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Abstract—Large-scale multiuser scientific facilities, such as ge-
ographically distributed observatories, remote instruments, and
experimental platforms, represent some of the largest national
investments and can enable dramatic advances across many
areas of science. Recent examples of such advances include the
detection of gravitational waves and the imaging of a black hole’s
event horizon. However, as the number of such facilities and their
users grow, along with the complexity, diversity, and volumes
of their data products, finding and accessing relevant data is
becoming increasingly challenging, limiting the potential impact
of facilities. These challenges are further amplified as scientists
and application workflows increasingly try to integrate facilities’
data from diverse domains.

In this paper, we leverage concepts underlying recommender
systems, which are extremely effective in e-commerce, to address
these data-discovery and data-access challenges for large-scale
distributed scientific facilities. We first analyze data from facilities
and identify and model user-query patterns in terms of facility
location and spatial localities, domain-specific data models, and
user associations. We then use this analysis to generate a
knowledge graph and develop the collaborative knowledge-aware
graph attention network (CKAT) recommendation model, which
leverages graph neural networks (GNNs) to explicitly encode the
collaborative signals through propagation and combine them with
knowledge associations. Moreover, we integrate a knowledge-
aware neural attention mechanism to enable the CKAT to pay
more attention to key information while reducing irrelevant noise,
thereby increasing the accuracy of the recommendations. We
apply the proposed model on two real-world facility datasets and
empirically demonstrate that the CKAT can effectively facilitate
data discovery, significantly outperforming several compelling
state-of-the-art baseline models.

I. INTRODUCTION

Large-scale science facilities (LFs), such as multiuser sci-

entific observatories, instruments, and experimental platforms,

provide a broad community of researchers and educators with

open access to shared-use infrastructure and data products

generated from geo-distributed instruments and equipment [1].

These facilities have become key enablers of a range of scien-

tific discoveries, including the recent detection of gravitational

waves [2] and the imaging of a black hole’s event horizon [3].

The availability of these LFs is changing how scientists

access experimental and observational data and data products,

as well as the nature of their applications. The latter are

increasingly taking the form of application workflows with

integrated data pipelines, and they require parallel and dis-

tributed processing. An example is the earthquake early warn-

ing system [4] workflow, which leverages machine learning

techniques to gather and locally process high-precision GPS

and seismometer data from distributed diverse sources in a

timely manner and then integrate the results with more tradi-

tional modeling and analysis. Correspondingly, the underlying

cyberinfrastructure is evolving to support these data-driven

distributed workflows. For example, the NSF-funded Virtual

Data Collaboratory [5] is designed to support data-driven end-

to-end workflows that combine data from multiple data sources

at runtime. However, discovering and effectively using data

and data products from multiple geo-distributed sources and

across multiple domains remains challenging [6], [7].

Specifically, as the number of LFs grow along with the

complexity, diversity, and volumes of the data they produce,

ensuring all users can find and access relevant data is becoming

increasingly challenging. As of October 2020, there are 33

major facilities in-operation funded by the US National Sci-

ence Foundation [8], and these are complemented by similar

LF facilities supported by other US agencies and by other

countries. These LFs are producing – or will produce – a

massive amount of diverse data and data products to serve

users from different science domains. For example, the Ocean

Observatories Initiative (OOI) [9], [10] has deployed dozens of

stable platforms and mobile assets carrying hundreds of instru-

ments and providing thousands of scientific and engineering

data products. Furthermore, as applications target broader

science questions, they are increasingly seeking to integrate

data from multiple facilities as part of end-to-end workflows.

For example, although the OOI has primarily targeted the

oceanography community, several interdisciplinary projects,

such as studying whole earth systems, are using its data and

data products.

In this work, we leverage the concepts underlying recom-

mender systems to facilitate the discovery of and access to

data (and data products) from large facilities. We analyze

two existing facilities: the OOI and the Geodetic Facility

for the Advancement of Geoscience (GAGE) [11]. Through

this analysis, we observe three key affinities – based on

instrument locality, data-domain model, and user association –

that can characterize user-data-query behaviors, and we exploit

knowledge graph (KG) techniques to combine these affinities

into a collaborative knowledge graph (CKG).

Inspired by the recent developments in GNN-based recom-
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mendation models [12]–[15], we propose the collaborative
knowledge-aware graph attention network (CKAT) recom-

mendation model, which can explicitly encode collaborative

signals in user–data–item interactions and auxiliary knowl-

edge associations (e.g., from published data models) into the

CKG. To alleviate noise issues during the attentive embedding

propagation (see Section V), we integrate the knowledge-

aware neural attention mechanism that optimizes the model’s

ability to focus on learning key information. Furthermore, we

filter out irrelevant information when we create the CKG.

We evaluate the proposed CKAT empirically using data-query

traces from the OOI and GAGE facilities. The experimental

evaluation results show the value of recommender systems in

addressing data discovery and accessing challenges for LFs,

and they show that the CKAT improves accuracy by 6.12%

and 7.26% for the OOI and GAGE, respectively, as compared

to the state-of-the-art models. The code is publicly accessible

at https://github.com/qybo1234/CKAT rec model.

This paper makes the following key contributions:

• We analyze data-query traces from current facilities and

develop a model for the observed data-query affinities

base on instrument locality, data-domain model, and user
association.

• We propose an approach for knowledge extraction that

aims to collect knowledge from both data-query traces

and the data models published by the LFs as well as to

integrate this knowledge into a CKG.

• We design the CKAT recommendation model, which

utilizes the extracted knowledge about both the data

models and the user–data interactions.

• We evaluate the effectiveness and performance of the

CKAT model, the impact of each of its components, and

the impact of various knowledge-source combinations on

the quality of recommendations.

The rest of this paper is organized as follows. Section II

discusses recent developments in recommender systems and

their use for science data. Section III presents an analysis of

OOI and GAGE data-query behavior and the modeling of user-

query patterns using correlations and affinities. Section IV

describes the construction of the CKG. Section V presents

the design of the CKAT recommendation model. Section VI

presents a performance evaluation of the CKAT. Section VII

concludes the paper and outlines future work.

II. BACKGROUND AND RELATED WORK

A. Recommendation systems for science data objects

While recommendation systems are being used quite exten-

sively by enterprise applications such as e-commerce, their use

for scientific applications has been more limited. This is, in

part, due to the lack of linked data and enriched metadata, such

as information about data usage. Recent studies [16], [17] have

focused on extracting meaningful knowledge from literature

to collect linked data. Weston et al. [16] have applied natural

language processing (NLP) techniques to extract information

from materials-science literature. Mukund et al. [18] proposed
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Fig. 1: An illustrative example showing the Ocean Observato-

ries Initiative (OOI) knowledge graph. The blue dots represent

two OOI data objects, and other entities are their attributes.

They are connected through the paths (in solid lines) along

with their attributes.

an NLP-based method to discover knowledge from the LIGO

logbook and enable recommendations for astronomical obser-

vatories. Barros et al. [19] developed a hybrid recommender

model for chemical compounds.

However, recommendation models that can support the dis-

covery and access of data objects from different data sources

has not been explored to best of our knowledge. We believe

that this is the first study that models large-scale data facilities’

user-query patterns and leverages knowledge graph techniques

to support the discovery of facilities’ data.

B. Knowledge graphs

A knowledge graph (KG) is a heterogeneous graph that

contains a structured representation of facts, where nodes

function as entities, and edges correspond to relationships.

Many recent studies [12]–[14], [20]–[23] have leveraged KGs

to carry auxiliary information to alleviate the cold-start and

data-sparsity challenges.

Large facilities have lots of structured information for the

instruments they deploy, including location and domain data

models. We can represent this information in the form of a

KG. Figure 1 depicts an illustrative KG example based on

the OOI facility. It shows two OOI data objects (blue dots),

their attributes (data discipline, data type, instrument, and

location), and their relationships. The KG explicitly presents

the connectivity between these two data objects along differ-

ent paths based on their attributes. Specifically, (Object #1
dataType−−−−−−→ Pressure

dataDiscipline−−−−−−−−−−→ Physical
−dataDiscipline−−−−−−−−−−−→

Density
−dataType−−−−−−−→ Object #2). KGs can thus be used to

represent a facility’s structured information as well as the

relationships between its data objects.

C. Graph neural networks and recommendation systems

Recently, GNN-based KG recommendation models [12],

[13], [20], [22] have achieved large performance improve-

ments as compared to popular KG-based recommendation

models. GNN-based methods can capture both the seman-

tic representation of entities and relationships, and the col-

laborative signal (a.k.a. high-order connectivity information)
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among them. Specifically, in a KG, first-order connectivity

is the direct connection between items, representing a pre-

existing feature. In contrast, high-order connectivity reflects

the long-distance connections between items. For example,

Figure 2a shows three subgraphs, the users and their location

C (User–City), the interactions between users U and items

I (User–Item), and interactions between items and their at-

tributes A (Item–Attribute). Each subgraph itself represents

first-order connectivity. When aligning them, we can combine

the three subgraphs into a single collaborative graph, as shown

in Figure 2b. A color depicts the relationship r between the

entities. Thus, high-order connectivity is constructed via paths

between two in-directly connected entities. For example, high-

order connectivities from user U1 to item I2 are shown as

follows:

• U1
r2−→ I1

r3−→ A2
−r3−−→ I2

• U1
r1−→ C1

−r1−−→ U2
r2−→ I2

Item-Attribute

C2C1

U1 U2 U3

I1 I2 I3

A1 A2 A3 A4

U1 U2 U3

I1 I2 I3

User-City

User-Item

Relationships
C2C1

U1 U2 U3

A1 A2 A3 A4

I1 I2 I3

a) Sub-graphs b) Collaborative Graph

r1

r2

r3

locatedAt

interactWith

hasAttribute

Fig. 2: A demonstration of high-order connectivity and the

construction of a collaborative graph from subgraphs through

entity alignment (please see in color).

Capturing high-order connectivity is essential for learning

the facility’s KG. The facility’s data objects are connected via

their attributes and other information in the KG. Thus two

related data objects may be far from each other in the graph.

However, standard KG-based methods, such as embedding-

based methods [24], either do not consider or give insufficient

attention to such long-distance correlation [14], [15]. Hence,

to deliver high-recommendation performance, it is crucial to

capture such high-order connectivity.

A GNN-based method can capture high-order connectivity

because of its information-propagation mechanism. It gener-

ates an entity representation by aggregating messages from

all neighbors and recursively performing such propagation to

update the entity’s embedding from its high-hop neighbors.

However, GNN-based methods have the drawback that all

neighbors are treated equally in GNNs. An entity may connect

with multiple types of neighbors via various relations due to

the heterogeneity of KGs. This inevitably introduces noise,

regardless of the specific user–item interaction, thus limiting

performance. To address this issue, recent work [12], [13] has

integrated the attentive mechanism, which enables it to pay

more attention to key information while reducing irrelevant

noise. We leverage this optimization in our model.

III. AN ANALYSIS LARGE-FACILITY DATA USAGE

A. Exploring facility data-query behaviors

Large-scale facilities are designed for specific research do-

mains. As a result, their instruments’ location, data, and data-

products’ attributes are known. Furthermore, this structured

information (i.e., metadata) can be collected from a facility’s

website and technical documentation.

Typical user queries for facility data are focused on science

questions, and as a result, the queried data objects are associ-

ated with specific disciplines. For example, in oceanography,

seawater conductivity, temperature, and depth are used to

calculate seawater salinity and density. As a result, user

queries for data objects are aligned with these domain-specific

relationships, which in turn are part of the facilities’ data

model (e.g., see [25]). Another factor influencing user queries

is geographical locality. For example, users are often interested

in phenomena in a specific region and query data object in that

region. Consequently, understanding domain knowledge (and

associated data models) as well as the spatial distribution of

instruments can help anticipate user queries.

B. Analyzing query patterns for OOI and GAGE

In this research we study user query behaviors for the

OOI and GAGE large facilities. OOI [9], [10] is a net-

worked ocean research observatory that deploys hundreds of

instruments distributed across eight research arrays and across

four oceans. The Geodetic Facility for the Advancement of

Geoscience (GAGE) [11] is a nonprofit university-governed

consortium that facilitates geoscience research and educa-

tion using geodesy. It deploys more than 2,600 permanent

GPS/GNSS stations in 90 countries, 75.9% of which are in

the United States.

Our study is conducted using one-year-long user-query

traces from OOI and GAGE with multi-million activity records

(138 and 77 million records for the OOI and GAGE, respec-

tively). Each trace record contains the user public IP address

and its queried data object information. Although a public IP

may represents multiple users from the same subnetwork, such

as researchers from an institute, in this study, we regard this

information as the user identity because we do not have access

to additional user identification information due to privacy

concerns. Moreover, we leverage the public IP to trace the

user geographical location at city granularity. Some of the IPs

can be further traced using additional information about the

organization, such as for example, information about Rutgers

University that we have. We use this additional tracing for our

user similarity model.

Furthermore, we collect facility instrument metadata from

the facilities’ websites, including instrument name, coordi-

nates, data type, and research discipline. Specifically, the OOI

trace involves 36 instruments that are distributed at 55 sites

across 8 research arrays; and the GAGE trace contains queries

for 12 types of data from 2,106 permanent GPS/GNSS stations

in the United States, which are distributed across 338 cities

and 48 states. Furthermore, we represent this facility data using
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Distribution curves of the OOI (left column) and GAGE

(right column) user data queries characterized by number of

data objects (a,b), number of instrument locations (c,d), and

number of data types (e,f). For example, (a,b) show how many

data objects has a user queried. The X-axis is the user ID.

the attributes location and data type, and plot the distribution

of OOI and GAGE user queries in Figure 3.

Inspired by the collaborative filtering technique [26], we

model user-query patterns from user and data item perspec-

tives as follows:

1) User similarity: In our analysis, we assume that users

from the same research group are likely to query similar data

because they may work on similar projects. Based on this

assumption, we extract the eight users who have the most

frequent data queries for OOI from the Rutgers University,

and eight users for GAGE from the University of Washington.

We then plot t-SNE figures of these data queries in terms of

the instrument location and associated data attributes (e.g. data

type), as shown in Figure 4.

The t-SNE [27] is a technique for visualizing high-

dimensional data in a low-dimensional space (2D in this case)

while preserving their local structure. Specifically, the distance

between points in the figure represents their proximity in the

high-dimension space. Therefore, adjacent points in the plot

indicate that these data objects are similar.

As shown in Figure 4, the points cluster with overlaps across

users, which indicates that queried data objects by users are

similar. We have the same observation for other organizations.

It shows that users from the same research group (or same

organization) tend to have similar data-query patterns.

2) Instrument locality and data-domain affinity: Our anal-

ysis indicates that users typically focus on querying data from

a specific region and related to a specific domain. If this

(a) Rutgers University. (b) University of Washington.

Fig. 4: Eight most frequent data-query t-SNE plots for OOI

(a) and GAGE (b). Each dot in the plot is a user-queried data

object, and the distance between dots represents data-object

similarity.

observation is broadly accurate, leveraging it can improve

recommendation accuracy. Analyzing the traces we find that,

on average, users make 43.1% and 36.3% of their queries

for data objects from instruments located in one region, and

51.6% and 68.8% of their queries are to the same data type

for the OOI and GAGE, respectively. Considering that OOI

and GAGE instruments are distributed across tens to hundreds

of locations and each instruments provide tens of distinct data

types, these results indicate a strong affinity of user queries to

specific locations, instruments and data types.

Often location information may only be available at larger

granularity, e.g., a city. To verify whether users at city-

proximity granularity have similar query patterns, we select

two groups of 10,000 user pairs from OOI and GAGE,

respectively. Within the first group, the two users in a pair are

from the same city. By contrast, in the other group, users in a

pair are randomly sampled. Then, we calculate the probability

that two users in a group share the same query pattern in terms

of instrument locality and data domain.

The results are presented in Figure 5 and show that users

from the same location have a 79.8x and 29.8x (OOI) and a

22.87x and 2.21x (GAGE) greater likelihood to query data that

was generated from the same region and belonged to the same

data domain than the randomly selected users. These results

illustrate that users from nearby locations (i.e., the same city or

town, depending on the granularity of information available)

have similar data-query patterns, which can be exploited for

data recommendation.

IV. COLLABORATIVE KNOWLEDGE GRAPH CONSTRUCTION

We build our model using the three types of information

discussed above: user-query traces, which provide user–item

interactions; metadata and auxiliary information obtained from

facility websites; and user-location information. Given our

observation that users from the same location have similar

data-query patterns, we group users by their location.

Following the formulations of state-of-the-art recommender

models, we assume that there is a set of M users U =
{u1, u2, . . . , uM} and a set of N items V = {v1, v2, . . . , vN}
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(a) OOI. (b) GAGE.

Fig. 5: Probability of two users having a similar data-query

pattern in terms of instrument locality and data domain, in two

cases: (1) they are from the same city; (2) they are randomly

sampled.

in the OOI and GAGE traces. Using this notation, we can

transform the three types of information into individual graphs,

and then combine them into a CKG using entity alignment.

User-item bipartite graph: We represent user queries

as a user-item bipartite graph G1, which is defined as

{(u, yuv, v)|u ∈ U , v ∈ V}, where U and V denote the user

and item sets, and a link yuv = 1 indicates that the user u has

queried data item v; otherwise yuv = 0.

Item-attribute graph: We typically have additional infor-

mation describing the facility data, such as coordinates, sensor

type, etc. We organize these data attributes in the form of a

KG, G2 = {(h, r, t)|h, t ∈ E , r ∈ R}, where each knowledge

triple (h, r, t) denotes that there is a relationship r between the

head entity h and the tail entity t, and E and R are the sets

of entities and relations in the KG G2. For example, the triple

(Bottom Pressure and Tilt Meter, Measure, Pressure) states

the fact that the instrument Bottom Pressure and Tilt Meter
can measure the pressure data. Note that R contains relations

in both in the canonical direction (e.g., Measure) and in the

inverse direction (e.g., MeasuredBy).
User-user bipartite graph: We represent the user-user as-

sociations using the graph G3 = {(ui, yuu, uj)|(ui, uj) ∈ U},

where U denotes the users and a link yuu = 1 indicates that

the user ui and user uj are in the same location; otherwise

yuu = 0.

Collaborative Knowledge Graph (CKG): We combine the

three subgraphs into a CKG G using entity alignment. First,

we integrate the user-item (G1) and user-user (G3) bipartite

graphs together into G by aligning the user u. We represent

each interaction as a triple, (u, interact, v) and (u, interact, u),
where yuv = 1 and yuu = 1 are represented as an additional

relationship Interact between user u and item v, and between

users. Then, in order to combine the item-attribute KG (G2),

we employ a set of item–entity alignments A = {(v, e)|v ∈
V, e ∈ E}, where (v, e) indicates that item v can be aligned

with entity e in the KG G2. By aligning entity e in G2 to the

item v in G according to A, we can integrate the item-attribute
graph G2 into the CKG G = {(h, r, t)|h, t ∈ E ′, r ∈ R′},

where E ′ = E ∪ U ∪ V and R′ = R∪ {Interact}.

The CKG is flexible allowing the addition of new entities,

such as data objects and knowledge sources. Using entity

alignment, KGs from multiple facilities can be consolidated.

This can potentially enable recommendations across multiple

facilities. However, we do not explore this aspect in the paper.

Recommendation task formulation: We formulate the

recommendation task as follows:

• Input: the collaborative knowledge graph G that includes

the user–item bipartite graph G1, knowledge graph G2,

and the user–user bipartite graph G3.

• Output: a prediction function that predicts the probability

ŷuv that user u will query item v.

V. DESIGN OF THE RECOMMENDATION MODEL

Inspired by existing studies [12], [13], [20], [22], we

propose a recommendation model called the collabora-

tive knowledge-graph attention network (CKAT). Figure 6a

presents its architecture, which consists of three components:

(1) an embedding layer, which initializes and parameterizes

each node on the CKG using a vector representation; (2) a

knowledge-aware attentive embedding propagation layer that

refines each node’s representation by aggregating messages

from its neighborhoods in the CKG and applies an knowledge-

aware attention mechanism to learn the varying importance of

each neighbor during a propagation; and (3) a prediction layer,

which outputs the user–item pair prediction score through

estimating the likelihood of an interaction based on the final

representation. This three components are discussed below.

A. Embedding layer

The embedding layer aims to learn the structured repre-

sentation of the KG. Translation-based methods [28], [29]

are widely used for embedding graphs; here, we apply the

TransR [29] method. Given a triple (h, r, t) as an example,

its embeddings are eh, et ∈ R
d and er ∈ R

k. TransR learns

and embeds the entities and relationships by optimizing the

translation principle erh + er ≈ ert , where erh, ert are the

projected representations of eh and et in the relationship r’s

space. Its score function is formulated as follows:

fr(h, r, t) = ||Wreh + er −Wret||22 (1)

in which Wr ∈ R
k×d is the transformation matrix for

relationship r. It projects entities from the d-dimension entity

space into the k-dimension relationship space. A lower score

of fr(h, r, t) indicates that the triple is more likely to be true,

and vice versa.

Following [29], we use the following margin-based score

function as the objective for training TransR:

L1 =
∑

(h,r,t)∈S

∑

(h,r,t′)∈S′
max (0, fr(h, r, t) + γ − fr(h, r, t

′))

(2)

where S is the set of correct triples in the CKG, and S ′ is the

set of broken triplets that is constructed by replacing one entity

in a valid triple randomly; max (·) is the maximum function,

and γ is the margin.
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(a) CKAT recommendation model architecture.
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(c) Information propagation ex-
ample.

Fig. 6: The CKAT recommendation model.

B. Knowledge-aware attentive embedding propagation layer

Based on the graph convolution network architecture [30]

and leveraging graph attention networks [31], we build this

layer to recursively propagate embeddings along with high-

order connectivity. We also generate different attentive weights

for cascaded propagation to reveal the importance of such

connectivity. Here, we start with the description of a single

layer, as shown in Figure 6b, and then offer a discussion of

how to stack them across multiple layers.

Information propagation: An entity in the graph has direct

or high-order connections with its neighbors. To demonstrate

the information propagation among them, we employ user U2

in Figure 6c as an example. There are three propagation paths.

On one of them, item I2 takes attributes A2 and A3 as inputs to

enrich its features and then contributes user U2’s preferences,

which can be simulated by propagating information from A2 to

U2. Based on this intuition, we use Nh = {(h, r, t)|(h, r, t) ∈
E} to denote the set of triplets in which h is the head entity and

formalize the information being propagated from its neighbors

to h as follows:

eNh
=

∑

(h,r,t)∈Nh

fa(h, r, t)et (3)

where fa(h, r, t) is the attention component that controls the

decay factor on each propagation on edge (h, r, t), indicating

the contributions of t to h conditioned to relationship r.

Knowledge-aware attention: We implement fa(h, r, t) via

the relational attention mechanism, which is formulated as

follows:

fa(h, r, t) = (Wret)
� tanh (Wreh + er) (4)

where tanh is used as a nonlinear activation function. For

simplicity, here we consider only the inner product to obtain

the attention weights, which reflects the affinity between

two entities eh and et in relationship r’s space. Hereafter,

we employ the softmax function to normalize the attention

weights across all neighbors, which is formulated as follows:

fa(h, r, t) =
exp (fa(h, r, t))∑

(h,r′,t′)∈Nh
exp (fa(h, r′, t′))

(5)

where the final attention scores can distinguish varying impor-

tance scores of neighbors.

Information aggregation: In this phase, we utilize the

entity representation eh and the information being propagated

from its neighbors eNh
to update the representation of entity

h, as e
(1)
h = agg(eh, eNh

). In this study, we implement the

aggregation function agg(·) using the following two methods:

The concatenate aggregation method concatenates two rep-

resentations, followed by a nonlinear transformation:

aggconcat =LeakyReLU(W(eh||eNh
)) (6)

where || is the concatenation operation, W ∈ R
d′×d are the

trainable weight matrices for distilling useful information for

propagation, and d
′

is the transformation size.

The sum aggregation method sums two representations and

applies a nonlinear transformation, as follows:

aggsum =LeakyReLU(W(eh + eNh
)) (7)

High-order propagation: Building on previous efforts [12],

[13], [20], we can stack more information-propagation layers

to exploit the high-order connectivity inherent in the collabo-

rative KG. For example, Figure 6b illustrates the propagation

in the l-th steps that recursively update the representation

of entity h by the previous representations of itself and its

neighbors with the following formulation:

e
(l)
h = agg(e

(l−1)
h , e

(l−1)
Nh

) (8)

e
(l−1)
Nh

=
∑

(h,r,t)∈Nh

fa(h, r, t)e
(l−1)
t (9)

e
(l−1)
t is the representation of entity t generated from the

previous information-propagation steps, memorizing the infor-

mation from its (l− 1)-hop neighbors, where same to e
(l−1)
h .

This propagation allows an entity to contribute to another

entity’s representation up to l-hops away. As a result, each

entity’s representation captures and embeds the connectivity

from its high-order neighbors. Such as a path in Figure 6c, I1
−→ U1 −→ C1 −→ U2 indicates that the information from I1 is

propagated and embedded in e
(3)
u2 .

C. Model prediction

Assuming the number of information propagation layers

is L, at the end, we produce multiple representations of

each node, such as user node {e(1)u , · · · , e(L)
u }. Because each
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representation emphasizes different orders of neighbors, we

concatenate them into a single vector, as follows:

e∗u = e(0)u || · · · ||e(L)
u , e∗v = e(0)v || · · · ||e(L)

v (10)

where || is the concatenation operation, u is users, and v is

items.

Finally, we calculate the inner product of user and item

representations, so as to predict their matching score:

ŷ(u, v) = e∗u
�e∗v (11)

D. Optimization

Following mainstream optimization methods [12], [13],

[32], we adopt Bayesian personalized ranking (BPR) [33] to

optimize the model parameters. BPR assumes that users prefer

items they have interacted with before, which indicates that

the observed interactions should be assigned higher prediction

values than unobserved ones:

L2 =
∑

(u,I,j)∈O
− lnσ(ŷ(u, i)− ŷ(u, j)) (12)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the

training set, R+ indicates the observed (positive) interactions

between user u and item j, and R− is the sampled unobserved

(negative) interaction set; σ(·) is the sigmoid function.

Finally, we represent the objective function as follows:

LCKAT = L1 + L2 + λ||Θ||22 (13)

where Θ indicates the parameters used in the model and σ is

the decay factor on Θ to prevent overfitting.

VI. EXPERIMENTAL EVALUATION

In this section, we use two user-query traces from OOI and

GAGE to evaluate the performance of the CKAT recommen-

dation model presented in the previous sections by answering

the following research questions:

• RQ1: How does the CKAT model perform on the facility

data as compared to the state-of-the-art knowledge-aware

models?

• RQ2: How do the CKG model and its components impact

the recommendation results?

• RQ3: How do the attention mechanism and other hyper-

parameter settings (i.e., depth of the knowledge-aware

propagation layer, aggregation selection) impact the rec-

ommendation results?

A. Dataset description

We first preprocess the query traces to extract key informa-

tion, building on the mechanisms used by existing efforts for

benchmark datasets, e.g., MovieLens [34]. We then construct

the CKG from the three subgraphs: The user–item graph (UIG)

is constructed on the basis of user and data item interactions,

extracted from the OOI and GAGE traces. The user–user

graph (UUG) contains user association information obtained

by clustering users based on their proximity (i.e., the same

OOI GAGE

# entities 1,342 4,754
# relationships 8 7
# KG triplets 5,554 20,314
# link-avg 6 10

TABLE I: Statistics for the OOI and GAGE collaborative

knowledge graphs (CKG). The term “link-avg” refers to the

average links per item.

organization, physical location, etc.). The item–attribute graph

(IAG) contains two attributes, instrument location (LOC) and

data-domain knowledge (DKG), which are obtained from the

OOI and GAGE websites. Furthermore, we combine other

attributes available at the facility websites such as instrument

metadata (MD) including instrument names and associated

groups. As some of this information is not directly relevant

to user data-query patterns (see Section III-B2), we regard

it as noise when evaluating the impact on recommendation

performance. Table I lists the basic CKG information.

For each dataset, we randomly select 80% of each user’s

query history for the training set and treat the remaining

percentage as the test set. For each observed user–item inter-

action, we consider it as a positive instance and then conduct

the negative sampling strategy to pair it with one negative item

that the user did not consume before.

B. Metrics

We use the top-K measurement [35] to evaluate the effec-

tiveness of the recommendations. Furthermore, we adopt two

widely used evaluation protocols: recall@K and ndcg@K. By

default, we set K = 20.

C. Baseline models

To demonstrate the effectiveness of our approach, we

compare our proposed CKAT model against the following

state-of-the-art baseline models: collaborative-filtering-based

(BPRMF), supervised-learning (FM and NFM), regularization-

based (CKE, CFKG), and graph-convolutional-network-based

(RippleNet, KGCN) models.

• BPRMF [33] is a collaborative-filtering-based method

using pairwise matrix factorization for item recommen-

dation from implicit feedback, optimized by the Bayesian

personalized ranking loss.

• FM [36] is a factorization-based method that uses second-

order feature interactions between inputs. Here, we con-

vert the user IDs, data objects, and CKG entities as the

input features.

• NFM [37] is a factorization-based method that subsumes

FM under a neural-network framework. As suggested by

He at al. [37], we employ one hidden layer on input

features.

• CKE [24] is a regularization-based method that applies

TransR [38] for semantic embeddings.

• CFKG [39] is a regularization-based method that applies

TransE [28] to embed the unified graph, including het-

erogeneous multitype user behaviors and knowledge of

the items.
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• RippleNet [22] is a propagation-based model that refines

an entity’s representation through sampling ripple sets

from its neighbors.

• KGCN [20] is a propagation-based model that extends

nonspectral graph convolutional network approaches [40]

to aggregate and incorporate neighborhood information

with bias when calculating the entity representation in

the KG.

D. Parameter settings

We implement the CKAT model in Tensorflow. The em-

bedding size is fixed at 64 for all models except RippleNet,

for which it is set to 16 due to RippleNet’s computational

complexity. We optimize all models with the Adam opti-

mizer [41], where the batch size is fixed at 512. Furthermore,

we use the default Xavier initializer [42] to initialize the model

parameters. We apply a grid search for hyperparameters: the

learning rate is tuned to values in {0.05, 0.01, 0.005, 0.001},

the coefficient for L2 normalization is searched within the

set {10−5, 10−4, · · · , 101, 102}, and the dropout ratio is tuned

to value in {0.0, 0.1, · · · , 0.8} for NFM and CKAT. We set

the depth of CKAT, L, as 3 with hidden dimension 64, 32,

16, respectively. We set the RippleNet n hop=2, which is its

propagation-layer number. By default, we use the concatenate
aggregator, three propagation layers, and CKG.

E. Performance comparison (RQ1)
Table II summarizes the performance results for all the

models using the OOI and GAGE datasets and using the CKG

as auxiliary information. CKAT consistently yields the best

performance in all cases. We have the following observations

from the experimental results:

• Compared to the baseline models, CKAT improves per-

formance for both, OOI and GAGE datasets. Specifically,

CKAT improves recall by over 6.1237% and 5.7399%,

and ndcg by over 7.2624% and 6.0496%, for OOI and

GAGE, respectively.

• The performance of the propagation-based methods, Rip-

pleNet and KGCN, is comparable to that of the CKAT,

because they can capture high-order connectivity in the

KG. Moreover, the results also justify the effectiveness of

the knowledge-aware attention mechanism. It allows the

CKAT to distinguish different entity relationships, reduce

noise, and thus focus on learning key information.

• The CF-based method (BPRMF) is outperformed by most

of the KG-based methods, especially the propagation-

based methods. This demonstrates the effectiveness of

using KG as auxiliary information for improving recom-

mendation performance.

• FM and NFM outperform the regularization-based meth-

ods (CKE and CFKG), which indicates the importance of

capturing high-order connectivity. FM and NFM exploit

the embeddings of its neighbor entities, which can serve

as the second-order connectivity. However, CKE and

CFKG model connectivity only on triples’ granularity,

which is equivalent to only the first-order relationship

OOI GAGE

recall@20 ndcg@20 recall@20 ndcg@20

BPRMF 0.1935 0.1693 0.2742 0.2115
FM 0.2353 0.2228 0.3174 0.2356

NFM 0.2339 0.2211 0.3289 0.2471
CKE 0.2102 0.2197 0.2675 0.2106

CFKG 0.2283 0.2241 0.2572 0.2096
RippleNet 0.2833 0.2394 0.3584 0.2981

KGCN 0.3020 0.2414 0.3767 0.3106

CKAT 0.3217 0.2561 0.4062 0.3306
% Impro. 6.1237 5.7399 7.2624 6.0496

TABLE II: Overall performance comparison.

in the KG. Moreover, it is worth noting that BPRMF

performs better than CKE and CFKG in the GAGE case.

The ability to model high-order connectivity is essential

for recommending facility data.

• Overall, the propagation-based methods perform the best

because they can fully exploit the high-order information

on the KG. Moreover, the knowledge-aware attention

mechanism allows the CKAT to improve performance

by paying more attention to key information during the

propagation process.

F. Evaluation of knowledge-source combinations (RQ2)

The CKG is constructed from three subgraphs – user–item

graph (UIG), user–user graph (UUG), and item–attribute graph

(IAG). The IAG includes knowledge such as instrument lo-

cation (LOC) and data-domain knowledge (DKG). In this

experiment, we evaluate the impact of such knowledge sources

by evaluating different knowledge combinations. Moreover,

as irrelevant knowledge sources would negatively impact the

propagation-based method (they are the noise when the model

is learning the entity representation through its neighbors), in

this experiment we use the additional instrument metadata

(MD) as noise to demonstrate the importance of selecting

knowledge.

Table III presents the results. When combing the UIG with

one more sources of knowledge (i.e., LOC, DKG, UUG), the

performance varies. UIG+DKG has better performance for

OOI, whereas UIG+LOC is better for GAGE. It reveals the

characteristics of the different facility user communities. In

this case, OOI users would query data with a stronger focus

on the domain model, whereas GAGE users would tend to

follow the instrument–locality correlation.

When all the knowledge is stacked together

UIG+UUG+LOC+DKG, we achieve the best performance

for both traces. This indicates that they are the most relevant

information to characterize the facility user query patterns.

Furthermore, when adding MD (i.e., noise) to the best

knowledge combination, the performance decreases. This

shows that collecting the right knowledge is essential to

providing optimal recommendation performance. Because the

facility provides abundant structured meta-data information, a

careful selection of information is needed.

To fine-tune the CKG for each facility, we can try differ-

ent knowledge combinations, as in the process demonstrated
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OOI GAGE

recall@20 ndcg@20 recall@20 ndcg@20

UIG+LOC 0.2675 0.2322 0.3848 0.3191
UIG+DKG 0.2844 0.2424 0.3643 0.3148
UIG+UUG 0.2756 0.2364 0.3543 0.3048
UIG+LOC+DKG 0.3074 0.2527 0.3943 0.3148
UIG+UUG+LOC+DKG 0.3217 0.2561 0.4062 0.3306
UIG+UUG+LOC+DKG+MD 0.3197 0.2511 0.4011 0.3276

TABLE III: Results for different knowledge graph inputs. UIG

is the user–item graph, and UUG is the user–user graph. Here

we further extract the instrument location (LOC) and data-

domain knowledge (DKG) from the item-attribute graph (IAG)

and evaluate it separately. Additional instrument metadata

(MD) is considered noise information.

OOI GAGE

recall@20 ndcg@20 recall@20 ndcg@20

w/ Att + aggconcat 0.3217 0.2561 0.4062 0.3306
w/ Att + aggsum 0.3120 0.2409 0.3894 0.3123
w/o Att + aggconcat 0.2994 0.2331 0.3755 0.3147

TABLE IV: Effect of attention mechanism (Att), concatenate
and sum aggregators on recommendation performance. The

first row represents the default CKAT setup.

above. However, when the facility adds new instruments or

data objects, the fine-tuning process needs to be repeated. This

is a limitation that we will address in the future.

G. Impact study of each component of the CKAT (RQ3)

CKAT exploits the neural attention mechanism to assign

different weights to different entities in order to reduce noise

and focus more attention on key information during the prop-

agation process. To analyze its impact on the recommendation

results, we keep the best practice model parameter settings and

use CKG as the input, and then compare recommendations

with and without the attention mechanism. Results presented

in Table IV demonstrate that the CKAT with the attention

mechanism performs better than CKAT without it.

Moreover, we evaluate CKAT under two aggregator settings,

concatenate and sum. As Table IV shows, aggconcat performs

better than aggsum for both OOI and GAGE. One possible

reason is that aggconcat can retain more hidden information

in embeddings, which improves entity representation learning.

As capturing higher-order connectivity is a key advantage

of the CKAT model, we investigate the efficiency of using

multiple embedding propagation layers. In this experiment, we

consider 1, 2 and 3 layers, and CKAT-1 refers to the model

using one layer.

The results in Table V show that increasing the depth

of CKAT can boost its performance. CKAT-3 and CKAT-2

consistently achieve an improvement over CKAT-1 across the

board. This implies that CKAT can effectively capture high-

order relationships between entities carried by the second- and

third-order connectivity. Additionally, we observe a larger im-

provement from CKAT-2 to CKAT-3 for GAGE as compared

to OOI. Since the size of the CKG for GAGE is larger than

that for OOI, it may need to stack more layers when expanding

the CKG to exploit it fully.

OOI GAGE

recall@20 ndcg@20 recall@20 ndcg@20

CKAT-1 0.3108 0.2471 0.3736 0.3118
CKAT-2 0.3209 0.2478 0.3821 0.3215
CKAT-3 0.3217 0.2561 0.3919 0.3278

TABLE V: Impact of using different number of embedding

propagation layers, L.

VII. CONCLUSION

In this paper, we explored the use of recommendation sys-

tems to address the data-discovery and data-access challenges

faced by large-scale scientific facilities, such as instruments,

experimental platforms, and observatories. We first analyzed

user-query traces from two existing facilities, OOI and GAGE,

and analyzed the access patterns observed in terms of facility-

instrument locality, domain-specific data model, and user asso-

ciation. Based on this analysis, we combined key information

that characterizes the data-query patterns into a collaborative

knowledge graph (CKG). We then constructed the collabora-

tive knowledge-aware graph attention network (CKAT) recom-

mendation model, which leverages the graph neural network

(GNN) to explicitly encode the collaborative signals through

propagation and combine it with knowledge associations. To

reduce the irrelevant knowledge in the KG, which brings noise

to the entity representation learning process, we integrated a

knowledge-aware neural attention mechanism into CKAT. This

enabled CKAT to pay more attention to key information. The

empirical evaluation presented in the paper demonstrates that

CKAT can effectively facilitate data discovery and access and

that it significantly outperforms several compelling state-of-

the-art baseline models.

The overall approach presented in this paper has broad

applications, such as enabling the “intelligent” discovery and

anticipatory delivery of data and data products from large

facilities. Furthermore, the CKG can integrate knowledge from

many sources and can quickly grow in scale. As a result, the

parallelization of the CKAT model and the use of (in situ)

purposeful accelerators are important areas for future work.
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