CPU
and GPU to accelerate the SOR solver. CUDA (Compute Unified Device
Architecture) dynamic parallelism has been used in the literature (Jones,
2012; Kirk and Wen-Mei, 2016; Ding and Tan, 2015) to reduce the
bidirectional data transfer between the CPU and GPU. Another option is
to rely on the GPU memory to hold the data during the whole iterative
process.

There are other similar diagnostic wind-modeling software packages
that have been described in the literature. Most notably, WindNinja
(Forthofer et al., 2014) and Micro SWIFT (Moussafir et al., 2004;
Tinarelli et al., 2007). WindNinja uses a conjugate-gradient method with
Jacobi preconditioning to solve the Poisson equation in a
terrain-following coordinate system (Forthofer et al., 2014). The
conjugate-gradient method with Jacobi preconditioning is computa-
tionally expensive and time-consuming, but it is the best option using
terrain-following coordinates. As a result, WindNinja is not the best
option for simulating wind fields with fine grids (e.g., of the order of 1
m). In addition, the terrain-following coordinate system is not suitable
for computing flows around buildings, which means that WindNinja is
not applicable for modeling urban areas. Micro SWIFT utilizes the SOR
method to solve Poisson’s equation in a three-dimensional Cartesian
coordinate system (Moussafir et al., 2004; Tinarelli et al., 2007). How-
ever, Micro SWIFT is not able to compute flows over complex terrain
since it does not process terrain geometry. In addition, because Micro
SWIFT only has a serial solver, solving for high-resolution wind fields
over urban areas is computationally expensive. Because it has the same

Fig. 1. Schematics of a 2D domain with the red-black coloring scheme for solving SOR in parallel: (left) sub-iteration to solve for all red cells, (right) sub-iteration to
solve for all black cells. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

B. Bozorgmehr et al.

basic solver, Micro SWIFT could benefit from the parallelization method
described in this paper.

There have been few attempts to accelerate diagnostic wind models
using GPUs in the literature. The study most similar to our effort was
conducted by Pinheiro et al. (2017). They utilized GPU parallelization to
accelerate a mass-consistent wind model used in predicting atmospheric
dispersion of radionuclides. They used the Winds Extrapolated from
Stability and Terrain (WEST) model, which has an irrotational correc-
tion to the initial wind field that minimizes the divergence of the initial
velocity field. The irrotational correction is based on the perturbation
velocity potential and transmission coefficients, which are defined based
on temperature profiles obtained from upper-air soundings. In this
method, they calculate the divergence in each cell and the gradient of
the perturbation velocity potential. They then update the velocity field
and repeat the process until convergence, which is negligible diver-
gence. Homicz (2002) reviewed different wind-modeling approaches
and concluded that the WEST approach (called the NOABL model in the
paper) is different than models based on variational calculus (e.g.
QES-Winds). Also, in order to get a divergence-free final velocity field,
there are restrictions on the values of transmission coefficients, which
means that the model produces mass-consistent wind fields in special
circumstances. Pinheiro et al. (2017) reported about 25 times speedup
using an NVIDIA GTX-680 GPU for a domain with their finest grid (about
1.5 million cells).

The GPU parallelization technique (dynamic parallelism) discussed
here can be incorporated into other types of wind solvers and dispersion
models to significantly accelerate them. Singh et al. (2011) developed a
new dispersion model called GPU Plume, that utilized the parallel

Aijk

computational capabilities available on the GPU to accelerate the cal-
culations. Our group is developing an improved version of the GPU
Plume that has the potential to decrease the execution time by exploiting
benefits of the dynamic parallelism. Also, the new model in conjunction
with the QES-Winds, could run air quality simulations of large urban
areas in near real time. Other examples include WindStation, which is
software developed by Lopes (2003) as a tool to simulate atmospheric
flows over complex terrain. Two models were used to handle the com-
plex topography: the first one is a mass-conservative wind solver much
simpler than QES-Winds, while the second one solved for
three-dimensional Naiver-Stokes equations. Incorporating the same
GPU technique described here in these models can speed up calculations
and allow for high-resolution simulations on massive domain including
those with complex topography. Lastly, Linn et al. (2020) recently
developed a fast-running tool to model complex behavior of wildland
fire propagation. They used QUIC-URB (Brown et al., 2013; Pardyjak
and Brown, 2003) as the wind solver to provide a high-resolution wind
field for the fire propagation model. QES-Winds, which evolved from
QUIC-URB, can provide a wind to fire propagation models to predict
wildfire behavior over larger domains in near real time.

The overall goal of this research is to significantly decrease the
execution time required for QES-Winds. NVIDIA’s parallel GPU
computing platform and CUDA application programming interface (API)
(NVIDIA, 2019) are used to substantially accelerate QES-Winds. By
utilizing GPU parallel computing capabilities, QES-Winds will be fast
enough to use for prediction and optimization purposes.

_ @ *(AX)ZRi.j.k + eijadivjx + fijadio1jk
€iji + fijk + ik + hiji + Mg+ nij | A (gi,/.kﬁiﬁl,k + hi,/lkﬁi.j—l.k) +B (miJ.Mi.j.kH + ni.j.k/li.j,k—l)

Environmental Modelling and Software 137 (2021) 104958

2. Methods

QES-Winds uses a variational analysis technique (Sasaki, 1958;
Sasaki, 1970; Sasaki, 1970) to obtain a quasi-time-averaged velocity
field. This method requires the solution of a Poisson equation for the
Lagrange multipliers, 1:

*r)
&y

o T \a) 02"
where x, y, and z are the spatial coordinates in the streamwise, spanwise,
and ground-surface normal directions, respectively, and @; and a; are
Gaussian precision moduli. To numerically implement Eq. (1), we dis-
cretize the computational domain using a staggered grid where 1 and the
divergence of the initial velocity field R are cell-centered variables and
flow components u, v and w corresponding to the x, y, and z directions,
respectively, are cell-faced values. The divergence of the initial wind
field is defined as

0 _ 4,0 0 0 0 w0
bk T Yingie | Vi T Vit VWigad ™ Wijaed

Ax Ay Az

u

Riji= — 2(1% (2)

where i, j, and k are cell indices in the x, y, and z directions, respectively,
a half-index step indicates a cell face value, Ax, Ay, and Az are the cell
dimensions in the x, y, and z directions, respectively, and the superscript
0 denotes an initial estimated value.

Equation (1) is solved using the SOR method (Young, 1954; Varga,

+ (1 —w)ijx 3)

1962) resulting in the following relationship for the Lagrange multi-
pliers:

where e, fijk, &jk> Nijk, Mijk, and n;jx are boundary condition co-
efficients and A = (Ax)?/(Ay)*> and B =y(Ax)%/(Ay)? (where 5 =
[a1/a2]?) are domain constants. Gaussian precision moduli ¢; and a, are
set to unity in this study and the SOR over-relaxation factor w = 1.78 is
based on the recommendation by (Rockle, 1990). Neumann boundary
conditions (0A/on = 0) are applied to solid surfaces and Dirichlet
boundary conditions (4 = 0) are applied to inlet/outlet surfaces. To
implement the solid surface boundary condition, the boundary condi-
tion coefficient related to the surface is set to zero. The boundary con-
dition coefficients e;j, fijk, &jk> Mijk> Mijk, and n;jx are related to cell
surfaces located at (i+1/2),(i—1/2),(j+1/2),(j—1/2),(k+1/2) and
(k—1/2) of the cell (i,j, k), respectively.

The final velocity field is then updated through the Euler-Lagrange
equations:

1
Ui = u?-./'-,k + m [/L'H.j.k - /Ii‘/:k} , and 4)
1
Vijk =V + (2@)Ay [Aije1x —Aiji), and (5)
1
Wijk = WE/'.k + m [li.j,kﬂ - /‘li‘/‘.k} . (6)

To ensure convergence, the error for each iteration is calculated as:

A Al

Error:Max(ik~ Ak

): @

B. Bozorgmehr et al.

Environmental Modelling and Software 137 (2021) 104958

- Copy ug, vo,wp and R from the CPU’s memory to the GPU’s global memory
- Call the “divergenceGlobal” kernel to calculate R using Eq. 2
- Copy e, f,g9,h,m,n and X from the CPU’s memory to the GPU’s global memory

tolerance = 1077

iteration = 0

error =1

// SOR loop starts here

// Convergence criterion
// Iteration counter

while ((iteration < mazimum iterations) || (error > tolerance)) do

- Call the “saveLambdaGlobal” kernel to set Agig = A

- Call the “SOR_RB_Global” kernel to calculate A values for the red cells using Eq. 3

- Call the “SOR_RB_Global” kernel to calculate X values for the black cells using Eq. 3

- Call the “applyNeumannBCGlobal” kernel to apply Neumann boundary condition for the solid

surface below

- Call the “calculateErrorGlobal” kernel to calculate maximum relative error between A and Ay4

iteration = iteration + 1

}

// Increase the iteration counter

- Copy cell flag from the CPU’s memory to the GPU’s global memory
- Call the “finalVelocityGlobal” kernel to calculate the final wind field using Eqs. 4-6
- Copy u«,v and w from the GPU’s global memory to the CPU’s memory

where t represents the current iteration and t — 1 stands for the previous
iteration. This guarantees that all calculated Lagrange multipliers in the
computational domain converge to the same criteria set by the user.

2.1. Solver options

The combination of the divergence (Eq. (2)), the SOR loop (Eq. (3)),
and Euler-Lagrange equations (Egs. (4)—(6)) comprise the QES-Winds
solver. QES-Winds has two options for the solver. The first option is to
solve the equations on the GPU using CUDA kernels and the second
option uses the CPU for computations. The GPU solver makes use of a
red-black coloring scheme explained in the following section.

2.2. Red-black coloring scheme

In Eq. (3), the Lagrange multiplier for each cell, 4;;x, depends on the
Lagrange multiplier values for neighboring cells (i— 1,i+ 1,j— 1,j+
1,k — 1 and k+ 1). The SOR method is sequential (Adams, 1982), which
means that the Lagrange multiplier values for i — 1, j— 1 and k— 1 cells
are calculated in the current iteration while the values fori+ 1, j+ 1 and
k+1 cells are from the previous iteration. The dependency and
sequence in calculating the Lagrange multipliers prevents us from
solving for all the cells in parallel (Adams, 1982). Several papers
including Hayes et al. (Hayes, 1974) and Lamblotte et al. (Lambiotte,
1975) suggested the red-black coloring scheme as a solution to eliminate
this dependency and sequence.

In the red-black scheme, the computational domain is divided into
two sets of cells colored red and black in which the cell being solved for
and its neighboring cells are different colors. In QES-Winds, cells are
colored red (black) if (i+ j+ k) is odd (even). By applying the red-black
ordering scheme, the SOR iterations turn into two separate sub-
iterations, each done in parallel across all available GPU cores. Equa-
tion (3) is first solved for all red cells, then subsequently for all black
cells. Fig. 1 shows a two dimensional domain with the red-black coloring
order applied and indicates the two sub-iterations for red and black cells.
Three different GPU-solver implementations are introduced in the
following sections.

2.3. GPU solver using global memory

Three kernels: divergenceGlobal, SOR_RB Global, and final-
VelocityGlobal are written to access the global memory to compute the
divergence (Eq. (2)), solve for the Lagrange multipliers using the red-
black SOR method (Eq. (3)), and solve the Euler-Lagrange equations

(Egs. (4)-(6)). In addition, three other kernels: saveLambdaGlobal,
applyNeumannBCGlobal and calculateErrorGlobal save a copy of the
Lagrange multipliers from the previous iteration, apply the Neumann
boundary conditions to the ground surface and calculate maximum
relative error for the iteration. Algorithm 1 shows the details of incor-
porating the solver on the GPU using global memory kernels.

Data required for calculations are copied once from the CPU’s
memory to GPU’s global memory and must remain there until the end of
the process. NVIDIA GPUs with pre-Volta architectures (Pascal,
Maxwell, Kepler, Fermi and Tesla) use the Multi-Process Service (MPS)
that does not fully isolate the threads and memory required for an
application run (NVIDIA, 2020). According to the CUDA MPS overview
(NVIDIA, 2020), this means that other applications running concur-
rently on a shared GPU, can possibly allocate over and/or modify data
allocated for another application, without triggering an error. Pietro
et al. (2016) reported an illegal memory access (memory leakage) by
two independent host processes while using the global memory of
pre-Volta architecture GPUs. To guarantee security of QES-Winds data,
all data required for each kernel must be copied to the GPU’s global
memory before launching the kernel. This solution means that the
Lagrange multipliers and boundary-condition coefficients must be
copied back and forth to the CPU’s memory before and after each call to
the red-black SOR kernel, which leads to a massive copying overhead
and slow down in the solver. In the present study, we stick to the current
version of the solver, without copying back and forth, since we have
access to GPUs that are not shared with other applications.

Algorithm 1. GPU solver using global memory

2.4. GPU solver using shared memory

Global memory accesses on the GPU usually have an associated time
delay. One way to reduce the delay is to load the required data for
calculations from the global memory (accessible by all cores) to faster
shared memory (accessible only by threads in a block). Because the
SOR _RB kernel has the most memory accesses, we only applied the
shared memory to the SOR RB kernel. The rest of the kernels and the
algorithm are the same as the ones for the global memory solver.

2.5. GPU solver using dynamic parallelism

Another way to address the aforementioned memory leakage issue is
to use the CUDA dynamic parallelism. By utilizing dynamic parallelism,

B. Bozorgmehr et al.

the host does not have information about the number of threads and the
amount of memory required for the calculation. As a result, the whole
global memory and all the cores are reserved to run the dynamic parallel
kernel and the MPS does not share the GPU resources (NVIDIA, 2020).
This means that data on the global memory is secured even for pre-Volta
GPU architectures.

Dynamic parallelism has been used to reduce the copying overhead
(Jones, 2012; Kirk and Wen-Mei, 2016; Ding and Tan, 2015). In this
method, data required for calculations are copied to the GPU global
memory once, which makes the solver much faster compared to the most
secure version of the global memory solver (with copies back and forth
to the GPU). In this solver, the dynamicParallel kernel is called with one
thread from the host. Next, all kernels are called from inside the
dynamicParallel kernel (already on the GPU). Algorithm 2 details the
dynamic parallel method. All kernels that are launched from the
dynamicParallel kernel are the same as the ones in the global memory
solver.

Algorithm 2. GPU solver using dynamic parallelism

Environmental Modelling and Software 137 (2021) 104958

3. Results and discussion
3.1. Convergence criteria

A common convergence criterion for iterative methods is when the
maximum error in the domain falls below 107° to 10719 (Adams, 1982;
Kelley, 1995). The complex boundary conditions and imposed building
parameterizations in QES-Winds makes convergence difficult to achieve.
In most cases, converging to 10~° requires up to 200,000 iterations
without a significant difference in the final wind field. As a result,
QES-Winds imposes the maximum number of iterations as a secondary
convergence criteria. In order to define the maximum number of itera-
tions, a test case with 100 x 100 x 100 cells and cell size of 2 x 2 x 1 m
was investigated. The test case was a three-dimensional flow around a
single cubical building with a 20-m edge length located in the middle of
domain. This is the simplest case in QES-Winds. All building flow pa-
rameterizations were applied to the building. Winds are specified for
simulation initialization using a sensor at 10-m height with a measured
wind speed of 5 ms~! at 270° from the north. A logarithmic profile has
been used to create the initial velocity field based on the sensor data.

- Copy ug, vo,wo, R, e, f,g,h,m,n,z,y, 2, A and Ayq from the CPU’s memory to the GPU’s global

memory
tolerance = 107°

// Convergence criterion

- Call the “dynamicParallel” kernel with one thread to calculate the final wind field
// The following lines will be executed from GPU ("dynamicParallel" kernel)

iteration =0
error =1

// Iteration counter

- Call the “divergence” kernel to calculate R using Eq. 2

// SOR loop starts here

while ((iteration < mazimum iterations) || (error > tolerance)) do

- Call the “saveLambda” kernel to set A\ojg = A

- Call the “SOR_RB” kernel to calculate A values for the red cells using Eq. 3
- Call the “SOR_RB” kernel to calculate A values for the black cells using Eq. 3
- Call the “applyNeumannBC” kernel to apply Neumann boundary condition for the solid

surface below

- Call the “calculateFError” kernel to calculate maximum relative error between A and A,q

iteration = iteration + 1

// Increase the iteration counter

- Call the “finalVelocity” kernel to calculate the final wind field using Eqgs. 4-6

// End of the dynamicParallel kernel

- Copy u,v and w from the GPU’s global memory to the CPU’s memory

Table 1

Since the QES-Winds error does not reach 10~° for this test case, the

Convergence error (Eq. (7)), maximum difference for each velocity component, and the relative difference between the solution and the reference solution after the
number of iterations for the isolated cubical-building test case with 100 x 100 x 100 cells and cell size of 2 x 2 x 1 m.

Number of Error Maximum difference Maximum difference Maximum difference Relative difference u Relative difference v Relative difference w

iterations u (ms’l) v (ms’l) w (ms’l) (ms’l) (ms’l) (ms’l)

100 8.57E- 0.18 0.14 0.12 0.15 0.09 0.02
02

250 1.41E- 0.04 0.03 0.03 0.02 0.02 4.39E-3
02

500 2.07E- 4.64E-03 3.45E-03 3.61E-03 2.48E-03 3.02E-03 5.97E-04
03

1000 1.45E- 2.46E-04 2.04E-04 1.54E-04 1.32E-04 8.25E-03 5.07E-03
04

2000 4.96E- 1.72E-05 1.53E-05 2.67E-05 8.81E-06 7.64E-03 1.76E-05
05

3000 3.81E- 1.43E-05 1.53E-05 1.91E-05 4.37E-06 1.98E-05 1.47E-05
05

4000 3.81E- 1.34E-05 1.34E-05 2.29E-05 1.43E-05 4.52E-05 2.66E-04
05

5000 4.58E- 1.34E-05 1.72E-05 2.10E-05 2.48E-05 2.23E-05 2.35E-04

05

B. Bozorgmehr et al.

1.0000

OError
ADifference w
O
0.1000 6 ¢ Difference u
Difference v
[
a
0.0100 g
o
R
o
0.0010
[
4]
0.0001
o o
. oo g o 0O 0O
& &4 A A A & B
Y < < < O © S

0.0000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Number of iterations

Fig. 2. Maximum error and maximum difference for velocity components
compared to the reference solution as a function of iteration count.

solution after 100, 000 iterations was chosen as a reference. Details from
the test case are shown in Table 1.

Fig. 2 illustrates the maximum convergence error (Eq. 7) and
maximum difference for velocity components compared to the reference
solution as a function of iteration count. The results in Table 1 and Fig. 2
show that while the error and maximum differences decrease with
number of iterations, they do not decrease beyond 1500 iterations. Thus,
performing more than 1500 iterations does not improve the solution and
wastes time and computational resources. The values of maximum and
relative differences for each velocity component for the solution with
500 iterations are of the order of 1073. Velocity values less than
0.01 ms™! cannot be measured experimentally, which means that
0.01 ms~! is an acceptable threshold for our calculations. In addition,
converging to the error criterion 10~° is much harder for realistic cases
such flow wind over cities. This is a result of multiple buildings and
overlapping building parameterizations for cities or irregular geometry
in complex terrain flows. As a result, the maximum number of iterations
for the purposes of QES-Winds is set to 500 iterations.

3.2. Benchmarking for CPU and GPU solvers

The CPU solver is quite efficient, but slow in comparison to the GPU
solvers, especially for large domains, since it lacks parallel capabilities.
A suite of test cases were designed and analyzed to illustrate differences
between solvers. Each case includes a cubical building with edge-lengths
of 20 m situated in the middle of the domain with all the building pa-
rameterizations applied. Winds are specified for simulation initialization
using a sensor at 10 m above ground with a wind speed of 5 ms™! coming
from 270° (relative to north). A logarithmic profile has been used to
create the initial velocity field based on the sensor data. Details for each

Table 2

Environmental Modelling and Software 137 (2021) 104958

are provided in Table 2. The CPU-solver solution is considered a refer-
ence because it is identical to the well-validated QUIC-URB solver
(Brown et al., 2013; Pardyjak and Brown, 2003). QUIC-URB has
compared quite well with higher-order physics-based models and
available experimental results (Shukla and Parikh, 1992; Hayati et al.,
2017, 2019; Neophytou et al., 2011; Bagal et al., 2004; Booth and Par-
dyjak, 2012; Bowker et al., 2004; Balwinder et al., 2006). Hence, we
consider QES-Winds CPU solver accurate enough for the purposes of
diagnostic wind modeling.

The CPU solver was run for 500 iterations in each test case and then
the GPU solvers were run until they reached the same error as the CPU
solver after 500 iterations. Table 2 shows the number of iterations
required for the Global Memory (GM), the Shared Memory (SM), and the
dynamic-parallel (DP) solvers to converge in addition to the total time
required. This benchmarking was performed on a machine with an Intel
Xeon Gold 6130 CPU @ 2.10 GHz CPU with 12 GB RAM and an NVIDIA
TITAN V GPU with CUDA 10.1 toolkit (NVIDIA, 2019) and 12 GB of
global memory.

Since the CPU solver and each of the GPU solvers run for different
numbers of iterations, the total time for each solver is divided by the
number of iterations. Table 3 displays the time per iteration for the
different solvers in addition to the speedup for each of the GPU solvers
over the CPU solver. Fig. 3 shows the time per iteration as a function of
the number of cells for all test cases and solvers. All GPU solvers are
much faster than the CPU solver due to parallelization benefits. For very
large domains (145 million cells), all GPU solvers are approximately 128
times faster than the CPU solver. Differences in time per iteration for all
GPU solvers are negligible since they only have the overhead associated
with one copy from the CPU’s memory to GPU’s global memory and
back, and they have similar kernels with small differences. QES-Winds
cannot solve for more than 145 million cells on the TITAN V GPU due
to constraints on its global memory (12 GB). According to the descrip-
tion of CUDA Dynamic Parallelism in the CUDA C++ Programming
Guide (NVIDIA, 2019), launching kernels from inside the
dynamic-parallel kernel has the potential to add a large amount of
overhead on the application. However, in the case of QES-Winds, results
show that the dynamic-parallel solver is less than five percent slower
than the global and shared memory solvers.

The shared memory solver is slightly faster than the global and
dynamic-parallel solvers for smaller domains (number of cells < 50M).
The only exception is for the case of a total number of cells of 0.1M
because the number of accesses to the global memory is not large enough
to realize the advantage of loading the data on memory with less latency
(shared memory) can give. Generally, since there is no reuse of data
loaded to the shared memory in the SOR_RB_Shared, the speedup for the
shared-memory solver is less than five percent.

The solver accounts for most of the execution time in QES-Winds.
Although the single-building case with building parameterization is
the simplest test case, as long as the more realistic cases (e.g. flow over
cities or complex terrain) have the same number of cells, the execution
time is almost the same. The only difference is the set-up time, which

Benchmarking of the QES-Winds solvers in terms of computational time in seconds (s) and number of iterations (NI). Cell size indicates the physical size of each
computational cell in the x, y, and z directions, respectively. GM is global memory, SM is shared memory, and DP is dynamic-parallel. Each test case includes the
isolated cubical building with the edge-length of 20 m in the middle of domain with all the building parameterizations applied.

nx*ny*nz Cell size (m*m*m) Number of cells GM (s) GM (NI) SM (s) SM (NI) DP (s) DP (NI) CPU (s)
100*50*20 2%4%5 0.1M 0.25 436 0.26 436 0.26 436 3.66
100%100%*50 2%2%2 0.5M 0.42 561 0.38 561 0.43 561 14.34
100*100*100 2%2%1 1M 0.54 498 0.50 498 0.54 498 30.10
250%200%100 0.8%1*1 5M 1.43 480 1.42 480 1.49 480 150.86
400%250*100 0.5%0.8*1 10M 2.64 481 2.59 481 2.72 481 306.98
500%400*250 0.4%0.5%0.4 50 M 12.70 488 12.66 488 12.79 488 1590.92
600%500%250 0.34*0.4%0.4 75 M 19.12 490 19.18 490 19.28 490 2431.57
800*500*250 0.25%0.4%0.4 100 M 25.61 493 25.61 493 25.76 493 3220.47
1000*580*250 0.2%0.35%0.4 145 M 37.32 496 37.31 496 37.43 496 4824.57

B. Bozorgmehr et al.

Table 3

Environmental Modelling and Software 137 (2021) 104958

Time per iteration for different QES-Winds solvers along with the speedup each GPU solver has over the CPU solver. GM is global memory, SM is shared memory, and
DP is dynamic-parallel. Each test case includes the isolated cubical-building with the edge-length of 20 m in the middle of domain with all the building parameter-

izations applied.

Number of cells GM per iteration (s) SM per iteration (s) DP per iteration (s) CPU per iteration (s) Speedup GM Speedup SM Speedup DP
0.1M 5.83E-04 5.95E-04 5.85E-04 7.33E-03 12.56 12.31 12.53
0.5M 7.40E-04 6.81E-04 7.73E-04 2.87E-02 38.74 42.10 37.08
1M 1.08E-03 1.00E-03 1.08E-03 6.02E-02 55.52 60.17 55.98
5M 2.98E-03 2.96E-03 3.10E-03 3.02E-01 101.40 101.77 97.48
10M 5.49E-03 5.39E-03 5.65E-03 6.14E-01 111.89 113.99 108.69
50 M 2.60E-02 2.59E-02 2.62E-02 3.18 122.27 122.27 121.36
75 M 3.90E-02 3.91E-02 3.93E-02 4.86 124.62 124.27 123.62
100 M 5.20E-02 5.19E-02 5.22E-02 6.44 123.97 124.00 123.28
145 M 7.52E-02 7.52E-02 7.55E-02 9.65 128.24 128.29 127.86
depends on the case type. Processing buildings and apply building pa-
10 OGlobal Memory o rameterizations prior to running the SOR solver leads to different
Shared Memory ooo execution times depending on the specific geometry being simulated.
_ ODynamic Parallel ~128x Assuming 1-m horizontal and 3-m vertical resolution, QES-Winds can
m 1 - .)
= SChiisciver ° compute wind fields on a 1.18 km by 1.21km by 210m .domam
o o (1180 x 1210 x 70 cells, the 100 million-cell case), an area as big as the
;_'; oA central business district in downtown Oklahoma City with all building
= ’ o DDD parameterizations applied, in about 130 s. No other wind-modeling
-
8 < 4] systems is capable of simulating such a large domain with such a fine
“E’ 0.01 s resolution in real time (note that the CPU solver takes about 55 min).
- n o Kernel execution metrics are required to explain why the GPU solvers
& behave this way. The NVIDIA visual profiler (NVIDIA, 2019) is used for
0008 a a] this purpose. Since the NVIDIA visual profiler version 10.1 does not
support CUDA dynamic-parallel profiling on GPUs with compute capa-
0.0001 bility of 7.0 and higher (TITAN V has compute capability of 7.0), the
10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

Number of cells

Fig. 3. Scaling plot showing the impact of the different GPU parallel-
computing implementations. Time per iteration is shown for each QES-Winds
solver as a function of cell count.

Table 4

profiling was performed on a different machine with an NVIDIA GeForce
GTX TITAN X (Maxwell architecture) with the CUDA 10.1 toolkit
(NVIDIA, 2019) and 12 GB of global memory. Table 4 contains results of
profiling on the GPU solvers for three test cases with cell counts of 1, 10,
and 50 million cells. The GPU activities of the dynamic-parallel solver
that have equivalent parts in the global and shared memory solvers, are
listed in Table 4 in order to provide a fair comparison between the

Profiling details for three GPU solvers: the global and shared memory and dynamic-parallel solvers for three test cases with total cell counts of 1, 10, and 50 million
cells. memcpy is copying memory, HtoD is host to device (CPU to GPU), and DtoH is device to host (GPU to CPU). Each test case includes the isolated cubical-building
with the edge-length of 20 m in the middle of domain with all the building parameterizations applied.

GPU solver type GPU activity name Number of cells

1M 10M 50 M
Time Time Time

DP CUDA memcpy HtoD 0.19% 4.91 ms 0.21% 49.34 ms 0.21% 254.12 ms
CUDA memcpy DtoH 0.04% 0.99 ms 0.04% 9.51 ms 0.04% 46.83 ms
SOR_RB 6.77% 172.16 ms 6.72% 1.59s 7.02% 8.47 s
finalVelocity 0.08% 1.92 ms 0.08% 18.83 ms 0.08% 95.71 ms
divergence 0.04% 1.08 ms 0.04% 10.46 ms 0.04% 47.37 ms
calculateError 91.61% 2.33s 91.97% 21.87 s 91.72% 110.75 s
saveLambda 1.13% 28.68 ms 0.92% 219.44 ms 0.90% 1.09s
applyNeumannBC 0.14% 3.60 ms 0.02% 5.32 ms 0.01% 13.68 ms

GM CUDA memcpy HtoD 0.2% 5.05 ms 0.23% 53.51 ms 0.21% 249.46 ms
CUDA memcpy DtoH 0.08% 1.99 ms 0.04% 10.58 ms 0.04% 48.22 ms
SOR_RB_Global 6.34% 156.69 ms 6.60% 1.56 s 6.93% 8.30s
finalVelocityGlobal 0.08% 1.91 ms 0.08% 18.91 ms 0.08% 95.24 ms
divergenceGlobal 0.04% 0.89 ms 0.04% 8.74 ms 0.04% 45.39 ms
calculateErrorGlobal 92.59% 2.29s 92.35% 21.79s 92.06% 110.31s
saveLambdaGlobal 0.62% 15.43 ms 0.65% 153.16 ms 0.64% 767.69 ms
applyNeumannBCGlobal 0.04% 0.94 ms 0.01% 1.99 ms 0.01% 3.26 ms

SM CUDA memcpy HtoD 0.20% 4.98 ms 0.22% 51.99 ms 0.21% 247.75 ms
CUDA memcpy DtoH 0.08% 2.01 ms 0.04% 10.61 ms 0.04% 48.13 ms
SOR_RB_Shared 6.32% 155.98 ms 6.57% 1.56s 6.92% 8.29s
finalVelocityShared 0.08% 1.91 ms 0.08% 18.94 ms 0.04% 95.30 ms
divergenceShared 0.04% 0.89 ms 0.04% 10.51 ms 0.04% 47.00 ms
calculateErrorShared 92.63% 2.29s 92.39% 21.88s 92.07% 110.31s
saveLambdaShared 0.62% 15.3 ms 0.65% 153.18 ms 0.64% 767.95 ms
applyNeumannBCShared 0.04% 0.94 ms 0.01% 2.01 ms 0.01% 3.26 ms

B. Bozorgmehr et al.

Environmental Modelling and Software 137 (2021) 104958

140 ; : 140 ; ;
130 130
120 120
e
Hﬂm—--»-«y'/!‘,:’/‘g.h__‘_‘h
110 2Tl == 110
E o= E1n0 =
- bl
90 a0
80 80
70 70
60 : : . : 60 : : : :
60 80 100 120 140 160 60 80 100 120 140 160
x (m) x (m)
(a) (b)
100 r P - 5]
90 3
80
2
70
0
60
- 50 lf--? -2
0
4 -4
30
-6
20
10+t 8
0 ; i . : 10
0 20 40 60 80 100 x107%

(c)

Fig. 4. Velocity vectors in a horizontal plane at z = 10 m for the flow around a 20-m cubical-building test case. (a) CPU solver and (b) GPU solver. (c) Difference
between the velocity magnitude for the CPU and the GPU solvers in a horizontal plane at z = 10 m. The black solid line shows the boundaries of the building.

solvers.

It can be seen that the copying overhead to the GPU (CUDA memcpy
HtoD) and from the GPU (CUDA memcpy DtoH) is slightly higher for the
global and shared memory compared to the dynamic-parallel solver. The
reason for this behavior is that the error value must be copied back and
forth between the host and the device to check for convergence.
Meanwhile, kernels launched from the dynamicParallel kernel have
slightly longer execution times, which must be related to the execution
overhead of the dynamic parallelism (NVIDIA, 2019) since all the ker-
nels are identical for the global-memory solver and dynamic-parallel
solver.

In the most secure versions of the global- and shared-memory
solvers, which require copying back and forth during each iteration,
the copying overhead increases the time per iteration (related to CUDA
memcpy HtoD) by a factor of about four. In this case, the dynamic-
parallel solver is much faster than the global- and shared-memory
solvers.

3.3. Comparing red-black SOR to serial SOR

Surprisingly, to our knowledge, there has never been a discussion on
how well the red-black SOR method (i.e., parallel version) compares to
serial SOR in the literature. We conducted a test using the same test case
described above of flow around an isolated 20 m cube with 1 million
cells (the third row case in Table 2) using the red-black SOR (GPU) and
serial-SOR (CPU) solvers. Winds are specified for simulation initializa-
tion using a sensor at 10 m height with a measured wind speed of 5 ms™!
at 270° from the north. A logarithmic profile has been used to create the
initial velocity field based on the sensor data. The converged solutions
from each case are compared in Fig. 4. Fig. 4(a) and (b) show velocity
vectors for the CPU and the GPU solvers, while Fig. 4(c) show the dif-
ferences in velocity magnitudes between the CPU and the GPU solvers.
All data in the figure are presented for a horizontal plane at z = 10 m.
The solid black line shows the boundaries of the building. There is a
notable checkerboard pattern present in the difference field, which is

B. Bozorgmehr et al.

caused by the red-black SOR procedure in which the red cells use the
Lagrange multiplier values from the previous iteration while the black
cells use the Lagrange multiplier values of the red cells from the current
iteration. The flow of data between neighboring cells in the red-black
SOR solver is different from the serial SOR, Gauss-Seidel, and Jacobi
methods and prevents smoothing and causes the observed checkerboard
pattern.

QES-Winds outputs the velocity field as an averaged cell-centered
field for visualization purposes, which slightly smooths the checker-
board pattern. The maximum difference between the velocity compo-
nents from the two solutions are 0.0006, 0.0008, and 0.001 ms™!, for u,
v, and w respectively. This means that for the purpose of QES-Winds
(modeling mean wind fields), the checkerboard pattern is not a signifi-
cant issue. Because one the most important components of the QES-
Winds is speed, the accuracy can be sacrificed for a faster running
solver. However, for applications that need the gradient of the velocity
field (e.g., computing the turbulence field), the checkerboard pattern
can pose issues. More complex and expensive smoothing techniques may
be required for such applications.

4. Conclusion

Optimizing and predicting wind fields for fast-response applications
such as wildfires and urban air quality require modeling high-resolution
three-dimensional mean wind fields in real-time for large domains. QES-
Winds uses the parallel capabilities of the GPU to accelerate wind-field
computations. Three different implementations of the GPU solver were
examined. While all three solvers were much faster than the CPU (serial)
solver, only one of them (dynamic-parallel) demonstrated the ability to
guarantee the security of global memory data from potential illegal
accesses. The dynamic-parallel solver reduces the execution time by a
factor of 128 compared to the serial solver for a domain with 145 million
cells. QES-Winds was able to solve for the wind field on a 10 km? domain
with a horizontal grid spacing of 1 —3 m in less than 1 min. The
application of QES-Winds as a fast-response wind-modeling code can be
further enhanced by improving its physics modules.

NVIDIA’s CUDA dynamic parallelism can greatly accelerate iterative
methods and other codes that require a large amount of copying over-
head between the CPU and the GPU while protecting data on all GPU
architectures. There were several challenges related to the dynamic-
parallel implementation. First, current GPU’s global memory limits
QES-Winds to solving domains of no more than 145 million cells. Sec-
ond, the NVIDIA visual profiler is unable to run for a code using CUDA
dynamic parallelism on newer GPUs with higher compute capabilities.
These challenges will be alleviated with the advent of newer GPUs with
higher global memory that are supported by the CUDA visual profiler.

Software availability

The Quick Environmental System (QES) fast-response wind solver
(QES-Winds) has been developed as a collaboration between the Uni-
versity of Utah, University of Minnesota Duluth and Pukyong National
University. The code is written mainly in C++ and NVIDIA’s CUDA
language. QES-Winds is publicly accessible, currently hosted on GitHub
(https://github.com/UtahEFD/QES-Winds-Public).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was partly supported by a grant from the National Institute
of Environment Research (NIER), funded by the Ministry of

Environmental Modelling and Software 137 (2021) 104958

Environment (MOE) of the Republic of Korea (NIER-SP2019-312), the
United States Department of Agriculture National Institute for Food and
Agriculture Specialty Crop Research Initiative Award No. 2018-03375
and the United States Department of Agriculture Agricultural Research
Service through Research Support Agreement 58-2072-0-036.

References

Adams, L.M., 1982. Iterative algorithms for large sparse linear systems on parallel
computers. NASA, NASA-CR-166027.

Akbari, H., Kolokotsa, D., 2016. Three decades of urban heat islands and mitigation
technologies research. Energy Build. 133, 834-842.

Bagal, N., Pardyjak, E., Brown, M., 2004. Improved upwind cavity parameterization for a
fast response urban wind model. In: 84th Annual AMS Meeting. AMS, Seattle, WA.

Balwinder, S., Pardyjak, E., Brown, M.J., Williams, M.D., 2006. Testing of a far-wake
parameterization for a fast response urban wind model. In: Sixth Symposium on the
Urban Environment. AMS, Atlanta, GA.

Booth, T.M., Pardyjak, E., 2012. Validation of a data assimilation technique for an urban
wind model. Department of Mechanical Engineering, University of Utah.

Bowker, G.E., Perry, S.G., Heist, D.K., 2004. A comparison of airflow patterns from the
QUIC model and an atmospheric wind tunnel for a two-dimensional building array
and a multi-city block region near the World Trade Center site, 13th Confernce on
the Applications of Air Pollution Meteorolgy with the Air and Waste Management
Assoc. AMS, Vancouver, BC.

Brown, M.J., Gowardhan, A.A., Nelson, M.A., Williams, M.D., Pardyjak, E.R., 2013. QUIC
transport and dispersion modelling of two releases from the Joint Urban 2003 field
experiment. Int. J. Environ. Pollut. 52, 263-287.

Calkin, D.E., Cohen, J.D., Finney, M.A., Thompson, M.P., 2014. How risk management
can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl.
Acad. Sci. 111, 746-751.

Cotronis, Y., Konstantinidis, E., Louka, M.A., Missirlis, N.M., 2014. A comparison of CPU
and GPU implementations for solving the convection diffusion equation using the
local modified SOR method. Parallel Comput. 40, 173-185.

Ding, K., Tan, Y., 2015. Attract-repulse fireworks algorithm and its CUDA
implementation using dynamic parallelism. Int. J. Swarm Intell. Res. (IJSIR) 6, 1-31.

Duff, I.S., 2004. MA57—a code for the solution of sparse symmetric definite and
indefinite systems. ACM Trans. Math Software 30, 118-144.

Evans, D.J., 1984. Parallel SOR iterative methods. Parallel Comput. 1, 3-18.

Forthofer, J.M., Butler, B.W., Wagenbrenner, N.S., 2014. A comparison of three
approaches for simulating fine-scale surface winds in support of wildland fire
management. Part I. Model formulation and comparison against measurements. Int.
J. Wildland Fire 23, 969-981.

Hayati, A.N., Stoll, R., Kim, J., Harman, T., Nelson, M.A., Brown, M.J., Pardyjak, E.R.,
2017. Comprehensive evaluation of fast-response, Reynolds-averaged
Navier-Stokes, and large-eddy simulation methods against high-spatial-resolution
wind-tunnel data in step-down street canyons. Boundary-Layer Meteorol. 164,
217-247.

Hayati, A.N., Stoll, R., Pardyjak, E.R., Harman, T., Kim, J., 2019. Comparative metrics for
computational approaches in non-uniform street-canyon flows. Build. Environ. 158,
16-27.

Hayes, L.J.H., 1974. Comparative Analysis of Iterative Techniques for Solving Laplace’s
Equation on the Unit Square on a Parallel Processor. Ph.D. thesis. University of Texas
at Austin.

Helfenstein, R., Koko, J., 2012. Parallel preconditioned conjugate gradient algorithm on
GPU. J. Comput. Appl. Math. 236, 3584-3590.

Homicz, G.F., 2002. Three-dimensional wind field modeling: a review. SAND Report
2597. Sandia National Laboratories.

Itu, L.M., Suciu, C., Moldoveanu, F., Postelnicu, A., 2011. GPU accelerated simulation of
elliptic partial differential equations. In: Proceedings of the 6th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems, 1.
IEEE, pp. 238-242.

Jones, S., 2012. Introduction to dynamic parallelism. In: GPU Technology Conference
Presentation S, vol. 338, p. 2012.

Kelley, C.T., 1995. Iterative Methods for Linear and Nonlinear Equations. SIAM.

Kirk, D.B., Wen-Mei, W.H., 2016. Programming Massively Parallel Processors: a Hands-
On Approach. Morgan kaufmann.

Konstantinidis, E., Cotronis, Y., 2011. Accelerating the red/black SOR method using
GPUs with CUDA. In: International Conference on Parallel Processing and Applied
Mathematics. Springer, pp. 589-598.

Krupka, J., Simecek, 1., 2010. Parallel Solvers of Poisson’s Equation. Department of
Computer Systems, Faculty of Information Technology, Czech Technical University,
Prague, MEMICS.

Lambiotte Jr., J.J., 1975. The Solution of Linear Systems of Equations on a Vector
Computer. University of Virginia.

Li, R., Saad, Y., 2013. GPU-accelerated preconditioned iterative linear solvers.

J. Supercomput. 63, 443-466.

Linn, R.R., Goodrick, S., Brambilla, S., Brown, M.J., Middleton, R.S., O’Brien, J.J.,
Hiers, J.K., 2020. QUIC-fire: a fast-running simulation tool for prescribed fire
planning. Environ. Model. Software 125, 104616.

Lopes, A., 2003. WindStation - software for the simulation of atmospheric flows over
complex topography. Environ. Model. Software 18, 81-96.

Moody, M., Stoll, R., Gibbs, J., Pardyjak, E., 2019. QES-fire: a microscale fast response
wildfire model. In: AGU Fall Meeting 2019. AGU.

https://github.com/UtahEFD/QES-Winds-Public
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref17
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref17
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref18
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref18
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref22
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref22
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref24
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref24
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref24
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref29

B. Bozorgmehr et al.

Moussafir, J., Oldrini, O., Tinarelli, G., Sontowski, J., Dougherty, C.M., 2004. 5.26 a New
Operational Approach to Deal with Dispersion Around Obstacles: the Mss (Micro
Swift Spray) Software Suite.

Neophytou, M., Gowardhan, A., Brown, M., 2011. An inter-comparison of three urban
wind models using Oklahoma city joint urban 2003 wind field measurements.

J. Wind Eng. Ind. Aerod. 99, 357-368.

NVIDIA, C., 2019. Cuda C++ Programming Guide. NVIDIA Corp.

NVIDIA, C., 2020. CUDA Multi Process Service Overview. NVIDIA Corp.

Pardyjak, E.R., Brown, M.J., 2001. Evaluation of a fast-Response urban wind model:
comparison to single building wind-tunnel data. Proceedings of the 3 International
Symposium on Environmental Hydraulics. International Association for Hydro-
Environment Engineering and Research, Tempe, AZ.

Pardyjak, E.R., Brown, M., 2003. QUIC-URB v. 1.1: Theory and User’s Guide. LA-UR-07-
3181. Los Alamos National Laboratory.

Pietro, R.D., Lombardi, F., Villani, A., 2016. CUDA leaks: a detailed hack for CUDA and a
(partial) fix. ACM Trans. Embed. Comput. Syst. 15, 1-25.

Pinheiro, A., Desterro, F., Santos, M.C., Pereira, C.M., Schirru, R., 2017. GPU-based
implementation of a diagnostic wind field model used in real-time prediction of
atmospheric dispersion of radionuclides. Prog. Nucl. Energy 100, 146-163.

Radeloff, V.C., Helmers, D.P., Kramer, H.A., Mockrin, M.H., Alexandre, P.M., Bar-
Massada, A., Butsic, V., Hawbaker, T.J., Martinuzzi, S., Syphard, A.D., et al., 2018.
Rapid growth of the us wildland-urban interface raises wildfire risk. Proc. Natl.
Acad. Sci. Unit. States Am. 115, 3314-3319.

Rockle, R., 1990. Bestimmung der Stromungsverhaltnisse im Bereich komplexer
Bebauungsstrukturen.

Sasaki, Y., 1958. An objective analysis based on the variational method. Journal of the
Meteorological Society of Japan. Ser. II 36, 77-88.

Sasaki, Y., 1970. Some basic formalisms in numerical variational analysis. Mon. Weather
Rev. 98, 875-883.

10

Environmental Modelling and Software 137 (2021) 104958

Sasaki, Y., 1970. Numerical variational analysis formulated under the constraints as
determined by longwave equations and a low-pass filter. Mon. Weather Rev. 98,
884-898.

Shukla, V., Parikh, K., 1992. The environmental consequences of urban growth: cross-
national perspectives on economic development, air pollution, and city size. Urban
Geogr. 13, 422-449,

Singh, B., Hansen, B.S., Brown, M.J., Pardyjak, E.R., 2008. Evaluation of the QUIC-URB
fast response urban wind model for a cubical building array and wide building street
canyon. Environ. Fluid Mech. 8, 281-312.

Singh, B., Pardyjak, E.R., Norgren, A., Willemsen, P., 2011. Accelerating urban fast
response Lagrangian dispersion simulations using inexpensive graphics processor
parallelism. Environ. Model. Software 26, 739-750.

Tinarelli, G., Brusasca, G., Oldrini, O., Anfossi, D., Castelli, S.T., Moussafir, J., 2007.
Micro-swift-spray (mss): a new modelling system for the simulation of dispersion at
microscale. general description and validation. In: Air Pollution Modeling and its
Application XVII. Springer, pp. 449-458.

Varga, R.S., 1962. Iterative Analysis. Springer.

United Nations, Department of Economic and Social Affairs, 2019. World Urbanization
Prospects, the 2018 Revision. United Nations, New York.

USDA, 2019. Wildland fire — usda. https://www.usda.gov/topics/disaster/wildland
-fire.

Williams, M.D., Brown, M.J., Boswell, D., Singh, B., Pardyjak, E.M., 2004. Testing of the
QUIC-PLUME model with wind-tunnel measurements for a high-rise nuilding. Fifth
Symposium on the Urban Environment. AMS, Vancouver, BC.

Young, D., 1954. Iterative methods for solving partial difference equations of elliptic
type. Trans. Am. Math. Soc. 76, 92-111.

Zapata, M.U., Van Bang, D.P., Nguyen, K., 2018. Parallel simulations for a 2D x/z two-
phase flow fluid-solid particle model. Comput. Fluid 173, 103-110.

http://refhub.elsevier.com/S1364-8152(21)00001-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref48
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref47
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref47
https://www.usda.gov/topics/disaster/wildland-fire
https://www.usda.gov/topics/disaster/wildland-fire
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref51
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref51
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref52
http://refhub.elsevier.com/S1364-8152(21)00001-3/sref52

	Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black successive over relaxation wind-field solver
	1 Introduction
	2 Methods
	2.1 Solver options
	2.2 Red-black coloring scheme
	2.3 GPU solver using global memory
	2.4 GPU solver using shared memory
	2.5 GPU solver using dynamic parallelism

	3 Results and discussion
	3.1 Convergence criteria
	3.2 Benchmarking for CPU and GPU solvers
	3.3 Comparing red-black SOR to serial SOR

	4 Conclusion
	Software availability
	Declaration of competing interest
	Acknowledgements
	References

