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Abstract—Large-scale multiuser scientific facilities, such as ge-
ographically distributed observatories, remote instruments, and
experimental platforms, represent some of the largest national
investments and can enable dramatic advances across many
areas of science. Recent examples of such advances include the
detection of gravitational waves and the imaging of a black hole’s
event horizon. However, as the number of such facilities and their
users grow, along with the complexity, diversity, and volumes
of their data products, finding and accessing relevant data is
becoming increasingly challenging, limiting the potential impact
of facilities. These challenges are further amplified as scientists
and application workflows increasingly try to integrate facilities’
data from diverse domains.

In this paper, we leverage concepts underlying recommender
systems, which are extremely effective in e-commerce, to address
these data-discovery and data-access challenges for large-scale
distributed scientific facilities. We first analyze data from facilities
and identify and model user-query patterns in terms of facility
location and spatial localities, domain-specific data models, and
user associations. We then use this analysis to generate a
knowledge graph and develop the collaborative knowledge-aware
graph attention network (CKAT) recommendation model, which
leverages graph neural networks (GNNs) to explicitly encode the
collaborative signals through propagation and combine them with
knowledge associations. Moreover, we integrate a knowledge-
aware neural attention mechanism to enable the CKAT to pay
more attention to key information while reducing irrelevant noise,
thereby increasing the accuracy of the recommendations. We
apply the proposed model on two real-world facility datasets and
empirically demonstrate that the CKAT can effectively facilitate
data discovery, significantly outperforming several compelling
state-of-the-art baseline models.

I. INTRODUCTION

Large-scale science facilities (LFs), such as multiuser sci-
entific observatories, instruments, and experimental platforms,
provide a broad community of researchers and educators with
open access to shared-use infrastructure and data products
generated from geo-distributed instruments and equipment [1].
These facilities have become key enablers of a range of scien-
tific discoveries, including the recent detection of gravitational
waves [2] and the imaging of a black hole’s event horizon [3].

The availability of these LFs is changing how scientists
access experimental and observational data and data products,
as well as the nature of their applications. The latter are
increasingly taking the form of application workflows with
integrated data pipelines, and they require parallel and dis-
tributed processing. An example is the earthquake early warn-

ing system [4] workflow, which leverages machine learning
techniques to gather and locally process high-precision GPS
and seismometer data from distributed diverse sources in a
timely manner and then integrate the results with more tradi-
tional modeling and analysis. Correspondingly, the underlying
cyberinfrastructure is evolving to support these data-driven
distributed workflows. For example, the NSF-funded Virtual
Data Collaboratory [5] is designed to support data-driven end-
to-end workflows that combine data from multiple data sources
at runtime. However, discovering and effectively using data
and data products from multiple geo-distributed sources and
across multiple domains remains challenging [6], [7].

Specifically, as the number of LFs grow along with the
complexity, diversity, and volumes of the data they produce,
ensuring all users can find and access relevant data is becoming
increasingly challenging. As of October 2020, there are 33
major facilities in-operation funded by the US National Sci-
ence Foundation [8], and these are complemented by similar
LF facilities supported by other US agencies and by other
countries. These LFs are producing — or will produce — a
massive amount of diverse data and data products to serve
users from different science domains. For example, the Ocean
Observatories Initiative (OOI) [9], [10] has deployed dozens of
stable platforms and mobile assets carrying hundreds of instru-
ments and providing thousands of scientific and engineering
data products. Furthermore, as applications target broader
science questions, they are increasingly seeking to integrate
data from multiple facilities as part of end-to-end workflows.
For example, although the OOI has primarily targeted the
oceanography community, several interdisciplinary projects,
such as studying whole earth systems, are using its data and
data products.

In this work, we leverage the concepts underlying recom-
mender systems to facilitate the discovery of and access to
data (and data products) from large facilities. We analyze
two existing facilities: the OOI and the Geodetic Facility
for the Advancement of Geoscience (GAGE) [11]. Through
this analysis, we observe three key affinities — based on
instrument locality, data-domain model, and user association —
that can characterize user-data-query behaviors, and we exploit
knowledge graph (KG) techniques to combine these affinities
into a collaborative knowledge graph (CKG).

Inspired by the recent developments in GNN-based recom-
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mendation models [12]-[15], we propose the collaborative
knowledge-aware graph attention network (CKAT) recom-
mendation model, which can explicitly encode collaborative
signals in user—data—item interactions and auxiliary knowl-
edge associations (e.g., from published data models) into the
CKG. To alleviate noise issues during the attentive embedding
propagation (see Section V), we integrate the knowledge-
aware neural attention mechanism that optimizes the model’s
ability to focus on learning key information. Furthermore, we
filter out irrelevant information when we create the CKG.
We evaluate the proposed CKAT empirically using data-query
traces from the OOI and GAGE facilities. The experimental
evaluation results show the value of recommender systems in
addressing data discovery and accessing challenges for LFs,
and they show that the CKAT improves accuracy by 6.12%
and 7.26% for the OOI and GAGE, respectively, as compared
to the state-of-the-art models. The code is publicly accessible
at https://github.com/qybo1234/CKAT _rec_model.
This paper makes the following key contributions:

« We analyze data-query traces from current facilities and
develop a model for the observed data-query affinities
base on instrument locality, data-domain model, and user
association.

o We propose an approach for knowledge extraction that
aims to collect knowledge from both data-query traces
and the data models published by the LFs as well as to
integrate this knowledge into a CKG.

o We design the CKAT recommendation model, which
utilizes the extracted knowledge about both the data
models and the user—data interactions.

o« We evaluate the effectiveness and performance of the
CKAT model, the impact of each of its components, and
the impact of various knowledge-source combinations on
the quality of recommendations.

The rest of this paper is organized as follows. Section II
discusses recent developments in recommender systems and
their use for science data. Section III presents an analysis of
OOI and GAGE data-query behavior and the modeling of user-
query patterns using correlations and affinities. Section IV
describes the construction of the CKG. Section V presents
the design of the CKAT recommendation model. Section VI
presents a performance evaluation of the CKAT. Section VII
concludes the paper and outlines future work.

II. BACKGROUND AND RELATED WORK
A. Recommendation systems for science data objects

While recommendation systems are being used quite exten-
sively by enterprise applications such as e-commerce, their use
for scientific applications has been more limited. This is, in
part, due to the lack of linked data and enriched metadata, such
as information about data usage. Recent studies [16], [17] have
focused on extracting meaningful knowledge from literature
to collect linked data. Weston et al. [16] have applied natural
language processing (NLP) techniques to extract information
from materials-science literature. Mukund et al. [18] proposed
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Fig. 1: An illustrative example showing the Ocean Observato-
ries Initiative (OOI) knowledge graph. The blue dots represent
two OOI data objects, and other entities are their attributes.
They are connected through the paths (in solid lines) along
with their attributes.

an NLP-based method to discover knowledge from the LIGO
logbook and enable recommendations for astronomical obser-
vatories. Barros et al. [19] developed a hybrid recommender
model for chemical compounds.

However, recommendation models that can support the dis-
covery and access of data objects from different data sources
has not been explored to best of our knowledge. We believe
that this is the first study that models large-scale data facilities’
user-query patterns and leverages knowledge graph techniques
to support the discovery of facilities’ data.

B. Knowledge graphs

A knowledge graph (KG) is a heterogeneous graph that
contains a structured representation of facts, where nodes
function as entities, and edges correspond to relationships.
Many recent studies [12]-[14], [20]-[23] have leveraged KGs
to carry auxiliary information to alleviate the cold-start and
data-sparsity challenges.

Large facilities have lots of structured information for the
instruments they deploy, including location and domain data
models. We can represent this information in the form of a
KG. Figure 1 depicts an illustrative KG example based on
the OOI facility. It shows two OOI data objects (blue dots),
their attributes (data discipline, data type, instrument, and
location), and their relationships. The KG explicitly presents
the connectivity between these two data objects along differ-

ent paths based on their attributes. Specifically, (Object #1

dataType dataDiscipline —dataDiscipline
—_—

Pressure Physical
—dataType

Density ——— Object #2). KGs can thus be used to
represent a facility’s structured information as well as the
relationships between its data objects.

C. Graph neural networks and recommendation systems

Recently, GNN-based KG recommendation models [12],
[13], [20], [22] have achieved large performance improve-
ments as compared to popular KG-based recommendation
models. GNN-based methods can capture both the seman-
tic representation of entities and relationships, and the col-
laborative signal (a.k.a. high-order connectivity information)
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among them. Specifically, in a KG, first-order connectivity
is the direct connection between items, representing a pre-
existing feature. In contrast, high-order connectivity reflects
the long-distance connections between items. For example,
Figure 2a shows three subgraphs, the users and their location
C' (User-City), the interactions between users U and items
I (User-Item), and interactions between items and their at-
tributes A (Item—Attribute). Each subgraph itself represents
first-order connectivity. When aligning them, we can combine
the three subgraphs into a single collaborative graph, as shown
in Figure 2b. A color depicts the relationship r between the
entities. Thus, high-order connectivity is constructed via paths
between two in-directly connected entities. For example, high-
order connectivities from user U; to item Iy are shown as
follows:

o Uy
e U;

SIS Ay =S 0
71 —T1 2
— C; — Uy = 1y

Relationships

r :
{1 locatedat | @

| ® | ?
User-ltem 2, interactWith
i ® ' (&)

] LR hasAttribute

a) Sub-graphs

b) Collaborative Graph

Fig. 2: A demonstration of high-order connectivity and the
construction of a collaborative graph from subgraphs through
entity alignment (please see in color).

Capturing high-order connectivity is essential for learning
the facility’s KG. The facility’s data objects are connected via
their attributes and other information in the KG. Thus two
related data objects may be far from each other in the graph.
However, standard KG-based methods, such as embedding-
based methods [24], either do not consider or give insufficient
attention to such long-distance correlation [14], [15]. Hence,
to deliver high-recommendation performance, it is crucial to
capture such high-order connectivity.

A GNN-based method can capture high-order connectivity
because of its information-propagation mechanism. It gener-
ates an entity representation by aggregating messages from
all neighbors and recursively performing such propagation to
update the entity’s embedding from its high-hop neighbors.
However, GNN-based methods have the drawback that all
neighbors are treated equally in GNNs. An entity may connect
with multiple types of neighbors via various relations due to
the heterogeneity of KGs. This inevitably introduces noise,
regardless of the specific user—item interaction, thus limiting
performance. To address this issue, recent work [12], [13] has
integrated the attentive mechanism, which enables it to pay
more attention to key information while reducing irrelevant
noise. We leverage this optimization in our model.
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III. AN ANALYSIS LARGE-FACILITY DATA USAGE
A. Exploring facility data-query behaviors

Large-scale facilities are designed for specific research do-
mains. As a result, their instruments’ location, data, and data-
products’ attributes are known. Furthermore, this structured
information (i.e., metadata) can be collected from a facility’s
website and technical documentation.

Typical user queries for facility data are focused on science
questions, and as a result, the queried data objects are associ-
ated with specific disciplines. For example, in oceanography,
seawater conductivity, temperature, and depth are used to
calculate seawater salinity and density. As a result, user
queries for data objects are aligned with these domain-specific
relationships, which in turn are part of the facilities’ data
model (e.g., see [25]). Another factor influencing user queries
is geographical locality. For example, users are often interested
in phenomena in a specific region and query data object in that
region. Consequently, understanding domain knowledge (and
associated data models) as well as the spatial distribution of
instruments can help anticipate user queries.

B. Analyzing query patterns for OOI and GAGE

In this research we study user query behaviors for the
OOI and GAGE large facilities. OOI [9], [10] is a net-
worked ocean research observatory that deploys hundreds of
instruments distributed across eight research arrays and across
four oceans. The Geodetic Facility for the Advancement of
Geoscience (GAGE) [11] is a nonprofit university-governed
consortium that facilitates geoscience research and educa-
tion using geodesy. It deploys more than 2,600 permanent
GPS/GNSS stations in 90 countries, 75.9% of which are in
the United States.

Our study is conducted using one-year-long user-query
traces from OOI and GAGE with multi-million activity records
(138 and 77 million records for the OOI and GAGE, respec-
tively). Each trace record contains the user public IP address
and its queried data object information. Although a public IP
may represents multiple users from the same subnetwork, such
as researchers from an institute, in this study, we regard this
information as the user identity because we do not have access
to additional user identification information due to privacy
concerns. Moreover, we leverage the public IP to trace the
user geographical location at city granularity. Some of the IPs
can be further traced using additional information about the
organization, such as for example, information about Rutgers
University that we have. We use this additional tracing for our
user similarity model.

Furthermore, we collect facility instrument metadata from
the facilities’ websites, including instrument name, coordi-
nates, data type, and research discipline. Specifically, the OOI
trace involves 36 instruments that are distributed at 55 sites
across 8 research arrays; and the GAGE trace contains queries
for 12 types of data from 2,106 permanent GPS/GNSS stations
in the United States, which are distributed across 338 cities
and 48 states. Furthermore, we represent this facility data using
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Fig. 3: Distribution curves of the OOI (left column) and GAGE
(right column) user data queries characterized by number of
data objects (a,b), number of instrument locations (c,d), and
number of data types (e,f). For example, (a,b) show how many
data objects has a user queried. The X-axis is the user ID.

the attributes location and data type, and plot the distribution
of OOI and GAGE user queries in Figure 3.

Inspired by the collaborative filtering technique [26], we
model user-query patterns from user and data item perspec-
tives as follows:

1) User similarity: In our analysis, we assume that users
from the same research group are likely to query similar data
because they may work on similar projects. Based on this
assumption, we extract the eight users who have the most
frequent data queries for OOI from the Rutgers University,
and eight users for GAGE from the University of Washington.
We then plot t-SNE figures of these data queries in terms of
the instrument location and associated data attributes (e.g. data
type), as shown in Figure 4.

The t-SNE [27] is a technique for visualizing high-
dimensional data in a low-dimensional space (2D in this case)
while preserving their local structure. Specifically, the distance
between points in the figure represents their proximity in the
high-dimension space. Therefore, adjacent points in the plot
indicate that these data objects are similar.

As shown in Figure 4, the points cluster with overlaps across
users, which indicates that queried data objects by users are
similar. We have the same observation for other organizations.
It shows that users from the same research group (or same
organization) tend to have similar data-query patterns.

2) Instrument locality and data-domain affinity: Our anal-
ysis indicates that users typically focus on querying data from
a specific region and related to a specific domain. If this

654

User #0
User #1
User #2
User #3 1
User #4 &
User #5
User #6
User #7 04

User #0
User #1
User #2
User #3
User #4
User #5
User #6
User #7

40

301

204

104

_104 ﬂ
—204

—304

(a) Rutgers University. (b) University of Washington.

Fig. 4: Eight most frequent data-query t-SNE plots for OOI
(a) and GAGE (b). Each dot in the plot is a user-queried data
object, and the distance between dots represents data-object
similarity.

observation is broadly accurate, leveraging it can improve
recommendation accuracy. Analyzing the traces we find that,
on average, users make 43.1% and 36.3% of their queries
for data objects from instruments located in one region, and
51.6% and 68.8% of their queries are to the same data type
for the OOI and GAGE, respectively. Considering that OOI
and GAGE instruments are distributed across tens to hundreds
of locations and each instruments provide tens of distinct data
types, these results indicate a strong affinity of user queries to
specific locations, instruments and data types.

Often location information may only be available at larger
granularity, e.g., a city. To verify whether users at city-
proximity granularity have similar query patterns, we select
two groups of 10,000 user pairs from OOI and GAGE,
respectively. Within the first group, the two users in a pair are
from the same city. By contrast, in the other group, users in a
pair are randomly sampled. Then, we calculate the probability
that two users in a group share the same query pattern in terms
of instrument locality and data domain.

The results are presented in Figure 5 and show that users
from the same location have a 79.8x and 29.8x (OOI) and a
22.87x and 2.21x (GAGE) greater likelihood to query data that
was generated from the same region and belonged to the same
data domain than the randomly selected users. These results
illustrate that users from nearby locations (i.e., the same city or
town, depending on the granularity of information available)
have similar data-query patterns, which can be exploited for
data recommendation.

IV. COLLABORATIVE KNOWLEDGE GRAPH CONSTRUCTION

We build our model using the three types of information
discussed above: user-query traces, which provide user—item
interactions; metadata and auxiliary information obtained from
facility websites; and user-location information. Given our
observation that users from the same location have similar
data-query patterns, we group users by their location.

Following the formulations of state-of-the-art recommender
models, we assume that there is a set of M users U
{u1,uz,...,up} and a set of N items V = {vy,va,..., 05}
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in the OOl and GAGE traces. Using this notation, we can
transform the three types of information into individual graphs,
and then combine them into a CKG using entity alignment.

User-item bipartite graph: We represent user queries
as a user-item bipartite graph G;, which is defined as
{(u, Yuv,v)|u € U,v € V}, where U and V denote the user
and item sets, and a link y,, = 1 indicates that the user u has
queried data item v; otherwise ¥, = 0.

Item-attribute graph: We typically have additional infor-
mation describing the facility data, such as coordinates, sensor
type, etc. We organize these data attributes in the form of a
KG, G2 = {(h,r,t)|h,t € E,7 € R}, where each knowledge
triple (h,r,t) denotes that there is a relationship r between the
head entity /h and the tail entity ¢, and £ and R are the sets
of entities and relations in the KG Gs. For example, the triple
(Bottom Pressure and Tilt Meter, Measure, Pressure) states
the fact that the instrument Bottom Pressure and Tilt Meter
can measure the pressure data. Note that R contains relations
in both in the canonical direction (e.g., Measure) and in the
inverse direction (e.g., MeasuredBYy).

User-user bipartite graph: We represent the user-user as-
sociations using the graph Gs = {(w;, Yuu, u;)|(ws, u;) € U},
where U/ denotes the users and a link y,, = 1 indicates that
the user u; and user w; are in the same location; otherwise
Yuu = 0.

Collaborative Knowledge Graph (CKG): We combine the
three subgraphs into a CKG G using entity alignment. First,
we integrate the user-item (Gy) and user-user (Gs) bipartite
graphs together into G by aligning the user u. We represent
each interaction as a triple, (u, interact, v) and (u, interact, u),
where y,, = 1 and y,, = 1 are represented as an additional
relationship Interact between user v and item v, and between
users. Then, in order to combine the item-attribute KG (Gs),
we employ a set of item—entity alignments A = {(v,e)|v €
V,e € £}, where (v, e) indicates that item v can be aligned
with entity e in the KG G». By aligning entity e in Gy to the
item v in G according to A, we can integrate the item-attribute
graph Gy into the CKG G = {(h,r,t)|h,t € &, r € R'},
where & = EUUUY and R’ = R U {Interact}.

The CKG is flexible allowing the addition of new entities,
such as data objects and knowledge sources. Using entity
alignment, KGs from multiple facilities can be consolidated.
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This can potentially enable recommendations across multiple
facilities. However, we do not explore this aspect in the paper.

Recommendation task formulation: We formulate the
recommendation task as follows:

o Input: the collaborative knowledge graph G that includes
the user—item bipartite graph G;, knowledge graph G,
and the user—user bipartite graph Gs.

o Output: a prediction function that predicts the probability
Jup that user u will query item v.

V. DESIGN OF THE RECOMMENDATION MODEL

Inspired by existing studies [12], [13], [20], [22], we
propose a recommendation model called the collabora-
tive knowledge-graph attention network (CKAT). Figure 6a
presents its architecture, which consists of three components:
(1) an embedding layer, which initializes and parameterizes
each node on the CKG using a vector representation; (2) a
knowledge-aware attentive embedding propagation layer that
refines each node’s representation by aggregating messages
from its neighborhoods in the CKG and applies an knowledge-
aware attention mechanism to learn the varying importance of
each neighbor during a propagation; and (3) a prediction layer,
which outputs the user—item pair prediction score through
estimating the likelihood of an interaction based on the final
representation. This three components are discussed below.

A. Embedding layer

The embedding layer aims to learn the structured repre-
sentation of the KG. Translation-based methods [28], [29]
are widely used for embedding graphs; here, we apply the
TransR [29] method. Given a triple (h,r,t) as an example,
its embeddings are ej,,e; € R? and e, € RF. TransR learns
and embeds the entities and relationships by optimizing the
translation principle e; + e, ~ e, where e}, e; are the
projected representations of e;, and e; in the relationship »’s
space. Its score function is formulated as follows:

fr(h,mt) = ||[Wren + e, — Woe[3 (1)
in which W, € RFX? ig the transformation matrix for
relationship r. It projects entities from the d-dimension entity
space into the k-dimension relationship space. A lower score
of f.(h,r,t) indicates that the triple is more likely to be true,
and vice versa.

Following [29], we use the following margin-based score
function as the objective for training TransR:

[:1: Z Z max(ova(h,T7t)+7_fr(h77",t/))

(h,rt)€S (h,r,t')eS’
®)

where S is the set of correct triples in the CKG, and S’ is the
set of broken triplets that is constructed by replacing one entity
in a valid triple randomly; max () is the maximum function,
and -y is the margin.
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B. Knowledge-aware attentive embedding propagation layer

Based on the graph convolution network architecture [30]
and leveraging graph attention networks [31], we build this
layer to recursively propagate embeddings along with high-
order connectivity. We also generate different attentive weights
for cascaded propagation to reveal the importance of such
connectivity. Here, we start with the description of a single
layer, as shown in Figure 6b, and then offer a discussion of
how to stack them across multiple layers.

Information propagation: An entity in the graph has direct
or high-order connections with its neighbors. To demonstrate
the information propagation among them, we employ user Us
in Figure 6¢ as an example. There are three propagation paths.
On one of them, item I, takes attributes Ay and Ag as inputs to
enrich its features and then contributes user Us’s preferences,
which can be simulated by propagating information from As to
Us. Based on this intuition, we use Ny, = {(h,r,t)|(h,7,t) €
£} to denote the set of triplets in which A is the head entity and
formalize the information being propagated from its neighbors
to h as follows:

en;, = 3

Z falh,r t)es

(h,r,t)ENY,

where fo(h,r,t) is the attention component that controls the
decay factor on each propagation on edge (h,r,t), indicating
the contributions of ¢ to h conditioned to relationship 7.

Knowledge-aware attention: We implement f,(h,r,t) via
the relational attention mechanism, which is formulated as
follows:

)

where tanh is used as a nonlinear activation function. For
simplicity, here we consider only the inner product to obtain
the attention weights, which reflects the affinity between
two entities e, and e; in relationship r’s space. Hereafter,
we employ the softmax function to normalize the attention
weights across all neighbors, which is formulated as follows:

exp (fa(h,r,t))
2 hr tyeny P (fa(h, 1!, 1))

where the final attention scores can distinguish varying impor-
tance scores of neighbors.

falh,,t) = (W,e;)" tanh (W,ej, +e,)

fa(h,r,t) = 6))
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Information aggregation: In this phase, we utilize the
entity representation ey, and the information being propagated
from its neighbors ey, to update the representation of entity
h, as eELl) = agg(en,en; ). In this study, we implement the
aggregation function agg(-) using the following two methods:

The concatenate aggregation method concatenates two rep-
resentations, followed by a nonlinear transformation:

agGconcat :LeakyReLU(w(eh | |eNh )) (6)

where || is the concatenation operation, W € R% %4 are the
trainable weight matrices for distilling useful information for
propagation, and d’ is the transformation size.

The sum aggregation method sums two representations and
applies a nonlinear transformation, as follows:

aggsum =LeakyReLU(W (e, + ep,)) )

High-order propagation: Building on previous efforts [12],
[13], [20], we can stack more information-propagation layers
to exploit the high-order connectivity inherent in the collabo-
rative KG. For example, Figure 6b illustrates the propagation
in the [-th steps that recursively update the representation
of entity h by the previous representations of itself and its
neighbors with the following formulation:

-1) (1—1))

e = aggle ™, el ®)

eﬁ\lle) _ Z Falh,r,t)el (1-1)

(h,r,t)EN

(C))

egl_l) is the representation of entity ¢ generated from the
previous information-propagation steps, memorizing the infor-
mation from its (I — 1)-hop neighbors, where same to e(l b,
This propagation allows an entity to contribute to another
entity’s representation up to [-hops away. As a result, each
entity’s representation captures and embeds the connectivity
from its high-order neighbors. Such as a path in Figure 6c, Iy
— U; — C1 — Uy indicates that the information from I, is
propagated and embedded in effz)‘

C. Model prediction

Assuming the number of information propagation layers
is L, at the end, we produce multiple representations of
each node, such as user node {e&l)7 e ,egL)}. Because each
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representation emphasizes different orders of neighbors, we
concatenate them into a single vector, as follows:

el =ell[--lell), &1 =el”[|---|lel"

(10)

where || is the concatenation operation, u is users, and v is
items.

Finally, we calculate the inner product of user and item
representations, so as to predict their matching score:

J(u,v) = eZTef) (11)

D. Optimization

Following mainstream optimization methods [12], [13],
[32], we adopt Bayesian personalized ranking (BPR) [33] to
optimize the model parameters. BPR assumes that users prefer
items they have interacted with before, which indicates that
the observed interactions should be assigned higher prediction
values than unobserved ones:

Ly= > —Ino(§(u,i)—j(u,j))
(u,1,j)€O
where O = {(u,i,j)|(u,i) € R, (u,j) € R~} denotes the
training set, R™ indicates the observed (positive) interactions
between user v and item j, and R~ is the sampled unobserved

(negative) interaction set; o(-) is the sigmoid function.
Finally, we represent the objective function as follows:

12)

Lexar = L1+ Lo+ N||6][3 (13)

where O indicates the parameters used in the model and o is
the decay factor on © to prevent overfitting.

VI. EXPERIMENTAL EVALUATION

In this section, we use two user-query traces from OOI and
GAGE to evaluate the performance of the CKAT recommen-
dation model presented in the previous sections by answering
the following research questions:

« RQ1: How does the CKAT model perform on the facility
data as compared to the state-of-the-art knowledge-aware
models?

« RQ2: How do the CKG model and its components impact
the recommendation results?

« RQ3: How do the attention mechanism and other hyper-
parameter settings (i.e., depth of the knowledge-aware
propagation layer, aggregation selection) impact the rec-
ommendation results?

A. Dataset description

We first preprocess the query traces to extract key informa-
tion, building on the mechanisms used by existing efforts for
benchmark datasets, e.g., MovieLens [34]. We then construct
the CKG from the three subgraphs: The user—item graph (UIG)
is constructed on the basis of user and data item interactions,
extracted from the OOI and GAGE traces. The user—user
graph (UUG) contains user association information obtained
by clustering users based on their proximity (i.e., the same
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001 GAGE
# entities 1,342 4,754
# relationships 8 7
# KG triplets 5,554 20,314
# link-avg 6 10

TABLE I: Statistics for the OOI and GAGE collaborative
knowledge graphs (CKG). The term “link-avg” refers to the
average links per item.

organization, physical location, etc.). The item—attribute graph
(IAG) contains two attributes, instrument location (LOC) and
data-domain knowledge (DKG), which are obtained from the
OOI and GAGE websites. Furthermore, we combine other
attributes available at the facility websites such as instrument
metadata (MD) including instrument names and associated
groups. As some of this information is not directly relevant
to user data-query patterns (see Section III-B2), we regard
it as noise when evaluating the impact on recommendation
performance. Table I lists the basic CKG information.

For each dataset, we randomly select 80% of each user’s
query history for the training set and treat the remaining
percentage as the test set. For each observed user—item inter-
action, we consider it as a positive instance and then conduct
the negative sampling strategy to pair it with one negative item
that the user did not consume before.

B. Metrics

We use the top-K measurement [35] to evaluate the effec-
tiveness of the recommendations. Furthermore, we adopt two
widely used evaluation protocols: recall@K and ndcg@K. By
default, we set K = 20.

C. Baseline models

To demonstrate the effectiveness of our approach, we
compare our proposed CKAT model against the following
state-of-the-art baseline models: collaborative-filtering-based
(BPRMF), supervised-learning (FM and NFM), regularization-
based (CKE, CFKG), and graph-convolutional-network-based
(RippleNet, KGCN) models.

« BPRMF [33] is a collaborative-filtering-based method
using pairwise matrix factorization for item recommen-
dation from implicit feedback, optimized by the Bayesian
personalized ranking loss.

o FM [36] is a factorization-based method that uses second-
order feature interactions between inputs. Here, we con-
vert the user IDs, data objects, and CKG entities as the
input features.

o« NFM [37] is a factorization-based method that subsumes
FM under a neural-network framework. As suggested by
He at al. [37], we employ one hidden layer on input
features.

o CKE [24] is a regularization-based method that applies
TransR [38] for semantic embeddings.

o CFKG [39] is a regularization-based method that applies
TransE [28] to embed the unified graph, including het-
erogeneous multitype user behaviors and knowledge of
the items.
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« RippleNet [22] is a propagation-based model that refines
an entity’s representation through sampling ripple sets
from its neighbors.

KGCN [20] is a propagation-based model that extends
nonspectral graph convolutional network approaches [40]
to aggregate and incorporate neighborhood information
with bias when calculating the entity representation in
the KG.

D. Parameter settings

We implement the CKAT model in Tensorflow. The em-
bedding size is fixed at 64 for all models except RippleNet,
for which it is set to 16 due to RippleNet’s computational
complexity. We optimize all models with the Adam opti-
mizer [41], where the batch size is fixed at 512. Furthermore,
we use the default Xavier initializer [42] to initialize the model
parameters. We apply a grid search for hyperparameters: the
learning rate is tuned to values in {0.05, 0.01, 0.005, 0.001},
the coefficient for Lo normalization is searched within the
set {107°,10*,--- ,10',10%}, and the dropout ratio is tuned
to value in {0.0,0.1,---,0.8} for NFM and CKAT. We set
the depth of CKAT, L, as 3 with hidden dimension 64, 32,
16, respectively. We set the RippleNet n_hop=2, which is its
propagation-layer number. By default, we use the concatenate
aggregator, three propagation layers, and CKG.

E. Performance comparison (RQ1)

Table II summarizes the performance results for all the
models using the OOI and GAGE datasets and using the CKG
as auxiliary information. CKAT consistently yields the best
performance in all cases. We have the following observations
from the experimental results:

o Compared to the baseline models, CKAT improves per-
formance for both, OOI and GAGE datasets. Specifically,
CKAT improves recall by over 6.1237% and 5.7399%,
and ndcg by over 7.2624% and 6.0496%, for OOI and
GAGE, respectively.

The performance of the propagation-based methods, Rip-
pleNet and KGCN, is comparable to that of the CKAT,
because they can capture high-order connectivity in the
KG. Moreover, the results also justify the effectiveness of
the knowledge-aware attention mechanism. It allows the
CKAT to distinguish different entity relationships, reduce
noise, and thus focus on learning key information.

The CF-based method (BPRMF) is outperformed by most
of the KG-based methods, especially the propagation-
based methods. This demonstrates the effectiveness of
using KG as auxiliary information for improving recom-
mendation performance.

FM and NFM outperform the regularization-based meth-
ods (CKE and CFKG), which indicates the importance of
capturing high-order connectivity. FM and NFM exploit
the embeddings of its neighbor entities, which can serve
as the second-order connectivity. However, CKE and
CFKG model connectivity only on triples’ granularity,
which is equivalent to only the first-order relationship

658

001 GAGE

recall@20  ndcg@20 recall@20  ndcg@20
BPRMF 0.1935 0.1693 0.2742 0.2115
FM 0.2353 0.2228 0.3174 0.2356
NFM 0.2339 0.2211 0.3289 0.2471
CKE 0.2102 0.2197 0.2675 0.2106
CFKG 0.2283 0.2241 0.2572 0.2096
RippleNet 0.2833 0.2394 0.3584 0.2981
KGCN 0.3020 0.2414 0.3767 0.3106
CKAT 0.3217 0.2561 0.4062 0.3306
% Impro. 6.1237 5.7399 7.2624 6.0496

TABLE II: Overall performance comparison.

in the KG. Moreover, it is worth noting that BPRMF
performs better than CKE and CFKG in the GAGE case.
The ability to model high-order connectivity is essential
for recommending facility data.

o Overall, the propagation-based methods perform the best
because they can fully exploit the high-order information
on the KG. Moreover, the knowledge-aware attention
mechanism allows the CKAT to improve performance
by paying more attention to key information during the
propagation process.

F. Evaluation of knowledge-source combinations (RQ2)

The CKG is constructed from three subgraphs — user—item
graph (UIG), user—user graph (UUG), and item—attribute graph
(IAG). The IAG includes knowledge such as instrument lo-
cation (LOC) and data-domain knowledge (DKG). In this
experiment, we evaluate the impact of such knowledge sources
by evaluating different knowledge combinations. Moreover,
as irrelevant knowledge sources would negatively impact the
propagation-based method (they are the noise when the model
is learning the entity representation through its neighbors), in
this experiment we use the additional instrument metadata
(MD) as noise to demonstrate the importance of selecting
knowledge.

Table III presents the results. When combing the UIG with
one more sources of knowledge (i.e., LOC, DKG, UUG), the
performance varies. UIG+DKG has better performance for
OO0I, whereas UIG+LOC is better for GAGE. It reveals the
characteristics of the different facility user communities. In
this case, OOI users would query data with a stronger focus
on the domain model, whereas GAGE users would tend to
follow the instrument—locality correlation.

When all the knowledge is stacked together
UIG+UUG+LOC+DKG, we achieve the best performance
for both traces. This indicates that they are the most relevant
information to characterize the facility user query patterns.

Furthermore, when adding MD (i.e., noise) to the best
knowledge combination, the performance decreases. This
shows that collecting the right knowledge is essential to
providing optimal recommendation performance. Because the
facility provides abundant structured meta-data information, a
careful selection of information is needed.

To fine-tune the CKG for each facility, we can try differ-
ent knowledge combinations, as in the process demonstrated
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001 GAGE
recall@20  ndcg@20 recall@20  ndcg@20
UIG+LOC 0.2675 0.2322 0.3848 0.3191
UIG+DKG 0.2844 0.2424 0.3643 0.3148
UIG+UUG 0.2756 0.2364 0.3543 0.3048
UIG+LOC+DKG 0.3074 0.2527 0.3943 0.3148
UIG+UUG+LOC+DKG 0.3217 0.2561 0.4062 0.3306
UIG+UUG+LOC+DKG+MD 0.3197 0.2511 0.4011 0.3276

TABLE III: Results for different knowledge graph inputs. UIG
is the user—item graph, and UUG is the user—user graph. Here
we further extract the instrument location (LOC) and data-
domain knowledge (DKG) from the item-attribute graph (IAG)
and evaluate it separately. Additional instrument metadata
(MD) is considered noise information.

001 GAGE
recall@20  ndcg@20 recall@20  ndcg@20
w/ Att + aggconcat 0.3217 0.2561 0.4062 0.3306
w/ Att + aggsum 0.3120 0.2409 0.3894 0.3123
w/o Att + aggconcat 0.2994 0.2331 0.3755 0.3147

TABLE 1V: Effect of attention mechanism (Att), concatenate
and sum aggregators on recommendation performance. The
first row represents the default CKAT setup.

above. However, when the facility adds new instruments or
data objects, the fine-tuning process needs to be repeated. This
is a limitation that we will address in the future.

G. Impact study of each component of the CKAT (RQ3)

CKAT exploits the neural attention mechanism to assign
different weights to different entities in order to reduce noise
and focus more attention on key information during the prop-
agation process. To analyze its impact on the recommendation
results, we keep the best practice model parameter settings and
use CKG as the input, and then compare recommendations
with and without the attention mechanism. Results presented
in Table IV demonstrate that the CKAT with the attention
mechanism performs better than CKAT without it.

Moreover, we evaluate CKAT under two aggregator settings,
concatenate and sum. As Table IV shows, aggconcar performs
better than aggsy,, for both OOI and GAGE. One possible
reason is that agg.oncq: can retain more hidden information
in embeddings, which improves entity representation learning.

As capturing higher-order connectivity is a key advantage
of the CKAT model, we investigate the efficiency of using
multiple embedding propagation layers. In this experiment, we
consider 1, 2 and 3 layers, and CKAT-1 refers to the model
using one layer.

The results in Table V show that increasing the depth
of CKAT can boost its performance. CKAT-3 and CKAT-2
consistently achieve an improvement over CKAT-1 across the
board. This implies that CKAT can effectively capture high-
order relationships between entities carried by the second- and
third-order connectivity. Additionally, we observe a larger im-
provement from CKAT-2 to CKAT-3 for GAGE as compared
to OOL. Since the size of the CKG for GAGE is larger than
that for OOL, it may need to stack more layers when expanding
the CKG to exploit it fully.
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001 GAGE
recall@20  ndcg@20 recall@20  ndcg@20
CKAT-1 0.3108 0.2471 0.3736 0.3118
CKAT-2 0.3209 0.2478 0.3821 0.3215
CKAT-3 0.3217 0.2561 0.3919 0.3278

TABLE V: Impact of using different number of embedding
propagation layers, L.

VII. CONCLUSION

In this paper, we explored the use of recommendation sys-
tems to address the data-discovery and data-access challenges
faced by large-scale scientific facilities, such as instruments,
experimental platforms, and observatories. We first analyzed
user-query traces from two existing facilities, OOI and GAGE,
and analyzed the access patterns observed in terms of facility-
instrument locality, domain-specific data model, and user asso-
ciation. Based on this analysis, we combined key information
that characterizes the data-query patterns into a collaborative
knowledge graph (CKG). We then constructed the collabora-
tive knowledge-aware graph attention network (CKAT) recom-
mendation model, which leverages the graph neural network
(GNN) to explicitly encode the collaborative signals through
propagation and combine it with knowledge associations. To
reduce the irrelevant knowledge in the KG, which brings noise
to the entity representation learning process, we integrated a
knowledge-aware neural attention mechanism into CKAT. This
enabled CKAT to pay more attention to key information. The
empirical evaluation presented in the paper demonstrates that
CKAT can effectively facilitate data discovery and access and
that it significantly outperforms several compelling state-of-
the-art baseline models.

The overall approach presented in this paper has broad
applications, such as enabling the “intelligent” discovery and
anticipatory delivery of data and data products from large
facilities. Furthermore, the CKG can integrate knowledge from
many sources and can quickly grow in scale. As a result, the
parallelization of the CKAT model and the use of (in situ)
purposeful accelerators are important areas for future work.

ACKNOWLEDGMENTS

This research is supported in part by NSF via grants num-
bers OAC 1835692, OAC 1826997, and OAC 1640834, and
was conducted as part of the Rutgers Discovery Informatics
Institute (RDI?). This material is based in part on services
provided by the GAGE Facility, operated by UNAVCO,
Inc., with support from NSF and the National Aeronautics
and Space Administration under NSF Cooperative Agreement
EAR-1724794 and NSF grant OAC 1835791.

REFERENCES

[1] 1. Rodero and M. Parashar, “Data cyberinfrastructure for end-to-end
science,” Computing in Science Engineering, vol. 22, no. 5, pp. 60-71,
2020.

B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ack-
ley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., “Observation
of gravitational waves from a binary black hole merger,” Physical review
letters, vol. 116, no. 6, p. 061102, 2016.

[2]

Authorized licensed use limited to: Rutgers University. Downloaded on August 07,2021 at 04:24:06 UTC from IEEE Xplore. Restrictions apply.



[3]

[4

=

[51

[6]

[7

—

[8

=

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko,
D. Ball, M. Balokovi¢, J. Barrett, D. Bintley et al., “First m87 event
horizon telescope results. iv. imaging the central supermassive black
hole,” The Astrophysical Journal Letters, vol. 875, no. 1, p. L4, 2019.
K. Fauvel, D. Balouek-Thomert, D. Melgar, P. Silva, A. Simonet,
G. Antoniu, A. Costan, V. Masson, M. Parashar, I. Rodero et al.,
“A distributed multi-sensor machine learning approach to earthquake
early warning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 01, 2020, pp. 403—411.

M. Parashar, V. Honavar, A. Simonet, I. Rodero, F. Ghahramani,
G. Agnew, and R. Jantz, “The virtual data collaboratory,” Computing
in Science & Engineering, 2019.

Y. Qin, A. Simonet, P. E. Davis, A. Nouri, Z. Wang, M. Parashar,
and I. Rodero, “Towards a smart, internet-scale cache service for data
intensive scientific applications,” in Proceedings of the 10th Workshop
on Scientific Cloud Computing, 2019, pp. 11-18.

I. Rodero, Y. Qin, J. Valls, A. Simonet, J. Villalobos, M. Parashar,
C. Youn, C. Wang, K. Thareja, P. Ruth ez al., “Enabling data streaming-
based science gateways through federated cyberinfrastructure,” Gate-
ways 2019, 2019.
[Online]. Available:
list.pdf

L. M. Smith, J. A. Barth, D. S. Kelley, A. Plueddemann, I. Rodero,
G. A. Ulses, M. E Vardaro, and R. Weller, “The ocean observatories
initiative,” Oceanography, vol. 31, no. 1, pp. 16-35, 2018.

I. Rodero and M. Parashar, “Architecting the cyberinfrastructure for
National Science Foundation Ocean Observatories Initiative (OOI),” 7th
International Workshop on Marine Technology: MARTECH 2016, pp.
99-101, 2016.

[Online]. Available: http://www.unavco.org/

X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2019, pp. 950-958.

Z. Wang, G. Lin, H. Tan, Q. Chen, and X. Liu, “Ckan: Collaborative
knowledge-aware attentive network for recommender systems,” in Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020, pp. 219-228.

Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He,
“A survey on knowledge graph-based recommender systems,” arXiv
preprint arXiv:2003.00911, 2020.

S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition and applications,” arXiv
preprint arXiv:2002.00388, 2020.

L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Trewartha,
K. A. Persson, G. Ceder, and A. Jain, “Named entity recognition
and normalization applied to large-scale information extraction from
the materials science literature,” Journal of chemical information and
modeling, vol. 59, no. 9, pp. 3692-3702, 2019.

A. M. Hiszpanski, B. Gallagher, K. Chellappan, P. Li, S. Liu, H. Kim,
J. Han, B. Kailkhura, D. J. Buttler, and T. Y.-J. Han, “Nanomaterial
synthesis insights from machine learning of scientific articles by ex-
tracting, structuring, and visualizing knowledge,” Journal of Chemical
Information and Modeling, 2020.

N. Mukund, S. Thakur, S. Abraham, A. Aniyan, S. Mitra, N. S. Philip,
K. Vaghmare, and D. Acharjya, “An information retrieval and recom-
mendation system for astronomical observatories,” The Astrophysical
Journal Supplement Series, vol. 235, no. 1, p. 22, 2018.

M. Barros, A. Moitinho, and F. M. Couto, “Using research literature
to generate datasets of implicit feedback for recommending scientific
items,” IEEE Access, vol. 7, pp. 176 668-176 680, 2019.

H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph
convolutional networks for recommender systems,” in The world wide
web conference, 2019, pp. 3307-3313.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo,
“Ripplenet: Propagating user preferences on the knowledge graph for
recommender systems,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, 2018, pp. 417—
426.

https://www.nsf.gov/bfa/Ifo/docs/major-facilities-

660

[23]

[24]

[25
[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34
[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware
network for news recommendation,” in Proceedings of the 2018 world
wide web conference, 2018, pp. 1835-1844.

F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 353-362.

[Online]. Available: https://oceanobservatories.org/instrument-class/ctd/
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, 2001, pp. 285-295.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.
A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Ad-
vances in neural information processing systems, 2013, pp. 2787-2795.
H. Lin, Y. Liu, W. Wang, Y. Yue, and Z. Lin, “Learning entity and
relation embeddings for knowledge resolution,” Procedia Computer
Science, vol. 108, pp. 345-354, 2017.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
Z. Tao, Y. Wei, X. Wang, X. He, X. Huang, and T.-S. Chua, “Mgat:
Multimodal graph attention network for recommendation,” Information
Processing & Management, vol. 57, no. 5, p. 102277, 2020.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” arXiv preprint
arXiv:1205.2618, 2012.

[Online]. Available: https://grouplens.org/datasets/movielens/

R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM
Journal on discrete mathematics, vol. 17, no. 1, pp. 134-160, 2003.

S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, “Fast
context-aware recommendations with factorization machines,” in Pro-
ceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, 2011, pp. 635-644.

X. He and T.-S. Chua, “Neural factorization machines for sparse pre-
dictive analytics,” in Proceedings of the 40th International ACM SIGIR
conference on Research and Development in Information Retrieval,
2017, pp. 355-364.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Tiwenty-ninth AAAI
conference on artificial intelligence, 2015.

Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowl-
edge base embeddings for explainable recommendation,” Algorithms,
vol. 11, no. 9, p. 137, 2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249-256.

Authorized licensed use limited to: Rutgers University. Downloaded on August 07,2021 at 04:24:06 UTC from IEEE Xplore. Restrictions apply.



