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a b s t r a c t 

A mass-conserving finite element lattice Boltzmann equation (FE-LBE) method for the simulation of a 

bubble rising in viscous fluid at high Reynolds number with large material property contrast is presented 

in this work. The presented model consists of the conservative phase-field equation for interface captur- 

ing and the pressure-velocity formulation of lattice Boltzmann equation (LBE) for recovering the hydrody- 

namic properties. In this computational framework, LBE is regarded as a special space time discretization 

of the discrete Boltzmann equation in the characteristic direction and the streaming step is carried out 

by solving a linear advection equation in an Eulerian framework. We conduct extensive investigations for 

numerical accuracy and stability through performing multiple benchmark simulations for single bubble 

rising in a viscous fluid in different flow regimes. The complex dynamics of a high Reynolds number bub- 

ble rising with path and shape oscillations are studied and compared to available experimental results. 

The simulated evolution of the bubble mean shape with Archimedes number, path and shape oscillations 

in different oscillation regimes, and wake dynamics of the bubble show a good agreement with available 

experimental data. The current model offers a remarkable improvement in mass conservation compared 

to the Cahn-Hilliard based FE-LBE model. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

When two fluids are in contact, the interface formed between 

hem often plays a central role in the dynamics of the involved 

hysical processes. In general, the mathematical treatment of such 

 system is complicated by the fact that the position of the in- 

erface is not known a priori. Rather it evolves according to the 

ow within both fluid components. Methods for solving moving- 

nterface problems fall into two broad categories: interface track- 

ng and interface capturing [1,2] . Interface tracking approach uses 

 moving mesh with grid points residing on the interface. On 

he other hand, interface capturing approach determines the po- 

ition of the interface by using a scalar function, whose evolution 

s typically represented by an advection equation on a fixed grid. 

heoretically, both treat the interface as a zero-thickness surface, 

hough an essential ingredient in the fixed-grid methods is a nu- 

erical regularization that spreads the interfacial force over a vol- 

me. In recent years, the phase-field model has gained popularity 

n simulating two-phase flows of complex fluids. This model differs 
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rom other fixed-grid methods in that the interface is diffuse in a 

hysical rather than numerical sense [3–5] . The diffuse interface is 

ntroduced through an energetic variational procedure that results 

n a thermodynamic consistent coupling system. The interfacial re- 

ion is represented by continuous variations of a phase-field vari- 

ble in a way consistent with microscopic theories of the interface 

6] . The interfacial position and thickness are determined by the 

hase-field variable whose evolution is governed by a mixing en- 

rgy according to either Allen-Cahn [7] or Cahn-Hilliard [8] types 

f dynamics. This way, the structure of the interface is rooted in 

olecular forces; the tendencies for mixing and demixing are bal- 

nced through the nonlocal mixing energy. This distinguishes the 

hase-field method from other fixed-grid methods such as level set 

nd volume-of-fluid, where the interface is sharp conceptually but 

egularized numerically by spreading the interfacial force over a 

olume. The significance of this physical root is essential for prob- 

ems that involve topological transitions, i.e. bearkup and coales- 

ence, contact line dynamics, and complex rheology. 

The lattice Boltzmann method (LBM) has been demonstrated to 

e an effective com putational tool for simulating multi-phase flows 

nd interfacial flow phenomena. The conventional lattice Boltz- 

ann equation (LBE) method compromises collison and streaming 

teps. The streaming of the particle distribution function is given 

https://doi.org/10.1016/j.compfluid.2021.104883
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104883&domain=pdf
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s the exact solution of linear advection equation so that it of- 

ers exact numerical solutions. Severe limitations arise, however, 

rom the use of uniform cartesian grids and its inherent instabil- 

ty at high Reynolds number (Re). These two aspects are closely 

elated to each other in that LBE is a discretized form of the dis- 

rete Boltzmann equation (DBE) along characteristics, and thus the 

ime and space discretizations are strongly coupled. Since He et al. 

9] and Abe [10] showed that the discretization of physical space 

oes not necessarily need to couple with the discretization of mo- 

entum space, several effort s have been devoted to address the 

reatment of curved or irregular boundaries and the control of 

esh resolution at desirable regions, and significant progress has 

een achieved in recent years to overcome the limitations of LBM. 

arious numerical methods have been applied directly to the dis- 

rete Boltzmann equation (DBE) using finite difference (FD) [11–

6] , finite volume (FV) [17–19] , finite element (FE) [20–23] , and 

pectral-element discontinuous Galerkin (SEDG) methods [24,25] . 

he lattice Boltzmann method with Galerkin finite element dis- 

retization (FE-LBE) proposed by Lee and Lin [20,21] to simulate 

ncompressible flows on unstructured mesh has been successfully 

pplied to variety of flow phenomena [20–22] . This model provides 

eometrical flexibility and enables the use of an unstructured mesh 

o increase numerical accuracy while reducing computational cost. 

Most of the existing multi-phase LBE models [26–28] are based 

n the Cahn-Hilliard (CH) theory [6,8] . Although Cahn-Hilliard dy- 

amics conserve the mass over the entire domain, the enclosed 

rea obtained by its interface is not preserved. It has been shown 

hat CH equation causes small enclosed mass such as drops or 

ubbles to disappear once their radius is below a critical value 

29,30] . Another downside of the Cahn-Hilliard equation is the cal- 

ulation of the fourth-order spatial derivatives term which causes 

umerical complications. On the other hand, the Allen-Cahn equa- 

ion [7] only requires second-order derivatives and is easier to han- 

le numerically, but does not automatically ensure conservation of 

ass. Sun and Beckermann [31] proposed a conservative phase- 

eld equation based on the Allan-Cahn equation that has been re- 

ormulated in a conservative from by Chiu and Lin [32] . The con- 

ervative phase-field equation conserves mass and requires only 

econd-order derivatives. A derivative-free LBE formulation of the 

onservative phase-field equation is presented by Geier et al. [33] . 

In this work, we will combine the conservative phase-field 

quation for interface capturing and the pressure-velocity formu- 

ation of LBE similarly to [27,34] to propose a mass conserving LB 

odel for the simulation of two-phase flow at higher Reynolds 

umbers with large material property contrast. As a diffuse inter- 

ace method, phase interface of FE-LBE method is spread over sev- 

ral elements, and interface tension is transformed into volumetric 

orce, which is governed by thermodynamic equilibrium of the free 

nergy. To assess the accuracy and stability of the proposed model, 

xtensive numerical investigations are carried out to study rising 

ubble problems. 

. Numerical methods 

.1. Conservative phase field equation 

The conservative phase field equation for tracking the interface 

n the incompressible two-phase flow is given by [32] 

∂φ

∂t 
+ u j 

∂φ

∂x j 
= 

∂ 

∂x j 

(
M(φ) 

∂φ

∂x j 

)
, (1) 

here φ is the phase-field variable that indicates each phase, u j is 

he macroscopic velocity, M(φ) = ˜ M 

(
1 − 4 φ(1 −φ) 

ξ
1 

|∇φ| 
)

is the mo- 

ility, and ξ is the interface thickness. ˜ M is the tunable mobility 
2 
arameter that determines how fast the interface reaches equilib- 

ium profile and it’s value is chosen based on numerical accuracy 

nd stability. The phase indicator takes on values of φl = 0 and 

h = 1 in the bulk of the light and heavy fluids, respectively. At 

quilibrium, the phase field variable along the direction normal to 

he interface assumes a hyperbolic tangent profile 

= 

1 

2 
+ 

1 

2 
tanh 

(
2 z 

ξ

)
, (2) 

here z is the spatial variable normal to the interface located at 

 = 0 . In this case 4 φ(1 − φ) /ξ = ∂ φ/∂ n = |∇φ| with n being the

nit interface normal vector, holds. 

We apply the explicit Taylor-Galerkin finite element method to 

olve Eq. (1) . The Taylor-Galerkin approximation of Eq. (1) yields 

n +1 = φn − δt 

[
u n j 

∂φn 

∂x j 
− ∂ 

∂x j 

(
M(φn ) 

∂φn 

∂x j 

)]

+ 

δt 2 

2 
u n i 

∂ 

∂x i 

(
u n j 

∂φn 

∂x j 

)
, (3) 

here δt is the time step and the superscripts (·) n +1 and (·) n de- 
ote (t) and (t − δt) , respectively. The domain � is discretized 

nto an appropriate collection of finite elements. The Galerkin 

pproximation is then used to find an approximate solution of 

he following form in a finite dimensional subspace H 
h of the 

obolev space on the spatial domain �, φ = N 
T ̄φ, where N 

T = 

 
1 , N 

2 , . . . ., N 
n e is a (1 × n e ) vector of interpolation functions of the 

lement �e , the superscript (·) T denotes the transpose operation, 
nd n e is the number of nodal points in an element. φ̄ is a (n e × 1)

ector of nodal phase-field variable. The weak form of Eq. (3) is 

erived by multiplying it with the weight function and integrating 

ver the spatial domain of the problem. We then perform integra- 

ion by parts on the terms introduced by Galerkin procedure and 

pply divergence theorem. The weak form of Eq. (3) is ∫ 
�e 

N 

(
φn +1 − φn 

)
d�

= −δt 

[∫ 
�e 

N u n j 
∂φn 

∂x j 
d� + 

∫ 
�e 

∂N 

∂x j 

(
M(φn ) 

∂φn 

∂x j 

)
d�

]

− δt 2 

2 

[∫ 
�e 

∂N 

∂x i 
u n i u 

n 
j 

∂φn 

∂x j 
d�

]
, (4) 

here the surface integrals due to integration by parts are as- 

umed to be zero. The mass matrix in Eq. (4) is symmetric positive 

efinite and can be solved by the Conjugate Gradient method us- 

ng the solution from the previous time step as an initial guess. 

he density and phase-field variable are related linearly by ρ = 

h φ + ρl (1 − φ) , where ρh and ρl are the bulk densities of the 

eavy and light fluids, respectively. The time step is restricted by 

he Courant-Friedrichs-Lewy condition CF L ≤ 1 / 
√ 

3 [35,36] , where 

FL = | e α| δt/ dx , e α is the microscopic particle velocity. We set 

F L = 0 . 2 or 0.3 in our simulations which results in a sufficiently

mall time step that guarantees accuracy and stability. 

.2. Velocity-pressure latticeBoltzmann equation 

The discrete Boltzmann equation for the velocity-pressure for- 

ulation can be written as 

∂ f α

∂t 
+ e αi 

∂ f α

∂x i 
= − 1 

λ

(
f α − f eq α

)
+ F α, (5) 

here f α is the particle distribution function for pressure and ve- 

ocity along α direction, e αi is the microscopic particle velocity, and 

is the relaxation time, and the equilibrium distribution function 
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f eq α = t α

[
p̄ + e αi u i + 

( e αi u i ) 
2 

2 c 2 s 
− u i u i 

2 

]
, (6) 

here t α is a weighting factor, c s is the lattice speed of sound, p̄ =
p/ρ with p being the dynamic pressure. F α is a collection of forcing 

erms 

 α = −
α( e αi − u i ) 

(
1 

ρ

∂ p 

∂x i 

)
+ 
α( 0 ) ( e αi − u i ) 

(
∂ p 

∂x i 

)

+ 
α( e αi − u i ) 

[
μ

ρ
∇φ + 

η

ρ2 

(
∂u i 
∂x j 

+ 

∂u j 
∂x i 

)
∂ρ

∂x j 
+ 

1 

ρ
G i 

]
, 

(7) 

n which 

α(u i ) = t α

[
1 + 

e αi u i 

c 2 s 
+ 

( e αi u i ) 
2 

2 c 4 s 
− u i u i 

2 c 2 s 

]
. (8) 

In Eq. (7), μ = 4 β(φ − φh )(φ − φl )(φ − 1 
2 ) − κ∇ 

2 φ is the 

hemical potential for binary fluids. The coefficients β and κ are 

elated to the surface tension σ and interface thickness ξ by β = 

2 σ/ξ and κ = 3 σξ/ 2 , η is the dynamic viscosity that is deter- 

ined from the relaxation time by η = c 2 s ρλδt, and G i is the buoy-

nt force acting on the bubble. 

The recovered pressure evolution and velocity equations are 

∂ p̄ 

∂t 
+ u i 

∂ p̄ 

∂x i 
+ c 2 s 

∂u i 
∂x i 

= 0 , (9) 

∂u i 
∂t 

+ 

∂u i u j 
∂x j 

= − 1 

ρ

∂ p 

∂x i 
+ 

μ

ρ
∇φ

+ 

1 

ρ

∂ 

∂x j 

[
η

(
∂u i 
∂x j 

+ 

∂u j 
∂x i 

)]
+ 

1 

ρ
G i . (10) 

The above system of equations are the nearly incompressible 

avier-Stokes equations with the fluid speed of sound c s in the 

ulk phases and the interfacial region. 

Eq. (5) is solved in two sequential steps at a nodal point (x ) 

21] : 

Collision step 

f α(x , t − δt) := f α(x , t − δt) − 1 

τ + 0 . 5 

(
f α − f eq α

)| (x ,t −δt ) , (11)

Streaming step with forcing term 

f n +1 
α = f n α − δt 

(
e αi 

∂ f n α

∂x i 
− F n α

)
+ 

δt 2 

2 
e α j 

∂ 

∂x j 

(
e αi 

∂ f n α

∂x i 
− F n α

)
, (12) 

here τ = λ/δt is the nondimensional relaxation time. When tak- 

ng moments, the distribution functions recover the macroscopic 

ariables ∑ 

α=0 

f α = p̄ , 

∑ 

α=0 

e αi f α = u i c 
2 
s , (13) 

We now apply the standard Galerkin finite element method to 

he streaming step. The domain � is discretized into an appro- 

riate collection of finite elements. The Galerkin approximation is 

hen used to find an approximate solution of the following form 

n a finite dimensional subspace H 
h of the Sobolev space on the 

patial domain �: 

f α = N 
T f α, (14) 

here N 
T = { N 

1 , N 
2 , . . . , N 

n e } is a (1 × n e ) vector of interpolation

unctions of the element �e , the superscript (·) T denotes the 

ranspose operation, and n e is the number of nodal points in an 
3 
lement. f α is a (n e × 1) vector of redefined nodal particle distri- 

ution functions. The other variables are expressed in the identical 

anner. 

The weak form of Eq. (12) is ∫ 
�e 

N 

(
f n +1 
α − f n α

)
d�

= −δt 

[∫ 
�e 

N e αi 

∂ f n α

∂x i 
d� −

∫ 
�e 

N F n α d�

]

− δt 2 

2 

[∫ 
�e 

∂N 

∂x j 
e α j e αi 

∂ f n α

∂x i 
d� −

∫ 
�e 

∂N 

∂x j 
e α j F 

n 
α d�

]
(15) 

s before, the surface integrals due to integration by parts are as- 

umed to be zero. The dimensionless relaxation time is taken as 

inear functions of the phase-field variable τ (φ) = φτh + (1 − φ) τl . 

. Numerical validation 

In order to assess the presented mass-conserving FE-LBE model 

everal benchmark studies with material property contrast are con- 

idered. A single bubble rising in different flow regimes is first 

imulated. Next, the mass conservation property of the proposed 

E-LBE model is verified and a convergence study is conducted. 

hen, the dynamics of a high Reynolds number two dimensional 

ubble are investigated using the present model. Unless otherwise 

tated, we utilize the D2Q9 lattice structure [37] for the two di- 

ensional (2D) problems presented in this section. 

.1. Single bubble rising in different shape regimes 

A bubble rising and deforming under the influence of gravita- 

ional force is one of the very fundamental examples of multiphase 

ows.The understanding of the bubble rising physics is essential 

or the design and operation of industrial applications such as gas- 

iquid column reactors. The dynamic behavior of a rising bubble 

as been a subject of both experimental and numerical studies 

or many years. Experimental studies and correlations were re- 

iewed by Clift et al. [38] . Rising of a bubble in a viscous fluid un-

er the influence of gravitational forces can be generally grouped 

n three different regimes: Spherical, ellipsoidal, and spherical cap 

38] . These regimes are achieved, depending on the values of Bond 

umber (Bo) and Morton number (Mo) defined as: 

o = 

gρh d 
2 

σ
, (16) 

o = 

gη4 
h 

σ 3 ρh 

, (17) 

here g is the gravitational acceleration in the vertical direction, 

h is liquid density, d is the initial bubble diameter, σ is the sur- 

ace tension, ηh is liquid viscosity. Bo is the ratio of the gravita- 

ional forces and the surface tension. Mo provides a description of 

he properties of the surrounding fluid, mainly focusing on viscos- 

ty and surface tension. Based on experimental data on the motion 

f air bubbles in liquids, Grace et al. [39] constructed a diagram 

 Fig. 2 in [39] ) that describes how the bubble behavior depends 

n Bo, Mo, and terminal Reynolds number defined as Re = 

ρh U t d 
ηh 

, 

here U t is the terminal velocity of the bubble. Terminal veloc- 

ty is defined as the steady velocity that the bubble reaches when 

here is a balance between buoyancy and drag forces. A general 

lassification of the bubble is usually done depending on the final 

hape or by the primary forces acting on the system. However, the 

ransition areas from regime to regime are still not well defined. 

In this study, two dimensional (2D) numerical simulations were 

erformed using the mass-conserving FE-LBE model to simulate 
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Fig. 1. Shape and position evolution for cases A, B, C, and D from left to right, respectively. 
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Fig. 2. Variation of the mass of enclosed area by the bubble interface versus time. 

The red line shows the results of the Cahn Hilliard based model and the green line 

with square symbols shows the results of the conservative phase field based model. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

t

d

b

n

T

ρ  

m

e

our cases corresponding to steady regimes in the shape regime 

ap [39] with different final bubble shape. The parameters and 

esults, in terms of Bo, Mo, terminal Re, and final bubble shapes 

re listed in Table 1 . The column under Re G lists terminal Reynolds 

umbers extracted from the Grace diagram. The Simulations were 

erformed in a 2D computational domain of the size 9 d × 18 d and 

esolution 450 × 900 . Periodic boundary condition is imposed in 

he vertical direction and the no slip boundary condition is applied 

t the left and right walls. The viscosity and density ratios are, 

h /ηl = 100 , and ρh /ρl = 100 , respectively. The nondimensional 

easure for the interface thickness is the Cahn number, defined 

y Cn = ξ/d and has a value of 0.05 in all simulations presented in 

his section. 

For the parameters considered in this section, the bubble as- 

ends in a rectilinear path and the shape development of the two 

imensional bubbles is expected to follow well the experimental 

esults in the absence of three dimensional effects such as wob- 

ly motion of the bubble. The similarity between the 2D simula- 

ions and the experimental results as well as three dimensional 

imulations has been established by Chen et al. [40] and observed 

n previous numerical simulations [41,42] . Fig. 1 shows the shape 

nd position evolution of the bubbles in different regimes. The ob- 

erved bubble shapes are in agreement with the shape regime di- 

gram presented in Fig. 2 in Ref. [39] and the agreement of com- 

uted Re and Re G is satisfactory. 

.2. Mass conservation 

One of the key features of the proposed conservative phase- 

eld FE-LBE is that it preserves the area enclosed by an inter- 

ace better than Cahn-Hilliard based models. The mass enclosed 

y the interface of a rising bubble is checked for a bubble rising 

n the spherical regime, as in case A (see Table 1 ) presented in

he pervious section, to verify the mass conservation property of 
Table 1 

Parameters of the simulated cases for single bubble rising in different 

shape regimes. Re is the computed terminal Reynolds number, and Re G 
is experimental data extracted from Fig. 2 in [39] . 

Case Bo Mo Re Re G Bubble shape 

A 10 100 0.21 0.17 Spherical 

B 10 0.01 9.9 11 Oblate 

C 100 1000 1.34 1.6 Ellipsoidal cap, dimpled 

D 100 1 18 19 Ellipsoidal cap, skirted 

e

s  

t

i

p

3

L

t

4 
he model. The simulation was performed in a (2D) computational 

omain of the size 10 d × 10 d and resolution 250 × 250 . Periodic 

oundary condition is imposed in the vertical direction and the 

o slip boundary condition is applied at the left and right walls. 

he viscosity and density ratios and Cahn number are, ηh /ηl = 100 , 

h /ρl = 100 , and Cn = 0 . 1 , respectively. The results of the current

odel are compared with the FE-LBE model based on Cahn Hilliard 

quation [22] . The enclosed mass M is normalized by the initial 

nclosed mass M 0 of the bubble, and its evolution is plotted ver- 

us dimensionless time T = t 
√ 

g 
d 
in Fig. 2 . As can be seen in Fig. 2 ,

he mass enclosed by the bubble’s interface is gradually decreasing 

n the Cahn Hilliard based FE-LBE model, while the current model 

reserves the enclosed mass ( Fig. 2 ). 

.3. Convergence study 

To assess the convergence of the proposed mass-conserving FE- 

BE model, we consider the rise of a two dimensional bubble due 

o buoyancy force according to the well established benchmark 
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Fig. 3. (a) Initial configuration for the rising bubble problem [43] . (b) The evolution 

of the bubble shape at equally spaced time intervals. 
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Fig. 4. Bubble interface shape at T = 3 for test case 1 on different grid levels. 
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t  
roposed by Hysing et al. [43] . Initially, a circular bubble with an 

nitial diameter d = L 0 / 2 is placed at (L 0 / 2 , L 0 / 2) in a rectangu-

ar domain of length 2 L 0 and width L 0 as illustrated in Fig. 3 (a),

here L 0 = 1 . The no slip boundary condition is applied at the top

nd bottom walls, while periodic boundary conditions are used at 

he lateral boundaries, which is identical, in this particular case, 

o the slip boundary condition used in [43] . The bubble is allowed 

o rise due to the buoyancy force G = −g (ρ − ρh ) . The characteris- 

ic dimensionless numbers are Bond and Archimedes numbers. The 

rchimedes number is defined as: 

r = 

ρh 

√ 

g d 3 

μh 

. (18) 

The parameters for the studied test cases are taken from Hysing 

t al. [43] . The simulations were started with a reduced Ar, which 

as ramped up successively to the desired Ar to avoid initial veloc- 

ty oscillations due to the weak compressibility effects inherited in 

he (nearly) incompressible LBM. In order to have consistent mea- 

urements with [43] , the following equation is used to calculate 

he macroscopic time, T = t 
√ 

g 
g 0 

, where g 0 = 0 . 98 is the macro-

copic gravity used in [43] . The mean rise velocity of the bubble 

nd its centroid are calculated as: 

 c = 

∫ 
�l 

u dx ∫ 
�l 

1 dx 
(19) 

 c = 

∫ 
�l 

x dx ∫ 
�l 

1 dx 
, (20) 

here �l denotes the area inside the bubble. The circularity de- 

ned as the ratio of the of perimeter of area-equivalent circle and 

erimeter of the bubble P is given as: 

 = 

πd 

P 

 = 

∫ 
�

| ∇φ| d� (21) 

where � is the area of the computational domain. 

.3.1. Test case 1 

For the first test case, we consider the following parame- 

ers: ρ /ρ = μ /μ = 10 , Bo = 10 , and Ar = 35 as in [43] . With
h l h l 

5 
he given parameters, surface tension effects dominate the bub- 

le shape and the bubble should belong to the ellipsoidal regime 

39] . The interfacial thickness ξ is chosen proportional to grid 

ize 1 /h, which keeps the number of elements along the inter- 

ace fixed. Here, we have around three elements along the inter- 

ace in all simulations. Fig. 3 (b) shows the evolution of the bub- 

le interface over time for a grid spacing of h = 1 / 160 . The effect

f the grid resolution on the bubble’s shape at T = 3 of our sim-

lation is shown in Fig. 4 for three different grid sizes of 1 /h =
0 , 160 , 320 , along with the finite element solution of the Feat-

low software package in [43] with a grid spacing of 1 /h = 320 .

he FeatFlow results were slightly shifted for comparison purposes. 

e notice that the final shape resulting from each grid is al- 

ost overlapping each other and agrees well with the FeatFlow 

olution. 

Fig. 5 (a)–(c) show the convergence trend of the solution for 

he centroid position, the mean rising velocity of the bubble, and 

he circularity up to T = 3 . 27 along with the finite element so-

utions of FeatFlow with a grid spacing of 1 /h = 320 . Since our

imulations were started with a reduced Ar, which was ramped 

p to the desired Ar, the FeatFlow solutions have been slightly 

hifted by T = 0 . 27 for comparison purposes. As can be seen 

n Fig. 5 (a)–(c), the centroid, mean rise velocity, and the circu- 

arity of the bubble converge nicely and show a good agree- 

ent with FeatFlow solution. Fig. 6 presents the convergence be- 

aviour of the L 1 , L 2 and L ∞ norm of errors in the rising ve-

ocity with reference to the solution from the computation on 

he finest grid spacing of 1 /h = 640 . The error norms are defined
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Fig. 5. Effect of grid resolution on the temporal evolution of the center of mass of the bubble (a), the bubble rising velocity (b), and circularity (c) on different grid levels. 
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Table 2 

Relative error norms and convergence orders for rise velocity in test case 1. 

1 /h ‖ e 1 ‖ ROC 1 ‖ e 2 ‖ ROC 2 ‖ e ∞ ‖ ROC ∞ 

80 2.08E-02 2.56E-02 6.12E-02 

160 8.90E-03 1.22 1.04E-02 1.31 2.06E-02 1.57 

320 2.86E-03 1.64 3.15E-03 1.72 6.92E-03 1.57 
s follows: 

L 1 error : ‖ e 1 ‖ = 

∑ NT S 
t=1 | q t,re f − q t | ∑ NT S 

t=1 | q t,re f | 

L 2 error : ‖ e 2 ‖ = 

(∑ NT S 
t=1 | q t,re f − q t | 2 ∑ NT S 

t=1 | q t,re f | 2 
)1 / 2 

 ∞ error : ‖ e ∞ ‖ = 

max t | q t,re f − q t | 
max t | q t,re f | , 

here NT S is the number of sample points and q t is the tempo- 

al evolution of the quantity q . The errors are calculated for grid 

pacing of 1 /h = 80 , 160 , 320 . The convergence rates (ROC) for the

uantities can be computed as 

OC = 

log 10 (‖ e (l−1) ‖ / ‖ e l ‖ ) 

log 10 (h (l−1) /h l ) 
, (22) 

here l is the grid refinement level. The relative error norms for 

he rise velocity are presented in Table 2 together with the esti- 

ated ROC. It is evident that the rising velocity converges with a 

ore than linear convergence order. 
6 
.3.2. Test case 2 

The second test case is numerically more challenging as the 

ensity and viscosity ratios are increased to ρh /ρl = 1 , 0 0 0 and

h /μl = 100 , respectively, with Bo = 125 , and Ar = 35 . With the

iven parameters, inertial effects take over the surface tension 

orces and the bubble exhibits pronounced deformation. This 

ubble belongs somewhere between the skirted and dimpled 

llipsoidal-cap regimes [39] . Fig. 7 shows snapshots of the time 

volution of the bubble computed on a grid spacing of h = 1 / 160 .

he decrease in surface tension compared to inertial forces causes 

his bubble to deform substantially and develops thin filaments. 

or this test case agreement between the numerical approaches 
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¥

Fig. 6. Convergence behaviour for rising velocity in test case 1. 
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tudied in [43] could not be achieved and only qualitative compar- 

son with the results reported in [43] is considered here. Two of 

he three software packages utilized in [43] namely FeatFlow and 

reeLIFE predicted filament break off. Alnad and Voigt [44] per- 

ormed benchmark computations of three different diffuse in- 

erface models using the same parameters studied in [43] . For 

est case 2, none of the diffuse interface models considered in 

44] yielded break off of the filament. It unclear if break off really 

hould occur for this setting. The evolution of the bubble shape 

omputed using the mass conserving FE-LBE model did not pre- 

ict filament break up in agreement with [44] . The simulated bub- 

le shape evolution shows a good qualitative agreement with the 

eatFlow solution up to T = 2 . 59 before filament breakup [43] . 

. Dynamics of a high Reynolds number bubble rising in 

iscous fluid 

.1. Background 

Predicting the motion of bubbles in dispersed gas-liquid flows 

s a key problem in fluid mechanics that has a bearing on a wide

ange of applications such as bubble column, cooling systems in 

uclear power plants and the transportation of the oil and natu- 

al gas in petroleum industry. In such applications, bubbles can in- 

uce a turbulent flow which requires modeling in predictive sim- 

lations. It is well established that a large bubble does not usually 

ise in a straight line but that its velocity and shape may oscillate 

ue to the interaction between the bubble and its unsteady wake. 

he ascent characteristic of gas bubbles in liquid are strongly af- 

ected by their wakes. Due to the difficulty of measuring or simu- 

ating an oscillating bubble, most studies have focused on the av- 

rage characteristics such as mean velocity and shape [45–47] . In 

ecent years, the development of advanced measuring and simu- 

ation tools has enabled important progress in the investigation of 

he unsteady motion of bubbles rising in unbounded domain [48–

1] . However, the detailed physical effects that determine the dy- 

amics are not yet fully understood. The description and interpre- 

ation of bubble rise and deformation is still limited to a few flow 

egimes only, due to the difficulties in experiments, since it is not 

asy to measure, without any interference, the flow pattern and 

ressure distribution within a bubble and its surrounding liquid 
7 
hile it is rising and deforming. The study of the dynamics of bub- 

les in Hele-Shaw cells has been proposed as an effort to simplify 

he study of ascending bubbles by restricting the motion to one 

orizontal direction [52–59] . In this way, the available degrees of 

reedom are reduced since the description can be made in terms 

f the position and deformation in two spatial coordinates. For a 

ubble of apparent diameter d (as seen from the perpendicular di- 

ection of the plates) rising in a vertical Hele-Shaw cell of width 

 filled with a liquid at rest ( Fig. 8 ), the non-dimensional num- 

ers that control the dynamics are the confinement ratio h/d, the 

rchimedes number Ar = 

√ 

gd d/νh , Bond number Bo = ρh gd 
2 /σ, 

nd the Reynolds number based on the vertical component of the 

ubble velocity Re = U t d/νh , where νh is the kinematic viscosity of 

he liquid. Based on the ratio of the magnitude of the inertial stress 

orresponding to the motion within the cell to that of the stress in 

he direction normal to the plates given as Re (h/d) 2 , the studies of 

otion of bubbles in Hele-Shaw cell ( h/d � 1 ) can be divided into 

wo regimes: 

• The classic Hele-Shaw regime: This regime corresponds to 

Re (h/d) 2 � 1 and Re 	 1 . 
• The inertial regime: In this regime Re (h/d) 2 	 1 and Re 	 1 , 

and the in-plane flow is equivalent to high Re two dimensional 

flow. 

Kelley and Wu [52] conducted experiments to study the insta- 

ilities of rising air bubbles using a tilted Hele-Shaw cell with a 

ap of 1.6 mm . They observed that the wake formed in the sur- 

ounding fluid due to the motion of the bubbles was similar to 

hat observed behind solid cylinders and the onset of vortex shed- 

ing was found to be described as a supercritical bifurcation [52] . 

eyond this transition, the bubbles followed a zigzag path due to 

he nonsymmetric pressure field at the surface generated by the 

ortex shedding. Roig et al. [54] conducted experiments using air 

ubbles in water moving in a cell with a gap between the plates 

f 1 mm and found a linear relationship between the Archimedes 

nd terminal Reynolds numbers, namely Re = 0 . 5 Ar. 

Considering the difficulties in experimental investigations, nu- 

erical simulations provide an alternative means to investigate 

nd attain a better insight into the bubble rising behavior, the de- 

elopment of bubble-shape evolution, and the induced flow in the 

urrounding liquid. Numerical studies of rising gas bubbles using 

arious methods for the description of the phase interface have 

een performed [60] . Most of the numerical investigations of ris- 

ng bubbles aim at model validation, for this reason in most cases 

he results are restricted to bubbles rising in a straight path at low 

o moderate Re [61–63] . Few numerical investigations of unsteady 

ubble wakes have been performed. In a recent work, Antepara 

t al. [64] conducted numerical simulations to study the dynam- 

cs of bubbles rising in the wobbling regime at moderate to high 

eynolds numbers. Mougin and Magnaudet [50] performed numer- 

cal simulations to investigate the dynamics of unsteady bubble 

akes with prescribed fixed bubble shapes. As in experiments, a 

air of counter-rotating vortices were found in the wake of spi- 

alling bubbles. For a bubble rising on a zigzag path the computed 

ertical vorticity indicates two vortices in the wake, which can be 

nterpreted as the legs of a hairpin vortex. Gaudlitz et al. [65] stud- 

ed the shape and path oscillation of a freely rising bubble in an 

nconfined domain at moderate Re and observed hairpin vortices 

n the wake of an initially zigzagging bubble. It should be noted 

hat the vortex distribution around a bubble in a Hele-Shaw cell 

ompletely differs from the wake for an unconfined sphere or bub- 

le formed by an elongated horseshoe vortex [66] . Wang et al. 

57] studied numerically and experimentally the effect of confine- 

ent ratio on the bubble dynamics in a vertical Hele-Shaw cell. 

hey found that the bubble shape and terminal velocity were in- 

uenced by the confinement ratio. Piedra et al. [56] investigated 
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Fig. 7. Time evolution of the bubble shape in test case 2 for 1 /h = 160 at T = 0 . 79 , T = 1 . 15 , T = 1 . 51 , T = 1 . 87 , T = 2 . 23 , T = 2 . 59 , T = 2 . 95 , and T = 3 . 31 , from top to 

bottom and left to right. 

Fig. 8. A vertical Hele-Shaw cell for bubble dynamics studies. Adopted from Ref. 

[54] . 
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8 
he dynamics of two-dimensional bubbles ascending under the in- 

uence of buoyant forces numerically and experimentally. They ob- 

erved that at high Reynolds numbers the two dimensional bub- 

les follow an approximately periodic zigzag trajectory and an un- 

table wake with properties similar to the Von Karman vortex 

treet is formed. 

.2. Computational setup 

In this study, we utilize the mass-conserving FE-LBE model to 

nvestigate the characteristics of the path and shape oscillations of 

wo-dimensional bubbles rising at moderate and high Re in differ- 

nt regimes for a wide range of Archimedes number: 100 ≤ Ar ≤
1 , 0 0 0 . Simulations were performed in a two dimensional compu- 

ational domain of the size 22 d × 18 d and resolution 110 0 × 90 0 .

eriodic boundary condition is imposed in the ascent direction 

nd no slip boundary condition is imposed in the horizontal di- 

ection. In all simulations presented in this section, the viscosity 

nd density ratios, and Cahn number, are μh /μl = 50 , ρh /ρl = 50 , 

nd Cn = 0 . 05 , respectively. The values of Ar and Bo considered 
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Fig. 9. Evolution of the bubble shape with Ar compared to the experimental results by Roig et al. [54] presented in the second and fourth columns. 

Fig. 10. (Color online) Comparison of the mean aspect ratio of the bubble at differ- 

ent Archimedes number with experimental results [54] . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

i  

(  

,  
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b  

t

Fig. 11. (Color online) Terminal Reynolds number as a function of Archimedes num- 

ber. The continuous line represents the scaling Re = 0 . 5 Ar observed by Roig et al. 

[54] . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

d

l

b

5

n our simulations are (Ar, Bo) : (100 , 0 . 14) , (400 , 0 . 85) , (700 , 1 . 8) ,

1 , 0 0 0 , 2 . 63) , (2 , 0 0 0 , 7) , (3 , 0 0 0 , 10) , (4 , 0 0 0 , 18) , (5 , 0 0 0 , 25 . 8)

 (6 , 0 0 0 , 30) , (6 , 500 , 32) , (9 , 100 , 55) , (11 , 0 0 0 , 72) . The results of

ur simulations are compared to the experimental results reported 

y Roig et al. [54] for a single bubble rising in a Hele-Shaw cell in

he inertial regime. 
9 
For the simulation of rising bubbles the use of a computational 

omain with periodic boundary conditions in ascent direction al- 

ows for a computationally acceptable domain height. However, the 

ubble wake can have an effect over a significant distance up to 

0 d below the bubble as reported in the experimental findings 
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Fig. 12. Various regimes of shape and path oscillations compared to the experimental results of Roig et al. [54] at similar parameters. From left to right, top to bottom 

Ar = 100 , Ar = 700 , Ar = 2 , 0 0 0 , Ar = 4 , 0 0 0 , Ar = 6 , 50 0 , Ar = 9 , 10 0 . 

10 
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Fig. 13. (a) Trajectory of the centroid of an ascending bubble at Bo = 1 . 8 and Ar = 700 ; (b) horizontal and vertical Reynolds numbers as functions of the nondimensional 

time for Bo = 1 . 8 and Ar = 700 . 
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y Ellingsen and Risso [49] . When using periodic computational 

omain the bubble might be affected by its own wake and the 

onzero velocities ahead of the bubble originating from the bub- 

le’s wake can affect the shape and the dynamics of the bubble 

ompare to a bubble rising in quiescent liquid. We utilize a fringe 

echnique [65,67] in front of the rising bubble to suppress the ve- 

ocities generated by the bubble’s wake. Inside the fringe zone all 

he velocities are damped to zero. The fringe zone spans the entire 

orizontal plane and has a small height in the vertical direction 

 . 25 d. In order to maintain a constant distance from the bubble,

he fringe zone is shifted with the bubble velocity U t . The veloc- 

ty inside the fringe zone are damped with the following forcing 

erm F f ringe = 
1 
ρh 

λ(y )[ U 0 − u (y )] , toward a desired velocity U 0 (for

ur purpose U 0 = 0 ). The function λ(y ) = 0 outside the fringe zone

nd takes the form of a smoothed step function inside the fringe 

one as proposed by Schlatter et al. [67] . Details about the chosen 

ringe parameters are given in Appendix A . 

.3. Evolution of the bubble mean shape with Archimedes number 

The evolution of the simulated bubble shape as a function of 

he Archimedes and Bond numbers is presented in Fig. 9 along 

ith the experimental results from Roig et al. [54] at similar pa- 

ameters. The deviation of the bubble from the circular shape is 

haracterized by the mean aspect ratio λm of an ellipse equivalent 

o the bubble contour. Fig. 10 compares the change in the mean 

spect ratio of the simulated bubble as function of Ar with ex- 

erimental results. For Ar < 600 and Bo < 1 , the bubble shape in

his regime is dominated by surface tension and the bubble re- 

ains nearly circular with an aspect ratio close to unity. As Ar in- 

reases the aspect ratio of the bubble increases and the bubble be- 

omes elongated and flattened and its mean shape is an ellipse. For 

r > 4 , 0 0 0 , the bubble takes a more complex shapes and loses the

ore-and-aft symmetry, as the rear of the bubble remains concave 

uring its ascent on a periodic path. When Ar > 6 , 500 the bubble

akes a circular capped shape and the aspect ratio of the bubble 

tops increasing anymore. The sequence of the two-dimensional 
11 
ubble shapes is similar to that observed for bubbles free to evolve 

n a three-dimensional unconfined space. Overall, the evolution of 

ubble shape and it’s mean aspect ratio show a good agreement 

ith the experimental results reported by Roig et al. [54] for a 

ide range of Ar. For Ar > 6 , 500 , the simulated bubble shape is

ore elongated and has a higher aspect ratio compared to the ex- 

erimental data. 

The change of Reynolds number Re with Ar in different shape 

egimes is compared to the experimental results at similar Ar and 

o the scaling law Re = 0 . 5 Ar observed by Roig et al. [54] in Fig. 11 .

or bubble rising with path and shape oscillations (see Section 4.4 ), 

he vertical velocity pulsates and average values of Re based on the 

ertical velocity component are reported in Fig. 11 . We notice that 

he computed Reynolds number is proportional to the Archimedes 

umber and shows a very good agreement with the linear scaling 

aw proposed by Roig et al. [54] . However, some of the computed 

e values are higher than the experimentally observed Re due to 

he drag force exerted by liquid films between the bubble and the 

ell walls as a result of possible interface contamination in the ex- 

eriments. 

.4. Path and shape oscillations with Archimedes number 

The simulated successive instantaneous bubble shapes along 

ith their trajectories for different Ar in the range from Ar = 100 

o 9,100 are presented in Fig. 12 with the experimental results of 

oig et al. [54] at similar parameters. The oscillation frequency f

f the ascending bubbles is characterized by the Strouhal num- 

er St = 2 π f d/U t . The experimental values of the Strouhal number 

t exp are extracted from Fig. 14 in Roig et al. [54] at similar ex- 

erimental conditions. For Ar = 100 the bubble rises in a rectilin- 

ar path ( St = 0 ) and the shape of the bubble is nearly circular. At

r = 700 , a sinusoidal trajectory of the bubble can be observed and 

he bubble takes an ellipsoidal shape with negligible shape oscil- 

ations in agreement with experiment. The predicted value of the 

trouhal number in this case St = 1 . 07 agrees well with the cor-

esponding experimental value St exp ≈ 1 . 01 . As Archimedes num- 



L. Baroudi and T. Lee Computers and Fluids 220 (2021) 104883 

Fig. 14. Vorticity around the bubble at Ar = 100 . Here and in the following similar 

figures, vorticity is normalized with respect to the maximum vorticity magnitude. 
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er increases further Ar ≈ 2 , 0 0 0 − 6 , 500 , shape oscillations are

dded to the path oscillations. In this regime, the shape of the 

ubble is more elongated and the transverse elongation oscillates 

ith a large amplitude. For Ar = 2 , 0 0 0 , the bubble shape oscillates

round an ellipse and the bubble has a zigzag path, with St = 1 . 23

hich agree well with experiment St exp ≈ 1 . 33 . At Ar = 4 , 0 0 0 , the

ubble follows a zigzag path with strong shape oscillations. The 

ubble oscillates with its rear part staying concave throughout the 

scillation. The predicted oscillation frequency St = 1 . 44 for this 

ase is slightly lower than the corresponding experimental value 

t exp ≈ 1 . 65 . For Ar = 6 , 500 , strong and complex shape oscillations

re observed. At the front of the bubble, two moving regions of 

oncave shape are always present and rear interface remains con- 

ave in agreement with experiment. The predicted path oscilla- 

ion frequency St = 1 . 66 is slightly lower than the experimental 

alue St exp ≈ 1 . 98 at similar conditions. For Ar = 9 , 100 , the path
Fig. 15. Vorticity around the bubbles at Ar = 7

12 
nd shape oscillations are strongly reduced. There still exist two 

oints along the front interface where the curvature changes sign. 

t a higher Ar > 9 , 100 , the bubble takes a circular cap shape and

he path becomes rectilinear. The numerical results predict the 

ath and shape oscillations properly and show a good agreement 

ith the shape and path descriptions given by Roig el al. [54] . 

he predicted oscillation frequencies for Ar > 2 , 0 0 0 were found to

e slightly lower than the corresponding experimental values. Our 

umerical simulations aim to give insights into bubble dynamics 

hat approximate the motion of bubbles in the inertial Hele-Shaw 

egime. 

For Bo = 1 . 8 and Ar = 700 , the trajectory of the centroid of the

ubble is shown in Fig. 13 (a). The x and y axes are scaled with the

ubble diameter d. Fig. 13 (b) displays the instantaneous Reynolds 

umbers based on the horizontal Re x and vertical Re y velocity 

omponents as a function of the dimensionless time T = t 
√ 

g 
d 

for 

o = 1 . 8 and Ar = 700 . We notice a large oscillation of the horizon-

al component ( Re x ) as a result of the zigzag motion of the bubble

s seen in Figs. 12 and 13 (a). The vertical motion also displays a 

mall oscillation superposed on its average value. It can be seen 

rom Fig. 13 (b) that the frequency of the vertical velocity is twice 

hat of the horizontal component with the maxima of the verti- 

al velocity coinciding with the zeros of the horizonal velocity in 

greement with the results obtained by Piedra et al. [56] . It is clear

hat the vertical velocity is not a simple harmonic and shows small 

ariations in the amplitude due to the interaction of the bubble 

ith the surrounding fluid. 

.5. Dynamics of the bubble wake 

The simulated flow vorticity �z is presented for different Ar in 

igs. 14 , 15 , and 16 to give a better understanding of the coupling

etween the motion of the bubble, it’s shape/path oscillations and 

he properties of its wake. For low Archimedes number, it can be 

een from Fig. 14 that no vortex shedding is observed in the liq- 

id, which means that the vorticity is not strong enough to form 

 vortex core, and the bubble has an attached, symmetrical wake 

ithout vortex shedding. Without the effect of vortex shedding, 

he path of the bubble is not perturbed and remains rectilinear. 

s Ar increases, the attached wake becomes unstable and detaches 

rom the bubble, and vortex shedding is generated by the bub- 

le as it rises (see Fig. 15 ) due to the fluid rotation around the
00 left panel and Ar = 20 0 0 right panel. 
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Fig. 16. Vorticity contours around the bubble at Ar = 6 , 0 0 0 (left panel) and Ar = 11 , 0 0 0 (right panel). 
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urved bubble interface. A periodic and alternate release of vor- 

ices of opposite vorticity is observed, where vorticity is gener- 

ted at the bubble surface and evacuated in the flow through vor- 

ex shedding. The generated vortex is released when its maximum 

orticity has been reached [55] . The generated vorticity is propor- 

ional to both the magnitude of the curvature of the bubble surface 

nd the its velocity. Once the vortices are released their vortic- 

ty starts to decrease. As Ar increases further between Ar = 6 , 0 0 0

nd Ar = 11 , 0 0 0 , the wake structure changes from nonstationary

o stationary. For Ar = 6 , 0 0 0 small instantaneous asymmetry of 

he near wake is observed, which causes slight transverse oscil- 

ation of the wake. For Ar = 11 , 0 0 0 , the wake of the bubbles has

ecovered a stationary, symmetrical state and the bubble rises on a 

traight path. The simulation results for the evolution of the wake 

tructure with Ar resemble the experimental observations in Roig 

t al. [54] . 

. Concluding remarks 

A mass-conserving FE-LBE model for simulating two-phase flow 

t high Reynolds numbers and large material property contrast has 

een proposed. The model is based on the conservative phase-field 

quation for interface capturing and the pressure-velocity formu- 

ation of lattice Boltzmann equation (LBE) for recovering the hy- 

rodynamic properties. The Galerkin finite element method is ap- 

lied to solving the conservative phase-field and discrete Boltz- 

ann equations. The stability and accuracy of the model in cap- 

uring complex interface topologies are assessed through conduct- 

ng several test cases for bubble rising problem in different flow 

egimes. The observed bubble shapes and the time evolution of the 

ising velocity and centroid of the bubble are consistent with pre- 

ious experimental and numerical results. The model successfully 

redicts the complex dynamics of single bubble rising at a high 

eynolds number. The evolution of the bubble shape as a function 

f Archimedes number and the observed Reynolds numbers of the 

ising bubble show a good agreement with the experimental re- 

ults by Roig et al. [54] . The simulated wake dynamics, bubble path 

nd shape oscillations in different regimes of oscillations agree 

ell with experimental results. The proposed mass-conserving FE- 

BE model improves a previous FE-LBE model [22] in terms of 
13 
ass conservation. The FE-LBE model described here is a promis- 

ng technique for simulation of a variety of multiphase flows at 

igher Reynolds numbers and complex geometries. 
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ppendix A. Fringe Zone 

When a rising bubble is simulated using a computational do- 

ain with periodic boundary conditions in the ascent direction, 

he bubble can be affected by its own wake. The bubble wake 

an have an effect over a significant distance up to 50 times of 

he bubble diameter d. The nonzero velocities ahead of the bubble 

riginating from its own wake can affect the shape and the dynam- 

cs of the bubble compare to a bubble rising in quiescent liquid. A 

ringe zone (shown in Fig. A.17 ) in front of the bubbles can be used

o suppress the velocities generated by the bubble wake. Inside the 

ringe zone all the velocities are damped to zero. The fringe zone 

pans the entire horizontal plane and has a small height in the ver- 

ical direction, in our tests 0 . 25 d. The fringe zone moves with the

ubble velocity U t . The velocity inside the fringe zone are damped 

ith the following forcing term 

 f ringe = 

1 

ρ
λ(y ) [ U 0 (y ) − u (y ) ] , (A.1) 

https://doi.org/10.13039/100000001
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Fig. A.17. Position of the fringe zone. Adopted from Ref. [65] . 
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oward a desired velocity U 0 (for our purpose U 0 = 0 ). The function

(y ) = 0 outside the fringe zone and takes the form of a smoothed

tep function inside the fringe zone as follows 

(y ) = λmax 

[ 
S 

(
y − y start 

b start 

)
− S 

(
y − y end 
b end 

+ 1 

)] 
, (A.2) 

here λmax is the maximum amplification factor, y start and y end 
re the horizontal coordinate of the start and the end of the fringe 

one, respectively, b start and b end are the widths over which the 

ringe function is ramped up from zero and ramped down to zero, 

espectively, and S is a step function given by 

(y f ) = 0 if y f ≤ 0 

(y f ) = 

1 [ 
1 + exp 

(
1 

y f −1 
+ 

1 
y f 

)] if 0 < y f < 1 

(y f ) = 1 if y f ≥ 1 . (A.3) 

ased on numerous tests, the following parameters have been 

ound suitable for the simulation of gas bubble with d = 1 rising 

n liquid: s = 3 d, b = 0 . 25 d, λmax = 13 , b start = b end = 0 . 05 d. The

tart and end coordinate of the fringe zone y start and y end are de- 

ermined based on the position of the bubble center of mass. 
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