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Abstract Sensors play an integral role in numerous devices across a diverse range
of domains. While Cyber-Physical Systems (CPSs) and the Internet of Things
(IoT) use them extensively, sensors can also be commonly found in many stan-
dalone electronic devices. Concerns over the susceptibility of sensors to malicious
attacks have led academia to focus on the security of these sensors. To help unite
these efforts, we propose a lexicon to easily differentiate between types and meth-
ods of attacks on sensors. By using these definitions, one can quickly and clearly
understand the method and the target of an attack. We examine the most recent
and influential attacks on sensors, especially when they are acting as edge nodes of
systems, as well as defenses against said attacks. We then seek to categorize these
methods according to our lexicon, demonstrating its usefulness and solidifying the
meaning of proposed terms.

1 Introduction

Sensors play an integral role in numerous devices across a diverse range of domains.
Cyber-Physical Systems (CPSs) [18] and the future Internet of Things (IoT) will
heavily rely on sensors [26]. CPSs and the IoT seek to integrate sensing, compu-
tation, and control of actuators by networking distinct devices together [16, 56].
Specifically, they tie sensors, processors, and actuators in the real (physical) world
together through network (cyber) communications. CPSs are now involved in many
areas: everything from certain brands of modern refrigerators [45], to controllable
loads in power grids [25] [71] [2], and potentially to fleets of autonomous vehi-
cles [9]. Because of the IoT, CPSs, and other fast growing techniques that rely
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on accurate sensor readings, attacks on sensors are gaining increasing attention in
academia. This is especially true for sensors often used in high-stakes situations,
e.g. cameras and lidar in autonomous vehicles or phasor measurement units in
power grids.

In these systems, sensors commonly play the role of edge nodes [4]. Edge nodes
are the components of a system that interact with environments, components,
or other miscellanea that are not a part of that system [4]. Thus edge nodes
form the border or edge between what belongs to the system and what does not,
hence their name. As such, edge nodes are often more susceptible to attacks than
other points in a system [6], due to their external exposure. That is not to say
that internal connections are perfectly secure, there are many issues facing such
nodes [21], but a system’s sensors are often exposed both in the physical and cyber
domains. As such, there have been a number of prior literature reviews on sensor
attacks [3,17,25,26,55], with the most related to this particular topic being from
Alladi et al. [3], Thapliyal et al. [55], and Giechaskiel and Rasmussen [17]. Alladi et
al. examined IoT security in general and proposed their own taxonomy to describe
attacks in that realm. Thapliyal et al. similarly propose a taxonomy specific to ve-
hicular security issues. Meanwhile, Giechaskiel and Rasmussen covered materials
more similar to our paper, where they proposed a taxonomy for what they termed
“Out-of-Band Signal Injection Attacks.” These attacks fall under Perception Stage
Sensor Exploit Attacks in our work, which will be further expanded upon in Sec-
tion 2. Our main contribution expands upon these papers by providing a unified
classification for attacks on sensors as edge nodes.

There have been many demonstrations impairing CPSs through the sensors
they depend on. Lidar sensors and point cloud object detection in autonomous
vehicles are vulnerable to external influences [44] (7,48, 64]. Additionally, attacks
on DNN image analysis are a well studied topic [31, 36, 65]. Global Positioning
System (GPS) receivers in smart grids [47, 71], and wheel speed detection in
cars [49] are all vulnerable to sensor attacks. Even attacks on Automatic Speech
Recognition (ASR) like Apple’s Siri or Amazon’s Aleza have been deeply ex-
plored [1,29,54,68,69]. Attacks on sensors as edge nodes have ramifications outside
of CPSs as well. GPS spoofing and jamming attacks are believed to be responsible
for several ship collisions [63], in addition to less disastrous maritime events [19].
They even have been shown capable of disrupting aircraft landing systems [46].
Medical systems that are traditionally offline, such as baby incubators [59] and
medical dosage regulators [43] have also been attacked. Even commonly used gy-
roscopes and accelerometers have been exploited [52,58], and these can and do
belong to many traditional and cyber-physical systems. There likely are other sen-
sors with exploits unknown to academia but which are known to black hat agents.
Even for sensors with known exploits and tested defenses, implementing said de-
fenses may be non-trivial, or uneconomical after considering the risk. To rectify
said issues, simpler and cheaper methods of defense are required.

Sensors’ susceptibility to external actors, especially malicious ones and the de-
fense of said sensors, is an expanding topic of research. Currently the terms used
across the many disciplines involved in sensor defense can be highly diverse or over-
lapping [17]. This can lead to confusion when discussing methodology. Take “False
Data Injection” and “Spoofing” as an example. The differences between these can
often be unclear for newcomers to this field. We present a specific terminology
that allows readers to determine the goal of the attack and gain some measure of
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its operating principles. Even in recent works that propose their own taxonomies,
categories can be difficult to distinguish. While there may be distinctions in these
that hold for IoT at large, the categories are very similar for edge nodes. For exam-
ple in [3] when describing a “Device Software Attack” the authors present a case
where a line of code is changed through the debug port, but then latter describe
“Malicious Code Injection” as when a “device is compromised by injecting mali-
cious code into the device via exposed and insecure software/hardware interfaces.”
In our method, all such attacks would be called Sensor Commandeering Attacks,
as rather than altering the transduction of a device, a third-party takes direct
control of it. Specific language allows for complex ideas to be discussed quickly
and clearly [38,39]. Although this can create a slight learning curve for the current
community, it has been found to be overall beneficial to new minds entering the
field [62]. To help unite the efforts to protect sensors against malicious attacks, we
propose a lexicon to help differentiate and compare between types and methods of
attacks. We go further to provide definitions and examples to our lexicon, and in
doing so seek to cover the current state of the art on sensor attacks and defenses
through our contributions.

Our paper is organized as follows, in Section 2 we introduce stages divided
according to the proposed lexicon and present examples of various sensor attacks
belonging to each stage. Following that, in Section 3, we list defenses to the types
of attacks, and how they relate to the general defense strategies at each stage. We
then move onto Section 4, where we discuss new directions of research. Finally, in
Section 5, we present our conclusions.

2 Attacks

Table 1: Details of each attack type, the stage to which it belongs, and its defining
feature.

H Attack Stage \ Attack Type

Defining Feature H

Reception Classical In-Band Transduction [17]
Reception Data Inter-System Communication
Perception Sensor Exploit Out-of-Band [17]

Perception Algorithmic Attacks Perturbed Input [31]
Projection Sensor Commandeering | External Control

Projection Signal Intra-System Communication

In this survey, we divide attacks on sensors into three stages: The Reception
stage contains attacks that alter information the sensor receives from its environ-
ment through an expected vector (i.e. in-band transduction attacks [17]), Per-
ception stage attacks alter how the system interprets the information it receives,
and Communication stage attacks target communication of information. Attacks
on each stage are broken down into two sub-categories. These are listed in Table
1, and examples of each occurring in an autonomous vehicle system are given in
Figure 1. For clarity’s sake, we here on use the term “attack” to refer to malicious
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2. Classical Attacks
Target: In-Band Sensing
Example: Petit et al.

4. Sensor Commandeering Attack 3. Adversarial Example Attacks
Target: Alter Sensing Objective Target: Deep Learning Models
Example: Kumar et al. Example: Kurakin et al.

6. Signal Attacks 5. Sensor Exploit Attacks
Target: Intra-System Communication z Target: Out-of-Band Sensing
Example: Roufa et al. Example: Son et al.

Fig. 1: Examples of different attacks on an autonomous vehicles as classified by
our lexicon. 1 refers to the GPS Data Spoofing attack as described by Oligeri et
al. 2 is the Classical Spoofing/Jamming attack on lidar as conducted by Petit et
al. against lidar. 3 represents Algorithmic attacks generated by Kurakin et al. for
deep learning image classification. For 4, we select the Sensor Commandeering
Sleuthing attack by Kumar et al. against in-car Automatic Speech Recognition
(ASR). In 5, we show the Sensor Exploit Spoofing attack against gyroscopes by
Son et al. Finally, 6 refers to the Signal Sleuthing/Spoofing attack completed by
Roufa et al. against tire pressure networks.

Table 2: An outline of each type of attack and their potential Targets.

Attack Type \

Spoofing Jamming Sleuthing ||

Classical v v X
Data v v X
Sensor Exploit v v X
Algorithmic Attacks v v X*
Sensor Commandeering || X v v
Signal v v v

exploitation of a single vulnerability. In spite of this, we note that it is possible for a
single exploit to require multiple vulnerabilities from different sub-categories con-
currently. Further, we propose that attacks can also be further specified by Target.
We propose the following Targets: Spoofing, Jamming, and Sleuthing, which are
distinct, though it is possible for a single attack have the ability to have multiple
Targets, just not at the same time. Spoofing attacks aim to introduce false data
into a system. Jamming attacks are Denial-of-Service (DoS) attacks. Sleuthing
attacks provide confidential information about a target system to an adversary.
Some stages have no current examples of attacks with certain Targets, as shown
in Table 2.
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Fig. 2: A visualization of Reception Stage Attacks: Classical Attack (left); Data
Attack (right).
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2.1 Reception Stage Attacks

Reception Stage attacks entail an adversary who has the ability to influence the
sensing apparatus along its intended vector. When we say that an attacker’s ability
to influence sensing apparatus along its intended vector, we mean they can influ-
ence the environmental conditions the sensor is monitoring. Examples include:
directing lasers (light) at camera lenses, increasing heat near a thermometer, and
creating Electromagnetic signals with the same method as a victim receiver (i.e.
FM broadcasting for FM radio). These are referred to as an In-Band attacks [17].
The Reception stage has two sub-categories, Classical and Data attacks. Classical
attacks encompass simple transduction attacks, while Data attacks focus on Elec-
tromagnetic (EM) signals external to the victim system, which are more complex.
We can see a simple example of Reception Stage Attacks in Figure 2. In a rudimen-
tary Classical attack, an adversary heats the area near a thermometer monitoring
a smart home, resulting in incorrect readings for the home as a whole. And in the
Data Attack, the adversary overwhelms actual GPS info with their own signals.

2.1.1 Classical Attacks

Classical attacks on the Reception stage of systems are often the most straightfor-
ward and simplest attacks to understand, as they are often In-Band [17] attacks.
Giechaskiel and Rasmussen describe Out-of-Band attacks in their work, which are
attacks taking place on vectors that the sensor is not designed to operate on [17].
Classical attacks are the opposite of these, where attackers manipulate signals that
the sensor is expecting. Petit et al. provide a clear example of a Classical Spoof-



6 M. Panoff et al.

ing attack in their lidar attack. They direct lasers of the same wavelength as a
victim lidar at it, causing the victim lidar to incorrectly record the time its own
projections have traveled before returning. By altering the recorded flight time
of a victim lidar’s beams, its understanding of the distance to nearby objects is
changed [44]. By creating false points of data, Petit et al. are specifically conduct-
ing a Spoofing attack. Petit et al. can Spoof fake walls from 40 to 70 meters from
the victim lidar. Spoofing attacks can be achieved through various methods across
all three stages, but Classical Spoofing Attacks are done by directly altering the
sensing apparatus or environment. Petit et al. achieve this by directing a laser
at the target lidar’s photodiodes. Petit et al. also direct Infrared (IR) beams at
cameras, resulting in the camera’s autoexposure blinding the camera. This is a
Jamming attack, where sensors are barred from fulfilling their function, which is
often achieved by overwhelming or otherwise saturating the sensor in Reception
attacks. Shin et al. expand upon Petit’s work on Classical attacks against the
Velodyne lidar [48], creating up to 10 new points at any position (i.e. a Spoofing
Attack) and saturating (i.e. a Jamming attack) the lidar to prevent the detection
of up to 1m? of area. This can potentially create situations where Autonomous Car
CPSs can be tricked into detecting nonexistent objects or fail to detect existing
ones [7]. These failures could result in non-optimal behaviors or even accidents [7].
Shoukry et al. also perform a Classical attack against anti-lock braking systems.
Shoukry finds that by activating a magnetic actuator near a magnetic encoder,
malicious entities can effectively control the input to the encoder. As the actuator
produces much stronger emissions than the magnet sensor paired with the target
sensor, it can overwhelm the true readings, resulting in both successful Spoof-
ing or Jamming attacks [49]. This could especially cause issues for CPSs such as
autonomous vehicles, which depend on accurate tire speed and traction readings.

2.1.2 Data Attacks

Data attacks imitate (i.e. Spoof) or deny (i.e. Jam) external data carried by struc-
tured Electromagnetic (EM) waves (e.g. AM and FM radio communication, GPS
signals). Reception stage Data attacks also “cross over” the edge of a system.
While very similar to Classical attacks in that intended transduction is the core
mechanic, we distinguish between Data and Classical Attacks due to the complex-
ity of Data attacks. An example of this is in GPS Spoofing. GPS Spoofing is not
simply creating EM waves, or even recording real EM waves and replaying them.
In order to Spoof, the attacker must have a desired location to translocate the
victim to. In order to achieve that, complex calculations must be done to identify
the timing of multiple signals. In many cases Data attacks are even more complex,
as the EM wave contains encryption that protects the system from false signals.
As the satellites transmitting the GPS data do not belong to the system (i.e. are
external), attacks that target these transmissions belong to the Reception Stage.
This is in contrast to Communication stage Signal attacks, which will be discussed
latter on. An example of a Data Spoofing attack is given in Oligeri et al., where
the authors overwhelm GPS receivers in a car with transmissions that mimic true
GPS [42]. GPS Spoofing is a danger to maritime ships as well [19,63]. GPS Jam-
ming against ships has also been successfully conducted, and is thought to be
behind several maritime accidents [19,63]. Smart grids and other CPSs [47] are
also potential victims of GPS Data attacks. Shepard et al. examine the susceptibil-
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Fig. 3: Sensor Exploit Attacks (left) and Data Attacks (right), both belong to the
Perception Stage.

ity of smart grid sensors called Phasor Measurement Units (PMUs) to GPS Data
Spoofing attacks. PMUs are used in smart grids to obtain the voltage, current,
and phase at different points of the network, and then send that data to a central
location. Even small changes to the reported time of PMU data could potentially
lead to an incorrect response from the system, causing blackouts or generator shut-
downs [47]. PMUs use GPS information to obtain accurate timing and Shepard
uses Data Spoofing Attacks on individual PMUs to destabilize the Smart Grid as
a whole [47]. Sathaye et al. target Aircraft Instrument landing system sensors with
a Data Spoofing attack and lead them to large offsets of ground truth (50 m) due
to the presence of external signals [46].

2.2 Perception Stage Attacks

Perception Stage attacks are attacks utilizing design oversights to control a system.
We divide Perception stage Attacks into two categories. Sensor Exploit attacks,
described as Out-of-Band attacks by Giechaskiel and Rasmussen [17], use unin-
tended transduction to alter readings. Further analysis of these attacks can be
found in [17]. Algorithmic attacks meanwhile target control algorithms, especially
machine learning algorithms, to disrupt how a victim system perceives stimuli.
Examples of Perception Stage Attacks are in Figure 3. The left side shows that
through a fictitious Sensor Exploit, the adversary can alter a smart home’s re-
ported temperature by directing light towards an in-home thermometer. On the
right, an Algorithmic Attack has adversary creating an adversarial example to the
image as seen from an on-car camera.
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2.2.1 Sensor Exploit Attacks

DolphinAttack by Zhang et al. uses high-frequency sounds, inaudible to humans,
but audible to commonly used microphones due to non-linearities [69] in the vic-
tim sensor’s circuit. This non-linearity allows malicious entities to imperceptibly
command Automatic Speech Recognition (ASR) devices such as Amazon’s Aleza.
ASRs are a type of CPS where audio data is captured at the user’s home and ana-
lyzed by a remote server in order to determine the command given. By modulating
a voice command with an ultrasonic carrier, the authors are able to both activate
(command: “Hey Siri”) and recognize commands(“turn on airplane mode”) over
80% of the time even with 75 dB of background noise. DolphinAttack is chiefly a
Sensor Exploit Spoofing Attack, as if an attack is conducted to create a false order,
or change some settings, it is a Spoofing attack. An induced voice command to
gain information from the system is also a Spoofing attack, as the the attack is ac-
tually creating false data points, rather than obtaining data directly. Son et al. and
Trippel et al. show the susceptibility of Micro-electromechanical systems (MEMS)
gyroscopes and Inertial Measurement Units (IMUs), respectively, to external vi-
brations [52,58]. They demonstrate the ability to conduct Sensor Exploit Spoofing
by changing the readings to a certain desired input. Trippel et al. has shown their
capability to control the victim IMU to spell “WALNUT” when its readings are
plotted. Similar to DolphinAttack, in LightCommands, Sugawara et al. find that
they can induce an ASR to perceive spoken words by directing a laser at a vic-
tim microphone by modulating the power of the laser with recorded audio. The
authors were able do this 110m from the victim device, and while in a separate
building by directing a laser through adjacent windows. Attacks such as these,
called Out-of-Band attacks [17], are Sensor Exploit attacks in our lexicon. [54].
They are grouped by their shared use of unintended transduction vectors. That
is, attacks that make use of transactions capabilities are unintended. One does
not expect an accelerometer to record vibration in addition to acceleration. Sen-
sor Exploit attacks make use of these oversights to alter sensor readings through
unprotected vectors.

2.2.2 Algorithmic Attacks

Algorithmic attacks focus on the algorithm through sensor data collected by the
system. Many CPSs, as well as more traditional systems, use various algorithms to
control a system. These “control algorithms” respond and adapt to their environ-
ment. However, it is often possible to “trick” this control algorithm into incorrect
responses through certain stimuli, which is the focus of Algorithmic attacks. Al-
gorithmic attacks depend on the creation of adversarial examples. Adversarial
examples are most often deployed against Deep Neural Networks (DNNs). While
other methods of machine learning, such as k Nearest Neighbor (KNN), have been
shown to be vulnerable to adversarial examples as well, there is far less academic
interests in those areas. In [51], Sitawarin et al. focus on creating examples that
are adversarial to both DNN and a KNN. This is because KNNs can be used to
screen for adversarial examples and identify them before passing them to a DNN
for analysis. However, they find creating adversarial examples against KNNs to
be intractable [51]. Adversarial examples add perturbations to a given instance,
causing DNNs to incorrectly evaluate the instance. Perturbations are artificially
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induced changes to inputs that greatly alter DNN responses. They are often limited
in number or “distance” (i.e. how much they change the input). A traditional ex-
ample of abiding by this limitation is given by Kurakin et al. where small changes
to pixel values in an image results in large changes to classification by a popular
DNN [31]. These perturbations are often created to Target Spoofing or Jamming.

In CommanderSong, Yuan et al. place malicious voice commands in a song,
hidden in plain sight, rather than being undetectable [68]. They do this by adding
perturbations to an existing song, encoding voice commands that sound different
to ASR than to humans. This is an Algorithmic Spoofing attack very similar in
goal to DolphinAttack. The created song can trick ASR above 70% of the time,
even when being played back from a speaker. The authors also asked subjects
to identify if they heard anything abnormal from within the altered song. Less
than 30% of respondents could identify an abnormal element, and none could
recognize the command. More recently, in Dewvil’s Whisper, Chen et al. are able to
further improve on this strategy, with even lower detection rates [10]. Abdulla et
al. [1] describe an alternative Algorithmic Spoofing attack on ASR systems using a
fundamentally unique methodology. Rather than utilizing an existing sound source
(e.g. a song) to cover their commands, the authors use psychoacoustics to restrict
their inputs to phonemes that fall outside of a given language but which Automatic
Speech Recognition (ASR) for that language recognizes. They use deep learning
to create a sequence of these phonemes that elicits a response form the ASR.

Adversarial point cloud creation is also a highly active topic, with particular fo-
cus on networks used by autonomous vehicles [7]. Creating adversarial point clouds
is often done by either shifting or creating points as perturbations. However, in
many cases the amount of perturbation is limited to amounts similar to what can
be achieved by current lidar Classical Spoofing attack methods. As an example,
Shin et al. find the ability to spoof only 10 points in a point cloud, without much
control over their placement [48]. That said, by restricting the attack, it can feasi-
bly be implemented as a Classical Spoofing attack on the Reception stage through
exiting lidar methods immediately [44] [48]. Alternatively, some researchers ignore
the current restrictions and instead change the actual surface of an object to re-
flect a generated point cloud [7]. In [7], Cao et al. create a neural network that
generates adversarial point clouds against the lidar perception module of Baidu
Apollo. The authors then use a 3d printer to construct these designed objects in
the real world. The created objects are able to avoid detection by Baidu Apollo
around 90% of the time, even when placed within 1m of a lidar.

In sticker attacks against video deep learning models, carefully constructed
stickers are attached to either objects or placed over the camera lens [36] [65]. Li et
al. create stickers with a Deep Neural Network (DNN) as static masks that subtly
change how pictures are interpreted by other target DNNs, preventing accurate
object detection, (i.e. a Jamming attack). These stickers are overlaid on a target
camera, appearing as dots or smudges to humans, but completely distort a DNN’s
perception of the scene. These adversarial actions include: changing all cars in an
image to be detected as toasters or not at all (i.e. Jamming), or having toasters
be detected where they are not (i.e. Spoofing). Sticker attacks were found to be
effective on image classification and segmentation, as well as object detection [36].
That said, Li’s attack succeeded between only 27.9% (for 1 dot) and 49% (for 10
dots) of the time. Attacks such as these could lead to accidents if autonomous
vehicles or other transportation CPS are not adequately protected [36].
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Fig. 4: Attacks on the Communication Stage, specifically, a Sensor Commandeering
Attack (left) and a Signal Attack (right)

2.3 Communication Stage Attacks

Communication Stage attacks target the sensor as an edge node, that is, as a
sensor relays data either into, or out of, a system. Attacks on this Stage are often
more “cyber” than “physical” in nature, the opposite of Reception stage attacks.
That is, attacks on this stage targets communication, rather than transduction.
This stage can be divided into two subcategories, Sensor Commandeering attacks,
and Signal attacks. Sensor Commandeering attacks change some functionality of
the system to benefit the attacker, while Signal attacks target the communication
between the sensor and the rest of the system. We demonstrate Communication
Stage attacks in Figure 4. In this Figure, a Sensor Commandeering attack on
the left has an adversary take direct control of a thermometer in a smart home,
while in the Signal Attack on the right, the adversary disrupts the communication
between an intact on-board camera and a victim vehicle.

2.8.1 Sensor Commandeering Attacks

The hard drive attack as described by Kwong et al. in Hard Drive of Hearing [32]
is an example of a Sleuthing attack through Sensor Commandeering. Kwong et
al. use information gathered by target sensors to extrapolate an additional facet
of the environment. By repurposing information that hard disks collect to main-
tain functionality, namely the offset of a needle from a target position, to record
nearby noises allowing it to act as a microphone. This data is then sent to the
attacker. Data centers or other locations with many hard drives and high amounts
of background noise, where people need to speak loudly to be heard, would be
particularly susceptible to the Hard Drive of Hearing attack [32] Kwong et al. are
able to recover words spoken 10cm from the hard drive with a 11.8dB signal to
noise ratio for male speakers and a 12.8 signal to noise ratio for female speak-
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ers. As this attack changes how a sensor’s data is used, namely expanding the
sensor’s detection capabilities in a new direction, it is a Sensor Commandeering
attack. Sensor Commandeering attacks can be difficult to detect, as the sensor
likely never stops performing as intended, instead it gains new responsibilities,
likely to the detriment of the operators of its original system. In Kumar et al.’s
Skill Squatting [29], the attack consists of changing the outputs the sensor recog-
nizes as valid. Specifically, they examine if Alexia Skills (i.e. commands that need
to be downloaded from external sources) can be created with similarly pronounced
names to true skills, or with names similar to other skills that are commonly mis-
pronounced or misidentified. Examples of the “squatted skills” include company
names that have different regional pronunciation, or certain sounds that humans
commonly misspeak. This can be done to Jam users who wish to access a certain
service or skill. This functions is a Sleuthing attack as well, as the attack is used to
access confidential information. Sensor Commandeering attacks may be particu-
larly effective against CPSs as a CPSs component may be in infrequently checked
or improperly secured areas. This may allow for adversaries to gain access to the
device and alter it for their own purposes.

2.8.2 Signal Attacks

Signal attacks focus on disrupting the EM signals of a system, after transduction.
Instead of interfering with transduction directly, Signal attacks can mimic a sensor
and provide false information to (Spoofing or Jamming attacks), and receive con-
fidential information back (Sleuthing attacks), from the system. They are most
often deployed against networks of sensors that utilize wireless communication,
such as CPSs. Roufa et al. present an example of this, where the authors Spoof
and conduct a Sleuthing attack on a tire pressure monitoring system [24]. In this
work, tire pressure sensors communicate wirelessly with a central node in a vic-
tim car. Roufa et al. implement Signal attacks, where attackers inject (i.e. Signal
Spoofing), deny (i.e. Signal Jamming), or listen in on internal system signals i.e.
Signal Sleuthing even while the car is in motion and 9m away from the attacker.
Similar to its counterparts in the Reception stage, Data attacks, Signal attacks use
external EM waves, but have a different focus. Communication stage Signal attacks
focus on communication between the sensor and system, rather than between the
environment and sensor. Instead of interfering with transduction directly, Signal
attacks can mimic a sensor and provide false information to the system (Spoof-
ing or Jamming attacks) or receive confidential information back from the system
(Sleuthing attacks).Signal attacks often have greater control than Data attacks
however, as the reported sensor readings themselves are modified rather than the
input to the sensor.

Signal attacks can be implemented on wired systems as well. In Ghost Talk
[30], Kune et al. explore the idea of Electro-Magnetic Interference (EMI) injection
into analog sensors, corrupting readings from Electrocardiograms and Cardiac
implantable electrical devices (CIEDs). The authors are able to cause interruptions
in a CIED, as well as dominate true signals in an ECG while using only 50mW
to transmit. A more recent paper using EMI to attack sensors, Trick or Heat [59],
focuses on the effect of EMI on temperature sensors. In this work, Tu et al. can alter
the temperature of baby incubators from a distance, even through walls, with a
small hand-held device. This is done not by increasing the actual temperature near
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the sensor, as in a Classical attack, nor is EM a designed vector as in Data attacks.
Instead, after the victim sensor obtains a signal, EMI is introduced, and both are
amplified, resulting in an incorrect reading. Tu et al. achieve a 60°C change with a
3.08-Watts device at a distance of 3m with this method. Both methods can either
Spoof (e.g. create false singular set points) or Jam (e.g. prevent the sensor from
reading correct values).

3 Defences
3.1 Reception Stage Defenses

There are two main methods to defend against Reception Stage Attacks. 1) lower
an adversary’s control over the environment and 2) implement checks on the data
received from a sensor. These checks differ depending on the particulars of the sys-
tem. For some Data Attacks encryption on the desired signals is sufficient defense,
while defending against Classical Attacks may entail sensing multiple times from
multiple perspectives, a technique known as sensor fusion.

3.1.1 Classical Attack Defenses

Classical Attacks on the Reception Stage are the simplest to create, but often
difficult to defend against. Sensors are transducers, and as such must react to
environmental changes [4]. If a malicious actor has a measure of control over the
sensing environment, or can impact it sufficiently, then they can influence the data
of a target sensor. Classical Attacks take advantage of this to compromise the
system as a whole, often by generating information that requires an immediate,
incorrect response, or to slowly build up errors over time, called a meaningful
response [12]. Petit et al. discuss common countermeasures to their attacks, which
could reasonably be expanded to Classical Attacks as a whole, such as sensor
redundancy and random sampling [44].

Sensor Redundancy, or Sensor Fusion is a defense technique where multiple
sensors, typically of the same type (and perhaps even make and model), are used
to sample an environment. This redundancy in sensors can improve performance
in many ways. It can increase the accuracy of a system’s understanding of the
environment by reducing the effects of noise. Should the sensors give vastly differ-
ent readings, the system can determine that at least one of the sensors is either
malfunctioning or under attack [60]. Sensor Fusion could keep a system to func-
tion while under either Spoofing or Jamming attacks. By identifying the affected
sensors and ignoring their data, the attack is mitigated. There are downsides to
this strategy however. One is cost: not only does the system need multiples of
each sensor (typically odd multiples to break ties) but it needs to have the en-
hanced capabilities to receive data from all the sensors and process said data in
a timely manner [60]. Another potential issue of this defense concerns Sensor Ex-
ploit Attacks. If the exact same type of device is used as part of a Sensor Fusion
defense scheme, that system becomes more susceptible to Sensor Exploit Attacks.
Also, while Sensor Fusion can be effective against targeted attacks, like the lidar
and camera attacks described by Petit et al. [44], is not effective against attacks
that truly change the environment. For example, take a system that monitors the
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temperature in a room. Sensor redundancy cannot protect against an adversary
actually raising the temperature near all sensors in the room.

Random sampling is a defense where the time at which a sensor samples its
environment is randomly determined [44]. This would only be effective in situations
similar to the lidar spoofing attack in which attacks heavily rely on predetermining
the time at which a sensor is expecting a response, and attacking during that
window. Random sampling is also ineffective against continuous attacks, as when
the sensor samples matters little.

While none of the proposed methods are without downside, or applicable to
every case, they do have their merits. Sensor Fusion in particular is often used in
systems that are vulnerable to noise or malfunction [60], and while the high price of
lidar currently prohibits the use of multiple units on a single system, autonomous
vehicles often have multiple cameras or radar units to achieve similar functionality.
These could foreseeably be used to determine if the system is under attack, if not
outright correct for the attacks.

3.1.2 Data Attack Defenses

Data Spoofing Attacks are more difficult to defend against. Rather than attacking
a singular target sensor directly, as can happen in Classical Spoofing Attacks, Data
Spoofing Attacks always flood the environment of the sensor with false EM. This
means that simple implementations of Sensor Fusion are ineffective, as they all
receive the same information. One possible defense to this is encryption, which is
standard for military use but often non-existent or weak for civilian applications
[19]. As Data Spoofing Attacks affect an area continuously, random sampling and
other probing techniques are likewise ineffective. GPS Systems historically use the
signal’s strength as a measure inversely proportional to its veracity (i.e. strong
signals are likely closer to the receiver, and are less likely to be from satellites,
hence they are more likely to be fake). There are issues with this assumption:
attackers could simply use weaker signals, or be more distant to their target,
and if no true GPS signal is received, then the attacker’s signal would be used
regardless.

A more complex implementation of Sensor Fusion can be an extremely potent
defense to this however. By combining different types of receivers, it is possible
to identify malicious signals, through comparing the time and errors present [42].
This requires more efforts than the method mentioned in the prior paragraph. For
example, in Drive-Me-Not [42], Oligeri et al. suggest two new defenses against GPS
Data Spoofing attacks. Firstly, by gaining a rough location of the vehicle through
the cellular network, it is possible to determine if GPS location shifts suddenly,
signifying an attack. They also find that it is possible to use multiple receivers
(sensors) to give additional, redundant information about the metric being sensed.
This information is in turn used to create a more accurate estimation of the state
of the environment (e.g. the location of the source of a given GPS signal) [42].
As the actual signal origin is a satellite in orbit, all the sensors would receive it
at about the same time. The input from a malicious source, on the other hand,
would likely be earthbound and be received at very different times.
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3.2 Perception Stage Defenses

Perception Stage defenses are difficult to discuss as whole, due to the wide disparity
between the two subgroups of attacks within the Stage. Sensor Exploits are often
a physical attack on the sensor, while Algorithmic Attacks seek to disrupt the
system’s underlying algorithms. What both share however, is that defenses revolve
around identifying manipulated data.

3.2.1 Sensor Exploit Attack Defenses

DolphinAttack [69] describes several methods of defense against their proposed
attack, closing the Sensor Exploit they use. Methods for defending against Sen-
sor Exploit Attacks can be broken down into two types: FExploit Closure, and
Ezploit Detection. Exploit Closure entails a solution that renders that particular
exploit obsolete or ineffective, most commonly through a change in hardware. Dol-
phinAttack for example suggests placing filters earlier in the microphone circuit,
which would stop their attack from functioning. Exploit Detection on the other
hand, consists of software analysis of inputs. This analysis is either conventional
or through machine learning, and determines whether a system is under attack.
DolphinAttack trains a machine learning Support Vector Machine (SVM) to clas-
sify input signals into attack signals and benign signals with 100% true positive
and negative rates [69].

Further examples of Exploit Closure can by found in both Son et al.’s work
Rocking Drones and Trippel et al.’s WALNUT. Rocking Drones [52] suggests phys-
ical countermeasures (e.g. foam) to prevent vibrations from reaching vulnerable
sensors, an idea shared by WALNUT [58]. This particular solution to MEMS sen-
sors susceptibility to high-frequency noise has existed since at least 2013. Soobra-
maney [53] finds that the effects of high-frequency noise are reduced almost 90%
when MEMS sensors are place in nickle microfibers enclosures. One explanation
for the lack of present implementation of these solutions is their lack of efficiency.
Foam would increase costs and provide incomplete protection (i.e it would not
block the entire attack, but reduce its potency). Foam in particular has its effec-
tiveness tied to volume, meaning an increase in product size may be necessary. It
also blocks airflow, potentially causing issues with heat dissipation.

3.2.2 Algorithmic Attack Defenses

The machine learning community has identified a few methods to protect their
innovations from adversarial examples, and therefore Algorithmic Attacks. There
are a few general theories on training networks resilient to these attacks. The first,
and most straightforward method, is to include adversarial examples in training
[67]. Adversarial examples are often changed as minimally as possible to straddle
decision lines. Training on these examples slightly adjusts the decision lines so that
the examples are properly classified. Fine-tuning this way can be difficult however,
as the adversarial examples need to be generated/collected. Every known method
of generating adversarial attacks should be used to create examples to train on.
This easily results in a tremendous amount of work to be done and data to be
added [57]. Even then, new methods are likely to be discovered in the future, which
would entail further fine-tuning.
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This type of defense would also still be vulnerable to black box attacks as
discussed by Tramer et al. [57]. Black box attacks in this context are adversarial
attacks where the attacker treats the target network as a “black box”, with the in-
ternal methods of the target model obfuscated in such a way that the attacker only
has access to responses to inputs [57]. This is as opposed to “white box” attacks,
where the attacker has access to the internals of the software, which simplifies the
creation of attacks. Black box attacks are more resistant to traditional Algorithmic
defense methods, so Tramer et al. introduce Ensemble Training. Examples gener-
ated by other static pretrained networks are supplied as training data in addition
to examples against the given network. Tramer et al. find it to be more effective
at defending against black box attacks than training only on non-adversarial data
and known Algorithmic attacks against a given model.

Another method of defending against Algorithmic attacks is detecting if the
target data is artificially perturbed [40]. In their work, Metzen et al. create a
sub network that determines if a given example has perturbations. Given that
information, it would be possible for a system evaluating sensor data to ignore
inputs that are classified as artificial [40]. This sub network could be included in
any number of other networks, meaning that it could impact many fields that use
machine learning and could be vulnerable to adversarial examples.

3.3 Communication Stage Defenses

Projection stage attacks target intra-system communication. Defenses at this Stage
are often not focused on the sensor itself, but rather on guaranteeing the com-
munication security of the system. Defenses include encryption, and traditional
anti-jamming techniques and there are more unique methods being explored as
well.

3.8.1 Sensor Commandeering Attack Defenses

Sensor Commandeering Attacks are almost impossible to completely defend against
at a sensor level as they take advantage of the sensor as an edge node. Sensor Com-
mandeering Attacks can utilize sensor data in an unintended way, raising privacy or
security concerns. To defeat such an attack, securing the system against unwanted
access is required. Following this philosophy, in Hard Disk of Hearing the authors
suggest methods to better secure hard drive firmware [32]. As the attacker needs to
upload malicious firmware in order to commandeer the drives, this would prevent
the attack. Preventing internally generated messages exiting the environment is
also suggested, in addition to preventing external access. Zhang et al. additionally
suggest using foam to reduce the impact of external noise on the senor. Foam is
again a feasible defense, but has the same issues as when discussed under Sensor
Exploit defenses. Kumar et al. propose countermeasures against their skill squat-
ting attack. As skills go through a certification process, analysis may be done to
detect skill names that are very similar. This could help defend against malicious
attacks, as well as prevent benign errors. It is important to note here that none
of the suggested defenses affect the sensor directly. Defenses against Sensor Com-
mandeering attacks are best implemented not in a single device, but by securing
the system’s communications. This is because Sensor Commandeering attacks rely
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on a method to send commands to and export data from the system, but many
potential ways to gather said data. We believe this to be out of the scope of this
paper, so we instead focused on other defense methods.

3.3.2 Signal Attack Defenses

Once again, Signal Attacks are similar to Data Attacks, with one pronounced dif-
ference. Notably, unlike Data Attacks from the Reception Stage, Signal Attacks
do not have the intrinsic requirement to be open to the environment. Disabling
outside access, especially for wireless communication, would greatly increase the
difficulty of Spoofing, Jamming, or Sluething intra-system signals. However, the
most straightforward way of doing this, by implementing wired communication
system, is not always feasible. Also, even if a CPS communicated purely through
wired connections, it would likely still be accessible through the internet. To pro-
tect these systems, additional strategies are required. For example, in their work,
Roufa et al. describe using “Reliable Software Design” to prevent impossible or
highly unlikely values input via a Signal Spoofing Attack from being processed
as valid sensor readings [24]. Reliable Software Design also would prevent over
responses to singular readings (e.g. there is only one message indicating an emer-
gency state, but preceding and following packets report non emergency conditions).
Reliable Software Design involves constraining input signals to reasonable levels.

This restriction on inputs can be achieved either through testing with Fuzzing
techniques, or through state estimation. Fuzzing is a security analysis technique in
which all valid input signals are sent as input to a device, and their reactions are
recorded. Fuzzing tests if certain combinations of commands or sensor readings
can result in exploits or unintended behaviors in a system. This could be used to
determine how to restrict inputs in such a way that those unintended behaviours
are avoided [27]. State Estimation on the other hand has the system predict its
current state (i.e. environment), position in the said environment, and the posi-
tions of all other objects or actors in said environment. Commonly used in robotics
to determine robot position, Kalman filters are the most common state estimators.
Once a system knows its state, it can determine how likely a change in said state
is [14,15]. For example, if a robot knows it is at the origin of its map and is moving
along the x-axis at a speed of 1 unit, it can safely disregard any readings saying
that it is now at a position of 100 units along the y-axis. Chang et al. further build
on this and develop a filter explicitly around CPSs [8]. This allows for the system
to intelligently adapt to different nodes being attacked at different times. Chang
et al. demonstrate that they can correct for up to a certain number of incorrect
readings, given by Equation (1):

p/2—1 (1)

where p is the number of sensor readings in a certain time window.

The third option is to encrypt intra-system messages. Encryption is a viable de-
fense in many systems as it is simple to implement while greatly increases security
of communications. This strategy is effective against both Sleuthing and Spoofing
attacks. Roufa et al. [24] however cannot implement encryption in their work, as its
non-negligible overhead affects the timeliness of the measurements. In many CPSs,
Encryption could be effective and efficient and as many wireless communication
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Table 3: A categorization of current works according to our proposed methodology.

H Category \ Attacks \ Defences H
Classical [7,44,48,49] [44,60]
Data 42,46, 47] 42]
Sensor Exploit [52,54,54,58,60] | [52,52,53,60]
Algorithmic Attacks [1,10,31,36,65,68] | [10,31,36,40,51,57,65,68]
Sensor Commandeering | [29,32] [29,32]
Signal 24,30, 59] [8,14,15, 24, 27, 70]

protocols now support it, easy to integrate. Two of the most popular methods for
CPS communication, Zigbee and MQTT both support encryption [5,6,50,66].

Lastly, in [70], Zhang et al. develop a simple method to determine if a sensor
is under a Signal Attack. By randomly changing the voltage provided to a device,
external sources of power can be detected. As an example, if the voltage to a
sensor is set to Ov, but the sensor still reports a reading other than 0, it is likely
under attack. They report that this defense can be easily and cheaply applied to
almost any system and has a true positive detection rate of 100% [70]. This would
be highly effective when deployed against the exploit in Trick or Heat [59] as it
would filter malicious signals injected.

4 Future Research Directions

While there is a variety of research being conducted on sensor attacks, there are
a number of new directions that have recently emerged. In this section a few
new directions of research will be discussed, focusing on what problems they are
attempting to solve, and the methods they employ. More research are expected to
be performed in these emerging areas for CPS/IoT security.

4.1 Lexicon

While it is often difficult to fully account for all potential developments in a field,
we feel that, barring the introduction of a completely new attack method, future
attacks will fall under one of our proposed subcategories. Even in that case, it will
still be able to be described as under one of our proposed Stages. Our support
for this stance comes from Tables 3 and 4, as it demonstrates the flexibility of
the current lexicon with the breadth of current work. As such, this taxonomy can
adapt and grow with the field. Also of note are the Target-Attack pairs that have
no current examples, as seen in Table 2. If examples of these are found, they could
open new fields of research.

4.2 Adversarial Sleuthing

Adversarial Sleuthing Attacks are a relatively new idea. While there have been a
few prior works that explore them, this could be a very large field in the future.
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Table 4: An analysis of current works’ available Targets.

H Category \ Jamming \ Spoofing \ Sleuthing H
Classical [7,44, 48, 49] (44,48, 49]
Data [42,47] [46]
Sensor Exploit [52,58,69] [52,54,58,69]
Algorithmic Attacks [10,31,36,65,68] | [1,10,31,36,65,68]
Sensor Commandeering | [29] [29] [32]
Signal [24,30,59)] 24,30, 59] [24]

Adversarial Sleuthing attacks attempt to use adversarial attacks to gain infor-
mation (i.e. a deep learning model) from the system. An attack is conducted by
providing a model with inputs that lie on decision boundaries, as it is possible to
reconstruct those boundaries from responses to those queries [23]. Companies ex-
pend a large amount of effort in training proprietary models in order to sell access
to them to end users. However, by selling access to these models, the models can
potentially be stolen. A large amount of work remains on conducting, identifying,
and defending against these attacks.

4.3 Lidar

Improving the resilience of lidar to Classical Attacks is another growing research
area. There are two main methods being explored to achieve this, chaotic lidar
and MEMS lidar. Chaotic lidar has excellent anti-jamming and anti-interference
properties [11]. While not the newest idea, as it dates back at least to 2004 [37],
feasible implementations remain an open question. MEMS lidar, on the other hand,
has the potential to greatly lower the costs associated with lidar. Lidar units are
currently prohibitively expensive, heavy, and power consuming [61]. Velodyne,
possible the largest producers of commercial lidar, have recently announced much
cheaper MEMS based lidar units. These “Velobit” lidar units could sell for as little
as $100 [28], as opposed to the current price of their flagship product, the Puck
which retails for four thousand dollars [22]. This could allow multiple lidar units per
vehicle, and in turn, implementation of Sensor Fusion techniques. MEMS lidars
in research are not nearly as effective as traditional ones currently are, as seen
in some recent work by Yoo et al. [67], so the development of better performing
MEMS lidars will be a pressing topic. This also carries with it new risks, as MEMS
lidars have not been tested from a security standpoint.

4.4 Physically Uncloneable Functions

Physically Uncloneable Functions (PUFs) are a relatively recent solution to au-
thentication problems. They leverage randomness (typically from process varia-
tion [20], though other sources exist as well [13,33]) to create a unique function
that only that device can reliably match. The challenge-response pairs will be
recorded first. Later, when authenticating that device, a challenge will be sent to
the device and the response will be collected. If the output matches the recorded
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value, then it is the same device. As the need for secure IoT communications grows,
an increasing percentage of devices will likely start implementing PUFs to meet
this need [41]. Importantly, several new types of PUFs obtain their randomness
through sensor readings [34, 35] rather than purely through internal process vari-
ation. While there are several strong advantages to these methods, PUFs may be
now vulnerable to the full range of Sensor Attacks. Jamming Attacks of various
stages on these implementations are the obvious focus of future research, as it may
be possible to deny service to authentic devices.

5 Conclusion

In this paper, we present most recent and impact attack and defense strategies
on sensors, as well as a new classification scheme to describe them. We divide
these attacks into three categories, based on the method of attack. Reception
Stage Attacks Target In-Band Signals, typically changing the environment or the
sensing medium directly. Perception Stage Attacks target the information a sensor
provides as well, but not directly. Communication Stage attacks target the system
a sensor belongs to, seeking to use it for malicious purposes. We also present
avenues for new research on sensor attacks and defenses, including new Targets
for proposed attacks. More research efforts are expected in the area of sensor
security given its wide usage in CPS and IoT domains. We hope that our survey
paper will help researchers to perform systematic investigations in this area.
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