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Delayed ionization and excitation dynamics in a filament wake channel in a dense-gas medium
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A unified theoretical description is developed for the formation of an ionized filament channel in a dense-
gas medium and the evolution of electronic degrees of freedom in this channel in the laser pulse wake, as
illustrated in an example of high-pressure argon. During the laser pulse, the emerging free electrons gain energy
via inverse Bremsstrahlung on neutral atoms, enabling impact ionization and extensive collisional excitation of
the atoms. A kinetic model of these processes produces the radial density distributions in the immediate wake
of the laser pulse. After the pulse, the thermalized electron gas drives the system evolution via impact ionization
(from the ground and excited states) and collisional excitation of the residual neutral atoms, while the excited
atoms are engaged in Penning ionization. The interplay of these three processes determines the electron-gas
cooling dynamics. The local imbalance of the free-electron and ion densities induces a transient radial electric
field, which depends critically on the electron temperature. The evolving radial profiles of the electron, ion, and
excited-atom densities, as well as the profiles of electron temperature and induced electric field, are obtained
by solving the system of diffusion-reaction equations numerically. All these characteristics evolve with two
characteristic time scales, and allow for measuring the electronic stage of the wake-channel evolution via linear
and nonlinear light-scattering experiments.
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I. INTRODUCTION

Laser filamentation in gases has become an area of intense
investigation [1–7] due in a large part to the possibilities of
controlling physical and chemical processes the filament en-
ables in its wake channel [8–11]. The wake-channel evolution
includes several processes, which involve electronic and then
nuclear degrees of freedom [11–13] and proceed at hierar-
chical time scales. First, the free-electron gas is thermalized
on a subpicosecond time scale. Then, the hot electron gas
actively exchanges energy with the remaining neutral atoms
or molecules in the channel; this stage takes from tens to hun-
dreds of picoseconds, depending on circumstances [14–16].
Then, recombination and possible chemical processes occur
on a nanosecond time scale. Finally, the excess energy is
transferred to gas dynamics, which leads to formation of a
gas density hole on the microsecond to millisecond time scale
[11,17,18]. Given a typical kilohertz repetition rate of the laser
pulses, these latter processes may well create an altered steady
state of the medium [19,20]. Note, however, that the effect of
these longer hydrodynamic and heat-conduction processes is
predicated on the evolution of the hot electron gas generated
by ionization during the filamenting laser pulse.

Strong-field ionization of the medium is an inherent feature
of the filamentation process, as the emerging electron gas
provides a negative contribution to the refractive index that
balances the Kerr self-focusing [4,6] and thus prevents the
laser beam collapse. Once generated in the filament, the
partially ionized plasma left in the wake of the laser pulse
is open to various pump-probe experiments and applications,

including backward lasing, four-wave mixing, microwave di-
agnostics, and Rabi sideband generation [10,14,21,22].

Various experimental approaches have been used to inves-
tigate the evolution of free-electron density in the filament
wake, including longitudinal diffraction of a probe beam
[23,24], Rayleigh microwave scattering [25], and wave-front
folding interferometry [26–28]. The entangled dynamics of
the electron density and the electron temperature has been
also traced indirectly using four-wave mixing in BoxCARS
geometry [14,15,29]. In some cases (notably, in argon gas) the
electron density and temperature dynamics is also reflected on
the dynamic Rabi sidebands related to the manifold of excited
states [22,30].

In typical atmospheric filaments, the free-electron density
is rather low, because the ionization rate is stabilized by the
mentioned plasma defocusing (so-called intensity clamping
[31]), so that only about 0.1% of the gas molecules become
ionized. The degree of ionization, however, can be consid-
erably increased in special experimental settings. Thus, in
the so-called igniter-heater scheme, the filamenting pulse is
accompanied by a second laser pulse of nanosecond du-
ration, which allows one to greatly increase the electron
concentration through an avalanche ionization and to make
this concentration amenable to control [32–35]. Another ap-
proach is to use filamentation of longer (picosecond) pulses
at midinfrared and long-wave infrared wavelengths rather
than the widely used 800-nm laser pulses [36–38]. In this
case, avalanche ionization becomes significant already during
the filamenting pulse and may result in a considerable ion
concentration. The third approach to obtaining controllable,
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high-electron-density wake channels is to use prefocused laser
beams, which have been shown [14,22,23,39] to produce
microfilaments of <30 μm in diameter and <1 cm in length,
with free-electron density reaching 1018 − 1019 cm−3. Finally,
when filamentation of a standard (800-nm) laser pulse oc-
curs in high-density gases, it also engages secondary impact
ionization by the driven electrons. Although not reaching an
avalanche scale, this impact ionization plays a significant role,
overriding the effect of intensity clamping [16,40].

In this paper, we address the case of high-density gases. As
in this situation collisional processes play a decisive role both
during the laser pulse and during the wake-channel evolution,
it becomes possible to devise a unified description of these
two distinct stages of the medium transformation effected by
the filamenting pulse. In our description, we will refer to
experimental realization of dense-gas filamentation in argon at
the pressure of 60 atm [16]. This high-pressure filamentation
regime is important in a number of applications, such as
generation of warm dense plasmas [41], supercontinuum gen-
eration [42–44], and efficient ultrahigh harmonic generation
[45,46].

One major difference from the atmospheric-pressure gases
[47] is that in a high-pressure gas the electrons released by
strong-field ionization will undergo multiple collisions with
neighboring neutral atoms over the duration of the laser pulse,
as they are forcefully driven by the oscillating laser field. In
this situation, collisional excitation of the constituent atoms or
molecules is as important as their impact ionization and may
often lead to a preponderance of excited atoms over ionized
atoms at the end of the filamenting pulse [40].

After the laser pulse, the combination of the large con-
centration of excited atoms and high gas density makes an
additional phenomenon actively engaged in the wake-channel
evolution: Penning ionization [16]. This ionization mecha-
nism involves interaction of two excited atoms, which results
in deexcitation of one of them and ionization of the other,
with the emerging free electron receiving considerable kinetic
energy. While in typical gas-discharge regime the character-
istic times of Penning ionization lie in the microsecond range
[48], the conditions in the dense-gas filament wake channel
shift this characteristic time into the subnanosecond range and
make this process a major actor in the channel evolution [16].

We will trace the dense-gas medium transformation start-
ing with the arrival of an intense laser pulse, through the for-
mation of inhomogeneous excited mixture of free electrons,
ions, and excited neutral atoms. The subsequent evolution of
the electronic degrees of freedom in the pulse wake results
in observable outcomes including electron, ion, and excited-
atom density distributions as functions of time, as well as the
distributions of electron temperature. There is also a consider-
able radial electric field induced by the local mismatch of the
electron and ion densities.

The paper is organized as follows. In Sec. II, we develop
a unified description of dense-gas medium excitation dur-
ing an intense laser pulse (Sec. II A) and evolution of the
electronic degrees of freedom in the pulse wake (Sec. II B),
both processes being largely affected by electron collisions
with neutral atoms. In Sec. III, we develop simplifying ap-
proximations to the wake-channel equations and present nu-
merical solutions for the evolution of the densities, electron

temperature, and the radial electric-field distributions. We
then draw conclusions and briefly discuss the implications of
our findings in Sec. IV.

II. MODEL

Enacted by an intense, femtosecond laser pulse, the trans-
formation of a dense-gas medium comprises two distinct
stages. First, during the pulse, buildup of the ionized atoms,
excited neutral atoms, and nonequilibrium energetic electrons
occurs. Then, when the pulse is over, this system evolves,
forming the filament wake channel. Thus, the outcome of the
first stage sets the initial conditions for the second stage.

A. Ionization and excitation during the laser pulse

During the femtosecond laser pulse, the kinetics of the
emerging electron gas is essentially local and consists of three
major processes: (i) energy gain via inverse Bremsstrahlung;
(ii) impact excitation of neutral atoms, which is associated
with energy loss by the free electrons; and (iii) impact ion-
ization, which is associated with both the energy loss by free
electrons and the generation of new free electrons.

As the number of free electrons is not conserved, we trace
this kinetics not in terms of the distribution function but
rather in terms of the local density of occupied energy states,
n(ε, r, t ), where ε is the electron-state energy, r is the position
vector, and t is time, so that the instantaneous local electron
number density is n(r, t ) = ∫ ∞

0 dε n(ε, r, t ) and the istanta-
neous local energy density deposited in the electron gas is
E (r, t ) = ∫ ∞

0 dε ε n(ε, r, t ). The linearly polarized laser field
exerts a force on a free electron, F(r, t ) = ε̂eE0s(r, t ) cos(ωt ),
where ε̂ is the laser polarization vector, E0 is the laser field
amplitude, and s(r, t ) is the dimensionless pulse envelope
function. The laser carrier frequency ω is assumed to be
greater than the elastic scattering rate of the electrons with
neutral atoms, which in turn is greater than the inverse of the
pulse duration T. Given these approximations, the laser-cycle
averaged equation for the evolution of n(ε, r, t ) is obtained
from Boltzmann’s kinetic equation in the form [40]

∂n

∂t
= 4

3

√
2

m
n0σ0Ups

2(t )
∂

∂ε

[√
ε

(
ε
∂n

∂ε
− 1

2
n

)]
+ ∂n

∂t

∣∣∣∣
ex

+ ∂n

∂t

∣∣∣∣
ion

+ g(ε)W (t ), (1)

where Up = (eE0)2/(4mω2) is the ponderomotive potential,
W (t ) is the rate of strong-field ionization by the laser pulse,
and it is taken into account that in the energy range of interest
the transport elastic-scattering cross section is approximately
constant, σtr (ε) ≈ σ0 = 10−15 cm2 [49].

In the right-hand side of Eq. (1) the first term is of Fokker-
Plank-type describing the inverse Bremsstrahlung process due
to electron elastic scattering on neutral atoms. This process
can be seen as an effective diffusion of the electron density
along the energy coordinate, with a time-dependent effective
diffusion coefficient.

The second term in the right-hand side describes the
process of collisional excitation, when a free electron
promotes a neutral atom to an excited state with the
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excitation energy εex and loses an equivalent amount
of kinetic energy: (∂n/∂t )|ex = −νex(ε)n(ε, t )�(ε − εex) +
νex(ε + εex)n(ε + εex, t ), where the two terms correspond to
the loss and gain in the electron population of the energy
state ε. The collisional excitation rate νex(ε) is determined
by the concentration of the neutral atoms n0, the electron ve-
locity

√
2ε/m, and the energy-dependent total excitation cross

section σex(ε), in the standard way: νex(ε) = n0σex(ε)
√
2ε/m.

We restrict our model with one representative excited state
having the excitation energy of εex = 11.8 eV, use for σex(ε)
the semiempirical formula of Ref. [50], and obtain

νex(ε) = 1.40πn0a
2
B

√
2ε

m

(
Ry

εex

)2(
εex

ε

)0.75(
1 − εex

ε

)2

�(ε − εex). (2)

As a function of energy, νex(ε) has a threshold at ε = εex
and rises according to a power law in the vicinity of this
threshold.

The third term in the right-hand side of Eq. (1) describes
the effects of impact ionization processes and is constructed
in a way similar to the second term:

∂n

∂t

∣∣∣∣
ion

= −νion(ε)n(ε, r, t )�(ε − εion ) + νion(ε + εion )

× n(ε + εion, r, t ) + g(ε)
∫ ∞

εion

dε νion(ε)n(ε, r, t ),

(3)

where νion(ε) = n0σion(ε)
√
2ε/m is the impact ionization rate,

εion is the ionization energy, and σion(ε) is the energy-
dependent total ionization cross section, for which we use
the celebrated semiempirical Lotz formula [51]. Although
generally the cross section is given by the sum of subshell
contributions, for Ar and for the electron energies in question
it is sufficient to consider only the uppermost shell. As a
result,

νion(ε) = 4.896πn0a
2
B

√
2ε

m

Ry2

εionε

[
1 − b exp

(
−c

ε − εion

εion

)]

× ln

(
ε

εion

)
�(ε − εion ), (4)

where b = 0.62 and c = 0.40 are the empirical constants, and
the ionization energy is εion = 15.76 eV. The function νion(ε)
has a threshold at εion, and then rises sharply throughout the
pertinent energy range. The last term in the right-hand side
of Eq. (3) accounts for new free electrons emerging from the
impact ionization. These secondary electrons emerge with low
kinetic energy, but upon the first cycle of laser-field acceler-
ation and elastic scattering they acquire some initial energy
distribution, which is modeled by an auxiliary function, g(ε).
The specific form of this function is of no particular impor-
tance; we have chosen g(ε) = Cmμεm{1 − tanh[μ(ε −Up)]},
where m and μ are adjustable parameters and Cmμ is the
normalization constant.

The local density of the excited atoms, nex(r, t ),
grows by the acts of collisional excitation, dnex/dt =∫ ∞
εex

dε νex(ε)n(ε, r, t ). Likewise, the local ion density,
nion(r, t ), grows in step with the total number of free elec-

FIG. 1. The difference between the collisional excitation rate
and the impact ionization rate as a function of the electron energy,
ν0 = πn0a2B(Ry/εion )

2
√
2εion/m.

trons: dnion/dt = ∫ ∞
εion

dε νion(ε)n(ε, r, t ). The outcome of the
competition between impact ionization and collisional exci-
tation depends on the relative values and functional depen-
dencies of νex(ε) and νion(ε). The function νion(ε) determined
by Eq. (4) rises faster and eventually overcomes the function
νex(ε) determined by Eq. (2). However, νex(ε) has an earlier
onset, and thus there is a window of electron energies in which
the collisional excitation is preferable to the impact ionization,
as seen in Fig. 1, where the difference between νex(ε) and
νion(ε) is referred to as ν0 = πn0a2B(Ry/εion )

2√2εion/m and is
shown as a function of ε/εion. As the energy-gaining electron
gas has to cross this window, a relatively large concentration
of excited atoms may be expected by the end of the pulse.

Solving Eq. (1), one obtains n(r, t ), nex(r, t ), and nion(r, t ).
These functions assume some final spatial form at the end of
the laser pulse, t = t f , and these spatial distributions serve
as the initial conditions for the forthcoming wake-channel
evolution. Likewise, the final form of the energy density dis-
tribution, E (r, t f ), determines the electron temperature profile
upon thermalization in the pulse wake, T (r) = (2/3)〈ε〉 =
(2/3)E (r, t f )/n(r, t f ).

B. Evolution of electronic degrees of freedom
in the wake channel

During the subnanosecond period of the energy redistribu-
tion among the electronic degrees of freedom in the filament
wake channel, the motion of ions and neutral atoms on the
scale of the wake-channel diameter can be safely neglected,
as well as the changes in the temperature of these heavy
particles. Thus, the instantaneous state of the channel is deter-
mined by the following distributions: the local free-electron
density n(r, t ), the local electron temperature T (r, t ), the
ensemble-average (hydrodynamic) velocity of the electron
gas u(r, t ), the ion density ni(r, t ), and the densities of the
neutral atoms in the excited state, nex(r, t ), and in the ground
state, ngs(r, t ) = n0 − nex(r, t ) − ni(r, t ), where n0 is the ini-
tial homogeneous atomic density. These functions are related
among themselves via the processes of impact excitation and
impact ionization, and the equations describing the concerted
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evolution of these functions results from averaging the kinetic
equation with the coordinate part taken into account.

The electron density evolution is described by
the continuity-generation equation ∂n/∂t + ∇(nu) =
Ggs(n, ngs,T )+Gex(n, nex,T )+GP(nex), where Ggs(n, ngs,T )
and Gex(n, nex,T ) are the rates of free-electron generation
from the ground-state neutral atoms and the excited-state
neutral atoms, respectively, via impact ionization by the hot
electrons, and GP(nex) is the rate of the Penning ionization.
The two impact-ionization rates are proportional to the density
of the incident electrons n and to the respective densities of
the ground-state neutral atoms ngs, and the excited-state
neutral atoms nex, so that Ggs(n, ngs,T ) = γig(T )n ngs and

Gex(n, nex,T ) = γie(T )n nex, where γig(T ) and γie(T ) are
the rate coefficients that depend on the electron temperature.
In contrast, the rate of Penning ionization is quadratic in
the excited-atom density and independent of the electron
temperature: GP(nex) = γP nex2. The evolution of ni(r, t ),
ngs(r, t ), and nex(r, t ) is determined by the same ionization
processes and additionally by the process of impact
excitation, whose rate, Pex = Pex(n, ngs, nex,T ), is likewise
the product of the free-electron density, the ground-state
atom density, and the impact-excitation coefficient:
Pex = νex(T )n ngs. Having excluded ngs(r, t ), the set of
density-evolution equations for n(r, t ), ni(r, t ), and nex(r, t )
reads

∂n

∂t
+ ∇(nu) = n{γig(T ) (n0 − ni ) + [γie(T ) − γig(T )] nex} + γP nex

2,

∂ni
∂t

= n{γig(T ) (n0 − ni ) + [γie(T ) − γig(T )] nex} + γP nex
2,

∂nex
∂t

= n{νex(T ) (n0 − ni ) − [γie(T ) + νex(T )] nex} − γP nex
2.

(5)

In turn, u(r, t ) and T (r, t ) are determined by the gas-dynamic momentum equation and the energy-balance equation. When
the ionization and excitation processes are taken into account, these equations read

n

(
∂u
∂t

+ (u∇)u
)

= − 1

m
∇(nT ) + e

m
En − u[Ggs(n, ngs,T ) + Gex(n, nex,T ) + GP(nex)] − νnu,

n

(
∂

∂t
+ (u∇)

)(
3

2
T

)
+ nT (∇u) − ∇(κ∇T ) = −Ggsεion − Gex(εion − εex) − Pexεex + GP(2εex − εion )

− (Ggs + Gex + GP )

(
3

2
T − mu2

2

)
− νn

mu2

2
, (6)

where ν = ν(n, ni, ngs, nex,T ) is the total elastic collision rate
of electrons on ions and neutral atoms. In the right-hand
side of the first equation in Eq. (6), the first term is actually
the pressure gradient, the second is the volume force, the
third signifies that the free electrons are generated with zero
velocity, and the last term represents the effective friction of
the electron gas against ions and neutral atoms (the viscose
forces are neglected). In the second equation in Eq. (6), κ =
κ (n, ni, ngs, nex,T ) is the coefficient of thermal conductivity
in the electron gas. The second line accounts for the energy
spent by the electron gas on the impact ionization and colli-
sional excitation, as well as for the energy gain from Penning
ionization. Specifically, one single act of impact ionization
of a ground-state atom takes εion of the electron-gas energy,
an act of impact ionization of an excited atom takes only
εion − εex of energy, and an act of Penning ionization adds
2εex − εion to the energy pool. Finally, the local electric field
E(r, t ), which acts in the right-hand side of the first equation
in Eq. (6), is linked to the electron and ion densities via the
Poisson equation, ∇E = 4πe[n(r, t ) − ni(r, t )].

In what follows, we use the phenomenological relation for
the thermal conductivity coefficient, κ = (3nT )/(2mν ), and
we neglect terms that are quadratic in u, based on the fact that
(mu2/2) � T . Then, in the cylindrical coordinates associated
with the filament channel, the total system of equations takes

the following form:

∂n

∂t
+ 1

r

∂

∂r
(rnu)

= n[γig (n0 − ni ) + (γie − γig) nex] + γP nex
2, (7)

∂u

∂t
= − 1

mn

∂

∂r
(nT ) + e

m
E − u

(
γig (n0 − ni )

+ (γie − γig) nex + ν + γP
nex2

n

)
, (8)

∂T

∂t
+ u

∂T

∂r
+ 2

3

T

r

∂

∂r
(ru) − 1

mnr

∂

∂r

(
r
nT

ν

∂T

∂r

)

= −
[
γig

(
T + 2

3
εion

)
+ 2

3
νexεex

]
(n0 − ni )

−
[
(γie − γig)

(
T + 2

3
εion

)
− 2

3
(νex + γie )εex

]
nex

−γP
nex2

n

(
T + 2

3
(εion − 2εex)

)
, (9)

1

r

∂

∂r
(rE ) = −4πe(n − ni ), (10)
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∂ni
∂t

= n[γig(n0 − ni ) + (γie − γig) nex] + γP nex
2, (11)

∂nex
∂t

= n[νex (n0 − ni ) − (γie + νex) nex] + γP nex
2. (12)

In these equations, the temperature-dependent coefficients
γig(T ), γie(T ), and νex(T ) are obtained by averaging the rates
given by Eqs. (4) and (2) over the thermal distribution of free
electrons.

It is convenient to cast Eqs. (7)–(12) in a dimensionless
form, using the ionization potential εion as the characteristic
energy scale. The dimensionless temperature is thus deter-
mined as T̃ = T /εion and the dimensionless excitation energy
as ε̃ex = εex/εion. Then, the thermal averaging of Eq. (4)
results in γig = �gγ̃ig(T̃ ), where

�g = 9.79π2(Ry/h̄)aB
3[2Ry/(π Ip)]

3/2 and

γ̃ig = − 1√
T̃

[
Ei

(
− 1

T̃

)
− b̃g

1 + cgT̃
Ei

(
−1 + cgT̃

T̃

)]
(13)

is a dimensionless function of dimensionless variable T̃ , with
b̃g = bg exp(cg) ≈ 0.9249 and Ei(z) being the exponential
integral function [52]. Similarly, the rate coefficient for the
impact ionization of an excited-state atom is γie = (7/8)γig +
(1/8)γiplus, with γiplus = �exγ̃iplus, where �ex ≈ �g/(1 − ε̃ex)
and

γ̃iplus = − 1√
T̃

[
Ei

(
−1 − ε̃ex

T̃

)
− b̃ex(1 − ε̃ex)

1 − ε̃ex + cexT̃

× Ei

(
−1 − ε̃ex + cexT̃

T̃

)]
(14)

with b̃ex = bex exp(cex) and ε̃ex = εex/εion. The thermal av-
eraging of Eq. (2) results in the impact excitation rate
coefficient νex = �exν̃ex(T̃ ), where �ex = 2.80π2(Ry/h̄)aB3

[2Ry/(πεion )]3/2 and

ν̃ex = 1

(ε̃ex)3/2

(
ε̃ex

T̃

)3/8
e−ε̃ex

/
2T̃W−15/8,−5/8

(
ε̃ex

T̃

)
, (15)

whereWμ,ν (z) is the Whittaker function [52].
Further, we use the initial density of neutral atoms, n0,

as the concentration scale, and thus the dimensionless den-
sities of ions, excited atoms, and electrons are ñi = ni/n0,
ñex = nex/n0, and ñ = n/n0, respectively. Then, the elastic
scattering rate is presented as ν = �νν̃(T̃ , ñ, ñi ), where �ν =
π (Ry/h̄)

√
α(n0a30)(aB/a0)

3/2 with a0 = √
σ0/π = 1.784 ×

10−8 cm, and ν̃(T̃ , ñ, ñi ) is a function of the dimensionless
variables,

ν̃ =
√
T̃

[
(1 − ñi ) + 1

2πα2

ñi
T̃ 2

ln

(
α3

36πn0a30

T̃ 3

ñ

)]
. (16)

In this expression, the first term corresponds to the scat-
tering on neutral atoms, and the second term corresponds to
long-range Coulombic scattering on ions.

Then, we choose the formal laser beam radius, r0 =
10 μm, as the scale of the radial coordinate, so that r = r0r̃.
The electron velocity scale u0 comes about as u0 = √

εion/m
and gives the time scale, t0 = r0/u0 = r0

√
m/εion ≈ 5.998 ps.

The electric-field scale E0 is the field magnitude that provides
the electron energy shift of εion over the distance of r0 : E0 =
εion/(er0) = 1.58 × 106 V/m. In the dimensionless form, the
system of equations reads

∂ ñ

∂ t̃
+ 1

r̃

∂

∂ r̃
(r̃ñũ) = λñ

(
γ̃ig (1 − ñi ) + 1

8
(μγ̃iplus − γ̃ig) ñex

)
+ λγ̃P ñ2ex, (17)

∂ ũ

∂ t̃
= −1

ñ

∂

∂ r̃
(ñT̃ ) + Ẽ − λũ

(
γ̃ig (1 − ñi ) + 1

8
(μγ̃iplus − γ̃ig) ñex + γ̃P

ñ2ex
ñ

)
− ην̃ũ, (18)

∂T̃

∂ t̃
+ ũ

∂T̃

∂ r̃
+ 2

3

T̃

r̃

∂

∂ r̃
(r̃ũ) − 1

η

1

ñr̃

∂

∂ r̃

(
r̃
ñT̃

ν̃

∂T̃

∂ r̃

)

= −λ

[
γ̃ig

(
T̃ + 2

3

)
+ 2

3
δν̃exε̃ex

]
(1 − ñi ) − λ

[
1

8
(μγ̃iplus − γ̃ig)

(
T̃ + 2

3

)
− 2

3

(
δν̃ex + 7

8
γ̃ig + 1

8
μγ̃iplus

)
ε̃ex

− γ̃P
ñex
ñ

(
T̃ + 2

3
(1 − 2ε̃ex)

)]
ñex, (19)

1

r̃

∂

∂ r̃
(r̃Ẽ ) = −ξ (ñ − ñi ), (20)

∂ ñi
∂ t̃

= λñ

(
γ̃ig (1 − ñi ) + 1

8
(μγ̃iplus − γ̃ig) ñex

)
+ λγ̃P ñ2ex, (21)

∂ ñex
∂ t̃

= λñ

[
δν̃ex (1 − ñi ) −

(
7

8
γ̃ig + 1

8
μγ̃iplus + δν̃ex

)
ñex

]
− λγ̃P ñ2ex, (22)

with the expressions for the dimensionless constants

α = εion

Ry

a0
aB

; ξ = 4π
e2r02n0

εion
; λ = �gn0t0; η = �νt0;

μ = ãex
ãig(1 − ε̃ex)

; δ = 2.80π

ãig
. (23)
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The numerical values of the constants defined in Eq. (23)
are found to be α = 1.95; λ = 2835; η = 1439.7; ξ = 2069 ×
104; δ ≈ 0.745; μ = 3.98.

III. APPROXIMATIONS AND NUMERICAL SOLUTION

The parameter ξ � 1 allows one to use the following
approach, which breaks the wake-channel evolution into two
distinct stages: First, from Eqs. (21), (17), and (20) it follows
that

∂Ẽ

∂ t̃
= ξ ñũ. (24)

Then, Eq. (18) is recast as

∂2Ẽ

∂ t̃2
+ ην̃

∂Ẽ

∂ t̃
− ξ ñẼ = −ξ

∂

∂ r̃

(
ñT̃

) − 1

ξ

1

ñr̃

∂Ẽ

∂ t̃

∂

∂ r̃

(
r̃
∂Ẽ

∂ t̃

)
.

(25)

As ξ � 1, the last term in the right-hand side of this
equation can be neglected, and the first term considered as
virtually time independent. Then, the fast initial evolution of
Ẽ is easily found as

Ẽ (t̃ ) ≈ 1

ñ

∂

∂ r̃

(
ñT̃

)
[1 − exp(−β t̃ )], (26)

where β = −(ην̃/2) −
√
(ην̃/2)2 + ξ ñ, being a large param-

eter, justifies the approximation. For t̃ > 1/β, the function
Ẽ (t̃ ) assumes its slower pace, and at the second stage of the
evolution,

Ẽ ≈ 1

ñ

∂

∂ r̃
(ñT̃ ) ≈ 1

ñi

∂

∂ r̃
(ñiT̃ ). (27)

Then, at this slower evolution stage, from Eq. (20) we have

ñ − ñi ≈ 1

ξ r̃

∂

∂ r̃

(
r̃

ñi

∂

∂ r̃
(ñiT̃ )

)
. (28)

The physical meaning of Eqs. (27) and (28) is that the
electron distribution is slightly wider than the ion distribu-
tion, because of the high electron temperature, and this local
charge-density disbalance induces the radial electric field
directed outward from the channel axis. The dimensionless
radial velocity of the electron gas is obtained from Eq. (24) as

ũ = − 1

ξ ñi

∂

∂ t̃

(
1

ñi

∂

∂ r̃

(
ñiT̃

))
. (29)

As seen, this average electron velocity has indeed a negli-
gibly small value, ∼1/ξ .

We substitute (ñ − ñi ) from Eq. (28) and ũ from Eq. (29)
in Eq. (19) and neglect the terms on the order of 1/ξ 2. In this
way, the equation for the electron temperature is obtained as

∂T̃

∂ t̃
= 1

ξ

1

ñi

1

r̃

∂

∂ r̃

(
r̃
ñiT̃

ν̃

∂T̃

∂ r̃

)
−

[
γ̃ig

(
T̃ + 2

3

)
+ 2

3
δν̃exε̃ex

]
(1 − ñi ) −

[
1

8
(μγ̃iplus − γ̃ig)

(
T̃ + 2

3

)

− 2

3

(
δν̃ex + 7

8
γ̃ig + 1

8
μγ̃iplus

)
ε̃ex − γ̃P

ñex
ñi

(
T̃ + 2

3
− 4

3
ε̃ex

)]
ñex + T̃

ξ

{
1

ην̃

∂T̃

∂ r̃

∂

∂ r̃

[
1

r̃ñi

∂

∂ r̃

(
r̃

ñi

∂

∂ r̃
(ñiT̃ )

)]

+ 1

ñi

(
1

T̃

∂T̃

∂ r̃
+ 2

3r̃

)
∂

∂ t̃

(
1

ñi

∂

∂ r̃

(
ñiT̃

)) +2

3

∂

∂ r̃

[
1

ñi

∂

∂ t̃

(
1

ñi

∂

∂ r̃

(
ñiT̃

))]}
. (30)

In this equation, all the terms in the third and the fourth
lines are on the order of 1/ξ and thus constitute small correc-
tions. Last, we explicitly separate the 1/ξ -order corrections in
the equations for the local concentrations of the ions and the
excited atoms:

∂ ñi
∂ t̃

≈ λñi

(
γ̃ig (1 − ñi ) + 1

8
(μγ̃iplus − γ̃ig) ñex

)
+ λγ̃P ñ2ex

+ λ

ξ

(
γ̃ig (1 − ñi ) + 1

8
(μγ̃iplus − γ̃ig) ñex

)
1

r̃

× ∂

∂ r̃

(
r̃

ñi

∂

∂ r̃
(ñiT̃ )

)
(31)

and

∂ ñex
∂ t̃

≈ λñi

[
δν̃ex (1 − ñi ) −

(
7

8
γ̃ig + 1

8
μγ̃iplus + δν̃ex

)
ñex

]

− λγ̃P ñ2ex + λ

ξ

[
δν̃ex (1 − ñi ) −

(
7

8
γ̃ig + 1

8
μγ̃iplus

+ δν̃ex

)
ñex

]
1

r̃

∂

∂ r̃

(
r̃

ñi

∂

∂ r̃
(ñiT̃ )

)
. (32)

Thus, in the first approximation, the evolving distributions
of the ion concentration, the excited-atom concentration, and
the electron temperature are determined by the system of
coupled “diffusion-reaction” equations, which consists of the
first line in Eq. (31), the first line in Eq. (32), and the first
two lines in Eq. (30). In this approximation, the hydrodynamic
velocity of the electron gas is negligible, and the radial electric
field is expressed by Eq. (27). The corrections on the order of
1/ξ can be found by substituting the obtained T (r, t ), ni(r, t ),
and nex(r, t ) in the remaining terms in Eqs. (30)–(32), as well
as in the right-hand sides of Eqs. (28) and (29), and using these
as the source terms.

As was mentioned earlier, the initial distributions of T (r),
ni(r), and nex(r) at the onset of the wake-channel evolution are
obtained by solving Eq. (1) for the buildup of inhomogeneous
excited state of the dense-gas medium during the laser pulse.
The combination of partial-derivative terms, finite-difference
terms, and an integral term in the right-hand side of this
equation requires a specially tailored ad hoc approach to
the numerical solution of this equation [40]. We have im-
plemented an approach similar to that developed previously
for delayed differential equations [53]. To mimic typical ex-
perimental conditions [16], the dense-gas medium is assumed
to be argon at the pressure of 60 atm and room temperature.
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FIG. 2. Radial concentration profiles of the ionized (magenta
curve) and excited (blue curve) atoms in the filament channel in
the immediate pulse wake. The beam intensity profile is shown
as the gray line for comparison. Inset: evolution of the ionic and
excited-atom concentrations on the channel axes during the laser
pulse, whose envelope is shown as the grey line.

The laser pulse of 7×1013 W/cm2 intensity and 800-nm car-
rier wavelength is modeled by the envelope function with
the radial Gaussian profile and cosine-squared temporal pro-
file, s(r, t ) = cos2[(π/τ )(t −τ/2)]�(t )�(t − τ ) exp(−r2/r20 ),
with τ = 80 fs, which corresponds to the pulse full width at
half maximum of 40 fs, and with the beam radius of r0 =
10μm. We use the Ammosov-Delone-Krainov formula [54]
for the strong-field ionization rate W (t ), and solve Eq. (1)
numerically for the evolution of the local electron energy dis-
tribution n(r, ε, t ) and the corresponding density distributions
of the ions, ni(r, t ), and the excited atoms, nex(r, t ), during
the laser pulse. The distribution of average electron energy
is then found as 〈ε〉 = ∫ ∞

0 dε ε n(ε, r, t )/
∫ ∞
0 dε n(ε, r, t ), de-

termining the radial profile of electron temperature, T (r) =
(2/3)〈ε〉, which is established in the immediate wake of the
pulse.

Figure 2 shows the radial profiles of the ion density, ni(r),
and the density of excited atoms, nex(r), after the end of the
laser pulse. The inset shows how these densities have been
evolving during the laser pulse on the axis of the filament
channel. As seen in the inset, the initial surge of ionic density
near the middle of the pulse is soon overcome by the steady
growth of the excited-atom density, so that by the end of the
pulse the concentration of the excited atoms at the channel
axis is about three times greater than the concentration of
ions. This disparity in the final concentrations persists across
the channel, although the nex/nion ratio becomes smaller away
from the channel axis. This prevalence of the excitation over
ionization reflects the differences in the dependencies of the
respective cross sections on the electron energy as discussed
in the previous section.

Figure 3 shows the radial profile of the effective electron
temperature, T (r), after the pulse, and the inset shows the
evolution of the average electron energy during the pulse at the

FIG. 3. Radial profile of the electron temperature (in the units
of Ip) upon thermalization in the immediate pulse wake. The radial
intensity profile of the laser beam is shown for comparison as the
gray line. The inset shows evolution of the average electron energy
during the pulse.

channel axis. As seen in the inset, initially the average energy
grows on the order of 20 fs, being effectively supplied by the
inverse Bremsstrahlung. However, as the laser pulse subsides,
the average energy decreases considerably, reflecting the en-
ergy consumption by the impact excitation and ionization
processes. The resulting electron temperature profile is wider
than that of the laser pulse. However, when compared to the
profiles in Fig. 2, the wider region corresponds to low electron
density and thus contains a very small amount of excess
energy to be utilized in the after-pulse evolution of the system.

The obtained distributions nex(r), nion(r), and T (r) set the
stage for the filament channel evolution in the wake of the
laser pulse. We explored this evolution by numerically solving
the system of equations (30)–(32) and then reconstructing the
electric field profile via Eq. (27). The resulting patterns of the
concerted evolution of the ionic density and the excited-atom
density are shown in Fig. 4. As seen in the figure, the evolution
of the excited-atom density mirrors the evolution of the ion
density, so during the entire process the increase in the ionic
density is coming mostly at the expense of the decreasing
density of excited atoms. Thus, a supply of new ions in the
channel is mediated by excited atoms. Further, the evolution
of both densities involves two distinct stages: the initial fast
evolution during about 3 ps is followed by a slower process
taking about 30 ps.

The ionization dynamics of the wake channel is reflected
in its linear and nonlinear optical characteristics. In particular,
the growth of the free-electron density leads to an increase
in the negative contribution to the refractive index of the
medium, which directly manifests itself in the phase shift
of the probe beam upon crossing the channel, as was ob-
served in Ref. [16]. It is instructive to compare the experi-
mentally observed phase shifts with those predicted on the
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FIG. 4. Evolution patterns of the ionic concentration (upper
panel) and the excited atoms concentration in the filament wake
channel in argon at 60 atm pressure, upon interaction with the laser
pulse of 7×1013 W/cm2 intensity.

basis of our model analysis. In Ref. [16], the phase shift
was measured at three values of the argon gas pressure: 60,
40, and 20 bars, and the parameters of the laser filament
varied accordingly, due to the variation of the critical power
for self-focusing. Using these parameters in our model nu-
merical simulations, we have obtained the time-dependent
electron concentration values ñ(r, t ) in these three cases, and
calculated the expected phase shifts using the approximate
expression, �ϕ(t ) = (kn0/Nc)

∫ ∞
0 dr ñ(r, t ), where k = 2π/λ

is the laser angular wave number and Nc = πmec2/(e2λ2)
is the critical plasma density, λ being the laser wavelength.
These phase shifts as functions of the pump-probe delay time
are presented in Fig. 5. As seen, they agree reasonably well
with the experimental measurements reported in Fig. 2(b) of
Ref. [16], which is reproduced in the inset. One can notice,
however, that the theoretical curves demonstrate a more rapid
increase in the beginning of the wake-channel evolution, as
compared to the experimental ones. This difference may be
related to the appreciable concentration of the excited atoms
in the immediate wake of the laser pulse. The polarizability
of these excited atoms is considerably larger than that of

FIG. 5. Simulated phase shift of the pump pulse crossing the
wake channel as a function of the pump-probe delay. The filament
characteristics are those in Ref. [16]. Inset: experimental measure-
ments of the phase shifts reported in Fig. 2 of Ref. [16].

the neutral atoms, providing a positive contribution to the
refractive index and thus weakening the effect of the initial
electron concentration.

The cause of the two-scale behavior can be seen in Fig. 6,
where a similar behavior is demonstrated by the temperature
distribution. As the coefficients of the impact processes in
Eqs. (13)–(16) do depend appreciably on temperature, ini-
tially, when the temperature is high, the processes go fast
and they rapidly consume the energy of the electron gas. The
longer process is sustained by ongoing Penning ionization
which tends to increase the temperature when releasing the
excess energy of two excited atoms into the kinetic energy of
the emerging electron. The slower evolution process is thus
driven by the tail of electron thermal distribution which is
sustained by the Penning ionization. Another interesting fea-
ture of the electron temperature evolution presented in Fig. 6
is that the temperature distribution develops and maintains a

FIG. 6. The evolution of the electron temperature distribution
in the filament wake channel in argon at 60 atm pressure, upon
interaction with the laser pulse of 7 × 1013 W/cm2 intensity.
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FIG. 7. The evolution of the radial electric field in the filament
wake channel in argon at 60 atm pressure, upon interaction with the
laser pulse of 7×1013 W/cm2 intensity.

nonmonotonic radial profile, so that the temperature peaks not
at the channel axes but at the periphery.

The radial electric field that develops in the channels during
the electronic evolution is caused by a local imbalance of
electron and ion densities and is given in the main approxi-
mation by Eq. (27), thus depending both on the ion density
distribution and the temperature distribution in the channel.
The evolution of this electric field is presented in Fig. 7. As
seen, the mentioned nonmonotonic radial temperature profile
leads to a nonmonotonic radial profile of the electric field with
the peak values on the order of 107 V/m. This considerable
built-in electric field is supposed to factor in the nonlinear
optical response of the channel.

IV. CONCLUSIONS

We have developed a unified theoretical description of
the formation of an ionized filament channel in a dense-gas
medium and the electronic evolution of this channel in the
laser pulse wake. The processes involved are illustrated on
the experimentally important example of filaments produced
by intense, femtosecond 800-nm laser pulses in high-pressure
argon gas.

Unlike the situation with atmospheric-pressure gases, the
ionization and excitation dynamics during the laser pulse are
mainly driven by the inverse Bremsstrahlung of the emerging
free electrons on neutral atoms. This process provides the
energy gain that enables collisional excitation and impact
ionization processes. A kinetic model of these interdependent
processes allows one to obtain the radial density distributions
in the immediate wake of the laser pulse and predicts the
prevalence of excited atoms over ionized atoms.

In the wake of the laser pulse, the thermalized electron gas
drives the system evolution via the impact ionization (from the
ground and from the excited states) and collisional excitation
of the residual ground-state neutral atoms, which processes
are affected by the thermal conduction in the gradually
cooling electron gas. The massively present and continually
supplied excited atoms are actively engaged in the process
of Penning ionization, thus slowing the electron-gas cooling.
During this evolution of the electronic degrees of freedom, the
local imbalance of the free-electron and ion densities creates
and maintains a transient radial electric field on the order of
107 V/m.

For the case of argon at 60 atm pressure interacting with
a laser pulse of 7×1013 W/cm2 intensity, we have solved
numerically the Fokker-Planck–type equations that describe
the energy intake and redistribution during the pulse, when
the electrons are released via strong-field ionization and force-
fully driven by the oscillating laser field, colliding mainly
with neighboring neutral atoms. The outcome radial density
distributions of the free electrons, ions, and excited neutral
atoms at the end of the laser pulse show considerable (about
threefold) prevalence of excited atoms over ionized atoms.
The obtained radial profile of the average electron energy
provides the initial electron temperature distribution upon
thermalization in the immediate wake of the pulse.

The evolution of electronic degrees of freedom in the
filament wake channel is described by a system of coupled
diffusion-reaction equations for the electron density, the ion
density, the density of excited atoms, the electron temperature,
the electron-gas velocity, and the induced radial electric field.
Solving numerically these equations, we have obtained the
evolving radial profiles of all these characteristics of the
wake channel. An important revealed feature of the wake-
channel evolution is that it proceeds with two characteristic
temporal scales. First, the fast evolution takes place within
∼5 ps immediately after the laser pulse. This fast rate is
determined by the initial high concentration of excited atoms
and high electron temperature, and the evolution consists in
fast cooling of the free-electron gas accompanied by extensive
ionization of the excited atoms. Then, the impact processes
assume a slower rate as determined by the lowered electron
temperature, which it turn is sustained by the electron kinetic
energy release in the ongoing Penning ionization; this slower
evolution stage takes about 30 ps. The obtained spatiotem-
poral dependences of electron and excited-atom densities and
the built-in radial electric field should allow for experimental
tracing of the wake-channel evolution via linear and nonlinear
light-scattering experiments.
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