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Abstract

We present a classification of galaxies in the Pan-STARRS1 (PS1) 3π survey based on their recent star formation
history and morphology. Specifically, we train and test two Random Forest (RF) classifiers using photometric
features (colors and moments) from the PS1 data release 2. The labels for the morphological classification are taken
from Huertas-Company et al., while labels for the star formation fraction (SFF) are from the Blanton et al. catalog.
We find that colors provide more predictive accuracy than photometric moments. We morphologically classify
galaxies as either early- or late-type, and our RF model achieves a 78% classification accuracy. Our second model
classifies galaxies as having either a low-to-moderate or high SFF. This model achieves an 89% classification
accuracy. We apply both RF classifiers to the entire PS1 3π dataset, which allows us to assign two scores to each
PS1 source: PHSFF, which quantifies the probability of having a high SFF; and Pspiral, which quantifies the
probability of having a late-type morphology. Finally, as a proof of concept, we apply our classification framework
to supernova (SN) host galaxies from the Zwicky Transient Factory and the Lick Observatory Supernova Search
samples. We show that by selecting PHSFF or Pspiral, it is possible to significantly enhance or suppress the fraction
of core-collapse SNe (or thermonuclear SNe) in the sample with respect to random guessing. This result
demonstrates how contextual information can aid transient classifications at the time of first detection. In the
current era of spectroscopically starved time-domain astronomy, prompt automated classification is paramount.
Our table is available at 10.5281/zenodo.3990545.

Unified Astronomy Thesaurus concepts: Classification (1907); Supernovae (1668); Core-collapse supernovae
(304); Type Ia supernovae (1728); Random Forests (1935)

1. Introduction

The improved sensitivity, cadence, and field of view of recent

and current astronomical transient surveys have led to the

discovery of new types of rare transients that sample the

extremes of the luminosity and timescale parameter space of

cosmic explosions, and have dramatically enhanced our under-

standing of the classes of transients that were already known to

exist. The classes of exotic transients that were recently

discovered include superluminous supernovae (SLSNe, e.g.,

Quimby et al. 2011; Gal-Yam 2019), and fast and blue optical

transients (FBOTs, e.g., Drout et al. 2014; Arcavi et al. 2016;

Shivvers et al. 2016; Tanaka et al. 2016; Pursiainen et al. 2018;

Tampo et al. 2020). Furthermore, astronomical surveys are now

capable of routinely discovering supernovae (SNe) within one

day (or less) of the explosion (e.g., Gal-Yam et al. 2011). Future

surveys such as the Legacy Survey of Space and Time (LSST,

Ivezić et al. 2019), which is carried out on the Vera C. Rubin

Observatory, will drastically increase the discovery rate of new

transients. However, this will make prompt spectroscopic

classification of a sizeable fraction of transients effectively

unfeasible. Indeed, even intrinsically rare events such as SLSNe

are expected to be detected at a rate of ∼104 yr−1
(Villar et al.

2018). It is thus imperative to develop new pathways for prompt

transient classification.
The most common classification methods consist of lever-

aging the transient photometry by using state-of-the-art

machine-learning algorithms. A first generation of photometric
transient classifiers (mostly developed in response to the
Supernova Photometric Classification Challenge, SPCC,
Kessler et al. 2010a, 2010b) can be broadly divided into
empirical template-fitting methods (e.g., Sullivan et al. 2006;
Sako et al. 2008, 2011), and algorithms that rely on the
derivation of (computationally expensive) features from
extended photometry (e.g., Newling et al. 2011; Karpenka
et al. 2013; Lochner et al. 2016; Möller et al. 2016; Narayan
et al. 2018; Sooknunan et al. 2018; Ishida et al. 2019;
Villar et al. 2019). A new generation of transient classifiers that
do not require complete light-curve phase coverage and/or
feature extraction have emerged in the last few years, and
have been applied to transient images (Carrasco-Davis et al.
2019) and SN photometric time series (Charnock &Moss 2017;
Moss 2018; Muthukrishna et al. 2019; Pasquet et al. 2019;
Möller & de Boissière 2020). The advanced non-feature based
neural network architectures that are used in these works
include recurrent neural networks (RNN), and deep neural
networks (DNN). More recently, Muthukrishna et al. (2019)
developed RAPID (Real-time Automated Photometric IDenti-
fication) and tested this RNN-based tool on a PLAsTiCC-based
dataset. In contrast to the other classification schemes, RAPID
employs a deep learning model that is able to promptly classify
different types of transients with very limited light-curve
information and without requiring complete phase coverage.5
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Complementary methods for prompt transient classification
employ contextual information; i.e., the properties of the
galactic environments where transients are discovered (e.g.,
Foley & Mandel 2013 and the sherlock package6). These
methods rely on very well-known correlations between
transient types and their host-galaxy environments (e.g., core-
collapse SNe tend to trace star formation, while SNe Ia occur
both in early-type and late-type host galaxies).

Building on the early results from Foley & Mandel (2013),
which showed that (among other contextual properties) the
host-galaxy morphology has the largest predictive power for
SN typing, we present the classification of all of the galaxies
detected by the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS) 3π survey. We adopt a
random forest (RF) machine-learning approach that leverages
galaxy features to classify the galaxies based on their
morphology (i.e., elliptical/S0 versus spiral) and their star
formation properties. We train and test two supervised
machine-learning RF algorithms, starting from the morpholo-
gical classifications of SDSS galaxies by Huertas-Company
et al. (2011) and the star formation properties from Blanton
et al. (2005) and Blanton & Roweis (2007). We present a
catalog where we provide two scores for each Pan-STARRS
source that quantify the probability of having spiral morph-
ology (Pspiral) and the probability of having a high recent star
formation rate (PHSFF). Finally, as a proof of concept, we use
both scores to classify host galaxies of SNe from the Zwicky
Transient Facility (ZTF) Bright Transient Survey (BTS,
Fremling et al. 2019) and from the Lick Observatory Super-
nova Search (LOSS, Leaman et al. 2011). In addition, we show
how Pspiral and PHSFF correlate with the fraction of core-
collapse SNe (or thermonuclear SNe) in the sample. Our
catalog of Pan-STARRS galaxies classifications will be made
publicly available and can be ingested by transient brokers
(e.g., ALeRCE,7 ANTARES,8 LASAIR,9) that sort, cross-
reference, and value-add streams of alerts from astronomical
surveys. The inferred host-galaxy properties can be used by
recommender engines, such as REFIT (Sravan et al. 2020),
together with the photometric information to promptly inform
decisions on transient follow-up at the time of their first
detection.

This paper is organized as follows. In Section 2, we describe
the datasets used, while in Section 3 we train and test the first
RF model by cross-matching the Pan-STARRS DR2 catalog
with the Huertas-Company et al. (2011) dataset. In Section 4,
we train and test the second RF model by cross-matching the
Pan-STARRS DR2 catalog with the New York University
Value-Added Galaxy Catalog (NYU-VAGC of Blanton et al.
2005; Blanton & Roweis 2007). In Section 5, we apply the
second RF to the entire Pan-STARRS dataset. Finally, in
Section 6 we classify the host galaxies of ZTF and LOSS SNe
by leveraging the results of Section 5. Conclusions are drawn in
Section 7.

2. Description of the Datasets

For our analysis, we use three data catalogs. Specifically, we
utilize the second Pan-STARRS1 (PS1, Chambers et al. 2016)

data release of the 3π survey (PS1-DR2 hereafter), the Huertas-
Company dataset (HC hereafter, Huertas-Company et al.
2011), and the New York University Value-Added Galaxy
Catalog (NYU-VAGC hereafter, Blanton et al. 2005; Blanton
& Roweis 2007). We used the HC, NYU-VAGC and a
subsample of PS1-DR2 to train and test the two RF algorithms
that we will later apply to the entire PS1-DR2 catalog.
PS1 is a system for wide-field astronomical imaging that was

developed at the University of Hawaii and is located on the
island of Maui. PS1 data have been acquired with a 1.8 meter
telescope and a 1.4 Gigapixel camera to capture images of the
sky through five optical filters (gP1 [4866Å], rP1 [6215Å], iP1
[7545Å], zP1 [8679Å], yP1 [9633Å]). Two surveys have been
carried out with the PS1 telescope: the medium deep survey
and the 3π survey (3πS). In this paper, we use data from the
3πS, which covers a larger fraction of the sky. The 3πS covers
the sky north of decl. δ=−30° with the five filters listed
previously, and includes data acquired between 2009 June 2
and 2014 March 31. The maximum depth of the 3πS for the
stack images is ∼23.5 mag for the gP1, rP1, and iP1 filters, while
it is ∼22.5 and ∼21.5 mag for the zP1 and yP1 filters,
respectively. There have been two data releases for the 3πS
(Chambers et al. 2016). Data Releases 1 and 2 (DR1 and DR2)
include stacked images and a database with the photometry of
all the sources detected in 3πS (both extended and point-like).
DR2 also contains forced photometry for each epoch. In this
paper, we use the data from the StackObjectAttributes table
within DR2.10 This table contains the photometric information
(e.g., PSF-flux, Kron-flux) of the stacked data, which is
calculated as described in Magnier et al. (2013). To be included
in this table, a source must be detected with a signal-to-noise
S/N>20 in an individual exposure. Multiple detections are
often made of the same source from subsequent exposures,
which means that there may be multiple photometric entries for
a single source. In Section 3.1 we describe the columns of the
StackObjectAttributes table that we used as features to train our
RF classifiers.
The HC dataset (Huertas-Company et al. 2011) consists of

699,684 galaxies from the SDSS-DR7 spectroscopic sample
(Abazajian et al. 2009) with redshift z�0.25 and observed r-
band magnitude mr�18 mag. Huertas-Company et al. (2011)
provide a morphological classification of the SDSS-DR7
galaxies through a supported-vector-machine (SVM) classifier
(e.g., Hastie et al. 2009), which was trained with a subsample
of 2253 SDSS visually classified galaxies from Fukugita et al.
(2007). The SVM classifier provides a score/probability for a
galaxy to be either elliptical-lenticular (E/S0) or spiral (S). In
the HC catalog, 44% of the S galaxies are red, while only 7% of
the E/S0 are blue.11 We note that the GZ project (Lintott et al.
2008) has released a catalog of morphological classifications of
a large sample of galaxies (e.g., Schawinski et al. 2009; Skibba
et al. 2009; Masters et al. 2010; Willett et al. 2013). In
Appendix B, we discuss the reasoning behind our choice of
using the HC dataset.
The second galaxy catalog is the NYU-VAGC (Blanton

et al. 2005). The NYU-VAGC provides the Star Formation
Fraction (SFF) of 2506754 SDSS-DR2 galaxies (see
Equation (1) for the SFF definition), which is estimated over
the last 300Myr. We use the SFF value to divide the galaxies

6
https://github.com/thespacedoctor/sherlock

7
Smith et al. (2019), http://alerce.science.

8
Saha et al. (2014, 2016), https://antares.noao.edu/.

9
https://lasair.roe.ac.uk

10
StackObjectAttributes table link

11
We followed Equation (1) of Masters et al. (2010) to discriminate between

red and blue galaxies.
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into two classes: galaxies with low-to-moderate SFF, and
galaxies with high SFF. The quantitative details on the two
classes are provided in Section 4. In the following two sections,
we train and test two RF classifiers with these data catalogs
(PS1-DR2, HC and NYU-VAGC).

3. RF Model for Sources in PS1-DR2 Based on the HC
Catalog

In this section, we analyze the PS1-DR2 and HC catalogs.
We start by cross-matching the two catalogs. For each common
source, we retain features that are relevant to our subsequent
analysis (Section 3.1). We then train and test an RF algorithm
that classifies the galaxies as E/S0 or S (Sections 3.2, 3.3).

3.1. Feature Selection and Preprocessing

In the first step, we identify sources that are common to HC
and PS1-DR2 by utilizing a 0 8 search radius. This search
radius is optimized to account for a slight difference in
astrometry between the two catalogs, without introducing a
significant number of spurious associations. Tachibana &
Miller (2018), for example, use a similar matching radius for
the PS1-DR1 catalog. Furthermore, we discard PS1-DR2
sources with missing data. After cross-matching, the dataset
consists of 659,460 galaxies. For each common source, we
identify which properties of those listed in PS1-DR2 are the
most relevant to our analysis, and associate the labels (E/S0 or
S) from the HC catalog. Specifically, for each PS1 photometry
filter, we identify the meaningful features as the PSF-flux,
the Kron-flux (Kron 1980), and the second moment of the
radiation intensity, defined as òá ñ =XY uvI u v du dv,

Sxy
( ) or

òá ñ =X u I u du
Sx

2 2 ( ) , where I is the radiation intensity. The

moments of the radiation intensity are directly related to the
distribution of light within a source and hence provide
information on the source shape. These properties (which
constitute features for our machine-learning tools of
Section 3.2) are listed in the “StackObjectAttributes” table of
the PS1-DR2 catalog as PSFFlux, KronFlux, momentYY,

momentXY and momentXX.
The features of our training set (i.e., fluxes and moments of

the radiation intensity) are distance dependent and, hence, are
not properly suitable for a machine-learning algorithm. We thus
engineer the fluxes and moments into a series of features that
are not dependent on distance. Specifically, we consider the
ratio between the fluxes and the ratio of the moments of the
radiation intensity for different filters to be meaningful features.
This procedure leads to 126 features associated to each of the
659,460 sources in our sample. Finally, we standardize the
features according to the formula Xst=(X−μ)/σ, where X is
the input feature, while μ and σ are the mean and the standard
deviation of the sample, respectively.

The final step of preprocessing is the reduction of
dimensionality. We use here the Principal Component Analysis
(PCA, e.g., Hastie et al. 2009), which performs a linear
transformation of a set of correlated features into linearly
uncorrelated variables. This algorithm returns a set of
eigenvectors with associated eigenvalues, where larger eigen-
values are associated to eigenvectors that describe the most of
the variance of the dataset. The dimensionality reduction is
achieved by discarding the components with smaller eigenva-
lues. We retain the 55 (of the original 126) features responsible
for 99.8% of the sample variance.

Before applying machine-learning algorithms, we address
the potential problem of class imbalance, which occurs when
the classes of objects identified by the labels (in our case E/S0
versus S) contain markedly different numbers of elements.
In the HC dataset ≈39% of the sources belong to the E/S0
class, while ≈61% belong to the S class. We apply standard
undersampling because the number of objects is large
(659,460) and the dataset is not heavily imbalanced, which
leads to a final balanced dataset of 514,288 sources.

3.2. Machine Learning with RF

Supervised machine learning classifies objects by learning a
mapping function from the training set and then applying the
mapping function to previously unseen data. A large variety of
machine-learning algorithms are known, and some have also
been used in the astronomical literature (e.g., Dieleman et al.
2015; Lochner et al. 2016; Baldeschi et al. 2017a, 2017b;
Carrasco-Davis et al. 2019; Muthukrishna et al. 2019;
Ntampaka et al. 2019; Schanche et al. 2019; Villar et al.
2019; Walmsley et al. 2019; Margalef-Bentabol et al. 2020;
Sravan et al. 2020; Steinhardt et al. 2020). We apply three
algorithms: RF, SVM, and boosting (e.g., Hastie et al. 2009).
Of these three, RF is the algorithm that leads to the highest
classification accuracy, which we employ below.
The architecture of the RF construction depends on several

hyperparameters. Here, we adopt the following hyperpara-
meters: (i) the number of estimators (i.e., the number of trees) is
fixed at 100; (ii) the maximum depth of a tree can be 10, 12, 14,
16, 18, 20, or 22; (iii) the minimum number of samples
required to split an internal node is 2, 3, or 4; and (iv) the
minimum number of samples required to be a leaf node is 2, 3,
or 4. Finally, we adopt the Gini12 information gain to measure
the quality of a split. An RF model is produced for each
combination of parameters and is then tested using a standard
k-fold cross-validation procedure (e.g., Hastie et al. 2009) with
k=4. The k-fold cross-validation procedure is based on a
single hyperparameter, represented by k, which indicates the
number of groups (i.e., folds) into which a given sample is to
be split. Cross-validation is used to estimate the performance of
a machine-learning model over previously unseen data, and it
generally provides a less-biased estimate of the model than
other methods (e.g., a simple train/test split). The general
procedure for the k-fold cross-validation includes: (i) random
shuffling of the dataset; (ii) splitting the dataset into k folds;
(iii) taking one fold as a test set and the remaining folds as a
training set; (iv) applying a machine-learning model on the
training set and evaluating the model on the test set; (v)
repeating the procedure for each k fold; and (vi) averaging the
results on the test set for a better evaluation score. In our
specific case, each fold contains a random sample of 128,572
galaxies with z�0.25 and mr�18 mag. Our results are
described in Section 3.3.

3.3. Main Results: Classification Reliability, Importance of
Features and Redshift Dependence

The RF in the cross-validation set results in a classification
accuracy of 85%, which means that we can reliably infer the
morphological properties of galaxies as E/S0 or S by utilizing
only the colors (i.e., the flux ratios) and the moments ratio of

12
See Hastie et al. (2009) for a description of the Gini information gain.
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the radiation intensity. Figure 1 (left-hand panel) displays the

confusion matrix for the two classes, from which we conclude

that the RF model performs equally well for both classes.

The dataset is balanced and the fraction of sources that are

correctly classified is 0.86 and 0.83 for the E/S0 and S types,

respectively.
The RF classifier gives the probability that a source belongs

to either the E/S0 or the S class. The predicted classification

probabilities of an input sample are computed as the mean

predicted class probabilities of the trees in the forest. The class

probability of a single tree is the fraction of samples of the

same class in a leaf. Figure 2 shows the distribution of the

classification confidence for the sources in the test set to belong

to one of the two classes (E/S0 or S). The distribution is bound

between 0.5 and 1, and has a mean value of 0.8 and a median

value of 0.83. We define the classification confidence as equal

to the classification probability if this is >0.5, otherwise we

define it as 1-(classification probability). We note that 74% of

the sources in the HC sample have a classification confidence

(of belonging to the E/S0 or the S class) that is larger than

70%. This suggests that in most cases the classifier provides

reliable classifications.
The importance of the features in an RF model is typically

measured by estimating the increase in the model’s predictive

accuracy after permuting the feature (see e.g., Hastie et al.

2009; Fisher et al. 2018). A feature is considered to be

important if shuffling its values decreases the model’s

accuracy, which implies that the model relied on that specific

feature for the prediction. We estimate the importance of the

colors and the ratio of moments of the radiation intensity in the

morphological classification of galaxies as follows. We build

two models, where one model considers only the ratio of

moments to be features, and the other considers only the colors

to be features. We find a classification accuracy of 78% for the

RF model that retained only the colors as features, while a

classification accuracy of 69% is achieved by retaining only the

ratio of the moments. Figure 1 displays the confusion matrix

for both the colors (middle panel) and moment classifiers

(right-hand panel), respectively. We conclude that while colors

are the most significant features, the combination of colors and

ratio of moments leads to an improved final classification

accuracy.

This result is not surprising, considering that E/S0 and S
galaxies are well known to display markedly different intensity
profiles (e.g., Caon et al. 1993; Young & Currie 1994). The
moments of the radiation intensity are shape parameters that
quantify this intrinsic difference, and can be considered as
alternatives to the standard M20 estimator (Lotz et al. 2004).
Finally, in Figure 3 we explore the dependence of the

classification accuracy on the redshift of the sources.
When the colors and moments of the radiation intensity are

retained as features, (red-dashed line in Figure 3), the
classification accuracy is approximately constant with redshift,
suggesting that our methodology provides results that are not
heavily distance dependent at z<0.25 and are mostly
unbiased with distance. When colors are the only features,
(blue line in Figure. 3), the classification accuracy is slightly
larger at higher redshift, while when we use the ratio of
moments of the radiation intensity as only features of the model
(green-dotted line in Figure 3), the classification accuracy
decreases at higher redshift. From Figure 3 it is also clear that
the classification accuracy of the RF classifier that retains both
colors and ratios of moments of the radiation intensity is
significantly higher at all redshifts. The classification accuracy
of the RF model that retains only colors as features shows a
mild increase with z, while the classification accuracy for the

Figure 1. Normalized confusion matrix for the two classes of sources: Elliptical-lenticular (E/S0) and spiral (S). Here, we use a random forest (RF) algorithm to
classify the objects in the cross validation set of the PS1-DR2-HC dataset. We train the RF classifier by retaining as predictive features colors and the ratio of moments
of the radiation intensity (left-hand panel), only colors (middle panel), only the ratio of moments (right-hand panel).

Figure 2. Classification confidence distribution for the HC galaxies of being
elliptical-lenticular (E/S0) or spiral (S). We define the classification confidence
as the classification probability if the classification probability is >0.5 and as
1-(classification probability) if the classification probability is <0.5. The
distribution has mean and median values of 0.80 and 0.83, respectively.
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RF model that retains only the moments of the radiation
intensity slightly decreases with z. We speculate that the first
behavior results from the larger fraction of E/S0 galaxies at
larger z,13 while the latter effect results from the degradation of
the discerning power of the moments of the radiation intensity
at larger z, where details of the light-distribution of galaxies
becomes increasingly harder to discern. We note that this RF
model discriminates better the E/S0 galaxies than the S
galaxies (Figure 1 middle panel).

These results assume that all of the labels are exact and
accurate. In fact, since the labels are the result of a probabilistic
classification by Huertas-Company et al. (2011) an unknown
fraction of galaxies is mislabeled. Even though a fraction of
galaxies may be mislabeled, our RF algorithm is robust to the
presence of partially mislabeled data. A path to evaluate the
strength of the model is to randomly flip a fraction of labels in
the training set and then estimate the classification accuracy. In
Figure 4, we show the classification accuracy in the test set
versus the fraction of flipped labels in the training set for the
RF that leverages both color and moments and the RF that
leverages only the colors as input features. This figure reveals
that even if 30% of the labels are flipped, the classification
accuracy drops by only ≈5%. For larger fractions of flipped
labels, the classification accuracy is ≈50% (equivalent to
random guessing), as expected.

3.4. Comparison to Simpler (g–r) Color Cuts

The correlation between a galaxy’s morphology and colors is
well known and studied (e.g., Blanton & Berlind 2007; Ball
et al. 2008; van der Wel 2008; Bamford et al. 2009; Schawinski
et al. 2009; Skibba et al. 2009; Masters et al. 2010). Specifically,
Skibba et al. (2009) found a correlation between the g−r color
and the likelihood for a galaxy to be S or E/S0 in the Galaxy-
zoo (GZ) dataset: red galaxies with - >g r 0.95 mag( ) are
more likely to be elliptical (Pell≈70%), while blue galaxies
with - <g r 0.7 mag( ) are more likely to have spiral

morphology (Pspir≈90%). In this work, we consider a more
complex classifier that leverages multiple colors and moments of
the radiation intensity. However, it is important to compare our
RF classifiers to a simpler g−r color-splitting classifier. We
build a color-splitting classifier as follows: (i) we split the HC
dataset into a training and test set; (ii) we select a threshold value
-g r ;thres( ) (iii) sources with - > -g r g r thres( ) ( ) are

classified as E/S0, and sources with - < -g r g r thres( ) ( )

are classified as S; and (iv) we select the appropriate -g r thres( )
as the value that maximizes the classification accuracy in the
training set (which we find to be - =g r 0.74 magthres( ) ). We
obtain a classification accuracy of 75% in the test set. The RF
classifier that we trained on multiple colors as input features
yields a 78% classification accuracy, while the RF trained on
both colors on moments of the radiation intensity leads to a 85%
classification accuracy. The RF trained on multiple colors is
slightly more accurate than a color-splitting classifier, but an RF
trained on both colors and moments of the radiation intensity is
significantly more accurate.

4. RF Model for Sources in PS1-DR2 Based on the
NYU-VAGC

In this section, we train and test an RF classifier by
combining the features in PS1-DR2 with the galaxies star
formation properties derived from the NYU-VAGC. The goal
is to build an RF model that can classify sources in the PS1-
DR2 into two distinct classes consisting of galaxies with a low-
to-moderate star formation fraction (SFF, Section 4.1), and
galaxies with high SFF.

4.1. Selection of Sources and Definition of Labels for the
NYU-VAGC

The NYU-VAGC consists of 250,6754 sources. Among
these, we select sources with redshifts in the range 0.002�
z�0.5 to limit the contamination by stars in the Galaxy and
lower-quality observations. We discard sources with bad
photometry (e.g., missing data and high uncertainty in the
fluxes). These cuts result in a catalog of 662,804 sources that
are used in the following analysis.

Figure 3. Classification accuracy as a function of the galaxy redshift for three
RF models for the PS1-DR2-HC dataset. Red-dashed line: both colors and
ratios of moments of the radiation intensity are used as input features for the RF
classifier. Blue line: only colors are used as input features for the RF classifier.
Green-dotted line: only the ratios of moments of the radiation intensity are used
as input features for the RF classifier. The figure reveals that the classification
accuracy is approximately constant for z<0.25 when the RF is trained using
colors and ratios of the radiation intensity as features. Data at z>0.15 have
been collected into a single bin due to limited statistics.

Figure 4. Classification accuracy in the test set (S and E/S0) vs. fraction of
flipped labels in the training set in the HC dataset. The figure shows that the RF
model is robust because the classification accuracy drops by only 5% when
30% of the labels are flipped. Red-solid line: RF model with both colors and
moments of the radiation intensity. Blue-solid line: RF model with only colors
as features.

13
30% of the galaxies with z<0.12 are E/S0 while 53% of the galaxies with

z>0.12 are E/S0.
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The NYU-VAGC catalog provides the star formation
fraction (SFF14) for each source, defined as (Blanton &
Roweis 2007):

ò

ò
º -

t dt

t dt
SFF

SFR

SFR
, 1

t

t

t

0.3 Gyr

0

0

0

0

( )

( )
( )

where t0 is the present epoch and SFR(t) is the star formation

rate as a function of time. SFF is thus a continuous unitless

variable that represents the fraction of star formation that has

occurred in the past 0.3 Gyr. We use the RF classifier

developed in Section 3, which retains both the colors and

ratios of moments of the radiation intensity as input features, to

divide the NYU-VAGC sources into two SFF classes based on

their early-type (i.e., E/S0) or late-type (i.e., S) classification

(i.e., to convert the continuous SFF variable above into a

discrete feature that can be used as a label).
Figure 5 displays the distribution of SFF of galaxies in

the NYU-VAGC classified as E/S0 (green line) and S (orange
line). Figure 5 reveals that most of the E/S0 galaxies are
associated with a low-to-moderate SFF, while most of
the S-classified galaxies are associated with larger SFFs, as
expected. In particular, for SFF10−2 most sources are late-
type galaxies, while for SFF10−2 the galaxy types consist of
a mixture of both early-type and late-type (where the early-type
galaxies are predominant). Therefore, we split the population of
galaxies into two distinct classes: for SFF>9×10−3, the
sources are labeled as galaxies with high star formation fraction
(HSFF); whereas for smaller values (SFF<9×10−3

), the
sources are labeled as galaxies with low-to-moderate star
formation fraction (LMSFF).

We can also estimate the mean and median classification
confidence of the NYU-VAGC galaxies to be either E/S0 or S
for each bin of the SFF distribution, and we show the results in
Figure 6. The classification confidence is estimated by employ-
ing the RF classifier developed in Section 3.2. Figure 6 reveals
that the median classification confidence lies between 0.8 and

0.85 for SFF<10−4, decreases to 0.75 at SFF≈10−3 and
increases above 0.9 at SFF≈10−1. HSFF galaxies are thus
classified with higher confidence.

4.2. Preprocessing, Training, Testing and Results

In Section 4.1, we defined the labels for the classification
process (HSFF versus LMSFF). Here, we follow the metho-
dology developed in Section 3 (i.e., preprocessing, training,
and testing by cross-matching sources in the PS1-DR2 and HC
dataset) for the NYU-VAGC catalog. First, we select common
sources between NYU-VAGC and PS1-DR2 by cross-match-
ing the two catalogs using a 0 8 radius. We only consider
colors as predictive features for the training/testing set because
considering colors and ratios of moments of the radiation
intensity would lead to a lower classification accuracy (see the
discussion below). The features are then standardized and a
PCA is performed to reduce the dimensionality of the dataset,
as described in Section 3. We start with 25 features (the ratio of
fluxes in different photometric bands). The PCA reduces the
number of meaningful features to 16, which are responsible for
99.7% of the sample variance.
This procedure results in a dataset where ≈25% of sources

belong to the HSFF class, while ≈75% belong to the LMSFF
class. We adopt undersampling to balance the dataset, resulting
in a final dataset of 323220 sources. After data standardization
and balancing, we train and test an RF using 4-fold cross-
validation. The RF classifier is optimized employing the grid-
search method discussed in Section 3.2. The RF classifier
reaches a classification accuracy of 89% in the 4-fold cross-
validation.
Figure 7 shows the confusion matrix for the HSFF versus

LMSFF classification. We find that the fraction of sources that
are correctly classified is 0.91 and 0.87 for the HSFF and
LMSFF types, respectively. In Figure 8, we display the
distribution of the classification confidence for each source in
the test set. The distribution is bound between 0.5 and 1, and
the mean and median values of the distribution are 0.88 and
0.94, respectively. These results suggest that the RF model can
predict the label of the galaxy (HSFF or LMSFF) with a
reasonably high probability by using the colors as the only
meaningful features.
Although the high classification accuracy within the cross

validation set is a reliable measure for estimating the validity of

Figure 5. SFF distribution of NYU-VAGC sources. Green: elliptical-lenticular
(E/S0) sources. Orange: spiral (S) sources. Blue: complete sample of E/S0 and
S sources. We perform object classification (E/S0 vs. S) using the RF classifier
developed in Section 3.2. We labeled the sources on the left of the vertical
black-dashed line as LMSFF and sources on the right of the vertical black line
as HSFF. Most of the HSFF sources are S, while the LMSFF sources are both S
and E/S0 (mainly E/S0).

Figure 6. Mean (black) and median (pink) classification confidence for each of
the SFF distribution bins in the NYU-VAGC catalog. Galaxies with very large
SFF>10−2 are classified with higher confidence.

14
The SFF parameter was named as B300 in Blanton & Roweis (2007).
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the RF model, it is also important to explore the dependence of
the classification accuracy on the brightness of the galaxies. In
Figure 9, we display the classification accuracy as a function of
the integrated flux in the five PS1 filters. The integrated flux is
estimated by computing the area under the spectral energy
distribution with the trapezoidal rule. The figure shows that our
classification accuracy is a monotonically increasing function
of the source flux, as expected (i.e., brighter sources are easier
to classify).

In Section 3.3 and Figure 3, we demonstrated that the E/S0
versus S galaxy classification is most accurate when using both
colors and ratios of moments of the radiation intensity as
features, and we explored the dependency of the classification
accuracy on the sources redshift. Here, we reproduce the
exercise of Section 3 for this second RF classifier. Figure 10
illustrates the dependence of the classification accuracy on
redshift for each of the three choices of training features. The

figure clearly demonstrates that the highest classification
accuracy is reached by considering only colors as input

features. The classification accuracy is approximately constant
up to z≈0.25 and it then decreases at larger values.
Sources at different redshifts are sampled at different rest-

frame wavelengths, which means that the observed colors map
to intrinsically different colors in the source rest-frame. In

general, it is not possible to apply a K-correction to the
observed PS1-DR2 colors because the source redshift is

unknown. However, we show here that training and testing
on intrinsic colors leads to an increased classification accuracy,

as expected. To this aim, we employ the K-corrected absolute
magnitudes provided by the NYU-VAGC catalog, and we then
train and test an RF classifier using K-corrected colors. In

Figure 10, we show the classification accuracy in the test set as
a function of redshift for this RF classifier. Unsurprisingly, we

achieve higher classification accuracy at all redshifts with
K-corrected colors, demonstrating the larger discerning power

Figure 7. Normalized confusion matrix for the two classes HSFF and LMSFF
of the NYU-VAGC catalog. Only colors were used as input features for the RF
classifier described in Section 4.2.

Figure 8. Distribution of the classification confidence of the NYU-VAGC
galaxies labeled as HSFF or LMSFF. The probability that an individual galaxy
is HSFF or LMSFF is calculated by employing the RF classifier that was
developed in Section 4. The distribution has mean and median values of 0.88
and 0.94, respectively.

Figure 9. Classification accuracy (HSFF and LMSFF) vs. integrated flux of the
NYU-VAGC galaxies. Each bin in this histogram contains the same number of
sources. As expected, brighter sources are easier to classify.

Figure 10. Classification accuracy (HSFF vs. LMSFF) as a function of z for
NYU-VAGC galaxies. Dashed-red line: both colors and ratios of moments of
the radiation intensity have been used as input features for the RF classifier.
Blue line: only colors as input features. Green-dotted line: only the ratios of
moments as input features. Light-blue line: for this model we employed K-
corrected colors as input features from the NYU-VAGC dataset. Data at
z�0.25 have been collected into a single bin due to limited statistics.
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of intrinsic versus observed properties. It is unfortunately not
possible to apply an accurate K-correction to the majority of the
PS1-DR2 sources because the redshift of most galaxies is
currently unknown or is not well constrained.

These results implicitly assume that the training/testing
labels are, indeed, accurate. In fact, the labels are likely to be
inaccurate: a galaxy that is labeled as having HSFF may
actually have LMSFF. This happens because the SFF is a
difficult parameter to estimate and is subject to some degree of
uncertainty. Therefore, an unknown fraction of galaxies may be
mislabeled. Even though a fraction of galaxies may be
mislabeled, our RF algorithm is robust to the presence of
partially mislabeled data. The robustness of the model can be
assessed by randomly flipping a fraction of labels in the
training set and then estimating the classification accuracy. In
Figure 11, we show the classification accuracy in the test set
versus the fraction of flipped labels in the training set. The
figure reveals that even if 30% of the labels are flipped, the
classification accuracy is still very high (≈85%). For larger
fractions of flipped labels, the classification accuracy
approaches 50% (equivalent to random guessing), as expected.

We end with a consideration on the performance of “lighter”
models that are based on a significantly smaller number of
features but reach interesting levels of accuracy. In this section,
we trained a large model with 16 meaningful features, and
reached a classification accuracy of 0.89 in the cross validation
set. It is also possible to train and test a much simpler model
that uses only two features and still obtain reliable results. If we
train an RF model with two features (i.e., the Kron-flux ratio
between the g- and r-band filter F FK g K r, , , and the i and z bands,
F FK i K z, , ), then we obtain a classification accuracy of 0.86 in
the cross-validation set. Using PSF fluxes, the RF model
achieves a classification accuracy of 0.81. Therefore, even with
a highly simplified model, we obtain classification accuracies
that are comparable to the main RF model of this section. In the
next section, we apply the more complex and sophisticated 16-
feature RF model developed in this section to the entire PS1-
DR2 catalog because of its larger classification accuracy (0.89)
and its intrinsic flexibility that allows the model to be applied
when either (some of) the Kron or the PSF fluxes are missing
for a given PS1-DR2 source.

5. Classification of Pan-STARRS Sources Based on their
Star Formation Properties and Morphology

In Section 3, we developed RF models to classify galaxies as

E/S0 versus S, while in Section 4 we trained an RF classifier

that discriminates between HSFF and LMSFF galaxies. In this

section, we apply both classification frameworks to the entire

PS1-DR2 dataset and we will also build a catalog with the

classification of Pan-STARRS sources based on their morph-

ology and SFF. Specifically, we preprocess the PS1-DR2

features (in this case colors15) through the standard procedure

(scaling and PCA) outlined in Sections 3 and 4 using the PCA
models estimated on the HC (Section 3) and NYU-VAGC
(Section 4) catalogs, respectively. We then apply the RF
models developed in Sections 3 and 4 to the PS1-DR2, and we
present the results of our classification in a catalog that is
described in detail in Appendix A.
The average classification confidence that we obtain for the

E/S0 versus S classification is lower than the classification

confidence from the HSFF versus LMSFF classifier. The two

classifications do, however, show some degree of correlation,

as expected (Figure 12), because S-galaxies tend to be

associated with HSFF sources and E/S0 galaxies to LMSFF

sources. Figure 12 shows that the relationship between the two

indicators is not PHSFF=Pspiral (with scatter) but closer to

PHSFF=2.3Pspiral−0.9 (with large scatter), which suggests

that sources with Pspiral�0.5 can effectively be mapped into

sources with low PHSFF�0.25 (and hence limited star

formation). While we do not necessarily recommend the use

of this RF classifier in quantitative studies of galaxy

morphology, in Section 6 we find that Pspiral can be empirically

Figure 11. Classification accuracy in the test set (HSFF and LMSFF) vs.
fraction of flipped labels in the training set in the NYU-VAGC dataset. The
figure shows that the RF model is robust because the classification accuracy is
>85%, even when 30% of the labels are flipped.

Figure 12. PHSFF vs. Pspiral for PS1-DR2 galaxies (sources with P*<0.2).
The red line identifies the locus of the plane for which PHSFF=Pspiral. The two
probability scores show some degree of correlation, as expected (i.e., spiral
galaxies tend to have HSFF, while elliptical and lenticular galaxies cluster at
LMSFF). The green-dashed line (PHSFF=2. 3Pspiral−0.9) represents the
approximate correlation between PHSFF and Pspiral. The Pspiral score never
approaches 0 because of an intrinsic difference between the cross-validation set
of the HC catalog and the PS1-DR2 dataset.

15
In Section 3 we trained three RF models with a different set of features: (i)

colors and ratio of moments of the radiation intensity; (ii) colors only; and (iii)
ratio of moments of the radiation intensity only. The largest classification
accuracy was achieved with the first RF model (0.85), while we achieve a
classification accuracy of 0.78 for the second model and 0.69 for the third
model. Despite the larger classification accuracy of the first model, here we
employ the second RF model based on colors only because most sources in
PS1-DR2 lack measurements of the moments of the radiation intensity.
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used in transient surveys to control the purity of core-collapse
versus SN Ia samples.

In the rest of this section, we discuss the effects of star-
galaxy misclassification, brightness, missing data and Galactic
extinction on our results, and we will also provide the reader
with guidelines on how to interpret and use the results from our
RF models (Sections 5.1–5.2).

5.1. Effects of Star-galaxy Misclassifications and Missing Data

Dissimilarities between the training-testing set and PS1-DR2
include the following: (i) PS1-DR2 contains galaxies as well as
non-extended objects (i.e., stars); (ii) the training/testing
datasets are biased toward brighter sources, which implies that
the training-testing datasets are only partially representative of
sources in the PS1-DR2; and (iii) rows with missing data are
present in the PS1-DR2 dataset, but in the training/testing
dataset we only considered sources without missing values.

We address the star-galaxy misclassification issue using the
results from Tachibana & Miller (2018). For each Pan-
STARRS source, these authors provide a score P

å
that

quantifies the probability that the source is point-like (i.e., a
star). We run the RF classifiers on the entire PS1-DR2 dataset
irrespective of the P

å
value, and for each source we list P

å
, the

probability of having a high SFF PHSFF as derived by our RF
classifier in Section 4, and the probability of having a spiral
galaxy morphology Pspiral (from Section 3). Each source in our
catalog thus has three separate probability scores, which allows
the user to apply a custom cut on P

å
as needed. For reference,

P
å
>0.8 indicates that the object is a star with reasonably high

confidence (hence P
å
<0.2 can be considered highly sugges-

tive of a galaxy-type celestial object). In the remainder of the
paper, we refer to PS1-DR2 sources with P

å
<0.2 as

“galaxies.”
The presence of biases between the cross validation datasets

and the application set is very common in many machine-learning

implementations, and, depending on the degree of bias, cannot be
easily mitigated. One way to visualize the amount of bias between
the cross validation set and the whole PS1-DR2 catalog is to
compare the distributions of the flux integrated over the PS1
bandpass (i.e., g- to y-band) of sources in the two datasets, which
is shown in Figure 13 (upper panel). We only consider PS1-DR2
sources with P

å
<0.2 (i.e galaxies). The median integrated flux

of sources in the cross validation set (i.e., the NYU-VAGC) is
∼2.6 times larger than the median integrated flux of the entire
PS1-DR2 dataset, which also shows a significantly broader
distribution. Indeed, 23% of the PS1-DR2 galaxies have a lower
integrated flux than the minimum value of the cross validation set,
and only 0.3% of the PS1-DR2 galaxies have a larger integrated
flux than the maximum value of the cross validation set. In the
lower panel of Figure 13, we display the median classification
confidence for the PS1-DR2 galaxies of having HSFF or LMSFF
as a function of the integrated flux. This figure reveals that the
classification confidence decreases when the integrated flux of the
PS1-DR2 galaxies differs from the values in the cross validation
set, as expected.
Next, we discuss the issue of missing data in PS1-DR2. For

each source in the catalog of Appendix A, we add a data-
quality flag Q; where Q=0 indicates a dataset with complete
information for all the five Pan-STARRS photometric filters,
while Q>0 indicates that some data are missing. PS1-DR2
offers two flux measurements (i.e., PSF and Kron) for each of
the five filters, for a total of 10 flux measurements per source
with complete data. In the following, the value of the Q

variable quantifies the number of missing flux measurements in
any filter (so that, for example, Q= 1 means that one flux
measurement is missing, etc.). More details on the quality flag
column are provided in Appendix A. For sources with Q>0,
we fill in the missing information by employing a linear
interpolation of the spectral energy distribution. In total, 53%
of PS1-DR2 sources have Q=0. The classification probability

Figure 13. Upper panel: empirical probability density function (PDF) of the integrated flux over the PS1 bandpass of galaxies (i.e., sources with P
å
<0.2) in the PS1-

DR2 catalog (blue) and the NYU-VAGC (orange). Log scale is used for the y-axis. Lower panel: median classification confidence that PS1-DR2 galaxies are correctly
labeled as HSFF or LMSFF, as a function of the integrated flux. The classification confidence decreases when the flux of the PS1-DR2 galaxies significantly diverges
from the flux of sources in the cross-validation set.

9

The Astrophysical Journal, 902:60 (17pp), 2020 October 10 Baldeschi et al.



of the RF model for objects with Q>0 should be treated with
caution. We quantify this statement below.

Figure 14 (upper panel) shows the distribution of the RF
classification probability for PS1-DR2 galaxies to have HSSF.
PS1-DR2 galaxies with complete information (i.e., Q= 0) are

characterized by a bimodal classification probability distribu-
tion with one peak around 0 and a second peak around 1. This
result suggests that galaxies with complete data are reliably

classified as either having HSFF or LMSFF with high
confidence. Instead, galaxies with Q>0 are more clustered
around the region of random guessing PHSFF=0.5, as

expected from their poorer data quality. The median classifica-
tion confidence of PS1-DR2 galaxies with HSFF or LMSFF is
as follows: galaxies with Q=0 (Q>0) are classified with
median classification confidence of 0.9 (0.75). Specifically,

galaxies with Q=1, 2, 3, 4 are classified with decreasing
median classification confidence of 0.81, 0.72, 0.67, 0.65,
respectively. We note that the larger median classification

confidence in the cross-validation set of 0.94 of Section 4
originates from the fact that the cross-validation set is biased
toward brighter sources, which are easier to classify. Another

key difference between the two sets is that the sources in the
cross-validation set are all galaxies, while the application set
has some level of contamination by stars, even after we filter on
P
å
. A more detailed description of this effect is provided in

Section 5.2.
In Figure 14, lower panel, we perform a similar exercise for

Pspiral and we compute the classification probability for
different Q values. As before, datasets with missing values
are associated with classification probabilities more clustered
around the value of random guessing, as expected (median of
0.64 for Q= 0, and median of 0.59 for Q>0). Pspiral never
approaches 0. The minimum value of Pspiral in the sample is
0.04. This is likely to be due to the difference between the
cross-validation set and the whole PS1-DR2 dataset.
Finally, in Figure 15 we explore the effect of increasing the

sample contamination with stars by applying different cuts on
P
å
. We consider two different scenarios: sources with P

å
<0.2

(i.e., most likely galaxies) and sources with P
å
>0.8 (i.e., most

likely stars). The classification probability distributions of
Figure 15 show some level of dependency on the cut on P

å
.

Not surprisingly, there are some Galactic stars that have colors
which are able to perfectly mimic the colors of both highly star-
forming and quiescent galaxies. For sources that are likely
Galactic stars (i.e., with large P

å
) the PHSFF value is also very

likely to be meaningless. Taken at face value, sources with
P
å
>0.8 are more likely to be considered to have HSFF than

sources with P
å
<0.2. Therefore, we recommend only using

the PHSFF and Pspiral values of sources that have small values of
P
å
<0.2 (outside the plane of the Galaxy, as detailed in the

following section).16 We conclude by noting that despite
intrinsic differences between the training/testing dataset and
the entire PS1-DR2 catalog, our algorithm is able to achieve a
large median classification confidence of ∼0.9 for galaxies with
complete data in the PS1-DR2 release (i.e., with Q= 0).

5.2. Effects of Galactic Extinction

Galactic extinction impacts the classification confidence of
PS1-DR2 sources because it directly affects the observed colors
of celestial objects outside the Galaxy. In this section, we

Figure 14. Distribution of the classification probability for PS1-DR2 galaxies
(i.e., sources with P

å
<0.2) of having HSFF (PHSFF, upper panel) and of being

spiral (Pspiral, lower panel) for different values of Q. We estimate the
classification probability with the RF model developed in Sections 4 and 3
for the upper and lower panel, respectively. Large PHSFF suggests a high
probability that the galaxy is HSFF. Similarly, large Pspiral suggests a high
probability that a galaxy is S. Larger font for axis labels. Poorer datasets
(Q>0) tend to be associated with probability values closer to random
guessing P=0.5, as expected.

Figure 15. Classification probability distribution of PS1-DR2 sources of
having HSFF for different cuts on P

å
. Blue and orange lines are used for

P
å
<0.2 and P

å
>0.8, respectively. Note that the two distributions are

slightly different at PHSFF>0.9.

16
More detailed user guidelines are provided in Appendix B.
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discuss the effects of Galactic extinction on our classification
capabilities and we quantitatively explore the possibility of
applying an extinction correction to PS1-DR2 data to improve
on the performance of our algorithm at low Galactic latitudes.
Galactic extinction has no effect on the training/testing sets
because the data contains only objects at high Galactic latitudes
> b 15∣ ∣ , which are not significantly affected by Galactic

reddening. In this section, we explore the effects of Galactic
reddening on our classification performance using the HSFF
versus LMSFF classifier of Section 4. Analogous results hold
for the morphology classifier of Section 3. Consequently, we
do not include a specific discussion on the effects of the
Galactic extinction correction for the RF morphology classifier
(which is also outperformed by the HSFF versus LMSFF
classifier, as discussed below).

We explore the performance of our classification algorithm
as a function of Galactic latitude b in Figure 16, where we plot
the classification confidence of PS1-DR2 sources (for P

å
<k

with k=0.1, 0.5, 0.9) with complete data. We find that before
applying any extinction correction for low Galactic latitudes in

the range −8°  b8°, the classification confidence
significantly differs from the mean value and lies below the
mean value at b 1∣ ∣ ; reaching a minimum of ∼0.84
(Figure 16, upper panel). Furthermore, there are two peaks of
high classification confidence around b=−5°.5 and b=5°.5
that result from the combined effects of high extinction and
large contamination by stars. The amplitude of these two peaks
is sensitive to the assumed upper cut on P

å
(and hence to the

allowed level of contamination by stellar objects). By
constraining on the non-stellar nature of the objects of interest,
P
å
<0.1 directly results in less pronounced peaks, and

vice versa (Figure 16, upper panel).
One way of looking at this result is that in the absence of any

extinction correction, along the Galactic plane our algorithm
very confidently mistakes highly reddened stars as early-type
galaxies. Therefore, we may infer that the peaks originate from
the fact that there is a certain amount of extinction that makes
reddened stars mimic the colors of early-type galaxies. This
effect happens at a small range of Galactic latitudes. The
reddening is more extreme at even lower Galactic latitudes, and
the reddened stars no longer look like early-type galaxies. This
explains the location and presence of the peaks, the presence of
the deep minimum at very small Galactic latitudes, and the fact
that by filtering out stars we remove the peaks. In this latter
case, we are changing the underlying colors of the population,
which is no longer a population of stars but galaxies. This
implies that that amount of galactic reddening will no longer be
able to accurately mimic the colors of an early-type galaxy.
We further visualize the impact of Galactic extinction on our

classification in Figure 17 by showing the bidimensional
distribution of the ratio between the number of HSFF galaxies
(defined here as PHSFF>0.6) and galaxies with LMSFF
(PHSFF<0.4) in the sky. As before, for this test we select
galaxies (P

å
<0.2) with complete information (Q= 0). As

expected, in proximity to the Galactic plane, the HSFF/LMSFF
ratio is significantly lower than average. In this region of the
sky, the number of sources classified as LMSFF is significantly
(and artificially) larger due to the redder observed colors.
Next, we quantify the amount of Galactic extinction along

the line of sight for each source in the PS1-DR2 using the

Figure 16. Classification confidence for the PS1-DR2 sources of having HSFF
before (upper panel) and after (lower panel) Galactic extinction correction. We
plot the classification confidence for different values of P

å
(P

å
<0.1,

P
å
<0.5, P

å
<0.9) and for Q=0. Upper panel: for low Galactic latitudes

b 8∣ ∣ the classification confidence differs significantly from the mean value
due to the large Galactic reddening. By constraining on the non-stellar nature of
the objects of interest P

å
<0.1 results in less pronounced peaks, and

vice versa. Lower panel: applying the Galactic extinction correction has the
effect of mitigating the large decrease of classification confidence around
b∼0°. However, it also produces more pronounced “wings,” which are likely
to be associated with contamination by stellar objects.

Figure 17. Bidimensional histogram of the ratio between the number of HSFF
galaxies (here defined as PHSFF>0.6) and LMSFF galaxies (PHSFF<0.4) for
PS1-DR2 galaxies (P

å
<0.2) as a function of galactic coordinates. The white

region is outside the PS1-DR2 footprint (corresponding to δ<−30°). The
HSFF/LMSFF ratio in the Galactic plane is smaller than in the rest of the sky.
This effect is an expected result from severe Galactic reddening, which
artificially reduces the number of objects with observed blue colors.
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extinction map by Schlafly & Finkbeiner (2011). We then run
our RF classification algorithm on the extinction corrected PS1-
DR2 photometry and we compare our galaxy-classification
results to the pre-extinction correction results. We are also
aware that most of the sources in the Galactic plane are stars for
which the extinction correction along the line of sight is only
approximate. Figure 16, lower panel, shows the resulting
classification confidence after the Galactic extinction correction
has been applied. We find that while the depth and width of the
absolute minimum of the classification confidence at ~ b 0∣ ∣

seem to benefit from the extinction correction, the two peaks at
~ b 5∣ ∣ are largely unaffected (if not even strengthened). The

larger width of the peaks at ~ b 5∣ ∣ most likely results from
the fact that we are artificially creating more stars with the same
colors as early-type galaxies. We conclude that the anomalous
behavior of the classification confidence around the Galactic
plane is mainly driven by a large contamination of stars. Since
we do not obtain significantly better performance with
extinction corrections, we present the classification catalog
without applying any Galactic extinction correction and
we advise the user to be very selective on P

å
, especially in

the Galactic plane. A reasonable cut may be P
å
<0.2 outside

the Galactic plane (b<−8° or b>8°) and P
å
<0.1 in the

plane (here defined as −8°<b<8°). We also suggest
trusting more our inferences on sources with Q=0.

6. Using PHSFF and Pspiral for Prompt Supernova
Classification

The immediate goal of this paper is to characterize the star
formation properties of galaxies within PS1-DR2. In this
section we carry out a simple exercise that serves as a proof of
concept to highlight the predictive power of PHSFF and Pspiral in
the context of supernova (SN) typing (core-collapse versus
thermonuclear SNe) at the time of their first detection. This is
part of a larger effort aimed at classifying transients by
combining information on the transient’s environment and their
photometric evolution. Specifically, we will show how the
PHSFF and Pspiral scores can be used to statistically infer the SN
type. Because these scores are available from pre-explosion
PS1 images and can readily be associated to the host-galaxy of
a newly identified transient, these scores may be used as a
useful tool to improve our capabilities of prompt classification
of transients at the time of their first detection. However, a
detailed analysis of the host-galaxy properties and their
connection to the transient properties is beyond the scope of
this work and will be addressed in a forthcoming paper. Here,
we focus our analysis on the relationship between the star
formation properties and morphological properties of a galaxy,
and on the probability that it will host core-collapse or
thermonuclear stellar explosions. We will use SN spectroscopic
classifications from both a magnitude-limited untargeted
transient survey (ZTF) and a galaxy-targeted nearby supernova
survey (LOSS).

We start by considering spectroscopically classified SNe from
the ZTF Bright Transient Survey (BTS, Fremling et al. 2019).
The ZTF-BTS contains transients brighter than 18.5 mag at
peak, at a distance corresponding to z  0.15 (d700 Mpc).
We associate each spectroscopically classified SN in the ZTF-
BTS catalog with its host galaxy in PS1-DR2 (and its respective
PHSFF and Pspiral scores). We carry out the host/SN association
with a method developed by M. Stroh et al. (2020, in

preparation), which is based on Bloom & Kulkarni (2001).
The ZTF-BTS catalog provides the PS1-DR2 host galaxies.
Here, we use the Stroh et al. association method because we plan
to expand this work to other transients and other surveys. This
completely automatic procedure leads to an association that is
consistent with the host galaxies provided by ZTF-BTS. This
algorithm identifies the likely host galaxy as the galaxy with the

lowest chance coincidence probability ( = - p s P e1 R m
cc

e
2

)( )

where σ(�m) is the galaxy number density as given by Berger
(2010). Following Blanchard et al. (2016), the effective radius,

= +R R R2.5e
2

kron
2( ) where R is the angular separation

between the ZTF host galaxy position and the PS1-DR2
potential host galaxy, while Rkron is the PS1-DR2 g Kron radius
of the galaxy. We selected host galaxies with complete data in
PS1-DR2 and obtain a sample of 162 core-collapse SNe
(CCSNe, including types II, II-87A, IIb, IIn, Ib, Ib/c, Ibn, Ic,
Ic-BL, Ic-pec, SLSN-I, SLSN-II) and 464 thermonuclear SNe
“Ia” in short, including branch-normal Ia, Ia-02cx, Ia-91T, Ia-
91bg, Ia-SC, Ia-CSM). The final sample contains 26% CCSNe
by number. The median SN distance of the sample is∼250 Mpc.
Figure 18 (panel (a)) shows the distribution of PHSFF for the

host galaxies of CCSNe and SNe Ia. Most host galaxies of SNe
Ia have PHSFF<0.1 or PHSFF>0.9, while CCSNe are mainly
associated with actively star-forming galaxies with PHSFF>0.9.
In Figure 18, panel (b), we plot the fractional number of CCSNe
(i.e., the ratio between the number of CCSNe and the number of
SNe for each bin of the histogram) as a function of PHSFF.
Because CCSNe constitute ∼26% of the sample, this fraction
indicates the level that one would obtain by random guessing
(indicated by the horizontal dashed line in Figure 18). This figure
shows that if we select galaxies with PHSFF<0.1, the fraction of
CCSNe drops to CC/(CC+Ia)∼7%. At higher PHSFF, the
fraction of CCSNe increases. In particular, we find that galaxies
with PHSFF>0.8 have a large CCSNe fraction of CC/
(CC+Ia)∼30%–35%. In Figure 18 (panels (c) and (d)), we
perform a similar exercise using Pspiral. We find that the host
galaxies of Ia SNe cover a wide range of Pspiral (i.e., SNe Ia are
hosted in early and late-type galaxies), while CCSNe are mainly
hosted in galaxies with large Pspiral, as expected. As before, the
CC/(CC+Ia) fraction is a monotonically increasing function of
the Pspiral score. Specifically, for Pspiral>0.9 we find a ratio of
CC/(CC+Ia)≈50%, while for Pspiral<0.4 the ratio is CC/
(CC+Ia)≈10%.
We perform a similar analysis using the nearby SN sample

from LOSS, which is a galaxy-targeted search for SNe in the
local universe at d�200Mpc (Leaman et al. 2011). This
sample includes SNe that are significantly closer than those in
the ZTF sample. As before, we associate each SN with its host
galaxy in PS1-DR2, and the relative PHSFF and Pspiral scores.
The original LOSS sample of spectroscopically classified SNe
consists of 929 sources. Of these, we selected 517 associations
with good-quality PS1-DR2 photometry (Q= 0). Our final
sample consists of 249 SNe Ia and 268 CCSNe (i.e., the CCSN
fraction by number is ≈48%).
Figure 19 (panels (a) and (c)) shows the PHSFF and Pspiral

distributions of the host galaxies in our sample, while panels
(b) and (d) show the fractional number of CCSNe (CC/
(CC+Ia)) as a function of both scores. As for the ZTF sample,
CC/(CC+Ia) is a (mostly) monotonic function of PHSFF and
Pspiral. We interpret that the roughly “flat” distribution of PHSFF

of CCSN host-galaxies is due to the fact that the galaxies in the
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training sample have significantly larger distances than the
nearby galaxies targeted by the LOSS. Indeed, the most distant
SN in the LOSS sample (at d∼200 Mpc) is closer than ∼90%
of the galaxies in the training set. Consequently, in the training
sample the relationship between the Kron and PSF photometry
is different to that of the large, well-resolved, nearby galaxies
in LOSS. Any significant difference between the training set
and the actual sample leads the algorithm to “confusion,” the
manifestation of which is this flat distribution of scores. With
this caveat in mind, it is still interesting to note that CC/
(CC+Ia)∼80% for PHSFF>0.9 (which is significantly
above the 52% value expected for random guessing), and that
the fraction of CCSNe is suppressed to CC/(CC+Ia)∼40%
for host galaxies with PHSFF<0.2. As expected, the Pspiral

distribution is skewed toward large values for CCSNe.
For Pspiral<0.4 we find CC/(CC+Ia)∼33% below the
52% value of random guessing), while at large Pspiral>0.85
the fraction of CCSNe is highly enhanced to CC/
(CC+Ia)∼70%.

The predictive power of the host galaxy morphology in SN
typing (CC versus Ia SNe) was first quantified by Foley &
Mandel (2013) on the LOSS sample. Foley & Mandel (2013)
(their Figure 1, upper panel) showed that in their “full” LOSS

sample which contains 41% of Ia SNe by number, the fraction
of SNe Ia in E/S0 galaxies is in the range ∼65%–100%
(corresponding to CC/(CC+Ia)∼0%–35%), decreasing to
20% (or CC/(CC+Ia)80%) in Sbc/Sb/Scd/Irr
galaxies. While it is not possible to directly compare our
results to Figure 1 of Foley & Mandel (2013), it is interesting to
note that our RF classifiers that are uniquely based on host-
galaxy colors reach comparable purity levels at the extremes of
the Pspiral or PHSFF distributions. Foley & Mandel (2013)
further employed a Naive Bayes classifier that leverages the
transient’s contextual information (e.g., the host galaxy’s
morphology, absolute magnitude (Mk), colors ( -B K0 ), offset
from host-galaxy’s nucleus and pixel rank) for SN Ia
identification. Their Naive Bayes classifier returns the prob-
ability (pIa) for each LOSS SN of being a Ia SN. These authors
found that 30% of SNe in their sample have pIa>0.5; of these,
71% are SNe Ia. This result compares favorably to the random
guessing level of P(Ia)=41%. For the same sample, 21% of
SNe have pIa<0.1, 84% of which are CC SNe. These findings
are the result of the combination of inferences obtained from
the different sources of contextual information listed earlier
(including detailed host-galaxy morphology classification,
the transient’s distance, and absolute magnitudes Mk). These

Figure 18. Panel (a): PHSFF distribution of the host galaxies of SNe from the ZTF-BTS. Orange (Blue) thick lines show galaxies associated with SNe Ia (CC-SNe).
Panel (b) red line: fraction of CC-SNe (CC/(CC+Ia)) as a function of PHSFF. Horizontal black-dashed line: fraction of CC-SNe in the ZTF sample that we consider
here, which corresponds to the random guessing level. Panel (c): Pspiral distribution of SN host galaxies from the ZTF magnitude-limited catalog. Panel (d), red line:
fraction of CC supernovae (CC/(CC+Ia)) as a function of Pspiral. In panels (b) and (d), any significant departure of the CC/(CC+Ia) fraction from the horizontal
black-dashed line can be considered an improvement over random guessing. As discussed in Section 5, the Pspiral score never reaches 0 because of the intrinsic
difference between the cross-validation and the entire PS1-DR2 dataset.
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features are not available in main wide-field transient surveys.
This implies that the Foley & Mandel (2013) methodology in
its current form cannot easily be extended to very large
datasets, such as those of the LSST. Simplified approaches that
rely on minimal contextual information (e.g., colors) have the
advantage that they are directly applicable to most transients
surveys.

The important conclusion from these two exercises on the
LOSS and ZTF-BTS samples is that by selecting on the PHSFF

or Pspiral scores of SN host galaxies, it is possible to artificially
and significantly enhance or suppress the fraction of CCSNe
(or thermonuclear SNe) with respect to random guessing. This
result demonstrates that it is possible to improve on the SN
classification at the time of their first detection by using the
available information on their large-scale environments pro-
cessed with machine-learning algorithms (i.e., no-human in
the loop).

7. Summary and Conclusions

Machine learning is becoming a fundamental tool in a
variety of fields in astrophysics, from exoplanet discovery to
galaxy and transient classification. In this paper, we have

developed two machine-learning algorithms and presented the

classification of galaxies in the Pan-STARRS 3π survey based

on their morphology and recent star formation history.

Specifically, we have trained and tested two RF models on a

subsample of the PS1-DR2 galaxies using PS1-DR2 colors as

input features for the RF classifiers, and using labels from the

Huertas-Company dataset (for galaxy morphologies) and from

the New York University Value-Added Galaxy Catalog (NYU-

VAGC, for the fraction of star formation occurred in the last

300 Myr). We have obtained a classification accuracy of 78%

when discriminating between elliptical and spiral galaxies in

the cross validation set. The classification accuracy is 89%

when discriminating between galaxies with high and low-to-

moderate star formation fraction (HSFF versus LMSFF) in the

cross-validation set. We then applied both RF models to the

entire PS1-DR2 catalog to determine the probability that each

galaxy is spiral (Pspiral) and whether or not it has a HSFF

(PHSFF). We present our classifications in a catalog with a

structure as outlined in Appendix A. User guidelines are also

described in Appendix A.
We have applied the two RF classifiers to host galaxies of

two SN samples from the ZTF-BTS and LOSS. We have also

Figure 19. Panel (a): PHSFF distribution of host galaxies of SNe from the galaxy-targeted LOSS. Orange (Blue) thick lines: galaxies associated with SNe Ia (CC-SNe).
Panel (b), red line: fraction of CC-SNe (CC/(CC+Ia)) as a function of PHSFF. Horizontal black-dashed line: fraction of CC-SNe in the LOSS sample that we study
here, which corresponds to the random guessing level. Panel (c): Pspiral distribution of host galaxies of SNe from the LOSS catalog. Panel (d), red line: fraction of CC
supernovae (CC/(CC+Ia)) as a function of Pspiral. In panels (b) and (d), any significant departure of the CC/(CC+Ia) fraction from the horizontal black-dashed line
may be considered an improvement over random guessing. We interpret that the “flat” distribution of PHSFF of CCSN host-galaxies is due to the fact that the galaxies
in the training sample have significantly larger distances than the nearby galaxies targeted by the LOSS.
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demonstrated that the colors of the transient’s host galaxies can
be used to statistically infer their star formation and
morphological properties in a way that can be used to aid
transient classification at the time of the first detection (in line
with the initial study by Foley & Mandel 2013). The ZTF-BTS
and the LOSS samples contain core-collapse SNe (CCSNe) and
stellar explosion of thermonuclear origin. For both the ZTF-
BTS (Fremling et al. 2019) and LOSS (Leaman et al. 2011)
samples, we find that Pspiral and PHSFF are highly correlated
with the fraction of CCSNe.

In particular, for the brightness-limited SN sample from
ZTF-BTS: by selecting host galaxies with PHSFF>0.8, we
obtain a ≈10% larger fraction of CCSNe with respect to
random guessing; while for PHSFF<0.1, we obtain a ≈20%
lower CCSN fraction with respect to random guessing.
Furthermore, by selecting host galaxies with Pspiral>0.9, we
obtain a ≈50% fraction of CCSNe (which constitutes a ∼24%
improvement with respect to random guessing). We obtain
similar results for the galaxy-targeted SN sample from LOSS.
In this case, ∼70%–80% of SNe associated with likely spiral
host galaxies (Pspiral>0.9) or galaxies with high star
formation fraction (PHSFF>0.9) are of core-collapse origin,
compared with the 48% fraction of CCSNe in the sample.

Our work demonstrates that it is possible to achieve
significant improvements in prompt SN classification by using
available contextual information automatically processed with
machine-learning algorithms. The host galaxy information
from our catalog can thus be directly used to complement and
improve the classification accuracy of existing algorithms that
solely rely on the transient’s photometric properties. A key
advantage of classifiers that will include inference from
contextual information is related to the fact that (some of) the
host galaxies properties are known at the time of the very first
detection of a new transient, when the photometric information
is exceedingly limited. In the current era of spectroscopically
starved time-domain astronomy, the ability to promptly infer
the nature of a large number of transients without spectroscopic
follow up (or visual inspection of each individual host galaxy)
is of paramount importance. Indeed, in the near future, surveys
such as the LSST carried out on the Vera C. Rubin Observatory
will dramatically increase the discovery rate of transients by
producing ≈106 alerts per night, making a systematic transient
spectroscopic-classification unviable. In a future paper, we will
extend the use of contextual information for prompt transient
classification to include other properties of the large-scale
environments of a variety of astronomical transients.
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Appendix A
Catalog of Classifications of PS1-DR2 Sources

This catalog is organized as follows. The first column is the
ID of the Pan-STARRS object. The second and third columns
are the R.A. and decl. coordinates measured in degrees. The
fourth column represents the probability for an object to be a
point-source (P

å
), as derived by Tachibana & Miller (2018).

The fifth column represents the probability for a source to be
HSFF (PHSFF). The sixth column represents the probability for
a source to be spiral (Pspiral). Note that when P

å
>0.5, the

values of PHSFF and Pspiral are meaningless. The seventh
column is a completeness flag for the data. PS1-DR2 offers ten
flux density measurements for each source: five PSF fluxes (for
the g, r, i, z and y, respectively) and five Kron fluxes (one for
each photometric band). The completeness flag is expressed as
a 10 digit binary number, where each digit tells if the data in a
specific filter is present (0) or missing (1). The first five digits
are related to the PSF fluxes for photometric bands in this
order: g, r, i, z, y. The second five digits are associated with
Kron fluxes for the same order of photometric bands. As
reference, the binary number 0000000000 states that there are
no missing data (parameter Q= 0 in the paper), 0000010000
states that the g-band Kron flux is missing (Q= 1), and
0100000010 states that the r-band PSF and the i-band Kron are
missing (Q= 2). Here Q represents the number of missing
filters for each sources.
We recommend that the user mostly trusts PHSFF and Pspiral

classifications for sources with Q=0, P
å
<0.2 and Galactic

latitude outside the range −8°<b<8°. Classifications of
sources close to the Galactic plane and classifications of sources
with P

å
>0.2 should be treated with caution. Users interested in

supernova classification (CC versus thermonuclear) with PHSFF
and Pspiral may use the results in Figures 18 and 19 as a
guideline. In Table 1, we report the first few rows of the catalog
for display. Finally, we recommend using the Pspiral value for
quick SN typing and not for quantitative studies of galaxy
morphology (see Section 5). Our catalog of Pan-STARRS
galaxies classifications is publicly available at 10.5281/
zenodo.3990545. The catalog is subdivided into 13 .csv files
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and contains the IDs, positions, and classification probabilities.
Each file is ≈3.8 GB in size.

Appendix B
RF Model for Sources in PS1-DR2 Based on the GZ

CATALOG

The GZ project (e.g., Lintott et al. 2008) is a citizen science
project with visual morphological classifications of more than
300,000 galaxies drawn from SDSS. In the first data release
(GZ1, Lintott et al. 2011), citizens were asked to visually
classify SDSS galaxies as either elliptical or spiral. In the
second data release (GZ2, Willett et al. 2013), citizens were
asked to answer several questions. The main questions were: (i)
Is the galaxy simply smooth and rounded, with no sign of a
disk? (ii) How rounded is it? (iii) Could this be a disk viewed
edge-on? The full list of questions can be found in Figure 1 of
Willett et al. (2013).

We train an RF model with GZ2 labels and PS1-DR2
features. We start by cross-matching GZ2 with PS1-DR2. For
each common source, we retain features that are relevant to our
subsequent analysis (colors and moments of the radiation
intensity). GZ2 labels are not directly usable for our machine-
learning classification task. GZ (and implicitly the Willett et al.
2013 catalog) provides likelihoods for galaxies being “Smooth”
or “Features or Disk,” which can be used to separate E/S0 from
S. Were E/S0 galaxies selected with a likelihood of “Smooth”
>50%, and S galaxies with a likelihood of “Smooth” <50%.
We follow the procedure described in Section 3 for preproces-
sing, training, and testing. We train and test an RF algorithm
that classifies galaxies according to their morphology (E/S0 or
S), and obtain an 80% classification accuracy in the cross-
validation set.

Finally, we apply the RF classifier trained with both colors
and moments on the PS1-DR2-HC catalog to the PS1-DR2-
GZ2 dataset, and obtain a classification accuracy of 81%. We
may explain the 4% larger classification accuracy in the HC
dataset considering that the GZ2 labels that we defined might
not directly map into morphological classes (E/S0 and S). Our
model performs comparably well on the GZ sample (where
labels are exact, even if they might not directly map to
morphological classes) and on the HS sample (where labels are
directly relevant to the morphological classification of galaxies,
but are derived from a ML effort and are therefore subject to a
level of uncertainty that we quantified in Section 3).
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