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ABSTRACT

A mass-conserving finite element lattice Boltzmann equation (FE-LBE) method for the simulation of a
bubble rising in viscous fluid at high Reynolds number with large material property contrast is presented
in this work. The presented model consists of the conservative phase-field equation for interface captur-
ing and the pressure-velocity formulation of lattice Boltzmann equation (LBE) for recovering the hydrody-
namic properties. In this computational framework, LBE is regarded as a special space time discretization
of the discrete Boltzmann equation in the characteristic direction and the streaming step is carried out
by solving a linear advection equation in an Eulerian framework. We conduct extensive investigations for
numerical accuracy and stability through performing multiple benchmark simulations for single bubble
rising in a viscous fluid in different flow regimes. The complex dynamics of a high Reynolds number bub-
ble rising with path and shape oscillations are studied and compared to available experimental results.
The simulated evolution of the bubble mean shape with Archimedes number, path and shape oscillations
in different oscillation regimes, and wake dynamics of the bubble show a good agreement with available
experimental data. The current model offers a remarkable improvement in mass conservation compared

to the Cahn-Hilliard based FE-LBE model.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

When two fluids are in contact, the interface formed between
them often plays a central role in the dynamics of the involved
physical processes. In general, the mathematical treatment of such
a system is complicated by the fact that the position of the in-
terface is not known a priori. Rather it evolves according to the
flow within both fluid components. Methods for solving moving-
interface problems fall into two broad categories: interface track-
ing and interface capturing [1,2]. Interface tracking approach uses
a moving mesh with grid points residing on the interface. On
the other hand, interface capturing approach determines the po-
sition of the interface by using a scalar function, whose evolution
is typically represented by an advection equation on a fixed grid.
Theoretically, both treat the interface as a zero-thickness surface,
though an essential ingredient in the fixed-grid methods is a nu-
merical regularization that spreads the interfacial force over a vol-
ume. In recent years, the phase-field model has gained popularity
in simulating two-phase flows of complex fluids. This model differs
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from other fixed-grid methods in that the interface is diffuse in a
physical rather than numerical sense [3-5]. The diffuse interface is
introduced through an energetic variational procedure that results
in a thermodynamic consistent coupling system. The interfacial re-
gion is represented by continuous variations of a phase-field vari-
able in a way consistent with microscopic theories of the interface
[6]. The interfacial position and thickness are determined by the
phase-field variable whose evolution is governed by a mixing en-
ergy according to either Allen-Cahn [7] or Cahn-Hilliard [8] types
of dynamics. This way, the structure of the interface is rooted in
molecular forces; the tendencies for mixing and demixing are bal-
anced through the nonlocal mixing energy. This distinguishes the
phase-field method from other fixed-grid methods such as level set
and volume-of-fluid, where the interface is sharp conceptually but
regularized numerically by spreading the interfacial force over a
volume. The significance of this physical root is essential for prob-
lems that involve topological transitions, i.e. bearkup and coales-
cence, contact line dynamics, and complex rheology.

The lattice Boltzmann method (LBM) has been demonstrated to
be an effective computational tool for simulating multi-phase flows
and interfacial flow phenomena. The conventional lattice Boltz-
mann equation (LBE) method compromises collison and streaming
steps. The streaming of the particle distribution function is given
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as the exact solution of linear advection equation so that it of-
fers exact numerical solutions. Severe limitations arise, however,
from the use of uniform cartesian grids and its inherent instabil-
ity at high Reynolds number (Re). These two aspects are closely
related to each other in that LBE is a discretized form of the dis-
crete Boltzmann equation (DBE) along characteristics, and thus the
time and space discretizations are strongly coupled. Since He et al.
[9] and Abe [10] showed that the discretization of physical space
does not necessarily need to couple with the discretization of mo-
mentum space, several efforts have been devoted to address the
treatment of curved or irregular boundaries and the control of
mesh resolution at desirable regions, and significant progress has
been achieved in recent years to overcome the limitations of LBM.
Various numerical methods have been applied directly to the dis-
crete Boltzmann equation (DBE) using finite difference (FD) [11-
16], finite volume (FV) [17-19], finite element (FE) [20-23], and
spectral-element discontinuous Galerkin (SEDG) methods [24,25].
The lattice Boltzmann method with Galerkin finite element dis-
cretization (FE-LBE) proposed by Lee and Lin [20,21] to simulate
incompressible flows on unstructured mesh has been successfully
applied to variety of flow phenomena [20-22]. This model provides
geometrical flexibility and enables the use of an unstructured mesh
to increase numerical accuracy while reducing computational cost.

Most of the existing multi-phase LBE models [26-28] are based
on the Cahn-Hilliard (CH) theory [6,8]. Although Cahn-Hilliard dy-
namics conserve the mass over the entire domain, the enclosed
area obtained by its interface is not preserved. It has been shown
that CH equation causes small enclosed mass such as drops or
bubbles to disappear once their radius is below a critical value
[29,30]. Another downside of the Cahn-Hilliard equation is the cal-
culation of the fourth-order spatial derivatives term which causes
numerical complications. On the other hand, the Allen-Cahn equa-
tion [7] only requires second-order derivatives and is easier to han-
dle numerically, but does not automatically ensure conservation of
mass. Sun and Beckermann [31] proposed a conservative phase-
field equation based on the Allan-Cahn equation that has been re-
formulated in a conservative from by Chiu and Lin [32]. The con-
servative phase-field equation conserves mass and requires only
second-order derivatives. A derivative-free LBE formulation of the
conservative phase-field equation is presented by Geier et al. [33].

In this work, we will combine the conservative phase-field
equation for interface capturing and the pressure-velocity formu-
lation of LBE similarly to [27,34] to propose a mass conserving LB
model for the simulation of two-phase flow at higher Reynolds
numbers with large material property contrast. As a diffuse inter-
face method, phase interface of FE-LBE method is spread over sev-
eral elements, and interface tension is transformed into volumetric
force, which is governed by thermodynamic equilibrium of the free
energy. To assess the accuracy and stability of the proposed model,
extensive numerical investigations are carried out to study rising
bubble problems.

2. Numerical methods
2.1. Conservative phase field equation

The conservative phase field equation for tracking the interface
in the incompressible two-phase flow is given by [32]

g 9o 0 e
3t U = <<¢> ) (1)

3x; 0x;

where ¢ is the phase-field variable that indicates each phase, u; is

the macroscopic velocity, M(¢) = 1\71(1 - MW]W) is the mo-

§
bility, and £ is the interface thickness. M is the tunable mobility
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parameter that determines how fast the interface reaches equilib-
rium profile and it’s value is chosen based on numerical accuracy
and stability. The phase indicator takes on values of ¢, =0 and
¢ =1 in the bulk of the light and heavy fluids, respectively. At
equilibrium, the phase field variable along the direction normal to
the interface assumes a hyperbolic tangent profile

1 1 2z
¢ = 7+§tanh($) (2)
where z is the spatial variable normal to the interface located at
z=0. In this case 4¢(1 — ¢)/& = d¢p/0n = |V¢| with n being the
unit interface normal vector, holds.

We apply the explicit Taylor-Galerkin finite element method to
solve Eq. (1). The Taylor-Galerkin approximation of Eq. (1) yields

n+l _ 4n na¢n 0 n a¢n
e

st un n 09"
tou 1 9x; (uf ax; ) (3)

where 8t is the time step and the superscripts (-)**1 and ()" de-
note (t) and (t —&t), respectively. The domain 2 is discretized
into an appropriate collection of finite elements. The Galerkin
approximation is then used to find an approximate solution of
the following form in a finite dimensional subspace H" of the
Sobolev space on the spatial domain €2, ¢ =NT®, where NT =
N1 N2, ..., N isa (1 x ne) vector of interpolation functions of the
element Q€, the superscript (-)T denotes the transpose operation,
and n, is the number of nodal points in an element. q_b isa(nex1)
vector of nodal phase-field variable. The weak form of Eq. (3) is
derived by multiplying it with the weight function and integrating
over the spatial domain of the problem. We then perform integra-
tion by parts on the terms introduced by Galerkin procedure and
apply divergence theorem. The weak form of Eq. (3) is

n+l _ an
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where the surface integrals due to integration by parts are as-
sumed to be zero. The mass matrix in Eq. (4) is symmetric positive
definite and can be solved by the Conjugate Gradient method us-
ing the solution from the previous time step as an initial guess.
The density and phase-field variable are related linearly by p =
Pnd + p(1—¢), where p, and p; are the bulk densities of the
heavy and light fluids, respectively. The time step is restricted by
the Courant-Friedrichs-Lewy condition CFL < 1/+/3 [35,36], where
CFL = |ey|8t/dx, ex is the microscopic particle velocity. We set
CFL=0.2 or 0.3 in our simulations which results in a sufficiently
small time step that guarantees accuracy and stability.

2.2. Velocity-pressure latticeBoltzmann equation

The discrete Boltzmann equation for the velocity-pressure for-
mulation can be written as

e, M _
e Teigy

where f, is the particle distribution function for pressure and ve-
locity along « direction, e,; is the microscopic particle velocity, and
A is the relaxation time, and the equilibrium distribution function

(foz o)+ Fa, (5)
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is given by

2
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where t, is a weighting factor, c; is the lattice speed of sound, p =
p/p with p being the dynamic pressure. F, is a collection of forcing
terms

Fy = T (€ai - )(13”)+r<0><em )(35)

du;  du;\dp 1
+ o (eni — u)[ v¢+(8x]+8x,->8xj+pc”

in which

(7)

(8)
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In Eq. (7). w=4B(—)(p—d)(¢—1)—kV2 is the
chemical potential for binary fluids. The coefficients 8 and « are
related to the surface tension o and interface thickness & by 8 =
120 /& and k =30&/2, n is the dynamic viscosity that is deter-
mined from the relaxation time by n = ¢ZpAdt, and G; is the buoy-
ant force acting on the bubble.
The recovered pressure evolution and velocity equations are
ap ap 0y

at+UIaX,+C587X,_O’ (9)

oup  duwu;  193p
a0 o, _587,-+ZV¢
10 au; 8u]‘ 1

The above system of equations are the nearly incompressible
Navier-Stokes equations with the fluid speed of sound cs in the
bulk phases and the interfacial region.

Eq. (5) is solved in two sequential steps at a nodal point (x)
[21]:

Collision step

1

fa Xt — m(fa - foezq) |(x,t—8t)s (11)

Streaming step with forcing term
aft ot? aft
= fm_Stle —F )+ 5 e —E"), (12
fo( fo{ < ai 8 ) 0(]8 ol 8X, o ( )

where T = A/8t is the nondimensional relaxation time. When tak-
ing moments, the distribution functions recover the macroscopic
variables

Zfot = I_L
a=0
Zeaifa =u,»csz, (13)

a=0

8t) 1= fo(x,t —8t) —

We now apply the standard Galerkin finite element method to
the streaming step. The domain 2 is discretized into an appro-
priate collection of finite elements. The Galerkin approximation is
then used to find an approximate solution of the following form
in a finite dimensional subspace H" of the Sobolev space on the
spatial domain :

—Nf,, (14)

where NT = {NT N2, ... N"} is a (1 x ne) vector of interpolation
functions of the elernent Qe the superscript (-)T denotes the
transpose operation, and n. is the number of nodal points in an
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element. f, is a (ne x 1) vector of redefined nodal particle distri-
bution functions. The other variables are expressed in the identical
manner.

The weak form of Eq. (12) is

n+1 _ fn
[ NG - e

n
= —8t|: Ne,i =% 0fa dQ — NF“in|
Qe ax;
5t? oN aft JON n
_2|: o 9%; A€y jCyim 9x; d2 — . 8 gy dQ (15)

As before, the surface integrals due to integration by parts are as-
sumed to be zero. The dimensionless relaxation time is taken as
linear functions of the phase-field variable 7 (¢) = ¢7;, + (1 — P) 1.

3. Numerical validation

In order to assess the presented mass-conserving FE-LBE model
several benchmark studies with material property contrast are con-
sidered. A single bubble rising in different flow regimes is first
simulated. Next, the mass conservation property of the proposed
FE-LBE model is verified and a convergence study is conducted.
Then, the dynamics of a high Reynolds number two dimensional
bubble are investigated using the present model. Unless otherwise
stated, we utilize the D2Q9 lattice structure [37] for the two di-
mensional (2D) problems presented in this section.

3.1. Single bubble rising in different shape regimes

A bubble rising and deforming under the influence of gravita-
tional force is one of the very fundamental examples of multiphase
flows.The understanding of the bubble rising physics is essential
for the design and operation of industrial applications such as gas-
liquid column reactors. The dynamic behavior of a rising bubble
has been a subject of both experimental and numerical studies
for many years. Experimental studies and correlations were re-
viewed by Clift et al. [38]. Rising of a bubble in a viscous fluid un-
der the influence of gravitational forces can be generally grouped
in three different regimes: Spherical, ellipsoidal, and spherical cap
[38]. These regimes are achieved, depending on the values of Bond

number (Bo) and Morton number (Mo) defined as:
2
Bo— " (16)
o
g
Mo = 17
0= 30 (17)

where g is the gravitational acceleration in the vertical direction,
pp is liquid density, d is the initial bubble diameter, o is the sur-
face tension, 7, is liquid viscosity. Bo is the ratio of the gravita-
tional forces and the surface tension. Mo provides a description of
the properties of the surrounding fluid, mainly focusing on viscos-
ity and surface tension. Based on experimental data on the motion
of air bubbles in liquids, Grace et al. [39] constructed a diagram
(Fig. 2 in [39]) that describes how the bubble behavior depends
on Bo, Mo, and terminal Reynolds number defined as Re = p“n—i[‘j,
where U; is the terminal velocity of the bubble. Terminal veloc-
ity is defined as the steady velocity that the bubble reaches when
there is a balance between buoyancy and drag forces. A general
classification of the bubble is usually done depending on the final
shape or by the primary forces acting on the system. However, the
transition areas from regime to regime are still not well defined.
In this study, two dimensional (2D) numerical simulations were
performed using the mass-conserving FE-LBE model to simulate
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Fig. 1. Shape and position evolution for cases A, B, C, and D from left to right, respectively.

four cases corresponding to steady regimes in the shape regime
map [39] with different final bubble shape. The parameters and
results, in terms of Bo, Mo, terminal Re, and final bubble shapes
are listed in Table 1. The column under Re; lists terminal Reynolds
numbers extracted from the Grace diagram. The Simulations were
performed in a 2D computational domain of the size 9d x 18d and
resolution 450 x 900. Periodic boundary condition is imposed in
the vertical direction and the no slip boundary condition is applied
at the left and right walls. The viscosity and density ratios are,
np/n = 100, and pp/p0; = 100, respectively. The nondimensional
measure for the interface thickness is the Cahn number, defined
by Cn = £/d and has a value of 0.05 in all simulations presented in
this section.

For the parameters considered in this section, the bubble as-
cends in a rectilinear path and the shape development of the two
dimensional bubbles is expected to follow well the experimental
results in the absence of three dimensional effects such as wob-
bly motion of the bubble. The similarity between the 2D simula-
tions and the experimental results as well as three dimensional
simulations has been established by Chen et al. [40] and observed
in previous numerical simulations [41,42]. Fig. 1 shows the shape
and position evolution of the bubbles in different regimes. The ob-
served bubble shapes are in agreement with the shape regime di-
agram presented in Fig. 2 in Ref. [39] and the agreement of com-
puted Re and Reg is satisfactory.

3.2. Mass conservation

One of the key features of the proposed conservative phase-
field FE-LBE is that it preserves the area enclosed by an inter-
face better than Cahn-Hilliard based models. The mass enclosed
by the interface of a rising bubble is checked for a bubble rising
in the spherical regime, as in case A (see Table 1) presented in
the pervious section, to verify the mass conservation property of

Table 1

Parameters of the simulated cases for single bubble rising in different
shape regimes. Re is the computed terminal Reynolds number, and Reg
is experimental data extracted from Fig. 2 in [39].

Case  Bo Mo Re Reg Bubble shape

A 10 100 0.21  0.17  Spherical

B 10 0.01 9.9 11 Oblate

C 100 1000 134 1.6 Ellipsoidal cap, dimpled
D 100 1 18 19 Ellipsoidal cap, skirted

Cahn-Hilliard model
—=—— Current model

M/M,

Fig. 2. Variation of the mass of enclosed area by the bubble interface versus time.
The red line shows the results of the Cahn Hilliard based model and the green line
with square symbols shows the results of the conservative phase field based model.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

the model. The simulation was performed in a (2D) computational
domain of the size 10d x 10d and resolution 250 x 250. Periodic
boundary condition is imposed in the vertical direction and the
no slip boundary condition is applied at the left and right walls.
The viscosity and density ratios and Cahn number are, n,/n; = 100,
pon/p1 = 100, and Cn = 0.1, respectively. The results of the current
model are compared with the FE-LBE model based on Cahn Hilliard
equation [22]. The enclosed mass M is normalized by the initial
enclosed mass My of the bubble, and its evolution is plotted ver-
sus dimensionless time T = t\/% in Fig. 2. As can be seen in Fig. 2,
the mass enclosed by the bubble’s interface is gradually decreasing
in the Cahn Hilliard based FE-LBE model, while the current model
preserves the enclosed mass (Fig. 2).

3.3. Convergence study
To assess the convergence of the proposed mass-conserving FE-

LBE model, we consider the rise of a two dimensional bubble due
to buoyancy force according to the well established benchmark
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Fig. 3. (a) Initial configuration for the rising bubble problem [43]. (b) The evolution
of the bubble shape at equally spaced time intervals.

proposed by Hysing et al. [43]. Initially, a circular bubble with an
initial diameter d = Ly/2 is placed at (Ly/2,Lg/2) in a rectangu-
lar domain of length 2Ly and width Ly as illustrated in Fig. 3(a),
where Ly = 1. The no slip boundary condition is applied at the top
and bottom walls, while periodic boundary conditions are used at
the lateral boundaries, which is identical, in this particular case,
to the slip boundary condition used in [43]. The bubble is allowed
to rise due to the buoyancy force G = —g(p — p,,). The characteris-
tic dimensionless numbers are Bond and Archimedes numbers. The
Archimedes number is defined as:

3
ar = Prv&d (18)

h
The parameters for the studied test cases are taken from Hysing
et al. [43]. The simulations were started with a reduced Ar, which
was ramped up successively to the desired Ar to avoid initial veloc-
ity oscillations due to the weak compressibility effects inherited in
the (nearly) incompressible LBM. In order to have consistent mea-
surements with [43], the following equation is used to calculate

the macroscopic time, T =t %,
scopic gravity used in [43]. The mean rise velocity of the bubble
and its centroid are calculated as:

where gg = 0.98 is the macro-

Jo, udx
Vo= T, Tax (19)
Jo, Xdx 20
= Jg, 1dx° (20)

where €2; denotes the area inside the bubble. The circularity de-
fined as the ratio of the of perimeter of area-equivalent circle and
perimeter of the bubble P is given as:

d
c:?
= Vol|dQ
p /QI old (21)

,where  is the area of the computational domain.

3.3.1. Test case 1
For the first test case, we consider the following parame-
ters: pp/p; = Kp/M =10, Bo=10, and Ar =35 as in [43]. With

Computers and Fluids 220 (2021) 104883

2
T ——— 1/h=80
Il —— 1/h=160
1/h=320
B u FeatFlow, 1/h=320
1.5
1 —
0.5
o | ‘ |
0 0.5 1

Fig. 4. Bubble interface shape at T = 3 for test case 1 on different grid levels.

the given parameters, surface tension effects dominate the bub-
ble shape and the bubble should belong to the ellipsoidal regime
[39]. The interfacial thickness & is chosen proportional to grid
size 1/h, which keeps the number of elements along the inter-
face fixed. Here, we have around three elements along the inter-
face in all simulations. Fig. 3(b) shows the evolution of the bub-
ble interface over time for a grid spacing of h = 1/160. The effect
of the grid resolution on the bubble’s shape at T =3 of our sim-
ulation is shown in Fig. 4 for three different grid sizes of 1/h =
80, 160, 320, along with the finite element solution of the Feat-
Flow software package in [43] with a grid spacing of 1/h = 320.
The FeatFlow results were slightly shifted for comparison purposes.
We notice that the final shape resulting from each grid is al-
most overlapping each other and agrees well with the FeatFlow
solution.

Fig. 5 (a)-(c) show the convergence trend of the solution for
the centroid position, the mean rising velocity of the bubble, and
the circularity up to T = 3.27 along with the finite element so-
lutions of FeatFlow with a grid spacing of 1/h =320. Since our
simulations were started with a reduced Ar, which was ramped
up to the desired Ar, the FeatFlow solutions have been slightly
shifted by T =0.27 for comparison purposes. As can be seen
in Fig. 5(a)-(c), the centroid, mean rise velocity, and the circu-
larity of the bubble converge nicely and show a good agree-
ment with FeatFlow solution. Fig. 6 presents the convergence be-
haviour of the L;,L, and L., norm of errors in the rising ve-
locity with reference to the solution from the computation on
the finest grid spacing of 1/h = 640. The error norms are defined
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Fig. 5. Effect of grid resolution on the temporal evolution of the center of mass of the bubble (a), the bubble rising velocity (b), and circularity (c) on different grid levels.

as follows:
NTS
Lyerror: |le;| = W
t=1 |qt‘ref|
NTS o2 V2
Ly error: |les| = <W>
t=1 |qt,ref|
max —
L, error : ||eoo|| — M’
max;| qt,ref|

where NTS is the number of sample points and gq; is the tempo-
ral evolution of the quantity q. The errors are calculated for grid
spacing of 1/h = 80, 160, 320. The convergence rates (ROC) for the
quantities can be computed as

logro ([l /1!l
ROC = 22
00 = g (R /hTy (22)

where | is the grid refinement level. The relative error norms for
the rise velocity are presented in Table 2 together with the esti-
mated ROC. It is evident that the rising velocity converges with a
more than linear convergence order.

3.3.2. Test case 2

The second test case is numerically more challenging as the
density and viscosity ratios are increased to p,/p; = 1,000 and
n/ = 100, respectively, with Bo= 125, and Ar = 35. With the
given parameters, inertial effects take over the surface tension
forces and the bubble exhibits pronounced deformation. This
bubble belongs somewhere between the skirted and dimpled
ellipsoidal-cap regimes [39]. Fig. 7 shows snapshots of the time
evolution of the bubble computed on a grid spacing of h = 1/160.
The decrease in surface tension compared to inertial forces causes
this bubble to deform substantially and develops thin filaments.
For this test case agreement between the numerical approaches

Table 2

Relative error norms and convergence orders for rise velocity in test case 1.
1/h llex |l ROG lle| ROG, llew |l ROC»
80 2.08E-02 2.56E-02 6.12E-02

2.06E-02 1.57
6.92E-03 1.57

160 8.90E-03 1.22
320 2.86E-03 1.64

1.04E-02 1.31
3.15E-03 1.72
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Fig. 6. Convergence behaviour for rising velocity in test case 1.

studied in [43] could not be achieved and only qualitative compar-
ison with the results reported in [43] is considered here. Two of
the three software packages utilized in [43] namely FeatFlow and
FreeLIFE predicted filament break off. Alnad and Voigt [44] per-
formed benchmark computations of three different diffuse in-
terface models using the same parameters studied in [43]. For
test case 2, none of the diffuse interface models considered in
[44] yielded break off of the filament. It unclear if break off really
should occur for this setting. The evolution of the bubble shape
computed using the mass conserving FE-LBE model did not pre-
dict filament break up in agreement with [44]. The simulated bub-
ble shape evolution shows a good qualitative agreement with the
FeatFlow solution up to T = 2.59 before filament breakup [43].

4. Dynamics of a high Reynolds number bubble rising in
viscous fluid

4.1. Background

Predicting the motion of bubbles in dispersed gas-liquid flows
is a key problem in fluid mechanics that has a bearing on a wide
range of applications such as bubble column, cooling systems in
nuclear power plants and the transportation of the oil and natu-
ral gas in petroleum industry. In such applications, bubbles can in-
duce a turbulent flow which requires modeling in predictive sim-
ulations. It is well established that a large bubble does not usually
rise in a straight line but that its velocity and shape may oscillate
due to the interaction between the bubble and its unsteady wake.
The ascent characteristic of gas bubbles in liquid are strongly af-
fected by their wakes. Due to the difficulty of measuring or simu-
lating an oscillating bubble, most studies have focused on the av-
erage characteristics such as mean velocity and shape [45-47]. In
recent years, the development of advanced measuring and simu-
lation tools has enabled important progress in the investigation of
the unsteady motion of bubbles rising in unbounded domain [48-
51]. However, the detailed physical effects that determine the dy-
namics are not yet fully understood. The description and interpre-
tation of bubble rise and deformation is still limited to a few flow
regimes only, due to the difficulties in experiments, since it is not
easy to measure, without any interference, the flow pattern and
pressure distribution within a bubble and its surrounding liquid
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while it is rising and deforming. The study of the dynamics of bub-
bles in Hele-Shaw cells has been proposed as an effort to simplify
the study of ascending bubbles by restricting the motion to one
horizontal direction [52-59]. In this way, the available degrees of
freedom are reduced since the description can be made in terms
of the position and deformation in two spatial coordinates. For a
bubble of apparent diameter d (as seen from the perpendicular di-
rection of the plates) rising in a vertical Hele-Shaw cell of width
h filled with a liquid at rest (Fig. 8), the non-dimensional num-
bers that control the dynamics are the confinement ratio h/d, the
Archimedes number Ar = \/gdd/v,, Bond number Bo = p,gd?/o,
and the Reynolds number based on the vertical component of the
bubble velocity Re = U;d/vy,, where vy, is the kinematic viscosity of
the liquid. Based on the ratio of the magnitude of the inertial stress
corresponding to the motion within the cell to that of the stress in
the direction normal to the plates given as Re(h/d)?, the studies of
motion of bubbles in Hele-Shaw cell (h/d « 1) can be divided into
two regimes:

e The classic Hele-Shaw regime: This regime corresponds to
Re(h/d)? « 1 and Re > 1.

e The inertial regime: In this regime Re(h/d)? > 1 and Re > 1,
and the in-plane flow is equivalent to high Re two dimensional
flow.

Kelley and Wu [52] conducted experiments to study the insta-
bilities of rising air bubbles using a tilted Hele-Shaw cell with a
gap of 1.6 mm. They observed that the wake formed in the sur-
rounding fluid due to the motion of the bubbles was similar to
that observed behind solid cylinders and the onset of vortex shed-
ding was found to be described as a supercritical bifurcation [52].
Beyond this transition, the bubbles followed a zigzag path due to
the nonsymmetric pressure field at the surface generated by the
vortex shedding. Roig et al. [54]| conducted experiments using air
bubbles in water moving in a cell with a gap between the plates
of 1 mm and found a linear relationship between the Archimedes
and terminal Reynolds numbers, namely Re = 0.5Ar.

Considering the difficulties in experimental investigations, nu-
merical simulations provide an alternative means to investigate
and attain a better insight into the bubble rising behavior, the de-
velopment of bubble-shape evolution, and the induced flow in the
surrounding liquid. Numerical studies of rising gas bubbles using
various methods for the description of the phase interface have
been performed [60]. Most of the numerical investigations of ris-
ing bubbles aim at model validation, for this reason in most cases
the results are restricted to bubbles rising in a straight path at low
to moderate Re [61-63]. Few numerical investigations of unsteady
bubble wakes have been performed. In a recent work, Antepara
et al. [64] conducted numerical simulations to study the dynam-
ics of bubbles rising in the wobbling regime at moderate to high
Reynolds numbers. Mougin and Magnaudet [50] performed numer-
ical simulations to investigate the dynamics of unsteady bubble
wakes with prescribed fixed bubble shapes. As in experiments, a
pair of counter-rotating vortices were found in the wake of spi-
ralling bubbles. For a bubble rising on a zigzag path the computed
vertical vorticity indicates two vortices in the wake, which can be
interpreted as the legs of a hairpin vortex. Gaudlitz et al. [65] stud-
ied the shape and path oscillation of a freely rising bubble in an
unconfined domain at moderate Re and observed hairpin vortices
in the wake of an initially zigzagging bubble. It should be noted
that the vortex distribution around a bubble in a Hele-Shaw cell
completely differs from the wake for an unconfined sphere or bub-
ble formed by an elongated horseshoe vortex [66]. Wang et al.
[57] studied numerically and experimentally the effect of confine-
ment ratio on the bubble dynamics in a vertical Hele-Shaw cell.
They found that the bubble shape and terminal velocity were in-
fluenced by the confinement ratio. Piedra et al. [56] investigated
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Fig. 7. Time evolution of the bubble shape in test case 2 for 1/h =160 at T =0.79, T=1.15, T=1.51, T=1.87, T=2.23, T =2.59, T =2.95, and T = 3.31, from top to

bottom and left to right.
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Fig. 8. A vertical Hele-Shaw cell for bubble dynamics studies. Adopted from Ref.
[54].

the dynamics of two-dimensional bubbles ascending under the in-
fluence of buoyant forces numerically and experimentally. They ob-
served that at high Reynolds numbers the two dimensional bub-
bles follow an approximately periodic zigzag trajectory and an un-
stable wake with properties similar to the Von Karman vortex
street is formed.

4.2. Computational setup

In this study, we utilize the mass-conserving FE-LBE model to
investigate the characteristics of the path and shape oscillations of
two-dimensional bubbles rising at moderate and high Re in differ-
ent regimes for a wide range of Archimedes number: 100 < Ar <
11, 000. Simulations were performed in a two dimensional compu-
tational domain of the size 22d x 18d and resolution 1100 x 900.
Periodic boundary condition is imposed in the ascent direction
and no slip boundary condition is imposed in the horizontal di-
rection. In all simulations presented in this section, the viscosity
and density ratios, and Cahn number, are u,/u; = 50, pp/p0; = 50,
and Cn = 0.05, respectively. The values of Ar and Bo considered
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Fig. 9. Evolution of the bubble shape with Ar compared to the experimental results by Roig et al. [54] presented in the second and fourth columns.
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Fig. 10. (Color online) Comparison of the mean aspect ratio of the bubble at differ-
ent Archimedes number with experimental results [54]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

in our simulations are (Ar, Bo): (100, 0.14), (400, 0.85), (700,1.8),
(1,000, 2.63), (2,000,7), (3,000, 10), (4,000, 18), (5,000, 25.8)
, (6,000, 30), (6,500,32), (9,100,55), (11,000, 72). The results of
our simulations are compared to the experimental results reported
by Roig et al. [54] for a single bubble rising in a Hele-Shaw cell in
the inertial regime.
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Fig. 11. (Color online) Terminal Reynolds number as a function of Archimedes num-
ber. The continuous line represents the scaling Re = 0.5Ar observed by Roig et al.
[54]. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

For the simulation of rising bubbles the use of a computational
domain with periodic boundary conditions in ascent direction al-
lows for a computationally acceptable domain height. However, the
bubble wake can have an effect over a significant distance up to
50d below the bubble as reported in the experimental findings
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Fig. 13. (a) Trajectory of the centroid of an ascending bubble at Bo= 1.8 and Ar = 700; (b) horizontal and vertical Reynolds numbers as functions of the nondimensional

time for Bo = 1.8 and Ar = 700.

by Ellingsen and Risso [49]. When using periodic computational
domain the bubble might be affected by its own wake and the
nonzero velocities ahead of the bubble originating from the bub-
ble’s wake can affect the shape and the dynamics of the bubble
compare to a bubble rising in quiescent liquid. We utilize a fringe
technique [65,67] in front of the rising bubble to suppress the ve-
locities generated by the bubble’s wake. Inside the fringe zone all
the velocities are damped to zero. The fringe zone spans the entire
horizontal plane and has a small height in the vertical direction
0.25d. In order to maintain a constant distance from the bubble,
the fringe zone is shifted with the bubble velocity U;. The veloc-
ity inside the fringe zone are damped with the following forcing
term Fyjpge = pih)\(y)[UO —u(y)], toward a desired velocity Uy (for
our purpose Uy = 0). The function A(y) = 0 outside the fringe zone
and takes the form of a smoothed step function inside the fringe
zone as proposed by Schlatter et al. [67]. Details about the chosen
fringe parameters are given in Appendix A.

4.3. Evolution of the bubble mean shape with Archimedes number

The evolution of the simulated bubble shape as a function of
the Archimedes and Bond numbers is presented in Fig. 9 along
with the experimental results from Roig et al. [54] at similar pa-
rameters. The deviation of the bubble from the circular shape is
characterized by the mean aspect ratio A, of an ellipse equivalent
to the bubble contour. Fig. 10 compares the change in the mean
aspect ratio of the simulated bubble as function of Ar with ex-
perimental results. For Ar < 600 and Bo < 1, the bubble shape in
this regime is dominated by surface tension and the bubble re-
mains nearly circular with an aspect ratio close to unity. As Ar in-
creases the aspect ratio of the bubble increases and the bubble be-
comes elongated and flattened and its mean shape is an ellipse. For
Ar > 4,000, the bubble takes a more complex shapes and loses the
fore-and-aft symmetry, as the rear of the bubble remains concave
during its ascent on a periodic path. When Ar > 6, 500 the bubble
takes a circular capped shape and the aspect ratio of the bubble
stops increasing anymore. The sequence of the two-dimensional

1

bubble shapes is similar to that observed for bubbles free to evolve
in a three-dimensional unconfined space. Overall, the evolution of
bubble shape and it's mean aspect ratio show a good agreement
with the experimental results reported by Roig et al. [54] for a
wide range of Ar. For Ar > 6,500, the simulated bubble shape is
more elongated and has a higher aspect ratio compared to the ex-
perimental data.

The change of Reynolds number Re with Ar in different shape
regimes is compared to the experimental results at similar Ar and
to the scaling law Re = 0.5Ar observed by Roig et al. [54] in Fig. 11.
For bubble rising with path and shape oscillations (see Section 4.4),
the vertical velocity pulsates and average values of Re based on the
vertical velocity component are reported in Fig. 11. We notice that
the computed Reynolds number is proportional to the Archimedes
number and shows a very good agreement with the linear scaling
law proposed by Roig et al. [54]. However, some of the computed
Re values are higher than the experimentally observed Re due to
the drag force exerted by liquid films between the bubble and the
cell walls as a result of possible interface contamination in the ex-
periments.

4.4. Path and shape oscillations with Archimedes number

The simulated successive instantaneous bubble shapes along
with their trajectories for different Ar in the range from Ar = 100
to 9,100 are presented in Fig. 12 with the experimental results of
Roig et al. [54] at similar parameters. The oscillation frequency f
of the ascending bubbles is characterized by the Strouhal num-
ber St = 27 fd/U;. The experimental values of the Strouhal number
Stexp are extracted from Fig. 14 in Roig et al. [54] at similar ex-
perimental conditions. For Ar = 100 the bubble rises in a rectilin-
ear path (St = 0) and the shape of the bubble is nearly circular. At
Ar =700, a sinusoidal trajectory of the bubble can be observed and
the bubble takes an ellipsoidal shape with negligible shape oscil-
lations in agreement with experiment. The predicted value of the
Strouhal number in this case St = 1.07 agrees well with the cor-
responding experimental value Stexp ~ 1.01. As Archimedes num-
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Fig. 14. Vorticity around the bubble at Ar = 100. Here and in the following similar
figures, vorticity is normalized with respect to the maximum vorticity magnitude.

ber increases further Ar~ 2,000 — 6,500, shape oscillations are
added to the path oscillations. In this regime, the shape of the
bubble is more elongated and the transverse elongation oscillates
with a large amplitude. For Ar = 2, 000, the bubble shape oscillates
around an ellipse and the bubble has a zigzag path, with St = 1.23
which agree well with experiment Stexp ~ 1.33. At Ar = 4, 000, the
bubble follows a zigzag path with strong shape oscillations. The
bubble oscillates with its rear part staying concave throughout the
oscillation. The predicted oscillation frequency St = 1.44 for this
case is slightly lower than the corresponding experimental value
Stexp ~ 1.65. For Ar = 6, 500, strong and complex shape oscillations
are observed. At the front of the bubble, two moving regions of
concave shape are always present and rear interface remains con-
cave in agreement with experiment. The predicted path oscilla-
tion frequency St =1.66 is slightly lower than the experimental
value Stexp ~ 1.98 at similar conditions. For Ar =9, 100, the path
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and shape oscillations are strongly reduced. There still exist two
points along the front interface where the curvature changes sign.
At a higher Ar > 9, 100, the bubble takes a circular cap shape and
the path becomes rectilinear. The numerical results predict the
path and shape oscillations properly and show a good agreement
with the shape and path descriptions given by Roig el al. [54].
The predicted oscillation frequencies for Ar > 2, 000 were found to
be slightly lower than the corresponding experimental values. Our
numerical simulations aim to give insights into bubble dynamics
that approximate the motion of bubbles in the inertial Hele-Shaw
regime.

For Bo = 1.8 and Ar = 700, the trajectory of the centroid of the
bubble is shown in Fig. 13(a). The x and y axes are scaled with the
bubble diameter d. Fig. 13(b) displays the instantaneous Reynolds
numbers based on the horizontal Rex and vertical Rey, velocity
components as a function of the dimensionless time T = t\/g for
Bo = 1.8 and Ar = 700. We notice a large oscillation of the horizon-
tal component (Rey) as a result of the zigzag motion of the bubble
as seen in Figs. 12 and 13(a). The vertical motion also displays a
small oscillation superposed on its average value. It can be seen
from Fig. 13(b) that the frequency of the vertical velocity is twice
that of the horizontal component with the maxima of the verti-
cal velocity coinciding with the zeros of the horizonal velocity in
agreement with the results obtained by Piedra et al. [56]. It is clear
that the vertical velocity is not a simple harmonic and shows small
variations in the amplitude due to the interaction of the bubble
with the surrounding fluid.

4.5. Dynamics of the bubble wake

The simulated flow vorticity €2, is presented for different Ar in
Figs. 14, 15, and 16 to give a better understanding of the coupling
between the motion of the bubble, it’s shape/path oscillations and
the properties of its wake. For low Archimedes number, it can be
seen from Fig. 14 that no vortex shedding is observed in the lig-
uid, which means that the vorticity is not strong enough to form
a vortex core, and the bubble has an attached, symmetrical wake
without vortex shedding. Without the effect of vortex shedding,
the path of the bubble is not perturbed and remains rectilinear.
As Ar increases, the attached wake becomes unstable and detaches
from the bubble, and vortex shedding is generated by the bub-
ble as it rises (see Fig. 15) due to the fluid rotation around the
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Fig. 15. Vorticity around the bubbles at Ar = 700 left panel and Ar = 2000 right panel.
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Fig. 16. Vorticity contours around the bubble at Ar = 6,000 (left panel) and Ar = 11, 000 (right panel).

curved bubble interface. A periodic and alternate release of vor-
tices of opposite vorticity is observed, where vorticity is gener-
ated at the bubble surface and evacuated in the flow through vor-
tex shedding. The generated vortex is released when its maximum
vorticity has been reached [55]. The generated vorticity is propor-
tional to both the magnitude of the curvature of the bubble surface
and the its velocity. Once the vortices are released their vortic-
ity starts to decrease. As Ar increases further between Ar = 6,000
and Ar = 11,000, the wake structure changes from nonstationary
to stationary. For Ar = 6,000 small instantaneous asymmetry of
the near wake is observed, which causes slight transverse oscil-
lation of the wake. For Ar = 11,000, the wake of the bubbles has
recovered a stationary, symmetrical state and the bubble rises on a
straight path. The simulation results for the evolution of the wake
structure with Ar resemble the experimental observations in Roig
et al. [54].

5. Concluding remarks

A mass-conserving FE-LBE model for simulating two-phase flow
at high Reynolds numbers and large material property contrast has
been proposed. The model is based on the conservative phase-field
equation for interface capturing and the pressure-velocity formu-
lation of lattice Boltzmann equation (LBE) for recovering the hy-
drodynamic properties. The Galerkin finite element method is ap-
plied to solving the conservative phase-field and discrete Boltz-
mann equations. The stability and accuracy of the model in cap-
turing complex interface topologies are assessed through conduct-
ing several test cases for bubble rising problem in different flow
regimes. The observed bubble shapes and the time evolution of the
rising velocity and centroid of the bubble are consistent with pre-
vious experimental and numerical results. The model successfully
predicts the complex dynamics of single bubble rising at a high
Reynolds number. The evolution of the bubble shape as a function
of Archimedes number and the observed Reynolds numbers of the
rising bubble show a good agreement with the experimental re-
sults by Roig et al. [54]. The simulated wake dynamics, bubble path
and shape oscillations in different regimes of oscillations agree
well with experimental results. The proposed mass-conserving FE-
LBE model improves a previous FE-LBE model [22] in terms of
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mass conservation. The FE-LBE model described here is a promis-
ing technique for simulation of a variety of multiphase flows at
higher Reynolds numbers and complex geometries.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Lina Baroudi: Validation, Software, Writing - original draft.
Taehun Lee: Conceptualization, Software, Supervision.

Acknowledgments

This work is supported by the US Department of Energy, Office
of Nuclear Energy’s Nuclear Energy University Programs. T.L. also
acknowledges the partial support from the National Science Foun-
dation under Award No. 1743794. L.B. and T.L. gratefully acknowl-
edge the use of the CUNY High Performance Computing Clusters.

Appendix A. Fringe Zone

When a rising bubble is simulated using a computational do-
main with periodic boundary conditions in the ascent direction,
the bubble can be affected by its own wake. The bubble wake
can have an effect over a significant distance up to 50 times of
the bubble diameter d. The nonzero velocities ahead of the bubble
originating from its own wake can affect the shape and the dynam-
ics of the bubble compare to a bubble rising in quiescent liquid. A
fringe zone (shown in Fig. A.17) in front of the bubbles can be used
to suppress the velocities generated by the bubble wake. Inside the
fringe zone all the velocities are damped to zero. The fringe zone
spans the entire horizontal plane and has a small height in the ver-
tical direction, in our tests 0.25d. The fringe zone moves with the
bubble velocity U;. The velocity inside the fringe zone are damped
with the following forcing term

Frrnge = %A(y)[u()(y) —u@y)l (A1)


https://doi.org/10.13039/100000001

L. Baroudi and T. Lee
gi

L %Frin}ge’zoney/ -b

X

Fig. A.17. Position of the fringe zone. Adopted from Ref. [65].

toward a desired velocity Uy (for our purpose Uy = 0). The function
A(y) = 0 outside the fringe zone and takes the form of a smoothed
step function inside the fringe zone as follows

A(y) = Amax[s(}’ —J’start> _ S(}’ — Yend I 1)]

bstart bend
where Amax is the maximum amplification factor, ysarr and y,uq
are the horizontal coordinate of the start and the end of the fringe
zone, respectively, bsqr and b,,; are the widths over which the
fringe function is ramped up from zero and ramped down to zero,
respectively, and S is a step function given by

(A2)

1 1
[1 +exp(m + y—f>]

Based on numerous tests, the following parameters have been
found suitable for the simulation of gas bubble with d =1 rising
in liquid: s =3d, b=0.25d, Amax = 13, bstart = bepg = 0.05d. The
start and end coordinate of the fringe zone ystqrc and y,,q are de-
termined based on the position of the bubble center of mass.
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