

pubs.acs.org/EF Article

Study of Asphaltene Deposition onto Stainless-Steel Surfaces Using Quartz Crystal Microbalance with Dissipation

3 Fang Liu,* Scott Hickman, Tabish Maqbool, Vincent Pauchard, and Sanjoy Banerjee

Cite This: https://dx.doi.org/10.1021/acs.energyfuels.0c00663

ACCESS

Metrics & More

4 ABSTRACT: Asphaltene deposition is one of the major flow assurance problems in upstream and downstream crude oil recovery 5 operations. In order to prevent potential loss and reduce downtime due to asphaltenes, it is critical to understand the physics of 6 asphaltene adsorption. This study presents a preliminary investigation of asphaltene adsorption from crude oils onto stainless-steel 7 surfaces using the quartz crystal microbalance with dissipation (QCM-D) technique and proposes a theoretical interpretation of the 8 deposition mechanism for asphaltene molecules. The kinetics of deposition at different concentrations was examined, and the sizes 9 of the deposited asphaltene molecules were estimated from the initial adsorption kinetics. Numerical analysis of the experimental 10 data using the theoretical two-step deposition model was attempted, and the optimized adsorption parameters proved to be quite 11 close to those values obtained for some rock types in earlier adsorption studies. Despite asphaltene precipitation increasing with 12 increasing heptane percentage, the deposition of asphaltenes was found to be maximum at 70 vol% heptane content. The 13 performance of a commercial inhibitor was then assessed under different conditions using the developed experimental metrics, and 14 the inhibitor was found to be able to reduce the maximum deposition amount at the solubility with 70 vol% heptane fraction, which 15 happens to be the same condition that generates the largest amount of deposition. The information gained on the solubility effect 16 and inhibitor performance is essential to help the industry better manage asphaltene-related flow assurance problems in crude oil 17 recovery.

1. INTRODUCTION

18 In crude oil recovery processes, asphaltene deposits are often 19 observed, and this can happen at different stages of production. 20 Due to changes in temperature, pressure, chemical composition of crude oil, type of surface materials, composition of 22 processing fluids, duration of contact among different phases, 23 shear rate, and aging period, 1,2 asphaltenes can precipitate from 24 crude oils, deposit onto the wellbore surface, block the 25 production facilities, and result in unexpected downtime. The 26 consequences of inadequate management of asphaltene issues 27 could lead to an approximate loss of \$1.2 MM/day due to 28 discontinued production and an estimated cost of \$0.5–3 MM 29 for removal of deposits.³

Asphaltenes are indigenous molecules in crude oil, known to be one of the most polar and surface-active components. By definition, asphaltenes are soluble in aromatic hydrocarbons but insoluble in alkanes. During the recovery process, crude oils flow from the reservoir to the surface, and the fluid temperature and pressure decrease with the height. The solubility of the fluid mixture in the field decreases, so asphaltene molecules become unstable and precipitate out. After reaching the bubble point pressure, as the fluid pressure and temperature decrease further, the mixture solubility increases due to the escape of light-end hydrocarbons from the liquid mixture. After the fluid pressure reaches a certain point, asphaltenes become stable again in the mixture, and no more asphaltenes precipitate from the blend.^{2,4} The solvent solubility power is believed to be the key factor in studying the

onset of asphaltene precipitation and the formation of $_{45}$ asphaltene deposits in the instability zone.

Yet, the asphaltene deposition problem is not completely the 47 same as the asphaltene precipitation problem. A range of 48 laboratory tests and theoretical models are available to identify 49 and predict the onset point of precipitation. The laboratory 50 techniques, including but not limited to the gravimetric 51 precipitation method, 4,5 acoustic resonance, 4,6 and solid 52 detection using optical microscopy or high-pressure micros- 53 copy, 4,7-11 provide a primary source to help understand 54 asphaltene precipitation problems at the field conditions. 55 However, the onset conditions might be different for 56 precipitation and deposition. A recent study¹² confirmed that 57 the instantaneous precipitation onset point was irrelevant to 58 the deposition process and found that the accumulation of sub- 59 micrometer asphaltene aggregates led to the deposition. 60 Moreover, the amount and rate of deposition are not 61 necessarily correlated with the precipitated amount and rate 62 of asphaltene precipitation, which is frequently observed in 63 most onset pressure tests. 64

Received: February 29, 2020 Revised: June 29, 2020 Published: July 2, 2020

Table 1. Measured Density and Viscosity of Samples at Temperature of 20 °C and Shear Rate of 100 s⁻¹

		dilution ratio (v:v) (in pure toluene)					
	1:100	1:50	1:20	1:4	1:1	1:0.25	
density (g/cm³)	0.8670	0.8672	0.8677	0.8705	0.8768	0.8846	
viscosity (mPa·s)	0.602	0.629	0.700	0.948	2.370	12.382	
		hep/tol volume ratio (dilution ratio = 1:20)					
	50:50	60:40	7	70:30	80:20	90:10	
density (g/cm³)	0.7808	0.7629	0.	.7458	0.7282	0.7108	
viscosity (mPa·s)	0.565	0.542	C	0.534	0.527	0.513	
	hep/tol volume ratio (dilution ratio = 1:1)						
	50:50	60:40	7	70:30	80:20	90:10	
density (g/cm ³)	0.8332	0.8241	0.	.8155	0.8071	0.7991	
viscosity (mPa·s)	2.132	2.108	2.	.209	2.251	2.613	

Adsorption of asphaltenes on a wide variety of solid surfaces 66 has been explored in the literature, including but not limited to 67 mineral (clay, 13–15 sandstone, 16–18 silica, 19,20 quartz, 21,22 68 mica, 23–26 dolomite, 16,27–29 montmorillonite 30), metal (alu-69 minum, 31,32 gold, 32–35 and iron 31,33,36,37), metal oxides, and 70 stainless-steel surfaces. 32,38 Langmuir-type isotherms were 71 reported in most studies 18,39–41 when the asphaltene 72 concentration was low or the surface had poor affinity to 73 asphaltenes. Previous work on investigating asphaltene 74 deposition using X-ray photoelectron spectroscopy identified 75 different functional groups of asphaltene molecules in the 76 single adsorbed layer and found that there was little difference 77 in their binding energies with the metal surface. 38

The quartz crystal microbalance with dissipation (QCM-D) 79 technique is believed to be a promising tool to study the 80 adsorption of asphaltenes onto solid surfaces. To evaluate the 81 adsorption kinetics of more complex mixtures, Tavakkoli et 82 al. 42 studied crude oil asphaltene deposition under flow 83 conditions by varying the ratio of heptane/toluene and showed 84 that the precipitation onset happened near 75 vol% heptane 42 85 for their particular oil. The deposited asphaltenes were found 86 to first increase until the precipitation onset point and then 87 decrease with the heptane content. The authors proposed a 88 transient model to describe the transport of asphaltenes in the 89 QCM-D chamber after asphaltenes started to precipitate, 90 which involved different processes, including precipitation, 91 aggregation, diffusion, advection, and deposition. 42 In terms of 92 numerical modeling, the perturbed-chain statistical associating 93 fluid theory (PC-SAFT)⁴³ is believed to be a promising 94 equation of state to predict the precipitation of asphaltenes in 95 the wellbore at high temperature and pressure conditions. 96 However, the PC-SAFT model is very sensitive to the accuracy 97 of measurements of the precipitated asphaltenes. 44 Another 98 possibility is a parametric scaling model based on transport and 99 diffusion-driven deposition by fitting with experiment results of 100 precipitating asphaltenes solution passing through metal pipes 101 at different flow conditions.⁴⁵ Nevertheless, the interaction 102 between the metal surface and the deposited molecules was 103 not taken into consideration. Ekholm et al.34 studied the 104 adsorption of re-dissolved asphaltenes from heptane/toluene 105 mixtures onto gold surfaces and found that, at low 106 concentration, adsorbed asphaltene molecules form a rigid 107 layer; at higher concentration, due to the formation of 108 aggregates in bulk concentration, the amount of adsorption 109 increases further. However, the kinetics of deposit formation

was not fully explored, and the correlation between the 110 concentration and deposition was missing. For even higher 111 concentrations, there are very limited studies available, and 112 research using real crude oil is even less due to the complexity 113 of its composition. Despite extensive experimental and 114 theoretical studies on asphaltene—metal interactions, there is 115 not so much information available on asphaltene deposition 116 kinetics, and the underlying physics of asphaltene deposition 117 mechanisms is still poorly understood. The deposition kinetics, 118 the effect of solvent solubility, and the mechanism of 119 asphaltene depositions all need further investigation.

To mitigate or remediate the asphaltene problem, asphaltene 121 inhibitors or dispersants are used in the oilfields. A series of 122 laboratory screening tests have been developed and studied to 123 evaluate their performance. 46–48 The most common methods 124 involve precipitation tests using large relative volumes of 125 heptane and measuring, directly or indirectly, the resultant 126 particle size of the flocculates. The formation of fewer and 127 smaller flocculates from such a test indicates success of the 128 selected inhibitor. However, these screening tests do not test 129 for deposition but only for precipitation. Results from 130 laboratory screening do not readily transfer to field perform- 131 ance. It has been validated in earlier studies 42,49,50 that QCM- 132 D is sensitive to detect the adsorbed asphaltene films and has 133 been shown as a promising tool for testing the efficiency of the 134 commercial inhibitors for depositions.

In the work described in this paper, we conducted an 136 experimental investigation of crude oil asphaltene depositions 137 onto stainless-steel surfaces using the quartz crystal micro- 138 balance with dissipation technique and studied the effect of 139 asphaltene concentrations and solvent solubility in the 140 formation of asphaltene deposits. We illustrated the potential 141 of the QCM-D technique as a lab screening tool for selecting 142 asphaltene inhibitors to help remediate the deposition 143 problems. We aim to understand how asphaltenes deposit 144 onto the stainless-steel surface for better management of 145 asphaltene problems in upstream crude oil production.

2. EXPERIMENTAL SECTION

In the crude oil production system, due to the changes in temperature 147 and pressure, the solubility of the oil blend decreases during the 148 depressurization process so that asphaltenes start to precipitate and 149 deposit onto the components of the production facilities. In order to 150 study the effect of the solubility change, in our experimental setup, we 151 are using a heptane/toluene solvent mixture at different mixing ratios 152

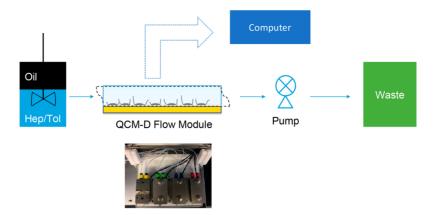


Figure 1. Schematics of experimental setup.

153 to achieve the same solubility that is present during the 154 depressurization process.

2.1. Materials. The crude oil sample used in this study is stock-156 tank oil with a density of 0.8909 g/cm³, viscosity of 115.18 mPa·s, and 157 asphaltene content of 4 wt%. The solvents, toluene (99.8+%, ACROS 158 Organics) and *n*-heptane (HPLC-grade, submicron filtered, Fisher 159 Chemical), are directly used without further purification. Millipore 160 water is used for cleaning and rinsing, and high-purity nitrogen 161 (Gasco, part no. 10L-114) is applied for drying at the end of cleaning 162 procedure.

2.2. Sample Preparations. For each experiment, the crude oil sample is first heated to 60 °C for 10–15 min. This is to dissolve the wax fractions that have precipitated due to the low temperature and to facilitate the flow of viscous crude oil in the following sampling procedure. Next, the heated sample is diluted at a certain ratio by the heated stirring plate. This step should be completed just before the mixture solution is pumped into the QCM flow module at a certain flow rate in order to avoid early precipitation.

2.3. Measurement of Density and Viscosity. As the rough is composition of the crude oil sample is unknown, the density and rescoit viscosity of crude oil samples and prepared sample solution need to be measured for each test. After the sample is freshly prepared, its density is measured at a shear rate of 3500 s⁻¹ using an Anton Paar Stabinger Viscometer SVM 3000 (viscosity range: 0.2–20 000 mPa·s, temperature range: -56 to 105 °C). The viscosity of the sample is measured through flow sweep tests in parallel-plate configuration using a lab Discovery H-3 hybrid rheometer. The measured properties are summarized in Table 1.

2.4. QCM-D Experiment. The instruments used in the QCM-D say experiments include but are not limited to an Ismatec peristaltic pump, Tygon tubes, a Kalrez O-ring sealing gasket, and a QSense analyzer (Nanoscience Instruments, temperature range: 15–65 °C). The acquired experimental data are analyzed by QSense Dfind software (Nanoscience Instruments) and in-house developed Mathematica tools.

In the production well, the most common well casing materials are 190 carbon steel, plastic, and stainless steel, depending on the geological 191 formations. In our application, a sensor with a stainless-steel surface 192 coating (SS2343) is selected for the experimental study, and the 193 surface roughness is less than 1 nm RMS.

The disposable stainless-steel-coated quartz crystal is pre-cleaned before the experiment, as the QCM-D technique is based on the frequency resonance change and any contaminants attached to the sensor surface will greatly affect the accuracy of the experiment. First, the sensor is placed near the lamp in a UV/ozone ProCleaner PLUS system for 5–10 min. The sensor surface is treated with UV light at a wavelength of 254 nm as well as the ozone generated by the UV wavelength at 184 nm. This is to decompose the deposited organics into volatile substances by ultraviolet rays and strong oxidation so that they can be removed from the contaminated surfaces. Second,

deionized water is used to rinse the sensor several times, and the 204 sensor is then gently blow-dried under a flow of nitrogen gas. Last, the 205 sensor is placed back to the UV/ozone chamber for another 10 min 206 treatment.

The setup of the QCM-D experiments is illustrated in Figure 1, and 208 ft the following procedure is performed in each experiment. First, the 209 cleaned crystal sensor is mounted in the measurement chamber 210 modules. The experiment is set to run at normal temperature and 211 pressure, i.e., 20 °C and 1 atm. The reference solvent or solvent 212 mixture is pumped through the module at a speed of $50~\mu\text{L/min}$ until 213 a stable baseline is achieved. The inlet is then switched to the freshly 214 prepared samples that are kept stirring and run for a certain time 215 period. The variations of resonance frequency and the energy 216 dissipations during oscillations are measured, recorded, and trans- 217 mitted to the computer. The waste is collected at the end of the 218 peristaltic pump.

After each experiment, the flow module and the connecting tubing 220 are flushed according to the relevant cleaning protocol and the used 221 sensor is disposed of. 222

2.5. Principle of QCM-D. The QCM-D system allows real-time 223 kinetic analysis of adsorbed mass and viscoelastic properties of 224 adsorbed films. It can be used to study the adsorption through 225 measurement of mass changes with time and rigidity/softness changes 226 of the film formed on the coated crystal surface. This feature enables 227 QCM-D to detect a transition from a monolayer to an aggregate 228 multilayer and analyze adequately adsorption kinetics/experiments. 229

The primary configuration for QCM-D experiments begins with 230 adsorption from a liquid phase (either stagnant or flowing, with 231 variable composition) onto a clean solid surface of variable properties 232 (e.g., density and strength of exposed cations/anions depending on 233 the coating surface) to study variations of adsorption kinetics/ 234 equilibrium in the monolayer/multilayer regime. Using the energy 235 dissipation capability of the QCM-D technique, one can determine if 236 the adsorbed film is rigid or viscoelastic, which is not possible looking 237 only at the frequency response. In addition to such structural analysis, 238 QCM-D also allows real-time kinetic analysis of both mass and 239 viscoelastic changes.

The controlling unit in the QCM-D technique is the quartz crystal 241 sensor, which oscillates when the given frequency reaches the intrinsic 242 resonance frequency of the quartz sensor. If molecules adsorb onto 243 the sensor surface, they will bind with the sensor and oscillate 244 together with the sensor. The frequency of the system will decrease 245 due to the increase in its mass. For molecules that are rigidly attached 246 to the sensor surface, there is no slip of the deposited molecules on 247 the crystal surface, and hence there is no dissipation in the 248 oscillations. In this case, one can apply the Sauerbrey equation and 249 calculate the amount of adsorbed mass density from the measured 250 frequency change: S1

$$\Delta m = -\frac{C}{n} \Delta f \tag{1}_{252}$$

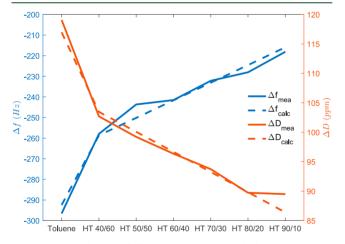
253 where C is a constant of the quartz crystal (i.e., 17.7 $ng/(Hz \cdot cm^2)$ for 254 a 5 MHz crystal) and n is the number of the overtone. This is valid 255 when the adsorbed mass is small compared to the crystal itself and the 256 adsorbed molecules are assumed to be evenly distributed.

In addition to the adsorption of molecules, the liquid that transports the solid molecules through the flow module and the liquid that is trapped inside the adsorbed molecules also contribute to the change of frequency. 51–53 The frequency change due to liquid loading 261 can be calculated from

$$\Delta f_{\text{liq-load}} = -\sqrt{\frac{n}{\pi}} \frac{f_0^{3/2}}{\rho_q^{\nu_q}} (\sqrt{\rho_1 \eta_1} - \sqrt{\rho_s^{\nu_q}})$$
 (2)

$$\Delta D_{\text{liq-load}} = \frac{1}{\sqrt{n\pi}} \frac{2f_0^{1/2}}{\rho_q \nu_q} (\sqrt{\rho_l \eta_l} - \sqrt{\rho_s \eta_s})$$
(3)

264 where f_0 is the fundamental frequency of the quartz crystal, $\rho_{\rm q}$ is the 265 specific density of the quartz crystal, and $\nu_{\rm q}$ is the shear wave velocity 266 in quartz. The subscripts "l" and "s" refer to liquid mixture and pure 267 solvent, respectively. It can be observed from eqs 2 and 3 that 268 $\Delta f_{\rm liq-load}/\Delta D_{\rm liq-load}=-nf_0/2$. In other words, if this relation holds true 269 in the experimental data, the effect of liquid trapping can be 270 considered as negligible.


3. RESULTS AND DISCUSSION

262

2.63

3.1. Validation of the QCM-D Experiment. The effect of introducing a liquid mixture into the QCM-D chamber has been discussed earlier. Pure solvent mixtures composed of heptane and toluene at different ratios have been tested using the previously described experimental procedure. The acquired frequency change and dissipation data are plotted against the calculated values from Sauerbrey equation for comparison.

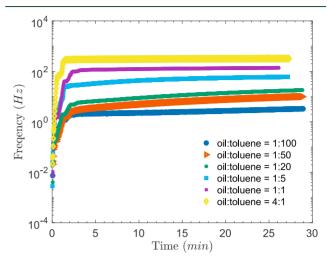

As can be seen from Figure 2, the measured frequency change and dissipation data agree well with the corresponding

Figure 2. Validation of frequency change and dissipation using solvent mixture with various heptane/toluene ratios. H stands for heptane; T stands for toluene; HT4060 refers to the solvent mixture with 40% in volume as heptane and 60% in volume as toluene.

280 values calculated from the Sauerbrey equation. The percent 281 errors all fall within the range of $\pm 3\%$. This confirms the 282 applicability of the equation for liquid loading and validates the 283 use of the QCM-D technique with the current experimental 284 setup. All the direct measurements from QCM-D experiments 285 will have to be processed with the exclusion of the variation in 286 frequency due to the density and viscosity change of the fluid 287 after the inlet is switched to the sample in the data analysis.

3.2. Adsorption of Crude Oil in Toluene on a 288 Stainless-Steel Surface. The adsorption kinetics curves of 289 crude oil in toluene solutions are shown in Figure 3. It can be 290 f3

Figure 3. Adsorption kinetics of crude oil in pure toluene at different dilution ratios.

observed that the amount of adsorbed mass increases with 291 time, regardless of the toluene content. The adsorption initially 292 undergoes a rapid increase and then slows down to 293 asymptotically approach the equilibrium. With decreasing 294 toluene in the sample mixture, the adsorption reaches 295 equilibrium faster since there are more asphaltene molecules 296 available for adsorption.

To get an idea of how asphaltenes start to deposit onto the 298 solid surface, the adsorption kinetics data in the rapidly 299 increasing regime further will be analyzed. After the initial 300 rapid increase, most of the adsorption kinetics curves for the 301 crude oil in toluene solution exhibit an undulate shape (see 302 Figure 4). As time proceeds, the kinetics curve tends to level 303 f4 off for a short period (several seconds) and then continues its 304 growth toward the equilibrium, especially at low asphaltene 305 concentrations. One could attribute these variations in the 306 surface adsorption to the peristaltic pump, which introduces 307 oscillatory waves. However, this hypothesis does not explain 308

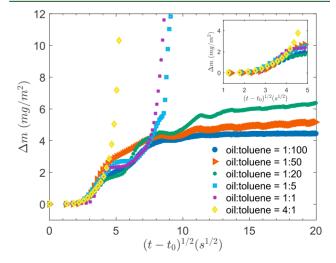


Figure 4. Dynamic adsorption versus square root of time for crude oil in toluene with different dilution ratios.

309 the relatively quiescent and stable frequency signals measured 310 in the long term. Another possible explanation is proposed in 311 section 3.4, based on our observations from the QCM-D 312 experiments. It can also be observed that, at low concen-313 trations, the adsorption seems to reach a plateau within a few 314 minutes, and the adsorbed mass is in the range of 4–6 mg/m², 315 which corresponds to a monolayer adsorption regime, as 316 reported in the literature. ^{13,33,35,49,54–56} For higher concen-317 trations, the adsorbed mass blows up within several seconds 318 and goes beyond a much higher value.

3.3. Initial Diffusion-Controlled Kinetics. From the 320 close-up subplot of the initial several seconds inside Figure 4, 321 the mass change for all concentrations was found to vary 322 linearly with the square root of time, which implies a diffusion-323 controlled process. Using the classical Ward and Tordai 324 equation 57 for surfactant diffusion, the time variation of the 325 surface concentration can then be calculated:

$$\Gamma(t) = 2\sqrt{\frac{D}{\pi}} \left(C_{\rm b} \sqrt{t} - \int_0^{\sqrt{t}} C_{\rm s}(\tau) \, \mathrm{d}\sqrt{t - \tau} \right) \tag{4}$$

327 where Γ is the surface coverage of the adsorbed molecules at 328 the surface, D is the diffusion coefficient, $C_{\rm b}$ is the bulk 329 concentration, and $C_{\rm s}$ is the concentration in the subsurface 330 layer. At short times, the second term in the equation that 331 accounts for desorption can be considered as negligible, and 332 the surface concentration only varies linearly with the square 333 root of time:

$$\Gamma = C\sqrt{\frac{Dt}{\pi}} \tag{5}$$

The apparent diffusion coefficient, which could be estimated from the slope of the Γ versus $t^{1/2}$ curve at the initial several points, is a function of concentration:

$$S = 2C\sqrt{\frac{D}{\pi}} \tag{6}$$

339 where C is the bulk concentration of asphaltene molecules. 340 Assuming the adsorbed molecules have a spherical shape, the 341 hydrodynamic diameter of the particles can be then 342 approximated using the Stokes-Einstein equation for steady-343 state flow:

$$d = \frac{k_{\rm B}T}{3\pi\eta_{\rm s}D} \tag{7}$$

345 where $k_{\rm B}$ is the Boltzmann constant (1.38 \times 10⁻²³ m²·kg/(s²·346 K)), T is the temperature, and $\eta_{\rm s}$ is the viscosity of the 347 surrounding fluid.

Extracting the slope of the initial adsorption kinetics curve and implementing that into the above equations, the diameters of the adsorbed species for crude oil in toluene at different dilution ratios were then estimated (see Table 2) and are plotted in Figure 5. At low concentrations (<1 kg/m³), the assards adsorbed molecules have an approximate diameter of several hundred nanometers; when the samples become more concentrated (>10 kg/m³), the diameter could go up to tens of micrometers, in line with the reported values, see indicating the formation of larger asphaltene aggregates on the solid surface. The last data point of the adsorbed molecular size at high concentrations seems not to follow the trend of increasing with concentration. This might contribute to the agglomeration/flocculation of asphaltenes.

Table 2. Estimated Size of Adsorbed Species

dilution ratio (v:v)	$\frac{C_{\text{asph}}}{(\text{kg/m}^3)}$	slope ($\times 10^7$ kg·m ⁻² ·s ^{-1/2})	$D (\times 10^{15} \text{ m}^2/\text{s})$	d (μm)
1:100	0.356	8.63	4610	0.154
1:50	0.713	13.33	2750	0.254
1:20	1.782	8.08	161	3.840
1:5	7.127	9.68	14.5	31.582
1:1	17.818	14.32	5.08	36.046
4:1	28.509	26.60	6.83	5.130

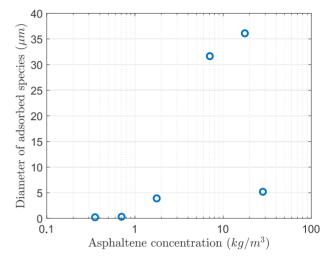
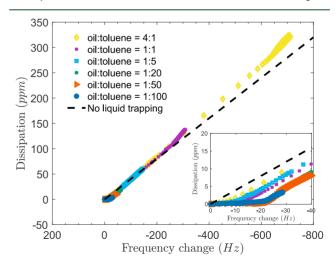



Figure 5. Estimated adsorbed particle size from the initial diffusioncontrolled adsorption kinetics at different asphaltene concentrations.

aggregates goes beyond a certain point, instead of depositing, 362 the large floc precipitates and flows through the cell due to the 363 inertial forces. A similar behavior was also observed and 364 explained in earlier studies. 42,62,63

3.4. Transition to Multilayer Adsorption. The dis- 366 sipation change is plotted against the frequency change in 367 Figure 6. It was observed that all the curves fall into almost the 368 66 same straight line regardless of dilution ratios, and the slopes of 369 the curves for lower asphaltene concentrations are approx- 370 imately the same as the ones calculated in the cases of pure 371

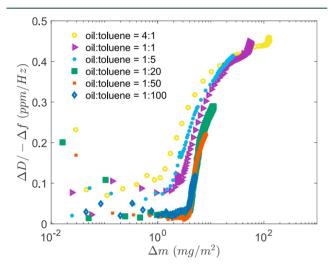


Figure 6. Dissipation versus frequency change plot for crude oil in toluene solution at different dilution ratios. The subplot on the bottom right shows a close-up at the frequency change from 0 to -40 Hz.

334

372 liquid loading and mass loading without liquid trapping effect. 373 The correspondence of the multiple D-f curves indicates that 374 the molecules adsorbed from crude oil solutions at low 375 asphaltene concentrations form films with similar structures or 376 properties. Nevertheless, for higher asphaltene concentrations 377 (i.e., lower dilution ratios), there appears to be two regions 378 where the D-f curve tends to have different slopes. The 379 adsorbed molecules seem to first build films similar to that 380 formed at low asphaltene concentration, which is indicated by 381 the same slope. At some point, the D-f curves then start to 382 deviate from the theoretical one without liquid trapping effect 383 and continue growing, with a larger ratio of ΔD over $-\Delta f$. This 384 suggests that, after reaching a certain critical point, the 385 adsorbed molecules start to form a film with structure different 386 from that in the previous process. The higher dissipation values 387 seem to indicate an increase in the formation of voluminous 388 and loose aggregates and the inclusion of solvent inside the 389 adsorbed films on the solid surfaces with time.

When plotting the ratio of $\Delta D/-\Delta f$ versus the adsorbed mass (see Figure 7), it was found that the ratio of ΔD over

Figure 7. $\Delta D/-\Delta f$ ratio versus the adsorbed mass at different dilution ratios.

 $392 - \Delta f$ was initially independent of surface coverage and then 393 significantly increased until it reached a plateau. For highly 394 concentrated solutions, this feature is repeated in the next 395 cycle, where the adsorbed mass keeps growing.

This could further be explained by a two-step deposition 397 model, which was originally proposed for amphiphile 398 adsorption from organic solvents to liquid/solid interfaces by 399 Zhu and Gu (i.e., the ZG model).⁶⁴ Based on the two-step 400 adsorption model (see Figure 8), first, asphaltene monomers 401 adsorb through the interaction between the π -electrons of the 402 polyaromatic hydrocarbon rings and the hydrophilic surfaces. 403 This has been advocated by the interactions between 404 polyaromatic hydrocarbons⁶⁵ and asphaltene adsorption at 405 the water-oil interface. 66 This step could lead to the formation 406 of a Langmuir monolayer adsorbed on the solid surface, and 407 the mechanism is similar to that of asphaltene adsorption onto 408 the liquid/liquid interface found in previous studies. 61,66-7 409 Next, the adsorption increases significantly as aggregates start 410 to form on several active sites through the interaction between 411 the freshly adsorbed molecules and the molecules that were 412 adsorbed earlier in the first step. The binding energy between 413 the already adsorbed and the next layer of adsorbing molecules

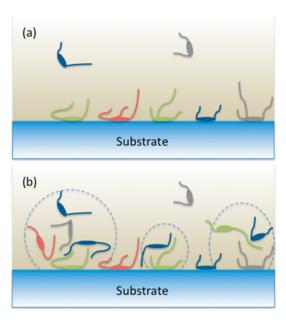


Figure 8. Illustration of the two-step adsorption model. (a) Asphaltene monomers adsorb onto the substrate. (b) Asphaltene molecules adsorb onto the previously adsorbed molecules and form nanoaggregates.

significantly decreases due to the weak interactions between 414 the alkyl chains of the polyaromatic hydrocarbons and the 415 physisorption of the aggregates, which tend to be voluminous 416 and loose. This implies the possibility of a large space between 417 the adsorbed molecules, which could accommodate and trap 418 more fluid and hence increase the dissipation during 419 oscillations.

This two-step adsorption model was justified to be 421 applicable to asphaltene molecules because asphaltene 422 molecules tend to adsorb onto a liquid/liquid interface or 423 aggregate in the solution due to their amphiphilic character- 424 istics. The model was shown to be successful to fit with 425 experimental data in an earlier study on asphaltene adsorption 426 from toluene onto some reservoir rock surfaces such as 427 dolomite and Berea sandstone. The ZG model proved 428 accurate to predict the adsorption amount in the concentration 429 range up to 30 000 ppm, 16 and the adsorption isotherm is 430 calculated according to 431

$$\Gamma = \frac{\Gamma^{\infty} k_1 C \left(\frac{1}{n} + k_2 C^{n-1}\right)}{1 + k_1 C (1 + k_2 C^{n-1})}$$
(8) ₄₃₂

where Γ is the amount of adsorbed molecules, Γ^{∞} is the 433 maximum possible adsorption at high concentrations, k_1 is the 434 first adsorption step parameter, i.e., the adsorption of 435 asphaltenes in solution to the solid surface, k_2 is the second 436 adsorption step parameter, i.e., the adsorption of asphaltenes in 437 solution to those asphaltene molecules that have already 438 adsorbed to the solid, C is the bulk concentration, and n is the 439 mean aggregation number of the adsorbed molecules. When 440 the second adsorption step parameter, i.e., k_2 , becomes 441 negligible, the above equation becomes a Langmuir-type 442 adsorption isotherm. By implementing the two-step deposition 443 model (i.e., the ZG model) 64 and fitting with the experimental 444 data, the maximum surface coverage and the adsorption 445 parameters could be numerically computed in the optimization 446 process.

The adsorbed mass from asphaltene solutions at different concentrations is plotted in Figure 9, with the fitting curves

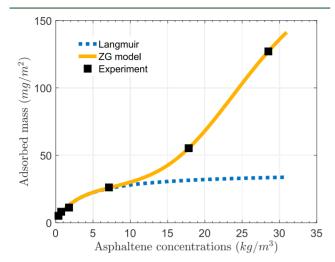
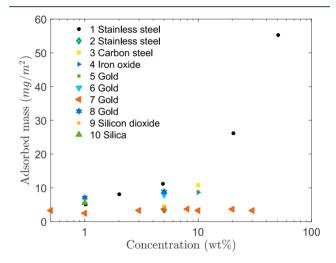


Figure 9. Adsorption isotherm of crude oil in pure toluene as a function of asphaltene concentration.


450 generated from the two-step deposition model (i.e., ZG 451 model) and the Langmuir monolayer case using the optimized 452 adsorption parameters and the maximum mass surface 453 coverage. As observed from the figure, the adsorbed mass 454 shows an increasing trend as the asphaltene content increases, 455 and it exhibits multiple regions with different characteristics. 456 After a rapid increase with asphaltene content, the adsorbed 457 mass does not reach the equilibrium and the change of 458 adsorbed mass slows down, but later the mass builds up 459 quickly again with increasing concentration. It seems that after 460 reaching a certain critical asphaltene concentration, the 461 adsorbed films would go through a transition from monolayer 462 to multilayer adsorption of asphaltene molecules. The 463 Langmuir curve fits well with the experimental data until 464 9000 ppm and then levels off with increasing concentration, 465 while the ZG model agrees well with the experimental data at 466 both low and high concentrations. The ZG model is 467 particularly consistent with the transition behavior from 468 monolayer to multilayer adsorption. The obtained mean 469 aggregation number of adsorbed molecules is 5.28, which is 470 quite consistent with the values for Bedford limestone and 471 dolomite rock reported in a previous study. 16 To get an idea of 472 how the adsorbed films look like, the sensor surfaces were 473 scanned under a microscope after 30 min asphaltene 474 adsorption. As shown in Figure 10, at higher concentrations, 475 the deposited molecules formed thick films with uniformly 476 distributed dark spots; at lower concentrations, they only 477 formed a thin film layer, which can barely be seen from the 478 image. In a recent study, 73 optical images of the gold surface 479 were obtained after 24 h immersion in oil with heptane using 480 confocal microscopy and laser scanning, and they showed 481 similar results. The multiple dotted regions indicate the 482 presence of active sites and the corresponding adsorbed 483 complex.

3.5. Comparison with Different Surfaces. Previous studies studies have shown that crude oil dissolved in pure toluene could adsorb onto different coating surfaces. Representation with the deposited mass on different types of surfaces reported in the literature, our values seem to be

Figure 10. Microscope images of stainless-steel-coated quartz surface after 30 min asphaltene adsorption. On the left, the dilution ratio of oil to toluene is 1:1; on the right, the dilution ratio of oil to toluene is 1:20.

comparable in the lower concentration range (see Figure 11 489 f11t3 and Table 3).

Figure 11. Comparison with the values of asphaltene adsorption on different surfaces reported in the literature. ^{34,35,42,49,74}

Table 3. List of QCM-D Studies on Different Coating Surfaces Using Crude Oil Samples

no.	surface	crude type	solvent	asph (wt%)	reference
1	stainless steel	EM crude	toluene	4.0	current study, 2019
2	stainless steel	Tensleep crude	toluene	3.2	Abudu and Goual, 2009
3	carbon steel	crude oil (S)	heptane	2.8	Tavakkoli et al., 2014
4	iron oxide	crude oil (S)	heptane	2.8	Tavakkoli et al., 2014
5	gold	crude oil (S)	heptane	2.8	Tavakkoli et al., 2014
6	gold	Cold Lake bitumen	toluene	59.5	Zahabi et al., 2012
7	gold	Tensleep crude	toluene	3.2	Abudu and Goual, 2009
8	gold	North Sea crude	50:50 hep/tol	2.9	Ekholm et al., 2002
9	silicon dioxide	Tensleep crude	toluene	3.2	Abudu and Goual, 2009
10	silica	Brazilian heavy crude	toluene	10.2	Hannisdal et al., 2006

For higher concentrations, there are very limited data 492 available on crude oil samples. On one hand, the adsorbed 493 mass measured from the experiment does not show any clear correlations with the surface coating type. On the other hand, 495 as the concentration of crude oil increases, the adsorbed mass 496 starts to deviate from the monolayer adsorption regime from 497 very low concentration and then significantly increases with 498 increasing concentration. This observation could be explained 499 by the proposed multilayer adsorption mechanism. After 500 asphaltene molecules interact with the solid surface, the 501 following step is mainly through the interaction between the 502 first layer of the adsorbed asphaltene molecules and the 503 subsequent asphaltene molecules in the bulk solution that 504 diffuse to the surface. The structure or molecular orientation of 505 the initially deposited asphaltene molecules might be altered 506 due to the bonding energy difference of various solid surfaces, 507 which results in a widely distributed surface or functional 508 groups from the previously deposited molecules available at the 509 surface. Nonetheless, the observed slight difference in the 510 amount adsorbed at different coating surfaces seems to confirm 511 that the deposition shows little dependence on the nature of 512 the surface but instead probably relies on the interactions 513 between asphaltene molecules in the subsequent adsorption 514 step. The remarkable increase in the deposition amount at 515 higher concentration could probably be attributed to the 516 presence of resins and other compositions of crude oils, which 517 could form a large and complex system with asphaltene 518 molecules and decrease their solubility.³⁴ One may notice that 519 some types of crude oils at high concentrations adsorb onto 520 the solid surfaces and form a monolayer, 49 while others adsorb 521 in multilayers. This difference might be caused by the 522 difference in the heteroatoms such as sulfur or surface-active 523 groups in the asphaltene molecules. 62 Instead of interacting 524 with the solid surface, these groups of molecules are likely to 525 self-associate, which would lead to the decrease in the number 526 of surface-active molecules that are available for adsorption. 62 527 The polydispersity in crude oil composition also adds to the complexity of the adsorption problem.⁵⁶

3.6. Effect of Solvency. To investigate how the solvent solvent solvent solvent asphaltene deposition, the samples were prepared by mixing crude oil and the solvent mixture composed of heptane and toluene at different volume ratios. The dilution ratios of crude oil to solvent mixture used here are 1:20 and 1:1 so that the solvency effect at low and high concentrations can be compared.

The adsorbed mass after 2 h adsorption is plotted against 537 the volume fraction of heptane in Figure 12 for both dilution 538 ratios. Theoretically, as the percentage of heptane increases in the mixture, the solvent solubility for asphaltenes will decrease until it reaches a critical point where asphaltenes become 541 unstable and start to precipitate out from the solution. 542 Previous studies^{7,48,75–77} have revealed the accumulation in 543 the amount of precipitates with heptane increment. To the contrary, our experimental results showed that the amount of 545 deposition after 2 h adsorption does not monotonically 546 increase with heptane content. Instead, from the point beyond 547 50 vol% heptane content, it seems that the adsorbed mass first 548 increased to a maximum value and then exhibited a decreasing 549 trend as the heptane content increased. This bell-shaped curve 550 was observed for both low and high dilutions and was also 551 reported in an earlier study of crude oil adsorption onto gold 552 surfaces. 42,63,78 The asphaltene fraction that has precipitated 553 out at the solubility with 70 vol% heptane content seems to be

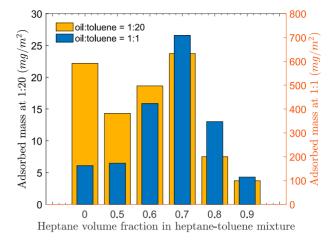


Figure 12. Adsorbed mass plotted as a function of heptane fractions at different dilution ratios.

the fraction that produces the largest deposition. From an 554 earlier study of asphaltene solubility fractions using fluorescent 555 depolarization technique, 79 it was found that different 556 solubility fractions have the same molecular species but differ 557 in the amount of each species. Asphaltenes tend to form 558 aggregates even in a good solvent. 80 Upon decreasing the 559 solvent aromaticity, the asphaltene aggregates grow in average 560 size and molecular weight along with the increasing heptane 561 content, 77,79,81,82 and the adsorbed film thickness increases 562 with the size of aggregates in the solution.⁸³ The average 563 aggregate size continues to grow until the solution reaches the 564 solubility limit, above which the addition of heptane would 565 lead to significant agglomeration and precipitation, leaving 566 smaller asphaltene aggregates in the solution. 77 As explained in 567 the previous section, asphaltene molecules adsorb onto the 568 solid surface through the interaction between their π -electrons 569 and the hydrophilic surface, and they tend to expose their 570 nonpolar parts to the oil phase in bad solvent conditions (i.e., 571 higher percentage of heptane), 26 which would potentially 572 interact with the alkyl chains of the asphaltene aggregates in 573 the solution. This is highly dependent on the aggregate size, 574 because large aggregates with a size exceeding a certain value 575 did not appear to adsorb at the interface. 54 It could be inferred 576 that the percentage of the molecular species that form 577 aggregates with the optimal size reaches the maximum in the 578 solubility fraction at 70 vol% heptane content and these 579 aggregates are the most prone to interact with the adsorption 580 sites.

On the other hand, at lower concentration, the precipitated 582 asphaltene aggregates at higher heptane fraction seem to have 583 less affinity to the solid surface or active sites, as most of the 584 precipitated mass was carried out by the flowing solvent 585 without depositing onto the solid surface, as implied by the 586 measured small amount of adsorption (Figure 12) and low 587 dissipation values (Figure 13). When the heptane volume 588 f13 fraction goes beyond 70% by volume, the dissipation becomes 589 less than 10 ppm, indicating that the adsorbed films are rigid. 590 Compared to the lower concentration, i.e., the dilution ratio of 591 1:20, the amount of adsorption and the dissipation values at 592 the dilution ratio of 1:1 are much higher (see Figure 14). At 593 f14 higher concentrations, the dissipation values with heptane 594 addition ranged from 220 to 280 ppm, almost the double of 595 the values for pure toluene. This suggests that with less toluene 596 in the mixture, the increase in the heptane content could lead 597

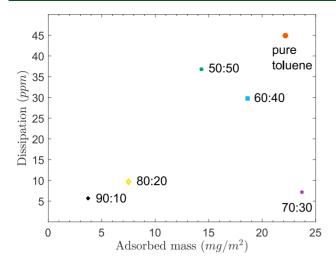


Figure 13. Dissipation change versus the adsorbed mass plot for crude oil in solvent mixture with different heptane/toluene ratios (dilution ratio is 1:20).

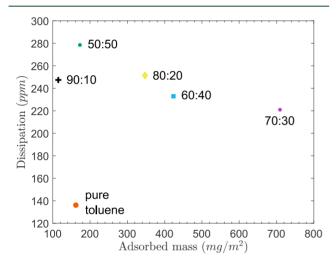
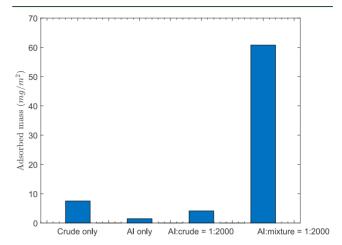


Figure 14. Dissipation change versus the adsorbed mass plot for crude oil in solvent mixture with different heptane/toluene ratios (dilution ratio is 1:1).


598 to a totally different composition of molecular species and 599 mean aggregate size at different dilution ratios. At higher 600 concentration, with the addition of the flocculants, i.e., 601 heptane, the adsorbed films would be more voluminous and 602 viscoelastic.

These observations in the study of solvent solubility for provided the evidence to support the argument that the for deposition problem was not the same as the precipitation for problem. In other words, the deposition does not have the same dependence on the solvent solubility as the precipitation for does. This information on the solvent effect can aid the for industry to avoid the operation condition that produces the maximum amount of asphaltene deposition when developing for asphaltene management strategies during crude oil recovery.

3.7. Assessment of Asphaltene Inhibitor (AI). The
assessment of the AI used in this study was performed to
the illustrate and help understand how the QCM-D technique
could be used to screen for inhibitor performance using the
deposition method. From an earlier extensive screening study
using several commercially available AIs for this particular oil,
the inhibitor chosen for this study was found to be more

I

promising. Using the developed testing metrics, the effect of 619 this commercial AI on asphaltene deposition was tested under 620 different conditions, as shown in Figure 15.

Figure 15. Measurement of the adsorbed mass under different conditions. The solvent mixture is composed of 80 vol% of heptane and 20 vol% of toluene for all cases. Crude only, dilution ratio of crude oil to heptane/toluene mixture is 1:20; AI only, mixing ratio of asphaltene inhibitor to heptane/toluene mixture is 1:2000 (i.e., 500 ppm); AI:crude = 1:2000, dilution ratio of crude oil to heptane/toluene mixture is 1:20 and mixing ratio of asphaltene inhibitor to crude oil is 1:2000; AI:mixture = 1:2000, dilution ratio of crude oil to heptane/toluene mixture is 1:20 and mixing ratio of asphaltene inhibitor to the heptane/toluene mixture is 1:2000.

In the case of no AI addition (i.e., crude only), the deposited 622 mass is around 8 mg/m² after 2 h adsorption, which is above 623 the Langmuir monolayer adsorption regime and implies the 624 existence of multilayer buildup. With the addition of 625 asphaltene inhibitors (i.e., AI:crude = 1:2000), it was observed 626 that the amount deposited showed a significant decrease to 627 around 4 mg/m², which corresponds to the monolayer regime. 628 In order to explore the effect of the inhibitor concentration, the 629 amount of the added AI was further increased (i.e., AI:mixture 630 = 1:2000) at the same dilution ratio of crude oil to heptane/ 631 toluene solvent mixture as the previous case. The deposition 632 was found to dramatically increase instead of showing further 633 decrease. This could be caused by the formation of aggregates 634 composed of inhibitor and asphaltene molecules upon the 635 increase of AI concentration, as reported earlier. 73 The 636 composition of the commercial inhibitor is unknown, and it 637 is soluble in toluene. To exclude the possibility of AI 638 molecules' self-aggregations, only AI was mixed with the 639 solvent mixture at the ratio of 1:2000. We could observe a 640 slight adsorption of the AI molecules, indicating that the 641 commercial inhibitor probably interacts with the solid surface 642 and leaves less space for asphaltene molecules to deposit. On 643 the other hand, as the adsorbed mass is less than the 644 monolayer coverage, we could infer that, at this concentration, 645 the AI molecules did not interact with each other and only 646 partially covered the solid surface. It could therefore be 647 concluded from the above experiments that, with the addition 648 of a small amount of AI, the asphaltene deposition was 649 hindered and reduced; adding a large quantity of AI into the 650 sample does not improve the effects but rather significantly 651 increases the deposition. This is in line with the industry's 652 expectations, as employing additives at low concentrations to 653

654 improve the production efficiency and minimize the 655 production cost is highly desired.

As solvent solubility can greatly affect asphaltene deposition, 657 in order to investigate the performance of the AI at different 658 solubilities, crude sample was mixed with a small amount of 659 inhibitor solution and heptane/toluene solvent mixtures with 660 different heptane percentages. In diluted samples (see Figure 661 16), the AI was found to reduce the adsorbed mass by at least

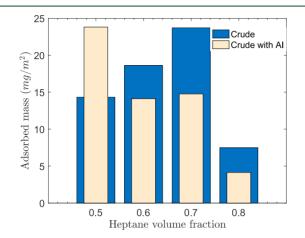
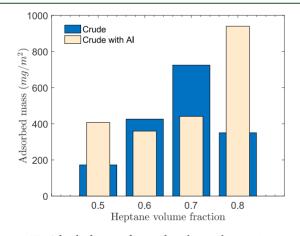



Figure 16. Adsorbed mass for crude oil in solvent mixture with different heptane/toluene ratios. The dilution ratio of oil to solvent mixture is 1:20, and the mixing ratio of AI to crude oil is 1:2000.

662 25% at higher heptane percentage, even though there is less 663 asphaltene deposition at the solubility with the 80 vol% 664 heptane in the solvent mixture. To the contrary, at the 665 solubility with 50 vol% heptane and 50 vol% toluene, the 666 inhibitor does not show any positive effect but the deposited 667 amount increases. In a concentrated sample (see Figure 17),

Figure 17. Adsorbed mass for crude oil in solvent mixture with different heptane/toluene ratios. The dilution ratio of oil to solvent mixture is 1:1, and the mixing ratio of AI to crude oil is 1:2000.

668 the AI gives promising performance only near the precipitation 669 onset point, i.e., the solubility with 60 and 70 vol% heptane 670 content. At the solubility with 50 and 80 vol% heptane 671 fractions, the adsorbed mass with inhibitors exhibits a 672 significant increase compared to the case with no addition of 673 AI. One possible explanation for such a wide distribution of AI 674 performance could be that the change in the solubility could 675 result in the restructuring or reorientation of the AI molecules, which eventually alters the availability of their surface-active 676 groups and their interaction with asphaltene molecules. 677 Nevertheless, in both diluted and concentrated samples, the 678 inhibitor proved to be able to reduce the maximum deposition 679 amount at the solubility with 70 vol% heptane fraction, which 680 happened to be the condition at which the largest amount of 681 deposition was generated, as found from the previous 682 experiments.

Asphaltene inhibitors are generally a mixture of sub- 684 components providing different functionalities. The results of 685 this work are limited to the one inhibitor tested, but the 686 experimental approach developed here could be used for 687 screening other inhibitors in future studies.

4. CONCLUSIONS

The kinetics of asphaltene adsorption from crude oil onto 689 stainless-steel surfaces at different mixing ratios with toluene 690 are reported in this study. The size of the adsorbed particles 691 from the initially diffusion-controlled adsorption was estimated 692 and found to increase with the asphaltene concentration, 693 except in the highly concentrated solutions (mixing ratio of 694 crude oil to toluene of 4:1). The adsorption isotherm exhibited 695 multiple regimes, which indicates a transition from monolayer 696 to multilayer adsorption. The repetitive features presented in 697 the initial adsorption kinetics and the D-f ratios at different 698 mixing ratios suggest a two-step deposition mechanism, where 699 the first layer of asphaltene is adsorbed through the π - 700 interaction of the polyaromatic hydrocarbons with the solid 701 surface, followed by the subsequent layers of adsorbed 702 molecules/aggregates interacting with the previously adsorbed 703 molecules through alkyl chains. A numerical analysis of the 704 experimental data using the two-step deposition model was 705 performed, and the optimized adsorption parameters proved to 706 be quite close to those values obtained for some rock types in 707 earlier adsorption studies. 16

The effect of solvent solubility on asphaltene deposition was 709 also investigated by adding heptane into the solvent mixture at 710 dilution ratios of 1:20 and 1:1. The adsorbed mass was found 711 to first increase and then decrease with the heptane content at 712 both dilution ratios, and it seems that the maximum deposition 713 was reached at the solubility with a heptane/toluene ratio of 714 70:30. The correlation between heptane content and the 715 deposition amount was found to be quite different from the 716 conditions for asphaltene precipitation onset, which opens up 717 the need to further investigate the structure of the precipitated 718 asphaltenes and how they interact with the previously adsorbed 719 molecules on the solid surfaces, with a potential impact on the 720 wettability alteration of reservoir rocks and production facilities 721 and asphaltene management in upstream production.

The impact of adding a commercial asphaltene inhibitor into 723 crude oil sample solution was investigated under different 724 conditions, and it was found that adding a small amount of AI 725 could significantly reduce the deposited mass, but a large 726 amount would have the reverse effects. The solubility could 727 also affect the performance of the AI, and the AI exhibited a 728 better performance near the onset point of precipitation in 729 both dilute and concentrated sample. Nonetheless, since only a 730 limited range of heptane/toluene ratios was tested, the 731 postulation needs further experiments at other ratios to 732 confirm how the deposited films vary.

f16

J

734 AUTHOR INFORMATION

735 Corresponding Author

Fang Liu – Energy Institute, City University of New York, New York, New York, New York 10031, United States; Department of Chemical Engineering, City College of New York, New York, New York 10031, United States; Orcid.org/0000-0001-7382-6215; Email: fangliuche@gmail.com

741 Authors

Scott Hickman – ExxonMobil Upstream Research Company, 742 Spring, Texas 77389, United States 743 Tabish Maqbool - ExxonMobil Upstream Research Company, 744 Spring, Texas 77389, United States 745 ^LVincent Pauchard – SINTEF Industry, 7034 Trondheim, 746 *Norway*; orcid.org/0000-0003-1027-4526 747 Sanjoy Banerjee - Energy Institute, City University of New 748 York, New York, New York 10031, United States; Department 749

of Chemical Engineering, City College of New York, New York,

New York 10031, United States
752 Complete contact information is available at:

753 https://pubs.acs.org/10.1021/acs.energyfuels.0c00663

754 Notes

750

755 The authors declare no competing financial interest. $^{-756}$ LV.P. is a Consultant for SINTEF Industry, Norway, and City 757 College of New York.

758 **ACKNOWLEDGMENTS**

759 The authors thank Dr. Brendon Keinath, Dr. Todd Lagus, Dr. 760 Aditya Jaishankar, Dr. Marykathryn Lee, Prof. Jeff Morris, and 761 Prof. Charles Maldarelli for valuable technical discussions. The 762 authors also thank Becky Whitt for help with measuring 763 viscosity and density of samples and Todd Mayer, Jennifer 764 Benton, and Rosario Jara for help on the QCM-D experiments. 765 This work is supported by the National Science Foundation 766 under Award Number 1743794.

67 REFERENCES

- 768 (1) Buckley, J. S. Wetting Alteration of Solid Surfaces by Crude Oils 769 and Their Asphaltenes. *Rev. Inst. Fr. Pet.* **1998**, *53*, 303–312.
- 770 (2) Akbarzadeh, K.; Hammami, A.; Kharrat, A.; Zhang, D.; Allenson, 771 S.; Creek, J.; Kabir, S.; Jamaluddin, A. J.; Marshall, A. G.; Rodgers, R.; 772 Mullins, O. C.; Solbakken, T. Asphaltenes Problematic but Rich in 773 Potential. *Oilfield Rev.* **2007**, *19*, 22–43.
- 774 (3) Creek, J. L. Freedom of action in the state of asphaltenes: Escape 775 from conventional wisdom. *Energy Fuels* **2005**, *19*, 1212–1224.
- 776 (4) Jamaluddin, A. K. M.; Creek, J.; Kabir, C. S.; McFadden, J. D.; 777 Cruz, D. D.; Manakalathil, J.; Joshi, N.; Ross, B. Laboratory 778 Techniques to Measure Thermodynamic Asphaltene Instability. *J. 779 Can. Pet. Technol.* **2002**, *41*, PETSOC-02-07-04.
- 780 (5) Burke, N. E.; Hobbs, R. E.; Kashou, S. F. Measurement and 781 Modeling of Asphaltene Precipitation (includes associated paper 782 23831). *JPT, J. Pet. Technol.* **1990**, 42, 1440–1446.
- 783 (6) Carrier, H.; Plantier, F.; Daridon, J.-L.; Lagourette, B.; Lu, Z. 784 Acoustic method for measuring asphaltene flocculation in crude oils. *J.* 785 *Pet. Sci. Eng.* **2000**, 27, 111–117.
- 786 (7) Maqbool, T.; Balgoa, A. T.; Fogler, H. S. Revisiting Asphaltene 787 Precipitation from Crude Oils: A Case of Neglected Kinetic Effects. 788 Energy Fuels **2009**, 23, 3681–3686.
- 789 (8) Kraiwattanawong, K.; et al. Thermodynamic solubility models to 790 predict asphaltene instability in live crude oils. *Energy Fuels* **2007**, 21, 791 1248–1255.
- 792 (9) Goual, L.; Sedghi, M.; Wang, X.; Zhu, Z. Asphaltene Aggregation 793 and Impact of Alkylphenols. *Langmuir* **2014**, *30*, 5394–5403.

- (10) Fossen, M.; Sjöblom, J.; Kallevik, H.; Jakobsson, J. A New 794 Procedure for Direct Precipitation and Fractionation of Asphaltenes 795 from Crude Oil. *J. Dispersion Sci. Technol.* **2007**, 28, 193–197.
- (11) Hammami, A.; Ratulowski, J. Precipitation and Deposition of 797 Asphaltenes in Production Systems: A Flow Assurance Overview. In 798 Asphaltenes, Heavy Oils, and Petroleomics; Mullins, O. C., Sheu, E. Y., 799 Hammami, A., Marshall, A. G., Eds.; Springer: New York; pp 617—800 660
- (12) Hoepfner, M. P.; Limsakoune, V.; Chuenmeechao, V.; 802 Maqbool, T.; Fogler, H. S. A Fundamental Study of Asphaltene 803 Deposition. *Energy Fuels* **2013**, *27*, 725–735.
- (13) Dudášová, D.; Simon, S.; Hemmingsen, P. V.; Sjöblom, J. Study 805 of asphaltenes adsorption onto different minerals and clays. Colloids 806 Surfaces A Physicochem. *Colloids Surf., A* **2008**, 317, 1–9.
- (14) Acevedo, S.; et al. Importance of asphaltene aggregation in 808 solution in determining the adsorption of this sample on mineral 809 surfaces. Colloids Surfaces A Physicochem. *Colloids Surf., A* **2000**, 810 166, 145–152.
- (15) Mugele, F.; Siretanu, I.; Kumar, N.; Bera, B.; Wang, L.; de 812 Ruiter, R.; Maestro, A.; Duits, M.; van den Ende, D.; Collins, I. 813 Insights From Ion Adsorption and Contact-Angle Alteration at 814 Mineral Surfaces for Low-Salinity Waterflooding. SPE J. 2016, 21, 815 1204–1213.
- (16) Mendoza de la Cruz, J. L.; et al. Study of monolayer to 817 multilayer adsorption of asphaltenes on reservoir rock minerals. 818 *Colloids Surf., A* **2009**, 340, 149–154.
- (17) Buckley, J. S.; Bousseau, C.; Liu, Y. Wetting Alteration by Brine 820 and Crude Oil: From Contact Angles to Cores. SPE J. 1996, 1, 341—821 350.
- (18) Crocker, M. E.; Marchin, L. M. Wettability and Adsorption 823 Characteristics of Crude-Oil Asphaltene and Polar Fractions. *JPT, J.* 824 *Pet. Technol.* 1988, 40, 470–474.
- (19) Acevedo, S.; Ranaudo, M. A.; García, C.; Castillo, J.; 826 Fernández, A. Adsorption of Asphaltenes at the Toluene–Silica 827 Interface: A Kinetic Study. *Energy Fuels* **2003**, *17*, 257–261.
- (20) Farooq, U.; Sjöblom, J.; Øye, G. Desorption of Asphaltenes 829 from Silica-Coated Quartz Crystal Surfaces in Low Saline Aqueous 830 Solutions. J. Dispersion Sci. Technol. 2011, 32, 1388–1395.
- (21) Marczewski, A. W.; Szymula, M. Adsorption of asphaltenes 832 from toluene on quartz and silica-rich soils. *Ann. Univ. Marie Curie-* 833 *Sklodowska Lublin-Polonia* **2003**, 58, 69–79.
- (22) Smol, M.; Włodarczyk-Makuła, M.; Włóka, D. Adsorption of 835 Polycyclic Aromatic Hydrocarbons (PAHS) from Aqueous Solutions 836 on Different Sorbents. *Civ. Environ. Eng. Reports* **2014**, *13*, 87–96. 837
- (23) Natarajan, A.; et al. Understanding Mechanisms of Asphaltene 838 Adsorption from Organic Solvent on Mica. *Langmuir* **2014**, *30*, 839 9370–9377.
- (24) Zhang, R.; Qin, N.; Peng, L.; Tang, K.; Ye, Z. Wettability 841 alteration by trimeric cationic surfactant at water-wet/oil-wet mica 842 mineral surfaces. *Appl. Surf. Sci.* **2012**, 258, 7943–7949.
- (25) Liu, L.; Buckley, J. S. Alteration of wetting of mica surfaces. *J.* 844 *Pet. Sci. Eng.* **1999**, 24, 75–83.
- (26) Vuillaume, K.; Giasson, S. Interactions between Mica Surfaces 846 across Crude Oil and Asphaltene Solutions. *J. Phys. Chem. C* **2009**, 847 113, 3660–3665.
- (27) Syunyaev, R. Z.; Balabin, R. M.; Akhatov, I. S.; Safieva, J. O. 849 Adsorption of Petroleum Asphaltenes onto Reservoir Rock Sands 850 Studied by Near-Infrared (NIR) Spectroscopy. *Energy Fuels* **2009**, 23, 851 1230–1236.
- (28) Marczewski, A. W.; Szymula, M. Adsorption of asphaltenes 853 from toluene on mineral surface. *Colloids Surf., A* **2002**, 208, 259–854 266.
- (29) Szymula, M.; Marczewski, A. W. Adsorption of asphaltenes 856 from toluene on typical soils of Lublin region. *Appl. Surf. Sci.* **2002**, 857 196, 301–311.
- (30) Clementz, D. M. Interaction of Petroleum Heavy Ends with 859 Montmorillonite. *Clays Clay Miner.* **1976**, 24, 312–319.

- 861 (31) Alboudwarej, H.; Pole, D.; Svrcek, W. Y.; Yarranton, H. W. 862 Adsorption of Asphaltenes on Metals. *Ind. Eng. Chem. Res.* **2005**, 44, 863 5585–5592.
- 864 (32) Xie, K.; Karan, K. Kinetics and Thermodynamics of Asphaltene 865 Adsorption on Metal Surfaces: A Preliminary Study. *Energy Fuels* 866 **2005**, *19*, 1252–1260.
- 867 (33) Rudrake, A.; Karan, K.; Horton, J. H. A combined QCM and 868 XPS investigation of asphaltene adsorption on metal surfaces. *J. Robotochical Interface Sci.* **2009**, 332, 22–31.
- 870 (34) Ekholm, P.; et al. A Quartz Crystal Microbalance Study of the 871 Adsorption of Asphaltenes and Resins onto a Hydrophilic Surface. *J. Colloid Interface Sci.* **2002**, 247, 342–350.
- 873 (35) Zahabi, A.; Gray, M. R.; Dabros, T. Kinetics and Properties of 874 Asphaltene Adsorption on Surfaces. *Energy Fuels* **2012**, *26*, 1009–875 1018.
- 876 (36) Ortega Rodriguez, A.; Cruz, S. A.; Garcia-Cruz, I.; Lira-877 Galeana, C. Study of the adhesion force of asphaltene aggregates to 878 metallic surfaces of Fe and Al. *Energy Fuels* **2016**, *30*, 3596–3604.
- 879 (37) Balabin, R. M.; et al. Asphaltene Adsorption onto an Iron 880 Surface: Combined Near-Infrared (NIR), Raman, and AFM Study of 881 the Kinetics, Thermodynamics, and Layer Structure. *Energy Fuels* 882 **2011**, 25, 189–196.
- 883 (38) Abdallah, W. A.; Taylor, S. D. Surface characterization of 884 adsorbed asphaltene on a stainless steel surface. *Nucl. Instrum.* 885 *Methods Phys. Res., Sect. B* **2007**, 258, 213–217.
- 886 (39) Dudášová, D.; Silset, A.; Sjöblom, J. Quartz Crystal Micro-887 balance Monitoring of Asphaltene Adsorption/Deposition. *J.* 888 Dispersion Sci. Technol. **2008**, 29, 139–146.
- 889 (40) Collins, S. H.; Melrose, J. C. Adsorption of Asphaltenes and 890 Water on Reservoir Rock Minerals. SPE Oilfield Geothermal Chem. 891 Symp. 1983, 8, 11800-MS.
- 892 (41) Dubey, S. T.; Waxman, M. H. Asphaltene Adsorption and 893 Desorption From Mineral Surfaces. SPE Reservoir Eng. 1991, 6, 389—894 395.
- 895 (42) Tavakkoli, M.; Panuganti, S. R.; Taghikhani, V.; Pishvaie, M. 896 R.; Chapman, W. G. Asphaltene Deposition in Different Depositing 897 Environments: Part 2. Real Oil. *Energy Fuels* **2014**, *28*, 3594–3603.
- 898 (43) Vargas, F. M.; et al. Development of a General Method for 899 Modeling Asphaltene Stability. *Energy Fuels* **2009**, 23, 1147–1154.
- 900 (44) Tavakkoli, M.; Panuganti, S. R.; Taghikhani, V.; Pishvaie, M. 901 R.; Chapman, W. G. Precipitated Asphaltene Amount at High-902 Pressure and High-Temperature Conditions. *Energy Fuels* **2014**, *28*, 903 1596–1610.
- 904 (45) Hashmi, S. M.; Loewenberg, M.; Firoozabadi, A. Colloidal 905 asphaltene deposition in laminar pipe flow: Flow rate and parametric 906 effects. *Phys. Fluids* **2015**, *27*, 083302.
- 907 (46) Melendez-Alvarez, A. A.; et al. On the evaluation of the 908 performance of asphaltene dispersants. *Fuel* **2016**, *179*, 210–220.
- 909 (47) Lin, Y.-J.; He, P.; Tavakkoli, M.; Mathew, N. T.; Fatt, Y. Y.; 910 Chai, J. C.; Goharzadeh, A.; Vargas, F. M.; Biswal, S. L. Characterizing 911 Asphaltene Deposition in the Presence of Chemical Dispersants in
- 912 Porous Media Micromodels. *Energy Fuels* **2017**, *31*, 11660–11668. 913 (48) Lin, Y.-J.; et al. Examining Asphaltene Solubility on Deposition 914 in Model Porous Media. *Langmuir* **2016**, *32*, 8729–8734.
- 915 (49) Abudu, A.; Goual, L. Adsorption of Crude Oil on Surfaces 916 Using Quartz Crystal Microbalance with Dissipation (QCM-D) under 917 Flow Conditions. *Energy Fuels* **2009**, 23, 1237–1248.
- 918 (50) Campen, S.; Moorhouse, S. J.; Wong, J. S. S. Mechanism of an 919 asphaltene inhibitor in different depositing environments: Influence of 920 colloid stability. *J. Pet. Sci. Eng.* **2020**, *184*, 106502.
- 921 (51) Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung 922 dünner Schichten und zur Mikrowägung. Eur. Phys. J. A 1959, 155, 923 206–222.
- 924 (52) Rodahl, M.; Kasemo, B. On The Measurement Of Thin Liquid 925 Overlayers With The Quartz-crystal Microbalance *Proceedings of the* 926 International Solid-State Sensors and Actuators Conference - TRANS-927 DUCERS '95; IEEE, 1995; Vol. 2, pp 743–746.

- (53) Kanazawa, K. K.; Gordon, J. G. Frequency of a quartz 928 microbalance in contact with liquid. *Anal. Chem.* **1985**, *57*, 1770–929 1771.
- (54) Sztukowski, D. M.; Jafari, M.; Alboudwarej, H.; Yarranton, H. 931 W. Asphaltene self-association and water-in-hydrocarbon emulsions. *J. 932 Colloid Interface Sci.* **2003**, 265, 179–186.
- (55) Goual, L.; Horváth-Szabó, G.; Masliyah, J. H.; Xu, Z. 934 Adsorption of Bituminous Components at Oil/Water Interfaces 935 Investigated by Quartz Crystal Microbalance: Implications to the 936 Stability of Water-in-Oil Emulsions. *Langmuir* 2005, 21, 8278–8289. 937
- (56) Liu, F.; et al. Mixture Effect on the Dilatation Rheology of 938 Asphaltenes-Laden Interfaces. *Langmuir* **2017**, 33, 1927–1942.
- (57) Ward, A. F. H.; Tordai, L. Time-Dependence of Boundary 940 Tensions of Solutions I. The Role of Diffusion in Time-Effects. J. 941 Chem. Phys. 1946, 14, 453.
- (58) Seifried, C. M.; Crawshaw, J.; Boek, E. S. Kinetics of Asphaltene 943 Aggregation in Crude Oil Studied by Confocal Laser-Scanning 944 Microscopy. *Energy Fuels* **2013**, 27, 1865–1872. 945
- (59) Mullins, O. C. The Asphaltenes. Annu. Rev. Anal. Chem. 2011, 946 4, 393–418.
- (60) Mullins, O. C.; et al. The Colloidal Structure of Crude Oil and 948 the Structure of Oil Reservoirs. *Energy Fuels* **2007**, 21, 2785–2794. 949
- (61) Mullins, O. C.; Pomerantz, A. E.; Andrews, A. B.; Zuo, J. Y. 950 Asphaltenes Explained for the Nonchemist. *Petrophysics* **2015**, *56*, 951 266–275.
- (62) Campen, S.; Di Mare, L.; Smith, B.; Wong, J. S. S. Determining 953 the Kinetics of Asphaltene Adsorption from Toluene: A New 954 Reaction-Diffusion Model. *Energy Fuels* **2017**, *31*, 9101–9116.
- (63) Campen, S.; Smith, B.; Wong, J. Deposition of Asphaltene from 956 Destabilized Dispersions in Heptane-Toluene. *Energy Fuels* **2018**, 32, 957 9159–9171.
- (64) Zhu, B.; Gu, T. Reverse hemimicelle formation of 1-decanol 959 from heptane at the solution/graphite interface. *Colloids Surf.* **1990**, 960 46, 339–345.
- (65) Keiluweit, M.; Kleber, M. Molecular-level interactions in soils 962 and sediments: The role of aromatic π -systems. *Environ. Sci. Technol.* 963 **2009**, 43, 3421–3429.
- (66) Rane, J. P.; Pauchard, V.; Couzis, A.; Banerjee, S. Interfacial 965 rheology of asphaltenes at oil-water interfaces and interpretation of 966 the equation of state. *Langmuir* **2013**, 29, 4750–4759.
- (67) Zarkar, S.; Pauchard, V.; Farooq, U.; Couzis, A.; Banerjee, S. 968 Interfacial Properties of Asphaltenes at Toluene Water Interfaces. 969 Langmuir 2015, 31, 4878–4886.
- (68) Rane, J. P.; et al. Applicability of the Langmuir Equation of 971 State for Asphaltene Adsorption at the Oil–Water Interface: Coal-972 Derived, Petroleum, and Synthetic Asphaltenes. *Energy Fuels* **2015**, 29, 973 3584–3590.
- (69) Pauchard, V.; Roy, T. Blockage of coalescence of water droplets 975 in asphaltenes solutions: A jamming perspective. *Colloids Surf., A* 976 **2014**, 443, 410–417.
- (70) Mullins, O. C.; et al. Asphaltene Nanoscience and Reservoir 978 Fluid Gradients, Tar Mat Formation and the Oil-Water Interface. SPE 979 Annual Technical Conference and Exhibition; Society of Petroleum 980 Engineers, 2013. . 981
- (71) Pauchard, V.; Rane, J. P.; Zarkar, S.; Couzis, A.; Banerjee, S. 982 Long-Term Adsorption Kinetics of Asphaltenes at the Oil–Water 983 Interface: A Random Sequential Adsorption Perspective. *Langmuir* 984 **2014**, *30*, 8381–8390.
- (72) Mullins, O. C. The Modified Yen Model. *Energy Fuels* **2010**, *24*, 986 2179–2207.
- (73) Balestrin, L. B. d. S.; Francisco, R. D.; Bertran, C. A.; Cardoso, 988 M. B.; Loh, W. Direct Assessment of Inhibitor and Solvent Effects on 989 the Deposition Mechanism of Asphaltenes in a Brazilian Crude Oil. 990 Energy Fuels 2019, 33, 4748–4757.
- (74) Hannisdal, A.; Ese, M.-H.; Hemmingsen, P. V.; Sjöblom, J. 992 Particle-stabilized emulsions: Effect of heavy crude oil components 993 pre-adsorbed onto stabilizing solids. *Colloids Surf., A* **2006**, 276, 45–994 58.

- 996 (75) Maqbool, T.; Raha, S.; Hoepfner, M. P.; Fogler, H. S. Modeling 997 the Aggregation of Asphaltene Nanoaggregates in Crude Oil— 998 Precipitant Systems. *Energy Fuels* **2011**, 25, 1585–1596.
- 999 (76) Fossen, M.; Kallevik, H.; Knudsen, K. D.; Sjöblom, J. 1000 Asphaltenes Precipitated by a Two-Step Precipitation Procedure. 2. 1001 Physical and Chemical Characteristics. *Energy Fuels* **2011**, *25*, 3552–1002 3567.
- 1003 (77) Spiecker, P. M.; Gawrys, K. L.; Kilpatrick, P. K. Aggregation 1004 and solubility behavior of asphaltenes and their subfractions. *J. Colloid* 1005 *Interface Sci.* **2003**, *267*, 178–193.
- 1006 (78) Elkhatib, O.; Chaisoontornyotin, W.; Gesho, M.; Goual, L. 1007 Nanoscale investigation of asphaltene deposition under capillary flow 1008 conditions. *Energy Fuels* **2020**, *34*, 5148–5158.
- 1009 (79) Groenzin, H.; et al. Molecular Size of Asphaltene Solubility 1010 Fractions. *Energy Fuels* **2003**, *17*, 498–503.
- 1011 (80) Castillo, J.; et al. Study of the aggregation and adsorption of 1012 asphaltene sub-fractions A1 and A2 by white light interferometry: 1013 Importance of A1 sub-fraction in the aggregation process. *Colloids* 1014 *Surf.*, A 2013, 427, 41–46.
- 1015 (81) Fenistein, D.; et al. Viscosimetric and Neutron Scattering Study 1016 of Asphaltene Aggregates in Mixed Toluene/Heptane Solvents. 1017 *Langmuir* **1998**, *14*, 1013–1020.
- 1018 (82) Spiecker, P. M.; Kilpatrick, P. K. Interfacial Rheology of 1019 Petroleum Asphaltenes at the Oil–Water Interface. *Langmuir* **2004**, 1020 20, 4022–4032.
- 1021 (83) Jestin, J.; Simon, S.; Zupancic, L.; Barré, L. A Small Angle 1022 Neutron Scattering Study of the Adsorbed Asphaltene Layer in 1023 Water-in-Hydrocarbon Emulsions: Structural Description Related to 1024 Stability. *Langmuir* **2007**, *23*, 10471–10478.