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A B S T R A C T

The return on assets of the investment universe tends to form a cluster structure. This study
quantifies this strength of the clustering tendency as a single econometric measure, referred to as
modularity. Through an empirical study of the US equity market, we demonstrate that the strength
of the clustering tendency changes over time with market fluctuations. That is, normal markets
tend to have a clear cluster structure (high modularity), while stressed markets tend to have a
blurry cluster structure (low modularity). Modularity assesses the quality of an investment op-
portunity set in terms of potential diversification benefits. Modularity is an important pricing
variable in the cross-sectional returns of US stocks. From 1992 to 2015, the average return of the
stocks with the lowest sensitivity to modularity (low modularity beta) exceeds that of the stocks
with the highest sensitivity (high modularity beta) by approximately 10.49% annually, adjusted
for the Fama-French five-factor exposures. The inclusion of modularity as an asset pricing factor,
therefore, expands the investment opportunity set for factor-based investors.
1. Introduction

The presence of more investable assets is likely to expand the investment opportunity set, and thus improve investors’ utility.
However, an important pre-condition is a moderate level of co-movement tendency, which effectively reduces the overall portfolio risk
by allowing diversification effects. Since the scope of financial markets has expanded with the advent of innovative financial securities
and various derivative products, it is crucial for investors to comprehend the structural co-movement tendency of the investment
universe and assess the investment opportunity set.

This study provides an investment framework that visualizes and quantifies the co-movement structure. Through our empirical
studies, we demonstrate that this framework can 1) assess the quality of an investment opportunity set with regard to the potential
benefits from diversification, 2) generate an asset pricing factor, and 3) expand the investment opportunity set for factor-based investors.

We focus on and combine two well-known structural properties of the investment universe. First, the co-movement structure of
financial assets is time-varying. Billio et al. (2012) and Diebold and Yilmaz (2014) graphically depict increasing level of associations
between financial institutions during the global financial crisis from 2007 to 2008. Further, Buraschi et al. (2010) and Sandoval Jr. and
Franca (2012) note rises in correlations in a similar period. By adopting the perspective of the clustering property, we develop insight
into time variability in terms of the level of associations among financial assets.
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Second, financial assets generally form cluster structures. The clustering property, by which entities with similar characteristics tend to
form a subgroup is one of the most evident structural properties in a network of financial assets. Materassi and Innocenti (2009) provide
empirical evidence that major US stocks can be arranged into a tree-shaped diagram where highly correlated stocks are grouped by the
branches of the tree. Jang et al. (2011) apply the minimum spanning tree algorithm to depict structural changes in foreign exchange
markets.

The cluster analysis we perform involves grouping a set of financial assets into subgroups according to their co-movement tendency.
This approach is often called identification of community structure, and it is clearly distinguished from data clustering algorithms typically
represented by K-means and K-nearest neighbors.

We aim to grasp the entire network structure formed by the set of financial assets and are again distinguished from dimension reduction
techniques. Dimension reduction techniques aim to summarize network structures with a few variables, but our approach, based on
clustering analysis, creates a single variable that merely measures the clustering tendency of the entire network instead of dealing with
individual subgroups. This distinction is indeed the central technical motivation of our study in that most dimension reduction techniques
for summarizing original variables into a few numbers of variables - whether main principal component vectors in PCA or common drivers
of graphical models - still leave unexplained parts that form a clustered structure. For example, Chandrasekaran et al. (2012) conduct an
empirical test with their hidden Gaussian graphical model and demonstrate that the clustering tendency across US stocks is still persistent
after some common hidden drivers are identified and their influences are removed. If a dimension reduction method goes further in order
to tackle the issue of the clustering tendency in the unexplained parts, it has to spend an additional dimension for each clustered subgroup.
This diminishes the beauty of succinct modeling which ought to be achieved by dimension reduction.

Once clustered subgroups of assets are identified through cluster analysis, we classify all the pair-wise correlations of the assets into two
sets. The first set collects the correlations between assets in the same subgroups, and the second set collects the correlations between assets
in the different subgroups. The difference between the average correlations of each set, termedmodularity, demonstrates the strength of the
cluster structure and can be measured using time series data for asset returns (Section 2). The obtained modularity is related to market
fluctuation and the quality of the investment opportunity set with respect to the potential diversification benefit (Section 3). The measure
can serve as a priced state variable; in other words, how an individual asset is related to modularity explains the average return (Section 4).
Modularity as an asset pricing factor can expand the investment opportunity set for factor-based investments (Section 5).

This study contributes in three ways. First, we extend studies of the associations of financial assets (Pollet and Wilson (2010), Jang
et al. (2011), Billio et al. (2012), and Diebold and Yilmaz (2014)) by applying the perspective of clustered networks and proposing a
quantitativemodel at the individual stock or portfolio level. Second, given that the previous studies (Materassi and Innocenti (2009) and
Chandrasekaran et al. (2012)) have found cluster analysis to be useful for visualizing the structure of financial assets, we further expand
the applicability of these visualizations to a framework for asset management. Third, Ahn et al. (2009) discuss grouping of stocks and
investment scenarios with grouped basis assets. We add time varying aspects of grouping and introduce an investment framework in
which the time variability of the network is incorporated into the set of basis assets composed of established pricing factors (Fama and
French (1992, 1993, 2015)). Lastly, we propose an additional factor to the studies on asset pricing factors. Our proposed asset pricing
factor is distinguishably based on the interaction between an individual security and the market structure, unlike other asset pricing
factors based on the characteristics of individual firms such as stock price and financial ratios (Fama and French (1992, 1993, 2015);
Carhart (1997); Jegadeesh and Titman (1993)).

2. Construction of the connectedness measures

The research strand on the associations among financial assets, such as Billio et al. (2012) and Diebold and Yilmaz (2014), adopts the
graph and network perspectives to assess the overall market structure and its changes over time. We follow a bottom-up approach to
construct connectedness measures that ultimately model the clustering tendency of asset returns. Although our framework and defi-
nition of connectedness can be applied to general financial assets, we confine our attention to modeling stock returns.

We initiate the construction process by measuring the connectedness of two stocks. Let Cði; jÞ denote the Pearson’s pair-wise correlation
between the two stocks:

Cði; jÞ : ¼ ρi;j ¼
Cov

�
ri; rj

�
s:d:ðriÞs:d:

�
rj
�; (1)

where ri and rj denote the returns of stock i and j, respectively. This measure is extended to define the connectedness between two groups of
stocks by considering all possible combinations of stocks in each group. Namely,

CðA;BÞ : ¼ avgðfCði; jÞjði; jÞ 2 ðA;BÞ; i 6¼ jgÞ; (2)
where A and B are two groups of stocks, and the operator,1 avgð �Þ, calculates the average value of the elements in the set. Note that
1 Taking the average of the correlation elements is not a mathematically straightforward task. One may simply think of taking the arithmetic
average of all correlations under consideration; however, Zimmerman et al. (2003) show that this may result in a biased estimator. In a geometrical
sense, Pearson’s pair-wise correlation is a cosine value of the angle formed by two vectors, and is thus not additive. As a result, the variance sta-
bilization methods of Fisher’s transformation (Fisher (1915) and Fisher (1924)) should be used to estimate the average value. We accordingly define
an averaging operator as avgðr1; r2; …; rnÞ :¼ ðexpð2zÞ � 1Þ=ðexpð2zÞ þ 1Þ, where r1; r2; …; rn are the sample correlation elements and.z ¼
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Fig. 1. Construction of the connectedness measures. After the variables are reordered according to partition P, INSCðPÞ is the average of the elements
on the diagonal blocks (blue solid background) and ITSCðPÞ is the average of the elements on the off-diagonal block (red dotted background). If
partition P accurately describes the cluster structure of the universe, then INSCðPÞ must be higher than ITSCðPÞ. It follows that high MODðPÞ implies
well-clustered structure with respect to partition P.
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groups A and B are allowed to have overlapping elements (or can be even identical) due to the condition, i 6¼ j, which excludes trivial
self-correlations for the overlapping stocks. We note that the connectedness of the two groups can be used to define the total system
connectedness of an entire stock market. Namely, let V be a group containing all the stocks in a market, then CðV ;VÞ is the average of all
the pair-wise correlations among all stocks. Pollet and Wilson (2010) demonstrate that the average correlation of all constituent stocks
for the S&P500 Index can predict the future quarterly returns of the index.2

Now that our measures cover groups of stocks, we introduce the notions of partition and cluster to analyze multi-group structures in
the investment universe. Let V denote the set of stocks under consideration. Partition P of set V is a grouping of the set elements such that
1) each subgroup in P is not empty, 2) the subgroups are mutually exclusive, and 3) the union of all subgroups is equal to set V. In other
words, P ¼ fV1;V2;…;Vkg where Vi 6¼ ∅ for all i, Vi \ Vj ¼ ∅ for all i 6¼ j, and V ¼ [k

c¼1Vc. Cluster analysis or clustering on a set of
correlated variables is the task of finding the best partition, P, for set V such that the correlations among the stocks within each subgroup
are higher than the correlations among the stocks that belong to different subgroups.

Assuming a suitable partition P is found (the clustering method used in our study is discussed at the end of this section), the
remaining connectedness measures the investment universe V are defined with respect to fixed partition P. Inner-sector connectedness
(INSC) is defined as the average of all pair-wise correlations within the subgroups in the partition P ¼ fV1;V2;…;Vkg:

INSCðPÞ : ¼ avg
� [k
c¼1

fCði; jÞjði; jÞ 2 ðVc;VcÞ; i 6¼ jg�: (3)

Similarly, inter-sector connectedness (ITSC) is defined as the average of all correlations across the subgroups in partition P ¼ fV1;V2;

…;Vkg:

ITSCðPÞ : ¼ avg
�

[k�1

c1¼1
[k

c2¼c1þ1
fCði; jÞjði; jÞ 2 ðVc1 ;Vc2 Þg

�
(4)

Fig. 1 illustrates a correlation matrix of 12 random variables with partition P ¼ fð1;4;5Þ; ð2;6; 8Þ; ð3; 9; 10;11Þ; ð7; 12Þg. After the
variables for the correlation matrix are reordered according to partition P, INSCðPÞ is the average value of the elements on the diagonal
blocks (blue solid background) and ITSCðPÞ is the average value of the elements on the off-diagonal blocks (red dotted background).

As long as partition P prominently describes the cluster structure, INSCðPÞ is expected to be much higher than ITSCðPÞmeaning that
2 We note that the total system connectedness is the weighted average of INSC(P) and ITSC(P), which are to be defined shortly. That is, TSCðPÞ ¼
a � INSCðPÞþb � ITSCðPÞ

aþb , where a is the number of correlation elements used to generate INSC(P), and b is the number of correlation elements used to

generate ITSC(P). More specifically, a ¼ Pk
i¼1jVijðjVij �1Þ=2 and b ¼ Pk�1

c1¼1
Pk

c2¼c1þ1jVc1 jjVc2 j, where P ¼ fV1; …;Vkg and jVij denotes the number of
element in subgroup Vi.

301



Fig. 2. Fluctuation patterns of monthly modularity vs. the measure of Stone and Ayroles (2009). The relative innovations of the two measures are
similar across the time.
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the stocks should have a much higher correlation within their subgroups than against the stocks of other subgroups. In other words, high
INSCðPÞ in conjunction with low ITSCðPÞ implies that universe V is well clustered with respect to the partition P, while low INSCðPÞ
combined with a high ITSCðPÞ implies the contrary. MODðPÞ, defined as the difference between INSCðPÞ and ITSCðPÞ, thus concisely
quantifies the strength of the clustering tendency as a single measure:

MODðPÞ : ¼ INSCðPÞ � ITSCðPÞ (5)

Identifying the most appropriate cluster structure is obviously a crucial prerequisite for constructing meaningful connectedness
measures. In a single stock market, classifying stocks into subgroups by using traditional Standard Industrial Classification (SIC) codes is
a widely accepted and plausible practice. However, technical approaches based on correlations between stock returns are more suitable
for investors to assess the investment opportunity set based on possible diversification benefits.3

For the empirical tests throughout the rest of this study, we adopt the modulated modularity clustering (MMC) method proposed by
Stone and Ayroles (2009) for two main reasons. First, unlike most other clustering algorithms, the MMC algorithm does not require
user’s input of the number of subgroups in advance. The MMC algorithm takes only input regarding the relative fineness and coarseness
of the cluster solution, and the number and size of the subgroups are determined by the strength of its subgroups’ clustering tendency.4

Second, the embedded spectral decomposition process of the MMC algorithm efficiently handles high-dimensional data.
Since the clustering algorithm plays such an important role in our empirical tests, we briefly review the graph theory and MMC

algorithm in the remaining part of this section. In a graph, partitioning5 is a task that serves to identify disjoint subsets of nodes in which
each subset (called a cell) has nodes that are close to each other, and the nodes are not close to each other across the different cells.

In general, heuristic partitioning algorithms utilize a top-down or a bottom-up approach with some stopping criteria. However, the
line of studies including Newman and Girvan (2004), Newman (2006), and Stone and Ayroles (2009) contribute by setting a partitioning
problem as a combinatorial problem of a single objective function where solutions can be obtained through analytic procedures. A
seminal work in this field Newman and Girvan (2004) defines modularity as a single quantity for clustering an unweighted 0–1 graph,
and Newman (2006) provides a succinct description: ‘‘The modularity is, up to multiplicative constant, the number of edges falling
within groups minus the expected number in an equivalent network with edges placed at random.’’ (p. 8578) Newman (2006) proceeds
to develop an algorithm that maximizes the modularity defined above. For a weighted graph, such as the networkmodelled by Pearson’s
correlation matrix, Stone and Ayroles (2009) define the equivalent notion of modularity for weighted graphs as the sum of the edge
weights within groups minus the expected sum of the edges weights in an equivalent network with edges placed at random. Stone and
Ayroles (2009) provide a spectral decomposition algorithm that maximizes their notion of modularity.

The modularities defined by Newman and Girvan (2004) and Stone and Ayroles (2009) not only serve as an objective function, but
3 As expected, our empirical tests with SIC grouping led to similar but weaker results.
4 We used the fineness controlling parameter σ in Stone and Ayroles (2009) set to be 0.45, resulting the number of groups for 60 stocks to be 7–15

groups in the test periods. Other tried parameter values for σ, ranging from 0.2 to 0.6, lead to similar test results with different numbers of groups, but
we believe that grouping 60 stocks into 7–15 groups is in accordance with general grouping practice for investing. How many groups are appropriate
to split the universe of stocks in an economy is always subject to debate. The important feature of MMC grouping is, however, the flexibility of the
number of groups generated depending on the network itself with same controlling parameter value.
5 Interchangeable terms include clustering and community structure identification depending on the fields of study.
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Table 1
Full list of representative stocks grouped by MMC algorithm. The 60 stocks are selected from the top of the Fortune 500 list published in 2015, which
ranks US companies by operating revenue during 2014. The identified structure is similar but not identical to standard industry classification.

Cell Ticker Company Name Operating Revenue in 2014 (MM) SIC Code Industry

1 PG Procter & Gamble 78,756 2841 Soap and Other Detergents, except Specialty Cleaners
1 JNJ Johnson & Johnson 70,074 2834 Pharmaceutical Preparations
1 PEP PepsiCo 63,056 2086 Bottled & Canned Soft Drinks & Carbonated Waters
1 PFE Pfizer 48,851 2834 Pharmaceutical Preparations
1 KO Coca-Cola 44,294 2086 Bottled & Canned Soft Drinks & Carbonated Waters
2 BRK Berkshire Hathaway 210,821 6331 Fire, Marine & Casualty Insurance
2 F Ford Motor 149,558 3711 Motor Vehicles & Passenger Car Bodies
2 CMCSA Comcast 74,510 4840 Cable and Other Pay Television Services
2 UPS UPS 58,363 4513 Air Courier Services
2 DOW Dow Chemical 48,778 2821 Plastic Materials, Synth Resins & Nonvulcan Elastomers
2 FDX FedEx 47,453 4513 Air Courier Services
2 TSN Tyson Foods 41,373 2015 Poultry Slaughtering and Processing
2 JCI Johnson Controls 40,204 2531 Public Bldg & Related Furniture
3 XOM Exxon Mobil 246,204 2911 Petroleum Refining
3 CVX Chevron 131,118 2911 Petroleum Refining
3 PSX Phillips 66 87,169 1382 Oil & Gas Field Exploration Services
3 VLO Valero Energy 81,824 2911 Petroleum Refining
3 MPC Marathon Petroleum 64,566 2911 Petroleum Refining
4 GE General Electric 140,389 3600 Electronic & Other Electrical Equipment (No Computer Equip)
4 JPM J.P. Morgan Chase 101,006 6021 National Commercial Banks
4 BAC Bank of America Corp. 93,056 6021 National Commercial Banks
4 WFC Wells Fargo 90,033 6021 National Commercial Banks
4 C Citigroup 88,275 6021 National Commercial Banks
4 MET MetLife 69,951 6311 Life Insurance
4 AIG AIG 58,327 6331 Fire, Marine & Casualty Insurance
4 PRU Prudential Financial 57,119 6311 Life Insurance
5 MCK McKesson 181,241 5122 Wholesale-Drugs, Proprietaries & Druggists’ Sundries
5 ABC AmerisourceBergen 135,962 5122 Wholesale-Drugs, Proprietaries & Druggists’ Sundries
5 CAH Cardinal Health 102,531 5122 Wholesale-Drugs, Proprietaries & Druggists’ Sundries
5 ESRX Express Scripts Holding 101,752 8093 Services-Specialty Outpatient Facilities, NEC

Cell Ticker Company Name Operating Revenue in 2014 (MM) SIC Code Industry

6 HD Home Depot 88,519 5211 Retail-Lumber & Other Building Materials Dealers
6 TGT Target 73,785 5331 Retail-Variety Stores
6 LOW Lowe???s 59,074 5211 Retail-Lumber & Other Building Materials Dealers
7 BA Boeing 96,114 3721 Aircraft
7 ADM Archer Daniels Midland 67,702 2070 Fats & Oils
7 UTX United Technologies 61,047 3724 Aircraft Engines & Engine Parts
7 DIS Disney 52,465 4841 Cable & Other Pay Television Services
7 CAT Caterpillar 47,011 3531 Construction Machinery & Equip
8 HPQ HP 103,355 3571 Electronic Computers
8 MSFT Microsoft 93,580 7370 Services-Computer Programming, Data Processing, Etc.
8 IBM IBM 82,461 3570 Computer & office Equipment
8 INTC Intel 55,355 3679 Electronic Components, NEC
8 CSCO Cisco Systems 49,161 3674 Semiconductors & Related Devices
8 IM Ingram Micro 43,026 5045 Wholesale-Computers & Peripheral Equipment & Software
9 UNH UnitedHealth Group 157,107 6324 Hospital & Medical Service Plans
9 ANTM Anthem 79,157 6324 Hospital & Medical Service Plans
9 AET Aetna 60,337 6324 Hospital & Medical Service Plans
9 HUM Humana 54,289 6324 Hospital & Medical Service Plans
10 WMT Walmart 482,130 5331 Retail-Variety Stores
10 CVS CVS Health 153,290 5912 Retail-Drug Stores and Proprietary Stores
10 COST Costco 116,199 5331 Retail-Variety Stores
10 KR Kroger 109,830 5411 Retail-Grocery Stores
10 WBA Walgreens Boots Alliance 103,444 5912 Retail-Drug Stores and Proprietary Stores
10 SYY Sysco 48,681 5140 Wholesale-Groceries & Related Products
10 LMT Lockheed Martin 46,132 3760 Guided Missiles & Space Vehicles & Parts
11 AAPL Apple 233,715 3571 Electronic Computers
11 AMZN Amazon.com 107,006 7370 Services-Computer Programming, Data Processing, Etc.
11 GOOG Alphabet 74,989 7375 Information Retrieval Services
12 T AT&T 146,801 4813 Telephone Communications (No Radiotelephone)
12 VZ Verizon 131,620 4813 Telephone Communications (No Radiotelephone)
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they can also measure the fitness of a network with respect to a certain fixed partition (i.e., clustering strength). Emphasizing the aspect
of clustering strength, we propose a measure of modularity as the average weight of the edges of inner groups minus the average weight
of the edges between groups. Our measure and the modularity measure by Stone and Ayroles (2009) share motivation, and the relative
innovations are close. Fig. 2 presents the closeness of the two measures. It is noticeable that the general fluctuating patterns of two are
303



Fig. 3. Cluster structure of the 60 major companies using the MMC algorithm (2005–2014). Clustering is conducted to combine stocks with high
correlations in the same subgroup and separate stocks with low correlations into different subgroups. The full list with company description is
presented in Table 1. This grouping serves as a fixed point for analysis in Section 3.
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very similar across the time.
While the measure by Stone and Ayroles (2009) enjoys the benefits of the analytic algorithm, our measure is easier to use and

understand because we apply the notion of the difference between two average values: the inner-sector connectedness (INSC) and
inter-sector connectedness (ITSC). By no means do we claim that our modularity is always superior to the measure of Stone and Ayroles
(2009). In fact, how the general notions of modularity should be defined and measured is subject to the nature of individual networks
under the consideration. We claim that our measure is a significant and intuitivemeans of providing an investment framework regarding
the structure of financial markets.

3. Assessing the set of investment opportunity - marketwide empirical evidence

This section empirically studies the clustering tendency of US stocks in light of the defined connectedness measure, and it assesses the
time-varying quality of the investment opportunity set with respect to the potential benefits of portfolio diversification. To assess the
time-varying and qualitative features, it is necessary to set up a time-invariant partition before investigating data for different time
periods. Thus, Section 3.1 uses the long-term (10-year) sample correlation matrix to generate a cluster solution that acts as the time-
invariant partition when analyzing subperiods. Using the time-invariant cluster solution, Section 3.2 applies the defined connected-
ness measures to the selected subperiods that displayed dramatic market fluctuation.

This section takes 60major companies (Table 1 presents the list) as a representative set and uses their daily stock return data over the
10-year period from 2005 to 2014. The stocks are selected from the top of the Fortune 500 list announced in 2015, which ranks
companies by operating revenue in 2014. We believe that the top of the Fortune 500 list should serve as a representative set for the
domestic economy. Although the top rankers in market capitalization can also be considered, they tend to be heavily focused on a few
capital-oriented industries, such as the petroleum refining industry and financial services. The return data were obtained from the
Center for Research in Security Prices (CRSP) database provided by Wharton Research Data Services (WRDS). Stocks must be common
shares (WRDS share code 10 and 11), and stocks with missing daily returns information at any point in the decade are excluded from the
analysis.6

3.1. Cluster of asset returns in the long term

By using the daily returns of the 60 stocks from January 1, 2005 to December 31, 2014, a historical correlation matrix is prepared.
Applying the MMC algorithm to the historical correlationmatrix identifies the cluster structure presented in Fig. 3. The identified cluster
structure is similar, but not identical, to those categorized using SIC codes. This partition solution alone can serve as a useful decision-
making ground, if an investor’s practice of grouping his/her investment universe is more concerned with the technical grouping rather
than traditional industry grouping.

Fig. 4, as a close observation of Fig. 3, presents selected subgroups (the 4th, 9th, and 11th subgroups in Table 1) with connectedness
between two groups as defined in (2). The connectedness measures within the same subgroups (on the blue solid lines; CðV4;V4Þ ¼ 0:66,
CðV9;V9Þ ¼ 0:69, CðV11;V11Þ ¼ 0:45) are higher than the connectedness measures across the different subgroups (on the red dotted
6 We admit that the analysis of this section has the bias issues of lookback (stocks are selected at the end of the analysis period) and survivorship
(stocks with missing data are excluded from the analysis). This section provides a qualitative understanding of the defined measures, and empirical
tests in the following sections are free of such biases.
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Fig. 4. A close-up view of three selected subgroups from Fig. 3. The blue solid lines indicate correlations within each subgroup and the red dotted
lines indicate correlations across different subgroups. The connectedness measures within subgroups are higher than those across different subgroups,
indicating that the structure is well clustered with respect to the partition presented in Fig. 3 and Table 1.

Fig. 5. Matrix representation for the correlation structure of Fig. 3. The contrast between the on- and off-diagonal elements is noticeable, indicating a
prominent cluster structure and a high value of MODðPÞ.
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lines; CðV4; V9Þ ¼ 0:37, CðV4; V11Þ ¼ 0:36, CðV9; V11Þ ¼ 0:28). This relative difference between the same and different subgroups
confirms that the clustering is effectively conducted.

Fig. 5 displays all of the connectedness measures between groups in a matrix form, ½CðVi;VjÞ�1�i;j�12. This matrix representation
provides a simple view of the entire structure with the connectedness measures. It summarizes the original 60� 60 correlation matrix
into a 12� 12 matrix that shows clear contrasts between the diagonal and off-diagonal elements. The following are equivalent: 1) a high
value of MODðPÞ, 2) a prominent cluster structure, and 3) a noticeable difference between the on- and off-diagonals in the matrix
representation of Fig. 5.
3.2. Subperiods of bull/bear markets

The representative set of investable stocks above displays a cluster structure in the long term. The obvious next question is whether
the cluster structure in the long run is persistent throughout its subperiods. This subsection selects four subperiods with drastic market
movements, of which two are bullish and the other two are bearish, and observes the clustering tendency of each subperiod. To
consistently compare the subperiods, the partition structure obtained from the long-term analysis (Fig. 3) is maintained for all four
subperiods.

Fig. 6 displays the matrices of subgroup connectedness in each subperiod, and Fig. 7 presents connectedness diagrams for the
previously selected 4th, 9th, and 11th subgroups. In both Figs. 6 and 7, the two top diagrams correspond to bullish subperiods (06/01/
2012–09/17/2012 with a 14.8% increase in the S&P500 Index and 08/26/2010–02/18/2011 with a 28.3% increase in the S&P500
Index) and the two bottom diagrams correspond to bearish subperiods (07/01/2011–08/10/2011 with a 16.3% decrease in the S&P500
Index and 09/19/2008–11/20/2008 with a 40.1% decrease in the S&P500 Index).

In the comparison of the top and bottom diagrams of Figs. 6 and 7, we remark two important structural properties. First, the overall
305



Fig. 6. Matrix representation of connectedness for the selected subperiods. The two lower matrices (bearish subperiods) are generally darker (higher
correlations) than the two upper matrices. More importantly to our study, the two lower matrices show little contrast between the diagonal and off-
diagonal elements, indicating a less clear cluster structure than the two upper matrices.

Fig. 7. A close-up view of the three subgroups from Fig. 6. The upper diagrams (bullish subperiods) have higher modularity than the lower diagrams
(bearish subperiods).
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level of correlation increases dramatically during the transition from a bullish period to a bearish period. In Fig. 6, the two lower
matrices (bearish subperiods) are a lot darker (higher correlation) than the two upper matrices. In Fig. 7, the two lower diagrams also
have much higher connectedness measures between and within subgroups. This phenomenon of being more correlated in a downturn
has been pointed out by many practitioners and researchers, such as Buraschi et al. (2010) and Sandoval Jr. and Franca (2012). This
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higher correlation in bear markets warns investors who use long-term historical correlations and believe that the correlations will
remain at similar levels. The level of correlation changes over time, and the bad news is that the change is in the unfavorable direction at
the time when investors desperately wish for moderate correlation to mitigate the effect of market-wide turmoil. If the quality of the
investment opportunity set is assessed in terms of potential diversification benefits alone, this phenomenon implies the worsened quality
of investable set in market downturn.

Second, and more importantly with regard to our study, the clustering tendency in a bearish subperiod is much weaker than that in a
bullish subperiod. Although both INSCðPÞ and ITSCðPÞ simultaneously increase during the transition from a bullish to a bearish sub-
period, the increase in ITSC(P) is much higher than that in INSC(P). As once moderate ITSC(P) increases rapidly, the relative difference
between ITSC(P) and INSC(P) is narrowed. In other words, the once prominent clustered structure in normal or bullish markets is
blurred in bearish markets. This phenomenon, which we call the destruction of the cluster structure, is noticeable from Fig. 6, where the
contrast between the on- and off-diagonal elements in the top diagrams disappears in the bottom diagrams. This is also noticeable from
Fig. 7, where the bottom diagrams display a less clear clustering tendency compared to the top diagrams. Stock investors allocate wealth
into multiple industry sectors hoping that the diversification effects between the subgroups still hold in a downturn. However, another
bad news in a downturn is that the widespread practice of sector diversification does not work very well. The worsened quality of the
investment universe set with respect to sector diversification is assessed by our framework.

Should stressed markets lead to the destruction of the existing cluster structure, it may become necessary to identify a new cluster
structure for understanding the investment opportunity set better. However, identifying a new cluster structure makes it difficult, or
even impossible, to quantitatively compare the new cluster structure with the previous cluster structure. Our proposed connectedness
measures allow us to quantify the level of deviations between the current cluster structure and the fixed cluster structure. The
remarkable structural changes in the clustering tendency under different market conditions are captured through the proposedmeasures
of INSC, ITSC, and modularity, of which modularity is the ultimate measure for quantifying the strength of the clustering tendency and
of assessing the investment opportunity set in terms of the possible benefits of portfolio diversification.

4. Serving as an asset pricing factor: Is modularity factor priced?

Now that modularity is a meaningful indicator of the quality of the investment opportunity set and market fluctuations, the next
question is whether past a co-movement tendency provides information that can generate a significant future return difference. This
section investigates whether an individual security or a portfolio’s sensitivity to the modularity can explain the expected return. The
sensitivity, which we call ‘‘modularity beta’’ hereafter, is defined as the coefficient of modularity in a multiple linear regression, where
the other explanatory variables are the Fama-French factors7 (Fama and French (1992, 1993; 2015)) (Section 4.1). We present esti-
mation process for each stock’s modularity beta (Section 4.2). We also present a two-way analysis of portfolio returns sorted by market
beta and modularity beta (Section 4.3). We construct annually updated decile portfolios sorted by the modularity beta. (Section 4.4).
The excess returns of the decile portfolios are then regressed on the established one-, three-, and five-factors. The varying non-zero
intercepts across the decile portfolios substantiates the existence of the modularity factor.

4.1. Model

We define βMOD
i as the coefficient of the time series of modularity factor, MODt , in the following multiple linear regression.

ri;t � rf ;t ¼ β0i þ βMOD
i MODt þ βMi MKTt þ βSi SMBt þ βHi HMLt þ βRi RMWt þ βCi CMAt þ εi;t ; (6)

where ri;t denotes the return on stock i; rf ;t is the risk-free return;MKTt , SMBt , HMLt , RMWt , and CMAt are the Fama-French five-factors
(market, size, growth, profitability, and investment); and βMi , β

S
i , β

H
i , β

R
i , and βCi are the corresponding coefficients. Since the modularity

time series MODt is not measured in portfolio returns, the intercept term βMOD
i possesses a different meaning than alpha, which is an

abnormal return in general linear factor asset pricing models.

4.2. Estimation of modularity betas

For each US stock, its modularity beta in (6) is estimated. Modularity sensitivity-sorted portfolios are accordingly constructed for
1992–2015. The construction for the modularity time series, the estimation for the modularity beta, and the construction of the
modularity beta sorted portfolios use only data available as of the formation date.

Step 1. Set the year T ¼ 1992.
Step 2. Collect historical return data for all stocks. Historical stock returns are obtained from the Center for Research in Security
Prices (CRSP). Historical data for the Fama-French factors are collected from the Kenneth R. French Data Library. We use all common
shares (CRSP share codes 10 and 11) actively traded on the New York Stock Exchange, American Stock Exchange, and NASDAQ.
7 The momentum factor by Jegadeesh and Titman (1993) and Carhart (1997), quite powerful and widely accepted pricing factor, was also tested,
and test results were overall similar. We present the results with the five-factors gathered from the data library of Prof. French. (http : = = mba:tuck:
dartmouth:edu=pages=faculty=ken:french=data library:htmlÞ
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Step 3. Collect the residuals from recent history. Regress excess returns over the risk-free rate of all stocks by using the Fama-French
three-factors8 for the 60 months9 from year T-5 to year T-1. In this step, stocks with missing records, or stocks with prices that fell
below $5 once or more during any of the 60 months are excluded from the analysis.

ri;t � rf ;t ¼ αi þ βMi MKTt þ βSi SMBt þ βHi HMLt þ ηi;t (7)

Then, by using the estimated betas from (7), collect the residuals of each stock.

ei;t ¼ ri;t � rf ;t � bβM

i MKTt � bβS

i SMBt � bβH

i HMLt (8)

The residual ei;t thus contains both the alpha and noise term in (7), both of which are left unexplained by the Fama-French three-
factors.

Step 4. Construct historical monthly modularity time series. The representative set for modularity construction is chosen as the publicly
traded top 60 companies10 on the Fortune 500 list published in year T-1 which sorts US companies by their annual operating revenue
in year T-2. Compute a sample correlation matrix of the historical daily returns of the 60 stocks from year T-5 to year T-1 and apply
the MMC algorithm on the sample correlation matrix to generate a cluster solution. Using this cluster solution, generate historical
modularity for eachmonth of the five-year period. Specifically, calculate sample correlationmatrices for each month of the five years
and generate monthly modularity with respect to the cluster solution.11

Step 5. Regress the residuals by the modularity to estimate the historical sensitivity. By using the data for the same 60 months, estimate the
historical sensitivity of each stock i, ψ1

i , by using the simple linear regression of (9):

ei;t ¼ψ0
i þ ψ1

i MODt þ πi;t; (9)

The quantity ψ1
i serves as an estimated modularity beta of stock i for the next 12 months.

Step 6. Continue to the next year. After the modularity betas for year T are estimated, go to Step 1 and increase T by 1 and repeat Steps
2–5. Repeat until modularity betas for all stocks for all years are estimated.
4.3. Two-way (4� 4) portfolios sorted by market beta and modularity beta

Our discussion in the previous section suggests the possibility of informational content in the modularity measure regarding market
fluctuations. As much as an individual security’s sensitivity to the market factor, termed the market beta, is an effective asset pricing
variable, can we expect similar usage from the modularity beta? If so, what is the interaction effect between the market factor and
modularity factor? This subsection sorts individual securities by pre-rankings of market beta and modularity beta in order to address
these questions.

Table 2 and Table 3 present the average monthly returns and post-market beta for two-way classified portfolios, value-weighted and
equal-weighted, respectively. Panel A of both tables reveal a few interesting observations on the returns. First, stocks with low
modularity betas tend to yield larger expected returns. Second, modularity beta sorting generates return differences of 2.89% (value-
weighted) and 3.17% (equal-weighted) between both ends of classification. This dispersion is a little less compared to the return dif-
ferences of 3.39% (value-weighted) and 5.82% (equal-weighted) that market beta sorting generates. Third, the effect of modularity beta
sorting is consistent across the different levels of market betas. For all cases, where market beta is very high, high, low, or very low, the
stocks with lower modularity betas generate higher returns. Panel B of both tables show that the post market betas of low modularity
beta stocks and high modularity beta stocks are not very different, meaning that the source of return difference between low modularity
beta stocks and high modularity beta stocks is not likely the market factor.

Why do modularity beta generate return differentials, and why do low modularity beta stocks yield higher expected returns? Note
that the market factor is the weighted average of the stock return of the universe, and the modularity factor is the strength of the cluster
structure. The two factors are related in that the strongly clustered structure means they are well segmented, hence a more stable market
structure. Despite this general tendency, the results presented in Tables 2 and 3 suggest that modularity factor measures structural
change that market factor is unable to capture. Low modularity beta stocks are less sensitive to structural changes and this robustness
8 We use only three-factors for the residual estimations as in Paster and Stambaugh (2003). We also tested with the five-factors, and the results
were similar.
9 Indeed, we use 36 months of history for year T ¼ 1992, 48 months for year T ¼ 1993, and 60 months for all the other years thereafter.

10 We use the Fortune list published in year T-1 because the list published in year T is generally unavailable at the beginning of year T. The number
of companies is set to 60 to balance the efficiency of the algorithm and broadness of the set. Although including more than 60 stocks may enhance the
broadness of the representative set, it may result in poor computational efficiency of the clustering algorithm and relative insufficiency of the number
of samples over the number of parameters to be estimated for the correlation matrix.
11 For each month, there are only 18–23 trading days. This number of observations is statistically insufficient to guarantee the stability of the
statistical estimators generated on the correlation matrix. To enhance the stability of the modularity time-series, we use the three-month moving
average smoothing of original monthly observed modularity. Our tests with different lengths of smoothing, two-, four-, five-, and six-months, show
similar results as well.
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Table 2
Two-way value-weighted portfolios returns sorted by market beta and modularity beta (January 1992–December 2015).

Panel A: Average Returns (%, per annum)

All Low-βMOD βMOD�2 βMOD�3 High-βMOD

All 11.07 12.89 11.17 10.22 10.00
Low-βMKT 9.03 10.76 8.70 8.37 7.93

βMKT�2 11.08 12.06 10.93 10.32 10.70

βMKT�3 11.74 13.09 12.21 11.33 10.58

High-βMKT 12.42 14.31 13.72 11.76 11.59

Panel B: Post βMKT

All Low-βMOD βMOD�2 βMOD�3 High-βMOD

All 1.05 1.08 0.96 0.99 1.18
Low-βMKT 0.69 0.72 0.63 0.66 0.78

βMKT�2 0.88 0.86 0.85 0.87 0.95

βMKT�3 1.12 1.14 1.09 1.11 1.15

High-βMKT 1.53 1.54 1.52 1.48 1.56

Table 3
Two-way equal-weighted portfolios returns sorted by market beta and modularity beta (January 1992–December 2015).

Panel A: Average Returns (%, per annum)

All Low-βMOD βMOD�2 βMOD�3 High-βMOD

All 8.10 9.79 8.12 7.71 7.44
Low-βMKT 5.70 6.52 6.73 4.87 3.35

βMKT�2 7.95 9.39 6.53 7.80 8.92

βMKT�3 9.06 9.73 9.55 9.42 7.98

High-βMKT 9.49 12.34 10.43 10.13 7.83

Panel B: Post βMKT

All Low-βMOD βMOD�2 βMOD�3 High-βMOD

All 1.11 1.16 1.06 1.06 1.23
Low-βMKT 0.68 0.72 0.60 0.67 0.85

βMKT�2 0.88 0.83 0.91 0.85 0.97

βMKT�3 1.13 1.17 1.12 1.13 1.13

High-βMKT 1.58 1.59 1.62 1.51 1.58
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leads to the higher expected returns. Although we find little possible explanation that stocks with low modularity should be considered
riskier, these stocks yield higher returns. Our results indicate that the modularity factor is more likely to be an anomaly factor than a risk-
return trade-off factor.

If the modularity beta generates return differentials, then a naturally following question is which stocks have high/low modularity
betas. We find that the modularity beta is not a constant property of a stock. In the two way classification of stocks presented in Tables 2
and 3, we find that stocks once in the lowest modularity beta basket may move to the highest modularity beta basket in the next year, or
vice versa. The time variation of an individual stock’s modularity may explain why the return differentials created by modularity beta
sorting is not captured by existing famous asset pricing factors (to be presented in the next subsection). That is, if modularity beta were a
constant property of a stock, then the property could have been identified by traditional approaches based on the characteristics of
individual firms, such as stock prices or financial ratios (Fama and French (1992, 1993; 2015); Carhart (1997); Jegadeesh and Titman
(1993)).
4.4. Decile portfolio tests: are there significant return differences?

Our hypothesis is that decile portfolios sorted by sensitivity to modularity series should display a systematic return difference that is

not explained by other asset pricing models. Based on the ranking of bψ 1
i from (9), we construct value-weighted and equal-weighted

decile portfolios. bψ 1
i serves as the ‘‘predicted modularity beta’’ of stock i for the next 12 months.12 The top (bottom) decile portfolio

contains the stocks with the lowest (highest) predicted beta. In case of a missing record in a stock return, we assume that the stock
returns for the missing month and all the following months are all equal to zero.

Table 4 and Table 5 present test results regarding the returns of decile portfolios, value-weighted and equal-weighted, respectively.
In Panel A, the first row presents the annualized returns and standard deviations of the decile portfolios. The last column corresponds to
12 Paster and Stambaugh (2003) not only estimated the historical sensitivity but also forecasted the sensitivity with the other characteristics of each
firm, and the result with forecast sensitivity was slightly better. In this study, we simply set the historical beta as the predicted beta because we have
no plausible candidate or conjecture with regard to which firm characteristics predict future modularity beta well.
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Table 4
Decile portfolios formed by modularity-beta (value-weighted) (January 1992–December 2015).

Panel A: Returns and alphas with respect to the 1-,3-,5-factor models (%, per annum)

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
Return 13.37 7.75 7.99 9.68 8.65 7.37 8.58 7.42 8.36 6.95 6.42
Std. Dev. 20.22 15.08 13.98 13.17 14.20 14.52 15.77 16.06 17.07 20.64 15.44
CAPM alpha 2.71 �1.35 �0.65 1.28 �0.26 �1.69 �1.13 �2.35 �1.89 �4.66 7.38
(t-statistics) (1.11) (-0.9) (-0.47) (1.04) (-0.2) (-1.29) (-0.85) (-1.66) (-1.29) (-2.34) (2.33)
3-Factor alpha 3.26 �1.24 �1.60 0.59 �1.09 �1.99 �1.40 �3.09 �2.52 �4.96 8.21
(t-statistics) (1.35) (-0.82) (-1.31) (0.56) (-0.9) (-1.55) (-1.13) (-2.49) (-1.78) (-2.48) (2.6)
5-Factor alpha 4.90 �2.24 �3.13 �0.99 �2.12 �2.57 �1.88 �3.66 �3.53 �5.56 10.47
(t-statistics) (1.96) (-1.43) (-2.53) (-0.94) (-1.71) (-1.92) (-1.45) (-2.82) (-2.4) (-2.7) (3.2)
Panel B: Exposure to the five-factors

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
βMKT 0.99 0.95 0.95 0.92 0.94 0.94 1.04 1.07 1.13 1.25 �0.26
(t-statistics) (18.06) (27.65) (34.99) (39.29) (34.78) (31.95) (36.64) (37.73) (34.94) (27.57) (-3.62)
βSMB 0.15 �0.07 �0.10 �0.14 �0.03 �0.04 �0.15 �0.17 �0.04 0.17 �0.03
(t-statistics) (2.05) (-1.57) (-2.82) (-4.53) (-0.81) (-1.14) (-4.15) (-4.51) (-1.03) (2.94) (-0.29)
βHML �0.01 �0.08 0.12 0.05 0.08 0.07 0.09 0.18 0.08 0.05 �0.06
(t-statistics) (-0.06) (-1.28) (2.56) (1.23) (1.75) (1.45) (1.85) (3.79) (1.45) (0.64) (-0.45)
βRMW �0.16 0.14 0.19 0.17 0.08 0.13 0.09 0.09 0.14 0.20 �0.36
(t-statistics) (-1.57) (2.09) (3.73) (3.82) (1.63) (2.36) (1.71) (1.75) (2.25) (2.34) (-2.68)
βCMA �0.29 0.11 0.20 0.26 0.22 �0.03 0.00 0.03 0.11 �0.15 �0.14
(t-statistics) (-2.13) (1.28) (2.92) (4.45) (3.2) (-0.46) (0.03) (0.41) (1.37) (-1.34) (-0.78)
Panel C: Return decomposition by the five-factors

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
Excess return (p.a.) 10.77 5.15 5.38 7.07 6.04 4.76 5.97 4.81 5.76 4.34 6.42
α 4.90 �2.24 �3.13 �0.99 �2.12 �2.57 �1.88 �3.66 �3.53 �5.56 10.47
βMKT*MKT 7.20 6.89 6.92 6.67 6.87 6.82 7.57 7.81 8.21 9.09 �1.89

βSMB*SMB 0.36 �0.17 �0.25 �0.34 �0.07 �0.11 �0.38 �0.41 �0.11 0.43 �0.07

βHML*HML �0.02 �0.25 0.39 0.16 0.27 0.24 0.29 0.60 0.26 0.16 �0.18

βRMW*RMW �0.63 0.52 0.74 0.65 0.32 0.51 0.36 0.36 0.53 0.77 �1.40

βCMA*CMA �1.04 0.39 0.71 0.93 0.77 �0.12 0.01 0.10 0.40 �0.54 �0.50

Table 5
Decile portfolios formed by modularity-beta (equally-weighted) (January 1992–December 2015).

Panel A: Returns and alphas with respect to the 1-,3-,5-factor models (%, per annum)

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
Return 13.46 12.49 11.35 11.24 11.00 10.41 9.78 10.61 11.08 9.20 4.26
Std. Dev. 17.36 14.98 13.98 13.37 13.45 13.36 13.71 14.68 15.67 19.33 9.92
CAPM alpha 3.72 3.57 2.85 2.96 2.70 2.01 1.16 1.54 1.58 �1.82 5.53
(t-statistics) (1.88) (2.22) (1.9) (2.11) (1.89) (1.52) (0.89) (1.12) (1.08) (-0.96) (2.8)
3-Factor alpha 1.61 1.11 0.35 0.63 0.28 �0.26 �1.05 �0.73 �0.62 �3.74 5.34
(t-statistics) (1.24) (1.1) (0.38) (0.72) (0.33) (-0.33) (-1.34) (-0.82) (-0.66) (-2.63) (2.69)
5-Factor alpha 1.19 �0.23 �1.12 �0.77 �1.16 �1.58 �2.12 �1.74 �1.56 �3.93 5.12
(t-statistics) (0.9) (-0.23) (-1.25) (-0.89) (-1.39) (-2.07) (-2.73) (-1.97) (-1.63) (-2.64) (2.48)
Panel B: Exposure to the five-factors

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
βMKT 0.94 0.91 0.88 0.85 0.85 0.86 0.88 0.94 0.98 1.12 �0.19
(t-statistics) (32.05) (42.66) (45) (44.98) (46.72) (51.44) (51.84) (48.71) (46.63) (34.43) (-4.12)
βSMB 0.71 0.55 0.45 0.41 0.43 0.38 0.37 0.38 0.46 0.54 0.17
(t-statistics) (18.63) (19.58) (17.78) (16.85) (18.08) (17.49) (16.61) (14.9) (16.77) (12.77) (2.83)
βHML 0.28 0.34 0.36 0.33 0.32 0.32 0.33 0.35 0.30 0.25 0.03
(t-statistics) (5.51) (9.37) (10.69) (10.06) (10.31) (11.09) (11.39) (10.63) (8.35) (4.41) (0.38)
βRMW 0.13 0.26 0.26 0.24 0.22 0.22 0.19 0.19 0.15 0.02 0.11
(t-statistics) (2.29) (6.45) (7.1) (6.65) (6.28) (6.79) (5.81) (5.16) (3.89) (0.3) (1.26)
βCMA �0.09 �0.00 0.04 0.06 0.12 0.08 0.04 0.02 0.05 0.03 �0.12
(t-statistics) (-1.17) (-0.04) (0.89) (1.38) (2.57) (1.83) (0.91) (0.31) (1.03) (0.42) (-1.06)
Panel C: Return decomposition by the five-factors

Low-βMOD 2 3 4 5 6 7 8 9 High-βMOD 1-10 (Low-High)
α 1.19 �0.23 �1.12 �0.77 �1.16 �1.58 �2.12 �1.74 �1.56 �3.93 5.12
βMKT*MKT 6.82 6.65 6.41 6.17 6.19 6.29 6.44 6.88 7.14 8.18 �1.36

βSMB*SMB 1.75 1.34 1.11 1.02 1.05 0.94 0.91 0.93 1.13 1.33 0.41

βHML*HML 0.90 1.12 1.17 1.06 1.05 1.04 1.09 1.15 0.98 0.81 0.10

βRMW*RMW 0.49 1.01 1.02 0.92 0.84 0.83 0.73 0.73 0.60 0.07 0.42

βCMA*CMA �0.31 �0.01 0.15 0.23 0.42 0.27 0.14 0.05 0.19 0.12 �0.43
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the difference between the decile 1 portfolio (stocks with lowmodularity betas) and the decile 10 portfolio (stocks with high modularity
betas). This ‘‘1–1000 spread portfolio is equivalent to a net zero investment portfolio in which an investor buys the first decile and sells the
last decile by the same amount of wealth. In the second to the fourth row, the levels of alphas with respect to the factor models are
presented. Specifically, Rj is the excess return of decile portfolio j ¼ 1;2; ::;10, and 1� 10. Then, αj from (10) are presented:

Rj
t ¼ αj þ BjFt þ ηj;t (10)

In (10), Ft is a vector of the one-, three-, or five-factors in month t. Bj is the sensitivity vector with respect to the factors. As shown in
the last column of Panel A, the ‘‘1–1000 portfolio has an annualized return of 6.42% (equal weighted case has 4.26%), and the α1�10 is
significantly positive with respect to all of the three types of Fama-French factor model variants. Hence, the annualized alphas with
respect to the variants are in the range of 7.38%–10.42% (the equally weighted case is in the range of 5.12%–5.53%).

We also test the hypothesis that all alphas are jointly equal to zero by adopting the method of Gibbons et al. (1989). For the null
hypothesis of α1 ¼ α2 ¼ ⋯ ¼ α10 ¼ 0, we find that this hypothesis is rejected at the 1% significance level for all CAPM, three-factor,
and five-factor alphas in the cases of both value-weighted and equal-weighted portfolios. Panel B presents Bj in (10) to confirm that the
differences in returns are not captured by the Fama-French factors. The last column in Panel B of Table 4 indicates that the ‘‘1–1000

portfolio is statistically tilted toward the firms that have low market betas and that are less profitable. Thus, the existing factor model
further strengthens the evidence of the return differences from the modularity sensitivity-sorted portfolios. The last column in Panel B of
Table 5 indicates the ‘‘1–1000 portfolio is statistically tilted toward the firms that have low market beta and that are small. However, this
tilt does not breach the statistical significance of return difference.

As an extension to Panel B, Panel C decomposes the returns of the decile portfolios with respect to the exposures for each of the five-
factors. The decomposition is performed by multiplying the estimated betas in Panel B by the historical average of the corresponding
factors. Specifically, by taking the average of both sides in (10) over all months, we have

Rj ¼ αj þ βMKT
j MKT þ βSMB

j SMBþ βHML
j HMLþ βRMW

j RMW þ βCMA
j CMA; (11)

where factor is the historical average of the factor portfolio return. Panel C indicates that some significant exposure of the ‘‘1–1000

portfolio toward the five-factors even strengthens the return difference of 6.42% to the five-factor alpha of 10.47% (or, 4.26%–5.12% in
the equally weighted case).

5. Enhancing the investment opportunity set with the modularity factor

If asset pricing factors effectively summarize the investment opportunity set, factor investors only need to allocate their wealth into
factor-mimicking basis portfolios. This section includes a modularity factor portfolio to the set of the Fama-French factor basis portfolios
and investigates whether the inclusion potentially benefits factor investors by expanding their investment opportunity sets. Since
modularity factor itself is not tradeable portfolio yet, each of following subsections adopts different mimicking strategies to generate a
tradeable modularity factor basis portfolio.
4.5. Modularity basis portfolios: The difference between the extreme decile portfolios

Unlike the other Fama-French factors, the time series of modularity itself is not a tradeable portfolio. The difference between the
extreme decile portfolios presented above is the easily implementable factor portfolio that mimics the modularity factor. We notate this
annually updating modularity factor portfolio as MODs, where the subscript S implies the spread between the two extreme portfolios.
The following ex-post analysis for the 24-year period from January 1992 to December 2015 uses the standard mean-variance tangent
portfolio construction,13 similar to that employed by Paster and Stambaugh (2003). Specifically, the historical monthly returns of MODs

and the five-factors are considered to construct tangent portfolios. The value-weighted and equal-weighted cases are both considered,
notated as MODsðVWÞ and MODsðEWÞ, respectively.

Table 6 presents the ex-post mean-variance efficient portfolios with several combinations of the five-factors and MODs. Investing
only in the MKT factor, equivalent to the one-factor model (i.e., CAPM), would result in a monthly Sharpe ratio of 0.142. In the case that
an investor adds another factor to the MKT factor, adding MODsðVWÞ or MODsðEWÞ would result in a monthly Sharpe ratio of 0.167 or
0.206, generally no worse than adding SMB or HML. Overall, Table 6 suggests that both MODsðVWÞ and MODsðEWÞ are attractive basis
portfolios to be included.

Table 7 presents the cross-correlation matrix for the basis factors. Both MODsðVWÞ and MODsðEWÞ are highly independent of the
other factors, as suggested in Tables 4 and 5. Despite being a net-zero investment portfolio, MODs has a positive annualized return and is
relatively uncorrelated with MKT. This makes MODs an attractive candidate to be added to portfolios that are highly correlated to the
MKT factor, such as market index funds.

Table 8 presents the enhanced performance of a market index portfolio when MODs are added. Adding 10% of the MODsðVWÞ
exposure to the MKT factor would increase the annualized return while sustaining a similar standard deviation. The monthly Sharpe
13 The ex-post optimal portfolio is obtained from w ¼ Σ�1ðr�rf Þ
1tΣ�1ðr�rf Þ, where r is the historical average return vector, Σ is the historical covariance matrix

of the factor portfolios under consideration, and rf is the risk-free rate.
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Table 6
Weights in the ex-post tangency portfolio and the monthly Sharpe ratios (January 1992–December 2015). Effects of adding modularity replicating
portfolio MODs to basis assets can expand investment opportunity set, resulting in better ex-post Sharpe ratios.

Number of MKT SMB HML RMW CMA MODs MODs Sharpe Ratio

Instruments (Value-Weighted) (Equally-Weighted) (monthly)
1 100 0.142
2 73.55 26.45 0.147
2 50.49 49.51 0.187
2 64.62 35.38 0.167
2 42.87 57.13 0.206
3 38.78 18.13 43.1 0.195
4 24.46 22.56 5.34 47.64 0.295
4 30.62 5.38 �2.17 66.17 0.251
4 31.93 13.37 36.96 17.74 0.221
4 29.88 9.72 26.23 34.17 0.240
5 22.11 13.83 �15.55 38.63 40.97 0.362
6 20.23 12.15 �13.48 35.95 36.86 8.27 0.397
6 20.87 10.43 �15.09 32.11 37.94 13.74 0.395

Table 7
Cross-correlation matrix of the five-factors including MODs (January 1992–December 2015). Correlation of modularity replicating portfolios are
negligibly correlated to each of the five-factors.

MKT SML HML RMW CMA MODs(VW) MODs(EW)

MKT 1 0.21 �0.23 �0.44 �0.35 �0.05 �0.21
SML 1 �0.19 �0.50 �0.04 0.04 0.01
HML 1 0.45 0.67 �0.11 0.09
RMW 1 0.21 �0.15 0.13
CMA 1 �0.10 0.01
MODsðVWÞ 1 0.64
MODsðEWÞ 1

Table 8
Performance of the enhanced market index portfolio (Annualized, January 1992–December 2015). Because modularity replicating portfolios
have positive returns and low market exposure, mixing it to market portfolio demonstrates enhancing performance.

Return (%) Std. Dev. (%) Sharpe Ratio

MKT 9.89 14.78 0.493
MKTþ10% MODsðVWÞ 10.35 14.79 0.524
MKTþ10% MODsðEWÞ 10.28 14.60 0.525
MKTþ20% MODsðVWÞ 10.81 14.98 0.548
MKTþ20% MODsðEWÞ 10.66 14.49 0.556
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ratio is enhanced from 0.493 to 0.524. Adding MODsðEWÞ also yields similar results. Fig. 8 displays the scenarios of cumulative wealth
growth for the investment horizon.
4.6. Modularity basis portfolio: The minimum idiosyncratic risk procedure by Lehmann and Modest (2005)

While the spread portfolio, MODs, is a legitimate modularity factor-mimicking portfolio, considering only the extreme decile
portfolios may not fully reflect the effect of the newly tested factor. While the Fama and MacBeth (1973) mimicking portfolio is a classic
alternative, Lehmann and Modest (2005) pointed out that there is no guarantee that the Fama-Macbeth factor-mimicking portfolio will
have sufficiently high correlation to the original factor within finite samples. This subsection adopts the minimum idiosyncratic risk
procedure proposed by Lehmann and Modest (2005) to construct another factor-mimicking portfolio. This procedure mimics a factor by
taking the difference between the market-wide equally weighted portfolio and the portfolio orthogonal to the factor.14

We notate the factor-mimicking portfolio as MODp, where the subscript P implies portfolio. To present sensible numbers, MODp is
14 The orthogonal portfolio worth to the new factor solves the following optimization problem: ðPÞ min w
0
orthworth s:t: w

0
orth1 ¼ 1; w

0
orthβ ¼ 0, where 1

is a vector of ones and β is obtained by the factor linear regression. The solution to this problem is given as worth ¼ 1
N

�
σ2βþβ

2

σ2β
1 � β

2

σ2β
β

	
, where N is the

number of stocks used to construct the portfolio, σβ is the standard deviation of β, and β is the mean of β. The factor mimicking portfolio is therefore

wmimic ¼ 1
N 1� worth ¼ β

Nσ2β
ðβ � 1βÞ.
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Fig. 8. Cumulative wealth growth of the enhancing scenarios by.MODS

Table 9
Weights in the ex-post tangency portfolio and monthly Sharpe ratios (January 1992–December 2015). Effects of adding modularity replicating
portfolio MODp to basis assets can expand investment opportunity set, resulting in better ex-post Sharpe ratios.

Number of MKT SMB HML RMW CMA MODp Sharpe Ratio

Instruments (monthly)
1 100 0.142
2 73.55 26.45 0.147
2 50.49 49.51 0.187
2 57.36 42.64 0.199
3 38.78 18.13 43.1 0.195
4 24.46 22.56 5.34 47.64 0.295
4 30.62 5.38 �2.17 66.17 0.251
4 33.31 16.55 28.17 21.97 0.234
5 22.11 13.83 �15.55 38.63 40.97 0.362
6 21.84 12.15 �17.34 31.84 43.39 8.12 0.387
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scaled to have the same ex-post standard deviation as that of MODs(VW). Table 9–Table 11 and Fig. 9 repeat the same analysis as that
discussed in Section 5.1. The correlation between MODs and MODp is 0.725, and the overall results are similar. MODp is also an
attractive instrument with regard to the mean-variance method (Table 9). The low correlation of MODp with respect to the market
portfolio facilitates its usage as a portfolio overlaying the market index portfolios (Table 10, Table 11, and Fig. 9). We conclude that both
Table 10
Cross-correlation matrix of the five-factors, including MODp (January 1992–December 2015). Correlation of modularity replicating portfolios are
negligibly correlated to each of the five-factors.

MKT SML HML RMW CMA MODp

MKT 1.00 0.21 �0.23 �0.44 �0.35 �0.23
SML 1.00 �0.19 �0.50 �0.04 �0.15
HML 1.00 0.45 0.67 0.18
RMW 1.00 0.21 0.35
CMA 1.00 �0.04
MODp 1.00

Table 11
Performance of the enhanced market index portfolio (Annualized, January 1992–December 2015).

Return (%) Std. Dev. (%) Sharpe Ratio

MKT 9.89 14.78 0.493
MKTþ10% MODp 10.47 14.49 0.543
MKTþ20% MODp 11.05 14.39 0.587
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Fig 9. Cumulative return on the enhancement scenarios with.MODp

M.K. Sim et al. International Review of Economics and Finance 71 (2021) 299–315
mimicking methods demonstrate similarly enhanced performance for factor-based investments. Thus, the inclusion of the modularity
factor expands the investment opportunity set.

5. Concluding remarks

We propose a modularity measure that quantifies the strength of a cluster structure in financial assets. Upon a given cluster structure,
the modularity is the difference between the INSC (inner-sector connectedness) and the ITSC (inter-sector connectedness). This measure
is built on a correlation matrix, but taking the difference between the two quantities allows it to be somewhat independent with respect
to the original correlation matrix (e.g., average market-wide correlations by Pollet and Wilson (2010)).

On a market-wide level, the modularity contrasts in a few bullish and bearish subperiods, demonstrating that a bearish market is
characterized by lowmodularity, thereby losing the potential benefit of portfolio diversification. The empirical results usingmodularity-
beta sorted portfolios demonstrate that the modularity measure is indeed a valid risk factor driving asset returns. Stocks with low
sensitivity to the modularity factor have considerably higher expected returns, even after accounting for exposure to the Fama-French
three- or five-factors. Further, the difference between extreme decile portfolios or the mimicking method of Lehmann and Modest
(2005) creates modularity factor portfolios that can be used to enlarge the investment opportunity set for passive investors.

Grouping stocks into clusters has been a popular subject in empirical studies, and studies find that the grouping behavior of stocks
varies by country. For example, the USmarket is known to be clustered by industry, but the Japanesemarket is less clustered by industry.
A few developing countries have stocks clustered by conglomerative capitals as well. The presented framework is immunized to such
country specific characteristics, because it approaches a clustered structure with the co-movement behavior of stock returns. Future
studies could apply this framework to other countries than the US.

A future extension of this study could include agglomerating the current construction of modularity to statistical techniques such as
principal component analysis or hidden graphical models. The latent structure of the financial market may be further refined into an
alternative form of the modularity factor. Although this study uses daily stock market data in the analysis, analyzing the time-varying
cluster property using our framework could be applied to many other types of financial data, including high-frequency trading data,
fixed income markets data, and foreign exchange market data.
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