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Abstract—Asynchronous iterative computations (AIC) are common in machine learning and data mining systems. However, the lack of
synchronization barriers in asynchronous processing brings challenges for continuous processing while workers might fail. There is no
global synchronization point that all workers can roll back to. In this paper, we propose a fault-tolerant framework for asynchronous
iterative computations (FAIC). Our framework takes a virtual snapshot of the AIC system without halting the computation of any worker.
We prove that the virtual snapshot capture by FAIC can recover the AIC system correctly. We evaluate our FAIC framework on two
existing AIC systems, Maiter and NOMAD. Our experiment result shows that the checkpoint overhead of FAIC is more than 50%
shorter than the synchronous checkpoint method. FAIC is around 10% faster than other asynchronous snapshot algorithms, such as
the Chandy-Lamport algorithm.Our experiments on a large cluster demonstrate that FAIC scales with the number of workers.
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1 INTRODUCTION

Many machine learning and data mining algorithms
perform iterative computations through iterative refine-
ment. As the size of raw data gets larger and larger, dis-
tributed computation frameworks such as MapReduce [1]
and Dryad [2] have been deployed to process the data.
Traditionally, distributed iterative computations are imple-
mented in a synchronous manner. Many distributed syn-
chronous frameworks such as HaLoop [3], iMapReduce [4]
use the Bulk Synchronous Parallel (BSP) model [5]. While
distributed synchronous frameworks are a natural choice
for iterative computations due to their simplicity, a syn-
chronization barrier between two consecutive iterations is
essential to synchronize the progress of all workers. That
is, each worker has to pause and wait until all the workers
reach the synchronization point.

Recently, myriad asynchronous computation models
have been proposed to accelerate iterative computations.
One common theme of these proposed asynchronous com-
putation models is the removal of the synchronization bar-
riers. As a result of this, each worker is able to perform
iterative updates without waiting for other workers to com-
plete the iteration. Therefore, asynchronous computations
can accelerate iterative computations. On the other hand,
the lack of synchronization barriers brings challenges for
continuous processing in the event of server failures. The
synchronization barriers provide a global synchronization
point where all workers can safely roll back to in the case
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of server failures. The asynchronous iterative computation,
however, does not naturally contain such rollback points.

In addition to providing on-demand servers, many cloud
service providers offer transient resources such as spare
servers at a fraction of the cost of on-demand servers.
These transient resources may be revoked and tasks can
be preempted at any time [6]. Iterative machine learning
jobs on large-scale datasets typically require a large amount
of resources and usually are not urgent tasks. So they are
ideally suited to run on such transient resources. Since the
computation resources may be revoked at any time, it is bet-
ter to checkpoint more frequently. Most popular distributed
frameworks, such as Hadoop [7], Spark [8], and Maiter [9]
are designed to work on on-demand servers where the mean
time between errors is in the order of hours or even days.
They might suffer huge cost of re-computations in case of
frequent revocations on transient resources.

However, it is hard to perform recovery from failures
or revocations on asynchronous iterative systems. A dis-
tributed system supports fault tolerance by setting check-
points and recovering to them after a failure happens. Dif-
ferent from synchronous iterative systems, states of servers
are usually not sufficient to describe the state of an asyn-
chronous iterative computation system. Inflight messages
are not part of the local state but contains necessary infor-
mation about how to update the state of a worker.

In this paper, we propose a Fault-tolerant framework for
Asynchronous Iterative Computations (FAIC framework).
We capture the messages by leading the asynchronous it-
erative computation system into a state where inflight mes-
sages are absorbed by workers. And workers keep on com-
puting during that period. Instead of forcing all workers to
reach such a state at a certain moment, we design a method
that captures the messages and local state on each worker
independently. We make a checkpoint of the system by con-
structing these local states captured at different moment into
a virtual snapshot. Therefore, FAIC brings only small check-
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point overhead because it does not halt the computation of
any worker during checkpointing. We prove that a virtual
snapshot can recover the system correctly in Section 4.
Meanwhile, FAIC can be more efficient than asynchronous
snapshot methods such as the Chandy-Lamport snapshot
algorithm [10]. While the Chandy-Lamport algorithm has
to capture messages one-by-one, FAIC can aggregate mes-
sages before archiving them. As a result, FAIC archives less
amount of data and takes less time in checkpointing than
the Chandy-Lamport algorithm does.

We evaluate our FAIC framework on two existing asyn-
chronous iterative frameworks, Maiter and NOMAD. Our
evaluation shows that the checkpoint overhead of FAIC is
around half of that in the synchronous checkpoint method
on a homogeneous cluster and about 1/3 of that on a hetero-
geneous cluster. FAIC is about 10% faster than the Chandy-
Lamport algorithm, because it archives less messages. Even
on NOMAD where messages are not accumulative, FAIC
has the same running time as the Chandy-Lamport algo-
rithm. Our experiments on a large cluster also demonstrate
that FAIC scales well with the cluster size.

2 ASYNCHRONOUS ITERATIVE COMPUTATION

In this section, starting with two existing frameworks, we
introduce the asynchronous iterative computation model for
distributed computation. Then, we formulate a distributed
framework supporting asynchronous iterative computation
models.

2.1 Asynchronous Iterative Computation Model

Many distributed frameworks that use asynchronous itera-
tive computation model. We first show two example frame-
works: Maiter and NOMAD. Then, we introduce the math-
ematical model of asynchronous iterative computations.

2.1.1 Maiter

Maiter [9] is an asynchronous distributed framework for
graph processing. We use PageRank as an example to show
how the Maiter framework can be used for a large class of
graph processing algorithms. PageRank iteratively updates
the PageRank score vi of each node i as follows.

vi =
1− d
N

+
∑

j∈IN(i)

d · vj
|ON(j)|

where N is the total number of nodes, IN(i) and ON(i) is
the in-neighbor and out-neighbor set of node i respectively,
and d is a damping factor. Note that the PageRank score of
node i depends on the PageRank score of its in-neighbor
nodes. If each node’s PageRank score is initialized with

v0
i =

1− d
N

,

and Maiter maintains a change variable for each node i with
∆vi, then node j, an in-neighbor of node i, will contribute
to the change to node i with

d ·∆vj
|ON(j)|

.

As a result, each node i needs to perform the following
operations.

∆vi =
∑

j∈IN(i)

d ·∆vj
|ON(j)|

vi ← vi + ∆vi

Note that computation d·∆vj
|ON(j)| can be done at node j. The

result is sent to all out-neighbors of node j and a node i
accumulates the result into ∆vi upon receiving such a result.
As a result, Pagerank can be performed asynchronously
at each node where node i will perform the following
operations:

• For each message m, accumulate the message to ∆vi.
That is, ∆vi = ∆vi +m

• vi ← vi + ∆vi.
• Compute d·∆vi

|ON(i)| and send the result to all out-
neighbors.

2.1.2 NOMAD

NOMAD [11] is an asynchronous distributed framework
for big matrix completion problems. Let M ∈ Rn×m be a
matrix where only some of its entries is observed, denoted
with Ω ⊆ {1, . . . ,m} × {1, . . . , n}, the matrix completion
problem is to predict the values of unobserved entries. A
popular model is to find two small matrix H ∈ Rn×m and
W ∈ Rn×h where h � min{n,m} such that M ≈ HW . H
and W can be viewed as a set of row blocks and column
blocks respectively. That is, H = [H1, H2, · · · , Hn]T and
W = [W1,W2, · · · ,Wm]. The goal is to minimize the loss
function

J(H,W ;M) =
1

2
||M −HW ||22

=
1

2

∑
(i,j)∈Ω

(Mi,j −HiWj)
2

=
∑

(i,j)∈Ω

J(Hi,Wj ,Mi,j)

It can be solved by iteratively updating H and W using
gradient descent as follows where η is a positive learning
rate.

Hi ← Hi−η
∑
j

∂J(Hi,Wj ,Mi,j)

∂Hi
= Hi−η

∑
j

WT
j (HiWj−Mi,j)

Wj ←Wj−η
∑
i

∂J(Hi,Wj ,Mi,j)

∂Wj
= Wj−η

∑
i

HT
i (HiWj−Mi,j)

To perform the computation asynchronously, NOMAD
guarantees that there is only one copy of each Hi and
Wi. Thus, we can independently perform the computation
WT

j (HiWj − Mi,j) and HT
i (HiWj − Mi,j) for each (i, j)

pair ∈ Ω. We assign each Hi to a computation node i and
let Wj blocks traverse all nodes through messages. When
the message of Wj reaches node i, node i performs the
following operations.

• Hi ← Hi − η
∑

j W
T
j (HiWj −Mi,j).

• Wj ←Wj − η
∑

iH
T
i (HiWj −Mi,j).

• Send new Wj to node i+ 1.
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2.1.3 Other Distributed Frameworks
Many other distributed frameworks can be described with
this asynchronous iterative computation model. For exam-
ple, the GraphLab [12] is a distributed framework designed
for graph processing tasks, especially for iterative graph
algorithms. It models a graph with state data on each node
and edge. A node or edge updates its state value according
to its neighbors’ current state values. GraphLab supports
both the synchronous execution and asynchronous execu-
tion. In the asynchronous execution, when a node updates
its states, that change is pushed by its neighbors via data
messages. When the message is received by another node,
the corresponding change becomes visible to the receiving
node. Each node updates its own state asynchronously.
When it is going to update its own state, it uses the neighbor
states which is currently visible to it. In this model, the re-
ceiving thread keeps on receiving messages and make them
visible to local nodes. The computing thread updates local
state using the locally visible data and generates messages
about the new state. The sending thread sends out these
messages to workers holding their neighbor nodes.

2.1.4 AIC Model
We summarize the asynchronous iterative computation
(AIC) model in this section. There are two types of data
in the model, the static data and mutable variables. The
static data is usually the input of the problem which is
not changed during the computation process, like the graph
topology for the PageRank algorithm. While the mutable
variables describe the current state of all units, like the
PageRank scores. We describe a basic operation unit in an
iterative computation model as a computation node. Each
node holds a part of the static data and the corresponding
part of the mutable data.

Each node iteratively updates its mutable variable as
Equation (1). In general, a node i accumulates the mutable
variables vj of all other nodes and use them to update its
own mutable variable vi.

vi =
⊕
j

f(vj , vi;Dj , Di) (1)

The term fj,i(vj , vi;Dj , Di) in the equation quantifies the
impact of node j’s mutable variable to node i’s mutable
variable. Note that the update function f involves both the
mutable variables and static data of node i and j. Here,
we use an abstract accumulating operator ⊕ instead of a
typical addition operator + to cover a larger variety of
algorithms. For example, in the shortest path algorithm, the
accumulating operator ⊕ should be min so that the node
with the shortest distance vj is selected. Mathematically, we
require the accumulating operator to be ⊕ commutative i.e.,
a⊕ b = b⊕ a.

To make the iterative computation asynchronous, the
computation should be able to be transformed into a form
with independent sub-computations. The key idea is to
decompose the f into two parts, and each part only involves
the data of one node. So that each can be done indepen-
dently on different workers. We can decompose it with g
and h as shown in Equation (2).

f(vj , vi;Dj , Di) = g(h(vj , i;Dj), vi;Di) (2)

The h function is invoked on source nodes. The result of
h(vj , i;Dj) is a message from node j to node i. And the
g function works on node i. g(m, vi;Di) transforms the
message m = h(vj , i;Dj) to the form ready for accumu-
lation using the data of node i. Thus, we can perform
h(vj , i;Dj) for different j independently on different nodes.
Since the accumulating operator is commutative, we can
asynchronously accumulate them on node i. So in an AIC
system, when the message mj,i reaches node i, node i
performs the following operations.
• Update mutable variable vi by vi ← vi ⊕ g(mj,i)
• Compute message mi,k = h(vi;Di)
• Send message mi,k to node k if mi,k 6= 0

Note that 0 is the identity element of ⊕, which is 0 for
addition and +∞ for minimization.

We can use this model to express the Maiter and NO-
MAD framework as follows. We use the PageRank algo-
rithm as an example for Maiter. For PageRank, each graph
vertex is a computation node. The mutable data of a node
i is two variables pi and ui where pi is the PageRank
score and ui is the delta term of the PageRank score. The
static data of a node i contains its out-neighbor list ON(i).
Therefore, we have the following h and g functions.

• h(〈pi, ui〉, k;Di) =


dui
|ON(i)|

, k ∈ ON(i)

0, otherwise
• g(m, vi;Di) = m

• a⊕ a′ = a+ a′

The h function sends duj

|ON(j)| to the out-neighbors of node j.
While the g does no modification to the received message.
And the messages are accumulated with addition. For the
matrix completion example of NOMAD, the mutable data
of a node i consists of two parts, Hi and a dummy W∗. The
dummy W∗ part is used to forward the Wj block from the
input message to the output message. Correspondingly, the
W∗ part is not accumulated. It is replaced with a new Wj

each time a new Wj is received. And the static data Di is
the i-th row of the matrix M .

• h(〈Hi,W∗〉, k;Di) =

{
W∗, k = i+ 1

0, otherwise

• g(Wj , 〈Hi,W∗〉;Di) =

〈−ηWT
j (HiWj −Mi,j),W∗ − ηHT

i (HiWj −Mi,j)〉
• 〈h,w〉 ⊕ 〈h′, w′〉 = 〈h+ h′, w′〉

Here, the message generation function h just forward the
updatedW∗. Upon the receiving of a message, the g function
calculates the gradient of the local Hi variable and the
message Wj .

2.2 AIC Distributed Frameworks

In this subsection, we show the framework supporting the
AIC model in distributed environments. This distributed
framework consists of a set of workers and a coordinator.
Workers hold computation nodes and perform the com-
putation task. The coordinator has an overview of worker
progress and determines when to terminate the computa-
tion.
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Fig. 1. Worker Model of an AIC system

2.2.1 Coordinator

A coordinator has a global view of the system and handles
tasks like state monitoring, progress tracking, and termi-
nation control. A worker can hardly handle these tasks
since they require information for all workers. Before a
computation task starts, the coordinator checks whether all
workers are available. The coordinator then broadcasts a
starting signal to let all workers start the computation. The
most important task of the coordinator is to keep track of
the availability and progress of all workers. The coordinator
periodically gathers information from all workers. Mean-
while, it also estimates the global progress of the whole
computation. If the computation finishes, the coordinator
needs to gather the result and terminate workers.

2.2.2 Worker

A worker is an entity used to hold the data of nodes and
perform their corresponding computation. Nodes together
with their static and mutable data are partitioned among
workers. A typical partition method is to use a hash function
on the node index. A more sophisticated method to partition
is to assign nodes with tight connections to the same worker.
So as to make most messages get transmitted within each
worker.

Fig. 1 illustrates the basic structure of a worker. Nodes
assigned to a worker are organized in a table. In addition
to the static data and mutable data of a node, the table
also buffers the messages sent to each node, referred to
as update buffer, and the message generated by each node,
referred to as out-message buffer. Each out-message buffer
can be organized as a FIFO message queue. Together with
them, the table also contains some supporting data to fulfill
the system execution, like priority values, state flags, and
some data caches for computation if necessary.

In a worker, three threads cooperate via the node table to
perform the distributed asynchronous iterative computation
as follows. A receiving thread receives messages from the
network and put them into the update buffer of their corre-
sponding nodes. Note that the messages are not processed
yet. A computing thread keeps on picking nodes from the ta-
ble and then updates their mutable data using the messages
in their update buffers. When the mutable data is updated,

the computing thread generates corresponding messages
and puts them input the out-message buffer of that node.
We will introduce the computing thread in detail later. A
sending thread keeps on checking the out-message buffers
and sends found messages to their destination worker via
the network.

The computing thread consists of a scheduler and an
update operator. The scheduler selects nodes to be updated.
The scheduling algorithm can be a round-robin selection or
a prioritized scheduling with a given priority generation
method. For example, Maiter uses the absolute value of
∆vi as the priority value of node i, so as to perform larger
changes earlier. The update operator of the computing
thread consists of two parts, update the mutable data and
generate new messages, shown with the orange cycles in
Fig. 1. For a selected node, the updating step invokes the g
function to preprocess the buffered messages and use them
to update the mutable data via the ⊕ operator. Then the
computing thread invokes the h function to generate new
messages. When a message is generated, the computing
thread checks which worker contains the destination node
of that message, using the partition hash function. If the
destination worker is the current worker, the computing
thread directly puts the new message into the destination
node’s update buffer. If the destination is another worker,
the computing thread pushes the new message into the out-
message buffer of the source node.

In many algorithms, messages in the update buffer and
the out-message buffer can be aggregated. For example,
messages in the Pagerank algorithm are delta values of
the Pagerank scores. Adding two delta values consecutively
onto a Pagerank score results in the same score as adding the
summation of the two delta values on the original score. So
the receiving thread can just maintain one copy of received
delta value for each node in the update buffer instead of
keeping everyone. And once it receives a new message, it
accumulates the message with the one in the update buffer
using + operation. Similarly, the computing thread can also
accumulate out-going messages in the out-message buffer
before the sending thread sends them out.

The three threads within a worker also work asyn-
chronously. The receiving thread puts received messages
into update buffers. The computing thread is not trig-
gered by the receiving thread. It asynchronously picks and
updates nodes with non-empty update buffers. Similarly,
the computing thread and the sending thread work asyn-
chronously via the out-message buffer.

3 FAULT-TOLERANT FRAMEWORK FOR AIC
(FAIC)
In this section, we introduce our fault-tolerance mechanism
for a distributed asynchronous iterative computation sys-
tems. We provide an overview of the system first. Then, we
elaborate on how it works in a distributed AIC framework
and how it recovers a system when a failure happens.

3.1 Overview

The key idea of our mechanism is to lead the AIC system
into a state where there is no inflight message. Then, we can
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(a) State (b) Flushed State

Fig. 2. Snapshot Example

take a snapshot of that state as a checkpoint. Fig. 2a shows
the snapshot of an AIC system, which is the state of the
whole system at some time point. There are usually some
messages being transmitted in the network. We want to
flush the network so that there is no inflight message across
workers in the system as Fig. 2b. Then, workers capture their
local states asynchronously among different workers. We
call the local states captured from all workers collectively
as a flushed snapshot of the system.

We can capture the local state of each worker in a flushed
snapshot asynchronously. In a distributed system, the time
points when each worker gets all messages flushed to it can
be quite different. So we capture the local state of a worker at
the time when the worker receives the last inflight messages
sent to it. Assuming workers of Fig. 2b receive their last
messages in the order of Worker-1, Worker-2, Worker-3,
Worker-4, we capture the local state of each worker as Fig. 3.
We denote the time points when workers receive their last
inflight messages as T1, T2, T3, and T4.

Since the computations on workers keep change their
local state, we denote the local state of a worker i at time
point T as Si(T ). Obviously, S1(T1) 6= S1(T2). So what we
capture is 〈S1(T1), S2(T2), S3(T3), S4(T4)〉. The captured
data seems to be a snapshot but it does not exist at any time
point, so we call this “snapshot” as a virtual snapshot.

During the process of taking a virtual snapshot, the
computing thread of each worker continues. Computing
threads can continue processing as long as there are data
messages in the update buffer. There are two sources to
the update buffer. First, the receiving thread buffers some
inflight data messages in the local update buffers. Second,
as mentioned in Section 2.2.2, when the destination node of
a locally-generated message is local, the message is directly
put into the corresponding update buffer. Note that, it is
not guaranteed that the computing always continues. If the
buffered data messages are used up and destination nodes
of all newly generated messages are held by other workers,
the computing thread of a worker stops. But that scenario
does not happen usually.

A virtual snapshot can be used to recover an AIC system.
We give a formal proof in later sections. The general idea is
to show that by controlling the working pace of each thread,
it is possible to construct a snapshot which is identical to
the virtual snapshot. Intuitively, halting a thread in an AIC
system can be viewed as a special case of asynchronous
execution where zero working time is scheduled to that
thread. Therefore, we can construct a snapshot by halting
the computing thread of a worker at the moment when the

local state is captured. As a result, the local state of that
worker remains unchanged since that moment. When the
computing threads of all workers get halted, the current
snapshot is exactly the virtual snapshot we captured.

3.2 Interactions among Coordinator and Workers

Fig. 4 shows the interaction among workers and the co-
ordinator for taking a virtual snapshot. Our method can
be viewed as three steps. The first step is a flushing step.
It starts when the coordinator broadcasts a flush message
to all workers, as illustrated with “1-flush” in the figure.
When a worker receives the flush message, it pauses its
further sending operation to flush its out-going inflight
data messages. Once the flushing is done, a worker notifies
others by broadcasting a clear message to every worker
including itself as denoted with “2-clear”. This step is
performed by each worker individually because channels
between workers are independent. The second step is to
archive the local states of workers. A worker is not going
to receive any more messages once all inflight messages to
it are flushed out. Then, the worker archives its local state
including the mutable data, update buffer, and out-message
buffer of all its local nodes. The last step is to resume
the whole system back to the normal computation mode.
After archiving local states, a worker notifies the coordinator
about its progress via a finish message, as shown with “3-
finish” from a worker to the coordination in the figure. After
all workers finish their archiving operations, the coordinator
broadcasts a resume message, shown with “4-resume” in
the figure, to all workers to make them resume the network
communication.

3.3 Interactions among Threads within a Worker

Each worker experiences three phases corresponding to
the three steps while taking a virtual snapshot. Now we
introduce how does the receiving thread, computing thread
and sending thread of a worker interact.

3.3.1 Flushing Phase
When a worker receives the flush message from the co-
ordinator, it moves into the flushing phase. The worker
broadcasts a clear message to every worker, including itself,
and halts its sending thread. More precisely, the receiving
thread sends an internal halting signal to the sending thread,
as shown with the dashed line denoted with “1-halt” in
Fig. 5. When the sending thread receives this internal halting
signal, it stops its normal sending task and immediately
broadcasts the clear message. Therefore, the clear message
is the last message that another worker is able to receive
from this worker. Meanwhile, the receiving thread keeps
receiving messages and the computing thread keeps updat-
ing local nodes. The generated messages are temporarily
buffered in the out-message buffers.

A worker finishes its flushing phase as follows. The
flushing phase of a worker finishes when the worker re-
ceives clear messages from all workers. When a worker
receives a clear message from another worker, there is no
inflight message between these two workers. Because a
worker only sends one clear message to another worker,
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Fig. 3. Virtual Snapshot Example 〈S1(T1), S2(T2), S3(T3), S4(T4)〉

Fig. 4. Interactions among Coordinator and Workers

Fig. 5. Interaction among Receiving, Computing and Sending Thread of
a Worker

the flushing to a worker finishes when it receives n clear
messages where n is the number of total workers. So we set
up a counter for the number of received clear messages. The
counter starts with 0. Note that, due to the network delay,
a worker may receive a clear message before it receives
the flush message. So the initializing and resetting of the
counter is performed at the resuming phase instead of the
beginning of the flushing phase. Whenever the receiving
thread receives a clear message from another worker, it
increases the counter. When the value of the counter reaches
n, the worker finishes its flushing phase and moves to the
archiving phase.

3.3.2 Archiving Phase

In the archiving phase, a worker archives its local state and
notifies the coordinator. When the counter reaches n, the
receiving thread sends an internal archiving signal to the
computing thread, as shown with the dashed line denoted
with “2-archive” in Fig. 5. We use the computing thread to
handle the archive task to prevent the update operations
from changing values during archiving them. When the

computing thread receives the archiving signal, it inserts
an archive operation after the current update operation. The
archive operation archive states of all local nodes including
the mutable data, update buffer and out-message buffer.

After the archiving operation is done, the computing
thread sends an internal finish signal to the sending thread,
as shown with the dashed line denoted with “3-finish” in
Fig. 5. When the sending thread receives that internal signal,
it sends a finish message to the coordinator to notify the
coordinator about this local finish. Thus, a worker finishes
its archiving phase and moves to the resuming phase.

Note that some messages are aggregated before gets
archived in AIC systems, like Maiter, whose messages are
accumulative. The computing thread archives messages af-
ter all inflight messages sent to this worker are received.
During this period, messages keep being accumulated in the
update buffer and out-message buffer. Our method archives
the accumulated messages. In AIC systems whose messages
are accumulative, several messages are aggregated into one.

3.3.3 Resuming Phase
After all workers finish their own archive tasks, the sys-
tem goes back to the normal working mode by resuming
all sending threads. The coordinator monitors the check-
pointing progress by counting the received finish messages.
When the coordinator receives n finish messages, it broad-
casts a resume message to all workers. As illustrated in Fig. 5,
when a worker receives the resume message, the receiving
thread resets the counter about clear messages and sends
an internal resume message to the sending thread. When
the sending thread gets that internal signal, it resumes its
normal sending functionality of the data messages. Then a
checkpoint procedure finishes.

3.4 Recovery from a Checkpoint

When a failure happens, the system is restored back to the
latest checkpoint. The restoring task is done by just loading
the archived local state of each worker. Each worker loads its
own part of the archived local state from the checkpoint in-
cluding the mutable data, update buffers, and out-message
buffer into its node table. Then, the worker starts its three
threads.

4 CORRECTNESS PROOF OF FAIC
In this section, we prove that the virtual snapshot captured
by FAIC can be used to correctly recover an AIC system.
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First, we formally describe how an AIC system works and
the relationship between actions and snapshots. Then, we
describe the actions while taking a snapshot. After that, we
show that we can always construct an action sequence to
reach a snapshot that contains identical data to the virtual
snapshot captured by FAIC.

4.1 Formal Model for AIC

We can use a sequence of actions to represent how a worker
executes its computation. To simplify the discussion, we can
treat time as a sequence of small time slots and a worker
only takes one action in one time slot. An action may take
several time slots. We assume that an action changes the
state of the system at the moment when it finishes. In ad-
dition to the receiving, computing and sending action intro-
duced in previous sections, a worker may do nothing during
one time slot. We use a halting action to represent such a
case. So that the execution of a worker can be expressed
with an action sequence consists of such 4 types of actions. It
can be understood as how computing resources are assigned
to the receiving, computing, and sending thread. If a worker
takes a receiving action while there is nothing on the wire,
this action has no effect on the state of the worker. Similarly,
the computing action and sending action do nothing if there
is no message to be processed or sent. We refer to there
actions that do nothing including halting actions as invalid
actions and the rests are valid actions.

We can use the action sequences of all workers to express
the execution of the AIC system. We refer to these action
sequences as an action sequence group. One concrete execu-
tion of the AIC system maps to one specific action sequence
group. Note that given an initial snapshot and an action
sequences group, we can get a sequence of snapshots of the
AIC system at the end of each time slot.

The state of an AIC system at a certain time point is
expressed as a snapshot and actions update the snapshot. A
snapshot consists of the local state Ii, Vi, Oi of each worker
Wi, and the inflight message set M , where Ii, Vi, Oi are
the update buffer, the mutable date and the out-message
buffer of worker Wi respectively. The inflight message set
M consists of messages sent to each worker Mi. Therefore, a
snapshot can be expressed with a list of augmented local states
〈Si〉n = 〈Ii, Vi, Oi,Mi〉n. A receiving action on worker Wi

updates Mi and Ii by picking one message from Mi and put
it into Ii. A computing action on worker Wi changes Ii, Vi,
and Oi. It picks a message from Ii and uses it to update
Vi using the f function meanwhile it may also generate
some new messages into Oi. A sending action on worker
Wi picks a message from Oi and put it into Mk where k is
the destination worker of the message. Except for the halting
action, each action moves a snapshot S to another snapshot
S′. Since an action changes the state of the system when it
finishes, a snapshot in the middle of an action is the same as
the one when this action starts.

Start from an initial snapshot, an action sequence group
moves the system to another snapshot. A potential snapshot is
a snapshot that can be derived by an action sequence group
from the initial snapshot.

We define a recoverable state of an AIC system as a state
starting from which the AIC system can continue comput-
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(a) Virtual Snapshot 〈S1, S2, S3〉
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′
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Fig. 6. Constructing an Equivalent Snapshot from a Virtual Snapshot.
(Black bars are the actions that start local checkpointing procedures.
There is no valid sending action after a black bar of a worker. Dashed
bars denote the receiving actions of each worker’s last clear messages.
There is no further valid receiving action after it on a worker.)

ing. Apparently, a snapshot is a recoverable state because
it contains all data of an AIC system. Because a potential
snapshot is a snapshot, we have Lemma 1.

Lemma 1. A potential snapshot is a recoverable state for the AIC
system.

4.2 Correctness of FAIC

We first review the procedure of taking a virtual snapshot
using the action sequence concept. Fig. 6a shows the proce-
dure using a three-worker example. We use bars to represent
valid actions of each worker. When a worker receives the
flush message from the coordinator, denoted with a black
bar, it broadcasts a clear message to other workers and
halts the sending thread. There is no valid sending action
on a worker after the black bar. Note that, as discussed in
Section 3.3.1, the action of the black bar can either be the
receiving action of the flush message from the coordinator or
the receiving action of the first clear message received from
a worker. On the receiving action of the last clear messages,
denoted with a dashed bar, a worker Wi archives its current
local state Si and continues to perform computing actions.
Note that, the receiving of the last clear messages means
there is no more inflight message sent to this worker. From
the perspective of the action sequence, there is no more
valid receiving action after a gray bar of a worker. After
all workers finish the archiving, they resume the sending
threads. From then on, there are valid sending and receiving
actions again.

We are going to prove that a virtual snapshot captured
by FAIC is a potential snapshot. FAIC captures the local state
of each worker at different time points and constructs them
as a virtual snapshot which does not show up at any time
slot of the execution. In Lemma 2, we are going to show that
there is a potential snapshot that captures the same local
states as the virtual snapshot. The general idea of proving
this lemma is to construct an action sequence group which
leads the AIC system to such a potential snapshot.

Lemma 2. A virtual snapshot captures in FAIC is a potential
snapshot of the AIC system.

Proof. The statement is true as long as for any virtual
snapshot we can find an action sequence group that leads
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the system to a potential snapshot and the content of this
potential snapshot is identical to the virtual snapshot. We
prove it by giving a method of constructing such an action
sequence group for any virtual snapshot.

We construct the action sequence group for the potential
snapshot by modifying the action sequence group in the
execution of taking the virtual snapshot. We cut the action
sequence of a worker Wi into two parts at the receiving
action of the last clear message, i.e., the gray bars in Fig. 6a,
asAia andAib. We denote the moment when the last worker
takes its local snapshot at T1. For each worker, we construct
its new action sequence in two steps. First, we copy the
Aia sequence i.e., the actions until the receiving last clear
message, to the constructed action sequence. Second, we
pad an action sequence Aih which only contains halting
actions to each worker to make the action sequence of every
worker reaches time T1. Then, at time T1, we get a snapshot
〈S′1, S′2, S′3〉 from the constructed action sequence group.

Now, we are going to prove that the potential snapshot
〈S′1, S′2, S′3〉 of constructed action sequences group is identi-
cal to the virtual snapshot 〈S1, S2, S3〉. We prove it in two
steps. We will show that the state S′i at T1 is the same as the
state S′′i at the gray bar for each worker in the constructed
execution. Then, we will prove that for each worker the state
S′′i at the gray bar of the constructed execution is the same
as the state Si at the gray bar of the original execution.

First, we will prove that in the constructed execution the
augmented local state S′i at T1 is the same as the one at
the gray bar S′′i . Since no worker sends messages to worker
Wi after black bars, there is no valid sending actions on
any worker after the gray bar of worker Wi. In addition, all
inflight messages to worker Wi are received at the gray bar.
Therefore, the inflight message part Mi of S′′i keeps empty
during the period of Aih. And Aih only contains halting
actions that do not change anything. So that, for each worker
the state S′′i at the gray bar keeps the same until the state S′i
at T1.

Second, we will prove the augmented local state S′′i at
the gray bar of the constructed execution is the same as the
augmented local state Si archived in the virtual snapshot.
Apparently, for the first worker that archives its local state
S′′i = Si, which is the W2 in Fig. 6. Since the halting
sequence A2h does not send anything to any worker, the
inflight message part of the second worker archiving its
local state, which is W3 in the example, is updated by
the same action sequences as the original execution used
to take the virtual snapshot. In addition, the constructed
action sequence until the gray bar of W3 is the same as
that in the original action sequence group. So does the
action sequence of other workers until that moment, which
is W1 in the example, especially the sending actions to W3.
Therefore, all actions which may update the local state of
W3 in the constructed action sequence group is the same as
those in the original action sequence group. As a result, the
augmented local state S′′3 in the constructed snapshot equals
the state S3 archived in the virtual snapshot. Similarly,
the actions which update the augmented local state of a
worker in the constructed action sequence group are exactly
the same as those in the original action sequence group.
Therefore, for all workers, we have S′′i = Si.

Theorem 3. The virtual snapshot captured in FAIC is able to
recover the AIC system correctly.

Proof. By putting Lemma 1 and Lemma 2 together, we know
that the virtual snapshot captured in FAIC is a recoverable
state. Therefore, we get Theorem 3.

5 EVALUATION

In this section, we evaluate the empirical performance of
our fault-tolerant framework with two adoptions of exist-
ing iterative asynchronous computation frameworks. First,
we introduce the setup of our experiments in Section 5.1.
Then, we evaluate the overhead of making checkpoints and
compare it with some typical methods in Section 5.3. In
Section 5.4, we test the overall running time of our FAIC
framework when there are some failures. At the end, we
test the scalability of FAIC in Section 5.5.

5.1 Experimental Setup

We implement our FAIC framework for two existing AIC
frameworks, Maiter [9] and NOMAD [11]. We add the fault-
tolerance related code on top of their implementation and
make our code public accessible on github 1 2.

We use Maiter to test how FAIC performs when message
aggregation before archiving is available. Maiter is a delta-
base accumulative iterative computation model. Its mes-
sages are accumulative. We run the PageRank algorithm
on top of power-law graphs. We synthesized test graphs
by setting the distribution parameter α = 2.3, to simulate
the topology of an online social network. The size of the
graphs ranges from 100 thousand nodes to 5 million nodes.
We apply graphs with 1 million nodes by default.

We use NOMAD to test how FAIC performs when
messages are not accumulative. We run matrix completion
algorithm using synthesized matrices of size 10,000× 200 by
default. To make NOMAD works with FAIC, we make the
following changes to it. First, we add a virtual computing
thread for each worker. The NOMAD model employs mul-
tiple computing threads in each worker while they share the
same receiving and sending thread. The virtual computing
thread holds all original computing threads and takes over
their interaction with the receiving and sending thread.
Second, we add a error-based termination mechanism to
measure the time of reaching identical precision level. The
coordinator keeps checking whether the training error be-
comes smaller than a predefined threshold and terminates
workers if it happens. Since computing the error is a part
of the training procedure, this additional checking does not
bring noticeable performance impact.

By default, we perform our experiments using 6 workers
of a local cluster equipped with Xeon(R) E5-2620 CPU and
32 GB memory. In the experiments of a heterogeneous clus-
ter, we replace 2 workers with Xeon E5607 CPU, which is
about 40% slower than the other workers. For the scalability
experiments, we set up a cluster utilizing Amazon Web
Services (AWS) EC2 platform. We set up a cluster with 100
t3a.small instances, which has 2 vCPU and 2 GB memory.

1. Maiter: https://github.com/yxtj/maiter/tree/checkpoint2
2. NOMAD: https://github.com/yxtj/nomad
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By default, we set up the checkpoint interval as 30
seconds. We choose this value to emulate the frequent server
preemption in transient resources offered in clouds. To re-
duce the progress-loss after a worker-loss, it is necessary to
make checkpoints frequently. We evaluate how checkpoint
intervals affects the total running time in Section 5.4.

5.2 Checkpoint Methods to Compare with

We compare our virtual-snapshot-based FAIC checkpoint
method with two checkpoint methods, a synchronous
method and an asynchronous method. The synchronous
checkpoint method, referred to as Sync, pauses the com-
putation and communication of all workers to flush in-
flight messages. When a worker receives a starting message
from the coordinator, it pauses its computing and sending
threads. After the receiving thread finds that there is no
more inflight message sent to that worker, it notifies the
coordinator. When the coordinator is notified by all workers,
it broadcasts another special message to make all workers
to take a snapshot and then resume the computing and
sending threads.

We also compare our FAIC framework with an asyn-
chronous checkpoint method, referred to as Async. Async
adopts the idea of the Chandy-Lamport snapshot algo-
rithm [10] to capture states of workers and messages be-
tween workers. Instead of taking a snapshot, Async makes
a checkpoint with a process, during which the inflight mes-
sages are captured one by one. Meanwhile, neither the com-
puting or the sending and receiving are halted. Async starts
when the coordinator broadcasts a starting message to all
workers. When a worker receives the starting messages, it
immediately archives its local mutable data and broadcasts
a special token to other workers. Meanwhile, the worker
starts archiving messages. This token can be views as the
flush message. It means all messages received before this
token are part of the snapshot. A worker archives every data
message from worker Wi until before it receives the token
from workerWi. Async finishes when all workers receive all
tokens from other workers. In comparison, FAIC archives
the local mutable data and message buffers together. And
FAIC archives data at the end of the checkpointing proce-
dure on each worker instead of the beginning.

5.3 Checkpoint Overheads

We measure the overhead caused by making checkpoints
to demonstrate the impact of our fault-tolerant framework
onto the normal computation. The overhead of a check-
point cannot be directly measured by simply summing the
archiving time and flushing time. For example, in FAIC, the
communication is halted during the checkpointing, which
may slow down the global computation. Therefore, we mea-
sure the overhead as the running time difference as follows.
By setting identical data set, termination condition and
checkpoint interval, we measure the running time of Sync,
FAIC, Async and also the case without checkpoints. Thus,
we get the total overhead of a checkpoint method. Since
there are multiple checkpoints in each run, we compute the
overhead of each checkpoint by dividing the total overhead
with the number of checkpoints in that experiment.
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Fig. 7. Comparing Checkpoint Overhead (Homogeneous Cluster)
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Fig. 8. Comparing Checkpoint Overhead (Heterogeneous Cluster)

We compare the overhead of Sync, FAIC and Async
on both Maiter and NOMAD. In order to demonstrate the
average performance, we run each method multiple times.
We also set up different checkpoint intervals for each run.
So that the system captures snapshots at different progress
levels in each run. We show the averaged overhead of a
checkpoint in Fig. 7 and Fig. 8. The standard derivation
of the overhead is shown with an error bar. To show the
influence of the message aggregation technique, we also
include a FAIC variation without aggregation denoted with
“FAIC-D” in the figures. Fig. 7 shows the overhead com-
parison under a homogeneous cluster. On both Maiter and
NOMAD, FAIC reduces about half of the overhead of Sync
and performs roughly the same as Async. For specifically,
Fig. 7a shows that the overhead of FAIC on Maiter is about
51% of Sync and 90% of Async. And Fig. 7b shows the
overhead of FAIC on NOMAD is about 54% of Sync and
103% of Async.

We also compare the overhead in a heterogeneous en-
vironment. Two workers in the heterogeneous cluster is
about 40% slower than others. Shown in Fig. 8, overhead
of FAIC is only about 31% of Sync. It because that Sync
pauses the computation until every worker finishes its local
tasks while FAIC and Async keeps running the computa-
tion. The overhead of Sync is about 40% longer than that
in the homogeneous cluster while FAIC and Async only
slow down about 8%-15% than the homogeneous case. This
ratio is consistent with the global slow-down ratio which is
2/6× 40% ≈ 13.3%.

Fig. 7a and 8a show that the overhead of FAIC is obvi-
ously smaller than Async on Maiter. FAIC pauses the cross
worker communication during making a checkpoint, while
Async does not pause any computation or communication.
So intuitively the overhead of FAIC should not be smaller
than Async. But FAIC still performs local computation and
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Fig. 10. Running Time with one Failure

usually a checkpointing period is not long enough to make
a worker finish all local computation tasks. In addition, a
local computation task may also generate messages to local
data nodes and trigger new local computation.

FAIC outperforms Async on Maiter because FAIC
archives less amount of messages. As introduced in Sec-
tion 2.2.2, on systems like Maiter, multiple messages tar-
geted at the same data node can be aggregated into one.
In comparison, Async must capture each received message
individually. It is because that Async archives the local
state, including the mutable data and update buffers, at the
beginning of a checkpoint procedure. If we archive aggre-
gated messages later, the beginning state of update buffer
is actually captured twice. But FAIC archives aggregated
local states after all inflight messages got flushed. This state
contains the beginning state and all inflight messages. So
FAIC does not capture anything twice. Because of the mes-
sage aggregation, there is usually less amount of message
to be archived in FAIC than Async. To verify it, we disable
the aggregation function of FAIC and measure its average
message volume in each checkpoint. Fig. 9 compares the
average message volume of Sync, FAIC with aggregation,
FAIC without aggregation (denoted with FAIC-D), and
Async. We can see that the average message volume of
Sync, Async and FAIC-D are roughly the same while FAIC
is about 12% smaller than others on Maiter. On systems like
NOMAD where messages cannot be accumulated, as shown
in Fig. 9b, FAIC captures the same amount of messages
as others. Therefore, the overhead of FAIC and Async are
roughly the same.

5.4 Running Time with Failures

We demonstrate the efficiency of FAIC’s failure recovery in
Fig. 10. We artificially insert a failure at a certain moment
and recover the system. We measure the total running time

5 10 30 60 300
checkpoint interval (s)

1000

1050

1100

1150

1200

1250

ru
nn

in
g 

tim
e 

(s
)

Sync
FAIC
Async

(a) Maiter

5 10 30 60 300
checkpoint interval (s)

900

950

1000

1050

1100

ru
nn

in
g 

tim
e 

(s
)

Sync
FAIC
Async

(b) NOMAD

Fig. 11. Running Time of Checkpoint-based Methods with one Failure
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(Heterogeneous Cluster)

of FAIC and compare it with a baseline method, denoted
with Restart. The baseline method does not make check-
points during computation and restarts the computation
from stretch after a failure. Fig. 10 compares the total
running time of FAIC and Restart with a failure at some
different computation progress points. We can see that the
total running time of FAIC is roughly the same no matter
when the failure happens. But the restart suffers a linear
increase in the time. When a failure happens at 20% of
progress, FAIC is about 12% faster than Restart. When a
failure happens at 80% of progress, FAIC saves about 70%
of computation time.

FAIC and the other two checkpoint-based methods lose
the progress between the failure and the last checkpoint.
Making checkpoints takes about 8% of the computation
time. Therefore, ideally, when failure happens at 80% of
progress, FAIC should be 72% faster than Restart. FAIC
loses an additional 2% of running time, i.e., about 22 sec-
onds, because the progress between the latest checkpoint
and the failure loses. It also explains why FAIC is not
always better than Async on Maiter. So making checkpoints
more frequently is more likely to recover more computation
progress after a failure happens. But since taking checkpoint
cost some time itself, we should not make checkpoints too
frequently. We need to find the best trade-off between the
checkpointing cost and the recovery efficiency depending
on the failure frequency.

We also compare the total running time of FAIC with
other checkpoint-based methods. Fig. 11 and Fig. 12 show
the running of Sync, FAIC and Async with a failure at
30% of the progress. Fig. 11 shows the running time under
a homogeneous cluster and Fig. 12 shows that under a
heterogeneous cluster. In both experiments, Sync is the
slowest. FAIC outperforms Async about 2% in Maiter and
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performs roughly the same as Async on NOMAD. The total
time depends on the checkpoint frequency. As shown in
Fig. 11, in a homogeneous cluster, the total running time
of FAIC is about 2% and 0.4% shorter than Sync and Async
respectively on Maiter with the checkpoint frequency of 10
seconds. In a heterogeneous cluster where the overhead of
each checkpoint is larger, as shown with Fig. 12, FAIC out-
performs Sync and Async about 8% and 0.4% respectively
under the same condition. When larger checkpoint intervals
are adopted, fewer checkpoints are taken and the difference
between different methods decreases.

5.5 Scalability

In this subsection, we test the scalability of FAIC.We use a
power-law graph containing 5 million nodes and roughly
20 million edges for Maiter and a 50,000 × 200 matrix for
NOMAD. We compare the running time of reaching the
identical error level. Shown in Fig. 13, the running time
decreases with the increase in the number of workers. We
use the running time of the 4-worker case as a reference
point and compute the ideal scaling curve with it. They are
shown with dash lines. As we can see, up to 100 workers,
the running time of FAIC sticks to the ideal case.
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Fig. 13. Scalability of FAIC

6 RELATED WORK

Many people use synchronous barriers to make checkpoints
in distributed iterative computations. Some models [3],
[4], [8], [13], [14], [15] use the Bulk Synchronous Parallel
(BSP) [5] model where the synchronous barriers naturally
exist. Some other asynchronous systems [9], [16] set up
additional barriers to force the whole system to reach a
global consistent point.

Zaharia et al. proposed a linkage based recovery mecha-
nism for the synchronous distributed model called Resilient
Distributed Dataset (RDD) [17]. Each piece of data maintains
a sequence of its previous modifications. If a worker is
down, the data on it is re-acquired by redoing several latest
modifications since the last reliable point. But RDD requires
the data modifications to be synchronous, so that there is a
global consistent point at some moment. In addition, when
a modification involves some cross-worker cooperation, the
RDD model downgrades to a global rollback-redo model.

There are also some prior works providing asynchronous
checkpoint to specific AIC systems. GraphLab [12] and
PowerGraph [18] are asynchronous iterative computation
models focusing on graph processing. They implemented

a node-wise checkpointing method based on the typical
Chandy-Lamport algorithm [10]. Instead of working on a
fine-grained graph node level, our framework works on
the level of workers which can handle various tasks in
various granularity. FAIC provides fault-tolerance for any
asynchronous iterative framework which can be expressed
with the message-passing model. In addition, our mecha-
nism of signal-and-handler provides additional flexibility
to designers who want to customize the checkpointing
behaviors like adopting a customized message compressing
function or adding a statistics function.

Chandy-Lamport snapshot algorithm [10] is a classical
idea of finding a global consistent snapshot. It employs a
delicate protocol to capture the states of communication
channels which are the inflight messages in AIC systems. In
our FAIC framework, we try to find a snapshot where there
is no inflight message. In addition, we propose a method to
compose such a snapshot in AIC systems without forcing it
to appear.

Different from checkpoint based recovery, some works
aim to provide algorithm-based recovery. By using correct
algorithmic compensations, some works [19], [20], can reach
a consistent state even after failures. However, defining
the compensation function is non-trivial and such functions
only exist for specific algorithms. Recently, some researchers
proposed Zorro [21] which exploits vertex replication to
quickly rebuild the state of failed servers for graph process-
ing. It reduces the overhead during failure-free execution to
zero but sacrifices the accuracy of the result. Similarly, some
other works [22], [23] reduce the overhead during failure-
free executions for iterative solvers. For certain iterative
approximating algorithms like PageRank, some researchers
proposed a fault-tolerant algorithm without a checkpoint or
a compensation function [24].

In the high performance computing community, some
researchers proposed “partial snapshots” for complex tasks.
These works [25], [26] identify the independent task
branches int the data flow graph of a complex task. Then,
they can take partial snapshots on each branch indepen-
dently. In our work, we focus on AIC systems whose data
flow is usually a set of contact cycles. Each cycle is the data
flow of one data point. And different cycles run at different
speeds.

7 CONCLUSION

We propose a distributed fault-tolerant framework for asyn-
chronous iterative computations. In an AIC system, mes-
sages across workers are hard to capture and are crucial for
the computation and recovery. Our key idea is to archive a
state of the AIC system where there is no inflight message.
We propose a FAIC framework which leads each worker
into such a state without halting the computation of any
worker. These local states are captured on each worker at
different time and they form a virtual snapshot. We prove
that the virtual snapshot can recover the system correctly.
After that we evaluate the FAIC framework with two exist-
ing AIC system, Maiter and NOMAD. Our evaluation re-
sults shows the overhead of FAIC is about 50% smaller than
the synchronous snapshot method, like BSP, and roughly
the same as the asynchronous snapshot method, like the
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Chandy-Lamport snapshot algorithm. For AIC systems like
Maiter whose messages are accumulative, FAIC is about
10% faster than the Chandy-Lamport snapshot algorithm.
Our experiments on large cluster also shows that FAIC
scales with the number of workers.
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