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Asymptotic Convergence Rates of the Length of the
Longest Run(s) in an Inflating Bernoulli Net

Kai Ni, Shanshan Cao, and Xiaoming Huo

Abstract—In image detection, one problem is to test whether
the set, though mainly consisting of uniformly scattered points,
also contains a small fraction of points sampled from some (a
priori unknown) curve, for example, a curve with Cα-norm
bounded by β. One approach is to analyze the data by counting
membership in multiscale multianisotropic strips, which involves
an algorithm that delves into the length of the path connecting
many consecutive “significant” nodes. In this paper, we develop
the mathematical formalism of this algorithm and analyze the
statistical property of the length of the longest significant run.
The rate of convergence is derived. Using percolation theory and
random graph theory, we present a novel probabilistic model
named, pseudo-tree model. Based on the asymptotic results for
the pseudo-tree model, we further study the length of the longest
significant run in an “inflating” Bernoulli net. We find that the
probability parameter p of significant node plays an important
role: there is a threshold pc, such that in the cases of p < pc
and p > pc, very different asymptotic behaviors of the length of
the significant runs are observed. We apply our results to the
detection of an underlying curvilinear feature and prove that the
test based on our proposed longest run theory is asymptotically
powerful.

Index Terms—Inflating Bernoulli net, pseudo-tree model,
longest significant run, curve detection, asymptotically powerful
test.

I. INTRODUCTION

IN the application of image detection problems, one class of
questions is to determine whether or not some filamentary

structures are present in the noisy picture. There are a plethora
of available statistical methods that can, in principle, be used
for filaments detection and estimation. These include: Principle
curves in [1], [2], [3] and [4]; nonparametric, penalized,
maximum likelihood in [5]; parametric models in [6]; manifold
learning techniques in [7], [8] and [9]; gradient-based methods
in [10] and [11]; methods from computational geometry in
[12], [13] and [14]; faint line segment detection in [15];
Ship Wakes “V” shape detection against a highly cluttered
background in [16] and underlying curvilinear structure in
[17], [18] and [19]. See also [20], [21], and [22] for the
applications of the percolation theory in this area.

A. Background and Literature Review
One approach for this type of detection problems works

as follows. At localized batches, hypothesis testing is run to
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determine whether this batch may overlap with the underlying
structure. The hypothesis testing is run while the batch scans
through the entire image. The intuition is that if there is an
embedded structure, then the significant test results must be
clustered around the underlying structure. The difficulty comes
from the fact that there will be many false positives among
these tests. We want to take advantage of the fact that the false
positive testing results are not clustered, in relative to those that
overlap with the underlying feature. Our percolation analysis
is motivated by the above phenomenon.

Suppose we have an m-by-n array of nodes. A Bernoulli
random variable Xi,j is associated with each node (i, j) such
that if Xi,j = 1 then the node is significant (or open);
otherwise, insignificant (or closed). However, we suspect that
there is a sequence of nodes, with unknown location or
orientation, open or closed with a different probability p1 > p.
In [23], it is shown that the length of the longest significant
run, denoted by |L0(m,n)| throughout the paper, has the
following asymptotic rate of Erdös-Rényi type (See [24])

lim
n→∞

|L0(m,n)|
log1/ρ(m,p) n

= 1 almost surely, (1)

where ρ(m, p) is a constant depending on m, p, and also the
structure of the model.

However, the limitation of (1) is that m is fixed. Our paper
extends the previous work to derive the convergence rate of
the length of the longest significant run in the inflating model,
i.e., m → ∞ and n → ∞ simultaneously. Our theory is
related to the percolation theory, in which we will introduce
the critical probability pc and divide our theory into the p > pc
phase and the p < pc phase. For percolation theory, books by
Grimmett [25] and Bollobás [26] are good references. Durrett
[27] systematically studies an oriented site percolation model,
which is similar to the model in this paper. See also the
references therein.

Applications of the aforementioned can be the following:

• Detection of filamentary structures in a background of
uniform random points in [17]. We are given N points
that might be uniformly distributed in the unit square
[0, 1]2. We wish to test whether the set, although mostly
consisting of the uniformly scattered points, also con-
tains a small fraction εN of points sampled from some
(unknown a priori) curve with Cα norm bounded by β.
See also [28] for a more general case.

• Target tracking problem in [18]. Suppose we have an
infrared staring array. A distant moving object will create,
upon lengthy exposure, an image of a very faint track
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against a noisy background. We want to detect whether
there is such a moving object in a noisy image.

• Water quality in a network of streams in [29]. Water
quality in a network of streams is assessed by performing
a chemical analysis at various locations along the streams.
As a result, some locations are marked as problematic.
We may view the set of all tested locations as nodes
and connect pairs of adjacent nodes located on the same
stream, thereby creating a tree. We then assign to each
node the value 1 or 0, according to whether the location is
problematic or not. One can then imagine that one would
like to detect a path (or a family of paths) upstream of
a certain sensitive location to trace the existence of a
polluter or look for the existence of an anomalous path
upstream from the root of the system.

There is a multitude of applications for which our model
is relevant. Examples include the detection of hazardous
materials [30], target tracking [31] in sensor networks [32],
and disease outbreak detection [33]. Pixels in digital images
are also sensors, so that many other examples can be found in
the literature on image processing, such as road tracking [34],
fire prevention using satellite imagery [35], and the detection
of tumors in medical imaging [36].

The generalized likelihood ratio test, which is known as
the scan statistic in spatial statistics [37], [38], is by far
the most popular method in practice and is given different
names in different fields. Most of the methods related to scan
statistic assume that the clusters are in some parametric family
such as circular [39], elliptical [40], [41], or, more generally,
deformable templates [42], while others do not assume explicit
shapes [43], [44], [45], which leads to nonparametric models.

B. Our Contribution

We consider a nonparametric method based on the per-
colative properties of the network. The most basic approach
is based on the size of the longest significant run of the
graph after removing the nodes whose values fall under a
given threshold. If the graph is a one-dimensional lattice,
after thresholding, this corresponds to the test based on the
longest run [46], which [23] adapts for path detection in a thin
band. This test is studied in a series of papers such as [20]
under the name of maximum cluster test. A more sophisticated
statistic, which is the upper-level set scan statistic, is studied in
[47], [48], [49]. In its basic form, it scans over the connected
components of the graph after thresholding.

Recently, Langovoy et al. [20], [21], [22] employs the
theory of percolation and random graph to solve the image
detection problem. However, our methods in this paper are
different from the classic percolation theory since the nodes
here are not necessarily independent a priori.

Specifically, our work has three advantages.
1) We can drop the independence assumption among nodes

which is the fundamental assumption in the percolation
theory.

2) Our work is devoted to researching the asymptotic
behavior of the longest left-right significant run in the
lattice with a diverging m.

3) Our model can be easily adapted to the three or higher
dimensional cases with some notations change, though
for simplicity, the paper is mostly written based on a
2-dimensional model.

In practice, our work places a fundamental theory on
practical problems involving the length of runs. One direct
motivation comes from a statistical detection problem. In [17],
the authors proposed a method called the multi-scale signifi-
cance run algorithm (MSRA) for the detection of curvilinear
filaments in noisy images. The main idea is to construct a
Bernoulli net. Each node has a value of 1 (significant) or 0
(insignificant). Two nodes are defined as connected if they
are neighbors (for example, their altitude difference is within
C), that is, they can simultaneously cover a curve of interest.
The length of the nodes in the longest significant run is used
as a test statistic. If the length of the run exceeds a certain
threshold, then we conclude that there exists an embedded
curve; otherwise, there is no embedded curve. To formulate
this as a well-defined probability problem, we test the null
hypothesis of a constant success probability p against the
alternative hypothesis that some nodes, being on a filament
with unknown location and length, have a greater probability
of success p1 > p. Under the alternative, the length of the
longest significant run, |L0(m,n)|, is more likely to exceed
(i.e., be greater than) a threshold, which, under the null
hypothesis, cannot be exceeded. In the approach of [17] the
values of these parameters can be chosen for testing. The
question is how to choose these parameters so that the power
of the test can be maximized. This becomes a design issue.
The relation between |L0(m,n)| and other parameters must
be understood. The choice of parameters in the approach
of [17] is sufficient to guarantee the proof of asymptotic
optimality; Our research systematically searches the relation
between |L0(m,n)| and these parameters.

In [23], the authors show that ρ(m, p) in (1), which is the
limit of conditional probability ρn(m, p) that there will be a
crossing for n columns conditioning on the fact that there is
a crossing in the previous (n− 1) columns, lies in (0, 1) as
n→∞. Let Ac1,c2,δ1,δ2 denote the following set

Ac1,c2,δ1,δ2 := {(m,n) : c1n
1+δ1 ≤ m ≤ c2 exp[n(φ(p)−δ2)]}.

(2)
The set Ac1,c2,δ1,δ2 essentially states that as the column
number n increases, m increases faster than any linear growth
of n and slower than some exponential growth of n. In our
work, we show that in the case of p < pc, as m→∞, n→∞
and (m,n) ∈ Ac1,c2,δ1,δ2 , we have

ρn(m, p)→ exp{−φ(p)};

and
|L0(m,n)| = log(mn)/φ(p) + op(1),

where φ(p) is a positive function and will be defined in (6).
Applying our theory to the multi-scale detection method in

[17], we describe a multi-scale significant run algorithm that
can reliably detect the concentration of data near a smooth
curve, without knowing the smoothness information α or β in
advance, provided that the portion of points on the curve εN
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exceeds T (α, β)N1/(1+α). Our T (α, β) is smaller than that
in [17], which indicates stronger detection ability using our
theory. In the target tracking problem, our method provides a
reliable threshold such that the false alarm probability vanishes
very quickly as we get more and more sample points.

The rest of the paper is organized as follows. In Section
II, we present a pseudo-tree model and study the critical
probability and its reliability problems. In Section III, we first
summarize the previous work of the Bernoulli net. Notice that
from any node in the inflating net, there exists a pseudo-tree,
defined in Section II. Based on the results on the pseudo-tree
model in Section II, we further provide the extensions to the
Bernoulli net beyond the fixed number of rows. We present
some potential applications of the longest run method in image
detection problems in Section IV. We conclude our work in
Section V. All proofs are relegated to Appendix A.

II. PSEUDO-TREE MODEL

In this section, we will first introduce the pseudo-tree model
in Section II-A. Then we provide our results on the critical
probability and the asymptotic behaviors on the significant
runs in pseudo-tree models in Section II-B. Finally, we extend
our model to the high-dimensional pseudo-tree model and
generalize our results in the 2D case in Section II-C.

A. Model Introduction

In this section, we first present a model which has some
similarity to a regular or complete-tree model ([50], [51]).
Consider, for example, the lattice with nodes of the form

V = {(i, j) ∈ Z2 : −iC ≤ j ≤ iC, i ≥ 0}, (3)

and oriented edges (i, j) → (i + 1, j + s), where |s| ≤ C
and C is the connectivity constraint. Throughout this paper,
we will treat C as a constant and ignore the dependence on
C when the context is clear. We call (0, 0) the origin of the
graph and sometimes use 0 to denote the origin. Let Yi,j be
the i.i.d. Bernoulli(p) state variables corresponding to the node
(i, j). We say the node (i, j) is significant, if Yi,j = 1, and
insignificant if Yi,j = 0. In this paper, we are interested in
the length of significant runs starting at the origin, which is
a path consisting of only significant nodes in the graph. See
Figure 1 for a sketch of the model.

Note that even though the number of runs of length k in
the Pseudo-tree model and the regular tree model with 2C+1
descendants is the same (both equal (2C+1)k−1), the numbers
of nodes are considerably different in the first k columns—
about k2C for the former and about (2C+ 1)k for the regular
tree.

Let pc denote the critical probability for the site percolation
in the Pseudo-tree model, defined as the supremum over all
p ∈ (0, 1) such that the size of the significant run at the origin
is finite with probability 1, which is mathematically defined
in Equation (4). To our knowledge, this model has not been
fully studied yet, and we will elaborate on some results in the
next section. Analogous to the model presented here, recent
papers ([51], [52]) have studied the oriented and non-oriented
significant clusters or runs in a regular lattice.

(a) all possible paths in the Pseudo−tree model (b) a real run in the pseudo−tree model

Fig. 1. A sketch of pseudo-tree model with the connectivity constraint C = 2.
(a) gives all the possible edges in the model. In (b) solid nodes are significant.
The green path shows a possible real run in the pseudo-tree model.

B. Results

In this section, we give some results about the significant
runs in Pseudo-tree model V presented in (3). The difference
between the Pseudo-tree and Regular-tree model is that the
number of nodes in the former grows quadratically with the
depth, as opposed to growing exponentially with the depth in
the latter. Besides, in the Pseudo-tree model, different runs
may share the same edges, and therefore the behaviors of
distinct runs here are quite correlated.

1) Notations: We shall introduce some notations. We can
observe that there is only one node in the 0-th column, namely
the origin (0, 0), and there are 2kC + 1 nodes in the k-th
column, namely the nodes (k,−kC), . . . , (k, 0), . . . , (k, kC).
For k ∈ Z+, let B(k) = {(k,−kC), . . . , (k, 0), . . . , (k, kC)}
be the set of nodes in k-th column in V .

Let θk(p) denote the probability that (0, 0) is connectible
to the (k − 1)th column by a significant run, which implies,

θk(p) = Pp((0, 0)↔ B(k − 1)).

In other words, θk(p) is the probability that there is a signif-
icant run of length at least k starting at the origin. Given
any x = (x1, x2) ∈ Z2, let θxk(p) be the probability that
x connects the (x1 + k − 1)-th column with a significant
run. It is easy to see that θxk(p) does not depend on the
status of the nodes before the x1-th column and θxk(p) =
Pp({x ↔ B(x1 + k − 1)}) = θk(p). Because θk(p) only
involves finitely many nodes, one can easily see that θk(p) is
a continuous function of p ∈ [0, 1]. Throughout the paper, we
will sometimes use n as a subscript instead of k.

2) Critical Probability: Given the above notations, we state
some properties of the function θk(p) as follows:
• θk1(p) ≤ θk2(p), if k1 ≥ k2, which implies θ(p) :=

limk→∞ θk(p) exists;
• θk(0) = 0 and θk(1) = 1, for any k ≥ 1, which implies
θ(0) = 0 and θ(1) = 1;
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• θk(p) and θ(p) are nondecreasing with respect to p.
Thus, θ(p) is the probability that there is a significant run in

V starting from the origin and heading towards right forever
when the probability of a node to be open is p. In light of
this, we define pc to be the critical probability, i.e.,

pc := sup{p ∈ [0, 1] : θ(p) = 0}. (4)

So pc is the critical probability, above which it is possible
to have an infinite significant run starting from any node in
Pseudo-tree model.

Recall that in the r-regular tree model, the critical proba-
bility pc = 1/r. Our first result shows that in the Pseudo-tree
model, the critical probability is no smaller than 1/r, where
r = 2C + 1 (See [26]).

Theorem 2.1. The critical probability of the Pseudo-tree
model pc ≥ 1

2C+1 .

In the beam-let model of [17], each node is connectable to
81 nodes in the next column. Thus this theorem explains the
reason that the authors there took the membership threshold
N∗ such that p = P(Poisson(2) > N∗) = p0

81 for some p0 ∈
(0, 1).

3) Asymptotic rate of θk(p): In this part, we show that on
the sub-critical phase p < pc

θk(p) = Pp(0↔ B(k − 1)) = O(k exp{−kφ(p)}),

where φ(p) > 0 is a decreasing function of p.

Theorem 2.2. Suppose 0 < p ≤ 1. There exist positive
constants σ1 and σ2, independent of p, and a unique function
φ(p), such that

σ1k
−1 exp{−kφ(p)} ≤ θk(p) ≤ σ2k exp{−kφ(p)}, (5)

for any k ≥ 1. In particular,

log θk(p)

k
→ −φ(p) as k →∞. (6)

The next corollary gives the limit of θk(p)
θk−1(p) .

Corollary 2.3.

lim
k→∞

θk(p)

θk−1(p)
= exp{−φ(p)}. (7)

Given Theorem 2.2, one may speculate that φ(p) → ∞ as
p→ 0, since θ(p) = 0 as p = 0, and by the theorem it holds
that φ(p) > 0. We will show φ(p) has the desired properties
as p < pc in the following corollary.

Corollary 2.4. The function φ(p) := limk→∞− log θk(p)
k have

the following properties:
1) φ(p) is a continuous function on (0, 1];
2) φ(p) is strictly decreasing on (0, pc) and is a constant

equal to zero when pc ≤ p ≤ 1;
3) limp→0 φ(p) =∞.

Remark 2.5. By observing Corollary 2.4, Theorem 2.2 is of
no value when p ≥ pc because φ(p) is constantly 0 in the
supercritical phase.

Figure 2 gives the tendency of − log θk(p)
k against k for

different values of p when C = 1.
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Fig. 2. A sketch of simulated result of − log
θk(p)
k

against k with p being
0.2, 0.25, 0.3 when C = 1

C. Extension to Pseudo-tree model in dimension d′ = d+ 1

This section emphasizes that our results above for the
Pseudo-Tree model can be extended to other graphs and, in
particular, to the analog of models in higher dimensions.

The pseudo-tree model in dimension d′ = d + 1 is the
analogous lattice of (3) in higher dimension

V d = {(i, j1, . . . , jd) ∈ Zd
′

: −iCk ≤ jk ≤ iCk,
k = 1, . . . , d, i ≥ 0},

with oriented edges (i, j1, . . . , jd)→ (i+1, j1+s1, . . . , jd+
sd), where |sk| ≤ Ck ∈ Z+, k = 1, . . . , d. We denote θdk(p)
to be the probability that there is a significant run of length at
least k starting at the origin and pdc to be the critical probability.
We use the superscript d to emphasize the notation in higher
dimensions.

With these definitions of the graphs, we have the following
results in higher dimension. The proofs of these theorems do
not require any argument in addition to what we have already
presented, and so they are omitted.

Theorem 2.6. The critical probability of the forgoing pseudo-
tree model in dimension d′ = d + 1 satisfies pdc ≥

1
(2C1+1)×...×(2Cd+1) .

Theorem 2.7. For 0 < p ≤ 1, there exist positive constants σd1
and σd2 , independent of p, and there exists a unique function
φd(p), which is strictly decreasing and positive when p < pc;
constantly 0 otherwise, such that

σd1k
−d exp{−kφd(p)} ≤ θdk(p) ≤ σd2kd exp{−kφd(p)},

for any k ≥ 1. In particular, it follows that

− log θdk(p)

k
→ φd(p). (8)

More generally, let Z+ be the set of nonnegative inte-
gers. For any set C ⊂ Zd+, we may extend the condition
of the oriented edges to a more general condition such
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as (i, j1, . . . , jd) → (i + 1, j1 + s1, . . . , jd + sd), where
(s1, . . . , sd) ∈ C. It is straightforward to get the analogous
results as above except that pc ≥ 1/card{C}. Details are
omitted here.

III. BERNOULLI NET

In this section, we focus on studying the Bernoulli net in
a two-dimensional rectangular region, where both the number
of rows and columns can go to infinity. We first introduce
the model in Subsection III-A. Then we review the previous
results on Bernoulli, which mainly considers the scenario of a
fixed number of rows, in Subsection III-B1. Our results on the
asymptotic behaviors of the infinite Bernoulli net are presented
in Subsection III-B2, III-C, and III-D on conditional across
probability, rate of the longest significant run, and extensions
to higher dimensions, respectively.

A. Model Introduction
We consider an m-by-n array of nodes, in which there are m

rows and n columns. Such an array can be considered as a grid
in a two-dimensional rectangular region, ([1, n]× [1,m])∩Z2.
Assume that each node with coordinate (i, j), 1 ≤ i ≤ n, 1 ≤
j ≤ m, is associated with a Bernoulli(p) state variable Xi,j

i.e.,
P(Xi,j = 1) = p = 1− P(Xi,j = 0),

where p ∈ [0, 1] is given. Assume state variables of nodes are
i.i.d. If Xi,j = 1, then the node is called significant (or open);
otherwise, it is non-significant (or closed). Any two nodes in
the grid, say (i1, j1) and (i2, j2) are connected if and only if
|i1 − i2| = 1 and |j1 − j2| ≤ C, with C a prescribed positive
integer. Define a run of length ` as a run of ` connected nodes,
i.e.,

{(i1, j1), (i1 + 1, j2), . . . , (i1 + `− 1, j`) :

|jk − jk−1| ≤ C, ∀k = 2, . . . , `}.
(9)

A significant (or open) run refers to a run with all the nodes
being significant. We call such a system a Bernoulli net.
We are interested in the length of the longest significance
run in this net. Throughout the paper, we denote the longest
significant run in this net by L0(m,n) and its length by
|L0(m,n)|. Though in some papers, runs, chains and clusters
have different definitions. Here we treat them as synonyms.
To be consistent throughout the paper, we will use runs in the
rest of the paper. Such a model is used in the detection of
filaments in a point cloud image ([17], [9]) and networks of
piecewise polynomial approximation ([28]).

Apparently, the length |L0(m,n)| depends on parameters n,
m, p, and C. Figures 3 and 4 give graphical representations
of the relationships between the length |L0(m,n)| and param-
eters C, p,m, n. The number of simulations is 1, 000 for each
histogram. We present a summary of the results below.
• For fixed values of m and n, when the value of C or
p is increased, the distribution of |L0(m,n)| changes
dramatically. These can be seen in Figure 3.

• For fixed values of C and p, if the value of m or n
is doubled, the change of |L0(m,n)| is not significant.
These can be seen in Figure 4.
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Fig. 3. (a) |L0(m,n)| versus C: effects of connectivity. Every time when
the value of C is doubled, the histogram of |L0(m,n)| is shifted to the right
significantly. (b) |L0(m,n)| versus p: effects of significance probability p.
When the value of p is increased, the histogram of |L0(m,n)| is shifted to
the right.

B. A thin slab

1) Previous Work: In this section, we discuss the previous
work related to the model in [23], which focuses on the
scenario where the number of rows m is fixed. We will
discuss the relationship between φ(p) mentioned in (6) and
the conditional across probability defined in [23]. We list the
results in [23]. For proofs of these results, please refer to [23]
and references therein.

The first result is motivated by reliability-focused work [53].

Theorem 3.1. Let Pk(m, p) = PC,p(|L0(m, k)| = k) denote
the probability that the length of the longest significant run is
k, when there are exactly k columns and m rows. We have

(1− Pk(m, p))n−k+1 ≤ PC,p(|L0(m,n)| < k)

≤[1− qmPk(m, p)]n−k+1,
(10)

where q = 1− p.

The following lemma introduces a constant ρ(m, p) de-
pending on m and p, which is important in the asymptotic
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Fig. 4. (c) |L0(m,n)| versus m: effects of heights. When the value of m
is doubled, the histogram of |L0(m,n)| does not change dramatically. (d)
|L0(m,n)| versus n: effects of the width of the Bernoulli net. Every time
when the value of n is doubled, the histogram of |L0(m,n)| does not change
dramatically.

distribution of |L0(m,n)|.

Lemma 3.2. Define ρk(m, p) = Pk(m,p)
Pk−1(m,p) . There exists a

constant ρ(m, p) in (0, 1) that depends on m, C, and p, but
not on k such that

lim
k→∞

ρk(m, p) = ρ(m, p).

Let a crossing be a significant run that passes all columns
from left to right. The ratio ρk(m, p) is the conditional
probability that conditioning on the fact that there is a crossing
in the previous (k − 1) columns, there will be a crossing
for k columns. We may call this the chance of preserving
across significant runs or conditional across probability. The
foregoing lemma shows that as the number of columns goes
to infinity, the chance of preserving across significant runs
converges to a constant.

Now we will recall the result in [23], which is a generaliza-
tion of the well-known Erdös-Rényi law (See [54], [55], [56]),
which is equivalent to the following theorem for m = 1 since
ρ(1, p) = p.

Theorem 3.3. For any fixed m ∈ N, as n→∞, we have

|L0(m,n)|
log1/ρ(m,p) n

→ 1, almost surely.

Given this theorem, it is easy to obtain the following result,
which states the relation of ρ and (m, p). Since |L0(m,n)|
actually depends on p, we use the notation |L0(m,n, p)| in
the next corollary to make the dependence explicit.

Corollary 3.4. Given a pair of positive integers m1,m2 and
a pair of probabilities p1, p2 with m1 ≤ m2 and p1 ≤ p2, we
have

ρ(m1, p1) ≤ ρ(m2, p1) and ρ(m1, p1) ≤ ρ(m1, p2)

Let us recall the result which states the asymptotic distribu-
tion of |L0(m,n)|, the proof of which employs the Chen-Stein
approximation method. See [23] and [24].

Theorem 3.5. There exists a constant A1 > 0, that depends
only on m,C, and p but not on n, such that for any fixed t,
as n→∞, we have

Pp(|L0(m,n)| < log1/ρ(m,p) n+ t)→ exp{−A1 · ρ(m, p)t}.

The analogous result for a one-dimensional Bernoulli se-
quence is well known. See [57]. The foregoing theorems
provide a comprehensive description of the asymptotic distri-
bution of the length of the longest significant run |L0(m,n)|
in a Bernoulli net when the row number m of the array is
fixed.

2) Asymptotic behavior of conditional across probability:
We see that all the results in the last subsection depend on
ρ(m, p). If ρ(m, p) → 1 as m → ∞, then Theorems 3.3
and 3.5 may not hold. We shall next discuss the asymptotic
behavior of ρk(m, p).

Recall that θ(p) is the probability that there exists an
infinite significant run rooted at the origin and pc = sup{p ∈
[0, 1], θ(p) = 0}. We first consider a special case in the
array with m = ∞ and n = ∞. In the following, if
m = ∞, we employ the lattice of ([1, n] × Z) ∩ Z2 rather
than ([1, n] × [1,∞]) ∩ Z2. This theorem indicates that as
(m,n) → (∞,∞), the behavior of the length of the longest
significant run will be quite different in the cases that p > pc
and p < pc.

Theorem 3.6. Let an array have Z+ × Z nodes, where Z+

denotes the set of all nonnegative integers. The probability
that there exists an infinite significant run (when the marginal
probability of a node to be open equal to p), denoted by µ(p),
in the lattice satisfies

µ(p) =

{
0, if p < pc,

1, if p > pc.

We next separate our discussion into the super-critical
phase, where p > pc and the sub-critical phase, where p < pc.
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Phase p > pc: Our first result shows that in the phase
that p > pc, ρ(m, p)→ 1 as m→∞ for any p > pc.

Theorem 3.7. For any p > pc, we have

lim
m→∞

ρ(m, p) = ρ(∞, p) = 1 (11)

where ρ(∞, p) = limk→∞ ρk(∞, p) = limk→∞
Pk(∞,p)
Pk−1(∞,p) ,

and ρk(∞, p) is the conditional probability that there is a
crossing in the first k columns conditioned on the event that
there is a crossing in the first k − 1 columns when there are
infinitely many rows.

We note that limm→∞ ρ(m, p) = 1 in the case of p > pc.
Recall that we introduce φ(p) and its property in Corollary
2.4. φ(p) ≡ 0 on p ∈ [pc, 1]. So we have the iterated limit

lim
m→∞

lim
k→∞

ρk(m, p) = exp{−φ(p)}, (12)

when p ∈ [pc, 1]. Recall that in (2), we define

Ac1,c2,δ1,δ2 = {(m,n) : c1n
1+δ1 ≤ m ≤ c2 exp[n(φ(p)−δ2)]},

for positive c1, c2, δ1 and δ2. In the following, we use
ρn(m, p) instead of ρk(m, p) and we will show below the
double limit of ρn(m, p) is exp{−φ(p)}, when p < pc as
n → ∞, m → ∞ and (m,n) ∈ Ac1,c2,δ1,δ2 by Chen-Stein’s
approximation method (See [58]).

Phase p < pc: Recall that in Theorem 2.2, we introduce
θn(p), which is the probability that there is a significant run of
size n connecting the origin and B(n−1). In Theorem 3.1 we
introduce Pn(m, p), which is the probability that the length
of the longest significant run is n when there are exactly n
columns. To determine the limit of ρn(m, p) = Pn(m,p)

Pn−1(m,p) ,
we need to know Pn(m, p) when both n and m are very
large positive integers.

Theorem 3.8. Let ([1, n]× [1,m])∩Z2 be the integer lattice
with the probability of nodes being open equal to p. Let
Pn(m, p) be the probability of the event that there is a
significant run from the first column to the last column of
the lattice, which is called an across run (or a crossing) in
Lemma 3.2. Then if p < pc, we have

Pn(m, p) = 1− exp{−mθn(p)}+ o(1),

as m → ∞, n → ∞ and (m,n) ∈ Ac1,c2,δ1,δ2 . In particular,
we have ρn(m, p) → exp{−φ(p)} as m → ∞, n → ∞ and
(m,n) ∈ Ac1,c2,δ1,δ2 .

In [23], the authors provide a method to calculates the values
of ρ(m, p) (see Table I), when m is small and fixed by finding
out the solution of π = πP , where P is a transition matrix.
See also (11) in [23].

One can use simulation to find φ(p) in the case of p < pc
and thus get some idea about ρ(m, p) as m becomes suffi-
ciently large. See Figure 2. The simulation below is done for
the length of the longest significant run in [23] for n = 64,
m = 128, C = 3 and p = 0.05 when nodes are assumed to
be independent. See Figure 5. The result is based on 10, 000
simulations.
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Fig. 5. (a) An image plot, the distribution of |L0(m,n)| (under n = 64,m =
128, C = 3) as a function of p (0 < p < 0.3075). The intensity of the image
is proportional to the frequency of |L0(m,n)| (which is specified by the y-
coordinate) given a value of p (which is the x-coordinate) out of 10, 000
simulations. (b) A mesh plot of the same data as in (a). (c) For p = 0.05,
the histogram of L0 is based on the same 10, 000 simulations. Note this can
be viewed as one vertical slice from (a) or similarly a slice from (b).
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TABLE I
THE VALUES OF ρ FOR DIFFERENT VALUES OF m AND p, WHEN C = 1.

p 0.1 0.2 0.3 0.4 0.5 0.6
m=4 0.2444 0.4564 0.6341 0.7758 0.8804 0.9482
m=8 0.2654 0.4955 0.6869 0.8363 0.9383 0.9876

m=10 0.2691 0.5022 0.6958 0.8467 0.9486 0.9930

C. Rate of the longest significant run

The following is an extension of Theorem 2 in [23] in the
case that the Bernoulli net enlarges as m → ∞and n → ∞.
In the following, log denotes the logarithm with base e unless
the base is explicitly specified.

Theorem 3.9. When p < pc, then as m → ∞ and n → ∞,
we have that

|L0(m,n)|
log(mn)

→ 1

φ(p)
, in probability, (13)

where φ(p) is a strictly decreasing, continuous function de-
fined in (6), which is positive in (0, pc) and constantly 0
otherwise.

From Theorem 3.9, it is apparent that asymptotically m
and n do not have a significant impact on the length of the
longest significant run |L0(m,n)|. We showed that the critical
probability pc > 1

2C+1 and |L0(m,n)| will have significantly
different asymptotic behaviors between the case p < pc and
p > pc. Specifically, in Figure 3, on the left panel, where p
is fixed and C increases, we can see a significant increase
on |L0(m,n)|, especially when pc > 1

2C+1 holds; on the
right panel, where C is fixed and p increases, we still can
see a significant increase on |L0(m,n)|. In Figure 4, there
are no significant changes on |L0(m,n)| as m or n increases.
To summarize, as C and p increase, |L0(m,n)| will increase
dramatically while the increment of m and n do not have a
significant impact on the length |L0(m,n)|.

D. Extension

This section emphasizes that our results above can be
extended to the case of models in higher dimensions.

• Inflating Bernoulli net in dimension d′ = d+1. This is the
graph with nodes ([1, n]× [1,m1]× . . .× [1,md])∩Zd

′
.

Assume that each node with coordinate (i, j1, . . . , jd),
1 ≤ i ≤ n, 1 ≤ jk ≤ mk, k = 1, . . . , d is
associated with a Bernoulli(p) random variables, where
p ∈ [0, 1] is given. Equip this graph with oriented edges
(i, j1, . . . , jd) → (i + 1, j1 + s1, . . . , jd + sd), where
sk = 1, . . . , Ck, k = 1 . . . , d for prescribed Ck ∈ Z+.
We say a run to be significant if all the nodes along
the run are significant and denote L0(n,m1, . . . ,md) to
be the longest significant run in this model with length
|L0(n,m1, . . . ,md)|.

By Theorem 3.9, it is easy to see that we have the following
asymptotic rate of the longest significant run.

Theorem 3.10. Let φd(p), defined in (8), be the higher dimen-
sional version of φ(p). As n→∞, m1 →∞, . . . ,md →∞,
we have that

|L0(n,m1, . . . ,md)|
log(nm1 . . .md)

→ 1

φd(p)
in probability, (14)

IV. APPLICATIONS

In this section, we are going to show some applications of
the above theory in hypothesis testing problems. In Section
IV-A, we first introduce the dynamic programming (DP) algo-
rithm [59] to find the longest significant run in an image. In
Section IV-B, we use the example of detecting an anomalous
run in a Bernoulli net to illustrate our theory on constructing
asymptotically powerful test. In Section IV-C, we consider the
multi-scale detection of filamentary structure. We first review
the results in the literature, and then we apply our theory on
longest run to solve this problem. The last application of target
tracking problems is shown in Section IV-D. We propose to
apply our longest run theory to detect the potential target. We
show that our method provides a reliable threshold such that
the false alarm probability vanishes very quickly as we get
more and more sample points.

Through this section, let L0(n,m) and |L0(n,m)| denote
the longest significant run and the length of the longest
significant run in ([1, n]× [1,m]) ∩ Z2, respectively.

A. Dynamic programming algorithm finding |L0(n,m)|
Let S be a set of nodes ([1, n] × [1,m]) ∩ Z2. For a

node (i, j) ∈ S , we use Xi,j ∼ Bernoulli(p0) to denote
the significance (insignificance) of node (i, j), where the
realization of 1 denotes the significance of node (i, j) and
0 denotes the insignificance of node (i, j). Let Y1 be an array
{Y1(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, such that

Y1(i, 1) = X(i, 1), for i = 1, . . . ,m;

Y1(i, j) = X(i, j)[1 + max
i′∈Ω(i)

Y1(i′, j − 1)],

for i = 1, . . . ,m, j = 2, . . . , n,

where Ω(i) = {i′ : |i′ − i| ≤ C, 1 ≤ i′ ≤ m} denotes the set
containing neighboring indices of i. Finally, the value |L0(n)|
can be computed as follows:

max
(i,j)∈S

Y1(i, j).

It is not hard to see that this algorithm takes Cmn time for
C > 0.

B. Detection of an anomalous run in a Bernoulli net

In this subsection, we consider the problem of detecting
an anomalous run in a Bernoulli net. For simplicity, we only
state the low dimension case, i.e., ([1, n] × [1,m]) ∩ Z2. Let
L(n,m) be a class of runs in ([1, n] × [1,m]) ∩ Z2, where
a run is defined as a subset of nodes which are connected
as in (9). Under the null hypothesis, each node (i, j) is i.i.d.
associated with a random variable Xi,j , which has a Bernoulli
distribution with parameter p0, i.e.,

H0(n,m) : Xi,j ∼ Bernoulli(p0), i.i.d., ∀(i, j).
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Under the alternative hypothesis, there exists an unknown run
L ∈ L(n,m), and the variables with indexes in L have a
Bernoulli distribution with parameter p1 > p0, i.e.,

H1(n,m) : Xi,j ∼ Bernoulli(p1), ∀(i, j) ∈ L;

Xi,j ∼ Bernoulli(p0), ∀(i, j) 6∈ L,
for some unknown L.

Denote the length of the anomalous run L by |L|. For this
detection problem, we may consider the test based on the
longest significant run in the Bernoulli net ([1, n]×[1,m])∩Z2.
By Erdös-Rényi law ([56]), the longest significant run in L
almost surely has the length of log1/p1 |L| as |L| → ∞. Thus
if

log1/p1 |L| > log(nm)/φ(p), (15)

the two hypotheses can be separated significantly. Let T be
such a test that if

|L0(n,m)| > log(nm)/φ(p),

we reject H0(n,m); otherwise accept H0(n,m).
For a test T , if T = 1 , we reject H0 and accept H0

otherwise; then if

P(T = 0
∣∣H1) + P(T = 1

∣∣H0)→ 0, (16)

T is called an asymptotically powerful test in [19] and this
criterion (16) is widely used in cluster detection literatures
(See for example [51], [28], [52], [60]).

Theorem 4.1. Under the condition (15), the test T , which
is based on the length of the longest significant run, is an
asymptotically powerful test.

Proof. If (15) holds, then by Theorem 3.9, it is easy to see
that

P(|L0(n,m)| > log(nm)/φ(p)
∣∣H0(n,m))

+P(|L0(n,m)| ≤ log(nm)/φ(p)
∣∣H1,L(n,m))

→0,

(17)

as (n,m)→ (∞,∞).

In general, this detection problem can be extended to
an exponential model, for instance, the following detection
problem in the model with normal distribution,

HN0 (n,m) : Xi,j ∼ N(0, 1), i.i.d., ∀(i, j);
versus

HN1 (n,m) : Xi,j ∼ N(µ, 1), ∀(i, j) ∈ L;

Xi,j ∼ N(0, 1), ∀(i, j) 6∈ L,
for some unknown L and µ > 0.

After thresholding the values at each node, it is equivalent
to the detection problem in the Bernoulli net. We are going to
discuss this problem in our future work. The test based on the
length of the longest significant run has also been considered
in [52], [20], [61].

C. Multi-scale detection of filamentary structure

In this section, we will revisit the problem of multi-scale
detection of filamentary structure. This has been studied in
[17], which we review in Section IV-C1. We then revisit the
problem and apply our proposed theory to it in Section IV-C2.

1) Background: To be self-contained, we will recall the
problem of the length of the longest significant run proposed
in [17], where the authors present a detection method for
some filamentary structure in a background of uniform random
points. Suppose we have N data points Xi ∈ [0, 1]2, which at
first glance seem to be uniformly distributed in the unit square.
Here, for 1 < α ≤ 2, we define that Hölder(α, β) is the class
of functions g : [0, 1] → [0, 1] with continuous derivative g′

that obeys

|g′(x)− g′(y)| ≤ αβ |x− y|α−1
.

Consider the problem of testing

H0 : Xi
i.i.d.∼ Uniform(0, 1)2,

versus

H1(α, β) : Xi
i.i.d.∼ (1− εN )Uniform(0, 1)2

+εNUniform(graph(f)),

with unknown f ∈ Hölder(α, β),

where graph(f) is the graph of the function f within the area
[0, 1]2. In other words, for the problem of testing, we believe
that a relatively small fraction εn of points lie on a smooth
curve in the plane.

In [23], the detection model mentioned in [17] is partially
considered, and the authors present the convergence rate and
the asymptotic distribution of the longest significant run on
a Bernoulli Net. However, the row number of the model in
[23] is fixed, while in [17] the vertical size of the model
is increasing very fast when the number of random points
tends to infinity. Besides, the nodes in [23] are assumed to be
independent, while in [17] the nodes are only associated. See
[62].

We will review the model in [17] first. Suppose we have N
random points uniformly distributed in the square [0, 1]×[0, 1].
In particular, we use J = dlog2(N)e to denote its dyadic
logarithm. The variable j will index dyadic scales 2−j and
will range over 0 ≤ j ≤ J . We fix a positive integer S > 1 to
control the maximum of |slope| we will be able to detect.

Let R(j, k, `1, `2) be a parallelogram with vertical sides that
is ω = 2−j wide by t = 2−(J−j)+1 high, where j runs through
our set of scale indices {0, . . . , J}. The regions in question
have a midline that bisects them vertically and will be tilted
at a variety of angles. And notice that these regions are highly
anisotropic.

The parameters k and `i, i = 1, 2, control the horizontal
location of the regions and the vertical location and the slope
of the midline. There is an underlying assumption that we
are only interested in regions whose major axis has a slope
bounded in absolute value by S.

To get a vivid impression of this model, see Figure 6 and
Figure 7 below. Let δ1 = t

4 and δ2 = t
4ω (these depend

implicitly on j and N ). The parallelogram R(j, k, `1, `2) will
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be centered at c = ((k + 1
2 )ω, `1δ1) and its middle line

will have slope s = `2δ2. Here 0 ≤ k < ω−1, `1 runs
through the set 0, . . . , δ−1

1 − 1 and `2 runs through the set
−Sδ−1

2 , . . . , 0, . . . , Sδ−1
2 . We gather all such regions at level

(scale) j in R(j) = {R(j, k, `1, `2) : k, `1, `2} and therefore
we have 2j×2J−j+1×S·2J−2j+2+1 or O(N2) parallelograms
in total. To organize the regions, we define a directed graph
G(j) = (V(j), E(j)), with vertices V(j) and edges E(j).

s  (slope)

x

y

t

   w

Fig. 6. An Anisotropic ‘Strip’ R

jTube (f)

graph(f)

Fig. 7. graph(f) (in blue) covered by Tubej(f) (in red).

The vertices are simply the regionsR(j), i.e., V(j) ≡ R(j).
The edges connect regions by good continuation, namely, to
regions that are horizontally adjacent, and that have altitudes
and slopes that are nearly the same, which are less than t and
t
ω apart, respectively. Formally, we have the directed edges in
E(j) as

(k, `1, `2)→ (k + 1, `1 + `2 + u, `2 + v), (18)

where |u| ≤ 4, |v| ≤ 4 and we call (18) the connectivity
of edges. The mapping between these discrete parameters is

intended to ensure that the regions pack together horizontally
and that they are fairly closely spaced in both vertical position
and slope.

For every region R ∈ R(j), we count the number of
the points that fall into R, denoted by N(R, j). We define
a significance indicator, which is nonzero when the counts
N(R, j) exceeds a prescribed threshold N∗, i.e.,

s(R) = 1{N(R,j)>N∗}. (19)

We say that N∗ is the counting threshold in the following.
The significance indicator may be viewed as a label on the
regions R, producing a sequence of a labeled graphs

Σ(j) = (V(j), E(j), σ(j)),

where σ(j) = (s(R)) gives the labels on R ∈ R(j). We call
this the j-th significance graph.

In each significance graph, we employ a depth-first search
algorithm to explore all significance paths

π = (R1, R2, . . . , Rm),

that is, sequence of vertices that are:
(a) all significant, s(Rk) = 1;
(b) all connected, (Rk, Rk+1) ∈ E(j).
We record the maximum path length in each significant graph
as follows:∣∣Lmax
N,j

∣∣ = max{length(π) : π is a significant path in Σ(j)},

|Lmax
N | = max

j

∣∣Lmax
N,j

∣∣ .
The decision of the hypothesis testing problem is that we
compare |Lmax

N | with a length threshold: If |Lmax
N | ≤ |L∗N |,

accept H0; if |Lmax
N | > |L∗N |, then reject H0.

We call |L∗N | the decision threshold in the following. Under
the assumption that N points are randomly distributed in the
square [0, 1] × [0, 1], the counting threshold determines the
probability of {s(R) = 1}. Because the area of each region is
2
N , we have the following,

P(s(R) = 1) = P(Bin(N,
2

N
) > N∗),

where Bin(N, 2
N ) denotes the random variable with Binomial

distribution of parameters N and 2
N . Because Poisson(2) is

an approximation of Bin(N, 2
N ) when N is sufficiently large,

we use Poisson(2) instead in the following. The main result
of this multi-scale detection method in [17] is the following:

Theorem 4.2. There is a single choice of threshold N∗ and
|L∗N | so that for every α ∈ (1, 2] and β > 0, there is
T∗(α, β, S) such that for each εN > T∗N

−α/(1+α)

P(test rejects H0

∣∣H1(α, β, S))→ 1, as n→∞,

and at the same time

P(test rejects H0

∣∣H0)→ 0, as n→∞.

Remark 4.3. We give the specifications of the foregoing
thresholds.
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1) N∗: In [17], the authors define N∗ such that

p = P(Poisson(2) > N∗) <
p0

81
, (20)

where p0 ∈ (0, 1) is some chosen number.
2) |L∗N |: With the help of Erdös-Rényi law, the authors

define the decision threshold

|L∗N | ≡ 3 log1/p0 N. (21)

3) T∗(α, β, S): The specification of T∗(α, β, S) in Theorem
4.2 is a little bit complicated. First define

p∗ = p
1
18
0 , (22)

Let λ∗ be a constant that satisfies

P(Poisson(λ∗) < N∗) ≤ 1− p∗
2

.

Then T∗(α, β, S) = 2λ∗β
1

1+α

√
1 + S2. See [17] for

more details.

2) A revisit using the theory of longest run: In this part, we
will apply our theory to the model in [17] for the detection
problem. Consider the problem of testing

H0 : Xi
i.i.d.∼ Uniform(0, 1)2,

versus

H1(α, β) : Xi
i.i.d.∼ (1− εN )Uniform(0, 1)2

+εNUniform(graph(f)),

with unknown f ∈ Hölder(α, β),

where N is the total number of points in [0, 1] × [0, 1] and
εN > T∗N

− α
1+α is the portion of the points lying on the

graph of the function.
We can see that when the number of random points N

in [0, 1] × [0, 1] goes to infinity, the background of uniform
random points can be treated as sampled from a (spatial)
Poisson process. One of the properties of this Poisson process
is that for any subregion Ω in the unit square, the number of
points in this region, denoted by N(Ω), also has the Poisson
distribution with parameter N · |Ω|, where |Ω| is the area of
Ω, i.e., N(Ω) ∼ Poi(N · |Ω|). Another property of the (spatial)
Poisson process is that for any two non-overlapping regions Ω1

and Ω2 in the unit square, the number of points in Ω1 and the
number of points in Ω2, i.e., N(Ω1) and N(Ω2) respectively,
are independent.

Let us now rephrase the main results of [62] here.

Definition 4.4. Let T1, T2, . . . , Tn be n associated random
variables if Cov[f(T), g(T)] ≥ 0, where T = (T1, T2, . . . , Tn),
for all nondecreasing functions f and g, for which the expec-
tations E(f),E(g) and E(fg) exist.

It is known that
• any subset of associated random variables are associated;
• nondecreasing functions of associated random variables

are associated;
• independent random variables are associated
• let x1, . . . , xn be associated binary random variables, then

P(x1 = s, . . . , xn = s) ≥ P(x1 = s) . . .P(xn = s),

where s can be either 0 or 1.
Regarding the parallelograms defined in Section IV-C1, we

have the following lemma.

Lemma 4.5. As the number of points in the unit square tends
to infinity, The number of random points in two parallelograms
R1 and R2 are associated. Furthermore, they are independent
if R1 and R2 are non-overlapping.

Remark 4.6. This lemma can be simply proved by considering
E[(f(R1, R2) − f(R′1, R

′
2))(g(R1, R2) − g(R′1, R

′
2))] ≥ 0,

where f, g are two nondecreasing functions of R1, R2, and
R′1, R

′
2 are i.i.d. copy of R1, R2.

Indeed, if we use s(R) to denote the state (significant or
non-significant) of parallelogram R, then we have

P(s(R1) = a, s(R2) = a) ≥ P(s(R1) = a)P(s(R2) = a),
(23)

where a is either 0 or 1. The equality in (23) holds when R1

does not overlap with R2.
For a multi-scale detection problem, we construct an array

of nodes in

V ≡ [1, 2j ]× [1, 2J−j+1]× [−S2J−2j+1, S2J−2j+1] ∩ Z3,
(24)

where J = dlog2(N)e and 0 ≤ j ≤ J . For any nodes

(k, `1, `2) ∈ [1, 2j ]×[1, 2J−j+1]×[−S2J−2j+1, S2J−2j+1]∩Z3

in the array, the three components represent the location index,
the altitude index and the slope index, respectively. In light of
the nodes in two dimension, we might consider m = 2J−j+1×
(2S ·2J−2j+1+1) nodes in the same strip as a column and thus
there are n = 2j columns in total. For any node (k, `1, `2), it
can be connected to

(k + 1, `1 + `2 + u, `2 + v)

∈[1, 2j ]× [1, 2J−j+1]× [−S2J−2j+1, S2J−2j+1] ∩ Z3,
(25)

where |u| ≤ 4, |v| ≤ 4. Each node is associated with a
parallelogram in the algorithm mentioned in [17] and therefore
it is open with probability

p = P(N(R) > N∗)→ P(Poisson(2) > N∗), as N →∞,

where N(R) is the number of points in the parallelogram R
and N∗ is a counting threshold to be specified later. Due to the
structure of the model in [17], the nodes in different columns
are independent and all the nodes here are associated as N →
∞.

Consider the Pseudo-tree model in dimension 3, as in
Section II-C,

V 2 = {(i, j1, j2) ∈ Z2 : −4i ≤ j1 ≤ 4i,−4i ≤ j2 ≤ 4i, i ≥ 0},

with oriented edges (i, j1, j2)→ (i+1, j1+s1, j2+s2), where
|s1| ≤ 4 and |s2| ≤ 4. We denote θ2

k(p) to be the probability
that there is a significant run of length at least k starting
at the origin and p2

c to be the critical probability. Revisiting
the proofs of Theorems 2.1, 2.2 and 3.9 together with their
generalized results in Theorems 2.6, 2.7 and 3.10, we find
that these results do not depend on the independence of nodes
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in the same column. The condition that nodes are associated
in the same strip is sufficient for these theorems. By Theorem
2.7, there exist positive constants σ2

1 and σ2
d, independent of

p, and there exists a unique function φ2(p), which is strictly
decreasing and positive when p < pc; constantly 0 otherwise,
such that

σ2
1k
−2 exp{−kφ2(p)} ≤ θ2

k(p) ≤ σ2
2k

2 exp{−kφ2(p)}

for any k ≥ 1. In particular, it follows that

− log θ2
k(p)

k
→ φ2(p).

Since each node in the array can be connected with at most
81 nodes in the next column and hence pc ≥ 1

81 by Theorem
2.6.

Though in [17], the authors consider all scales in {j : 0 ≤
j ≤ J for J = dlog2Ne}, we will consider {j : 0 ≤ j ≤
dJ+log2 β

1+α e} only. We shall point out here that the restriction
on j is a fairly reasonable assumption for the following
reasons. First, notice that if we choose j > dJ+log2 β

1+α e,
then the range of the slope index [−S2J−2j+1, S2J−2j+1]
will be fairly small. Hence the parallelograms will be almost
horizontal rectangles. Moreover, under H1(α, β), for scales
j ≤ dJ+log2 β

1+α e, the parallelograms in the same column will
be more overlapping which yields more significant nodes and
hence the longer length of the significant runs. And it is
easier to separate the null hypothesis H0 from the alternative
hypotheses H1(α, β). The most important reason is that, in
[17], the authors point out that under H1(α, β), there is some
scalar j∗ such that the graph of the function is completely
covered by a tube of parallelograms in this scale like the case
in Figure 7. We call this containing tube Tj∗(f). It is shown
that j∗ = dJ+log2 β

α+1 e (See Lemma 2.1-2.3 and their proofs
in [17]). In other words, using only scalars j ≤ dJ+log2 β

1+α e
is enough to cover the graph hence detect the filamentary
structure under H1(α, β). Thus, it actually can save work to
consider only the scales no larger than dJ+log2 β

1+α e without loss
of generality. In case that α ∈ (1, 2] and β > 0 are unknown, it
is possible to use 0.5001J instead of dJ+log2 β

α+1 e for the reason
that dJ+log2 β

α+1 e ≤ 0.5001J as J →∞. Denote dJ+log2 β
α+1 e by

cJ , which is the scale under which the whole graph of the
function is guaranteed to be in a series of parallelograms, as
shown in Figure 7.

Now we specify the asymptotic thresholds for our purpose.
These thresholds are better and more intuitive than those in
[17]. Specifically, applying our theory, we set the threshold
parameters as follows.
• Let the membership threshold N∗ satisfy the following

property:

p0 = P(Poisson(2) > N∗) <
1

81
≤ pc.

Here we can take N∗ = 6 so that p0 ≈ 0.0045338 < 1
81 .

• Let the decision threshold |L∗N | be

(1 + δ3)
2J log 2

φ(p0)
,

for some small δ3 > 0.

• Define p∗ to be

exp{−φ(p0)
cJ(1− δ3)

2J(1 + δ3)
}. (26)

• We choose λ∗ such that

P(Poisson(λ∗) > N∗) > p∗.

• Finally, we define T∗(α, β, S) to be 2λ∗β
1

1+α

√
1 + S2.

P(N(R) > N∗) > p∗, (27)

where N(R) is the number of points in the parallelogram
R.

Let |Lmax
N | denote the length of the longest significant run in

Lattice V , defined in (24). Note that there are 4S22J−2j+2J+1

nodes in V . We will have the following results.

Corollary 4.7. Under H0, by Theorem 3.10, for any small ε
and δ3 > 0, with probability at least 1− ε, we have

|Lmax
N | ≤(1 + δ3/2)

log(4S22J−2j + 2J+1)

φ(p0)

≤(1 + δ3)
2J log 2

φ(p0)
,

(28)

as N →∞.

Corollary 4.8. Under H1(α, β), with probability at least 1−ε
and for large N , by the Erdös- Rényi Law and the Egoroff’s
Theorem ([63]), we have that the length of the significant
run in the tube Tj∗(f) containing the function f , denoted by
|Lj∗(f)|, satisfies

|Lj∗(f)| > (1− δ3)cJ log1/p∗ 2 (29)

= (1 + δ3)
2J log 2

φ(p0)
(30)

= |Lmax
N | , (31)

as N →∞.

The inequality (29) is due to the fact that (27) holds for each
parallelogram in the containing tube Tj∗(f). The equality (30)
is due to the definition of p∗ in (26).

We thus can get the following conclusion:

Theorem 4.9. When εN > T∗(α, β, S)N−
α

1+α , by (28) to
(31), the test based on the length of the longest significant
run is asymptotically powerful, i.e.,

P(|Lmax
N | > |L∗N |

∣∣H0) → 0, as N →∞,
P(|Lmax

N | < |L∗N |
∣∣H1(α, β)) → 0, as N →∞.

D. Target tracking problems

In this subsection, we study the target tracking problem. We
first provide the background towards this problem in Section
IV-D1. Then we pose a hypothesis testing problem and apply
our theory to it in Section IV-D2.
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1) Background: In this subsection, we discuss another
application of the theory. Let Xi ∈ {0, 1}m, where m is an
integer. We have Xi,j = 0 or 1, where Xi,j denotes the jth
entry of Xi. Here i is a time index and j is a location index.
Xi,j = 1 (or 0) corresponds to a target being present (or
absent) at location j and time i.

We introduce the following probabilistic model to minic the
motion of targets over time. From Xi to Xi+1, 1 ≤ i ≤ n−1,
we have:

1) Initialize Xi+1,j = 0 for all j.
2) If Xi,j = 0, then set Xi+1,j = Xi+1,j + 1 with proba-

bility p0 (corresponding to a newly emerging object).
3) If Xi,j = 1, there are four sub-cases:

a) Xi+1,j−1 = Xi+1,j−1 + 1 with probability p1

(shifting left)
b) Xi+1,j = Xi+1,j + 1 with probability p2 (remain

the same location)
c) Xi+1,j+1 = Xi+1,j+1 + 1 with probability p3

(shifting right)
d) do nothing, with probability 1−p1−p2−p3 (object

vanishes).
Apparently, we must impose 0 < pi < 1, for i =
0, 1, 2, 3 and p1 + p2 + p3 < 1.

4) Finally, we take Xi+1,j = min(1, Xi+1,j) to ensure that
each one of them is either one or zero. Note X form
the ground truth regarding the presence and locations of
the targets.
Below we consider how observations are generated.

5) Set zij = xij + εij , where εij
i.i.d.∼ N(0, σ2), where σ2

is a parameter, e.g., σ2 = 1.
Note Zi = {zij , j = 1, 2, . . . ,m} is the observation at
time i.

In [18], a hidden state Markov process model
is mentioned. In the above case, it is as follows:
X0 → X1 → X2 → X3 → X4 → · · ·

↓ ↓ ↓ ↓
Z1 Z2 Z3 Z4 .

For our purpose, we may not emphasize this Markovian
aspect of the problem. Though it is important in the estimation
problem.

We pose a hypothesis testing problem in this case, i.e.,

H0 : all Xi,j = 0 versus H1 : some Xi,j = 1.
(32)

The idea behind the hypothesis testing problem is to find
whether there is some newly emerging object at certain
location and time or the image just consists of white noisy
pixels. The null hypothesis setting corresponds to the scenario
where there is no target at all time and p0 is set to be p0 = 0.
We will use the theory of the longest run to solve this problem
in the following subsection.

2) A revisit using the theory of the longest run: In this
subsection, we will use our theory to estimate an upper bound
of the length of the longest significant run in the target tracking
problem for an array of size m-by-n. Under the null hypothesis
H0, the image of size [1,m]×[1, n] is just a white noise image

and Zi,j = εi,j where εi,j
i.i.d.∼ N(0, σ2). For an arbitrary node

Zi,j to be significant, we should provide a member threshold
Z∗, i.e., the node is significant if Zi,j > Z∗ and insignificant
otherwise. Let V be the set of nodes under consideration, i.e.,

V ≡ {(i, j) ∈ Z2 : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Let E be the set of edges from (i, j) ∈ V to (i+ 1, j+ s) ∈ V
such that |s| ≤ 1. Let p = P(Zi,j > Z∗) be the probability of
a node (i, j) ∈ V to be significant. In order to make a decision,
we need to count the length of the longest significant nodes
among all the runs along the edges in E , i.e., the runs of the
following form

{(i, j0), (i+ 1, j1), . . . , (i+ `, j`) :

|jk+1 − jk| ≤ 1, k = 0, . . . , `− 1}.

We will use the length of the longest significant run, denoted
by |Lmax

T (m,n)|, as a statistic for the test. And a little bit
more consideration yields that under the null hypothesis H0,
the run of significant nodes has the same structure as in (9)
with C = 1.

We can apply our theory to find a reasonable threshold. By
Theorem 2.1, the critical probability pc for the graph (V , E)
satisfies that pc ≥ 1

2C+1 . Therefore, we may choose Z∗ such
that p = P(Zi,j > Z∗) < 1

3 for (i, j) ∈ V . Thus if m
is constant, by Theorem 3.3, for any ε1 > 0, there exist
ρ(m, p) ∈ (0, 1) and N ∈ Z+ such that when n ≥ N , we
have

|Lmax
T (m,n)| ≤ (1+δ4) log1/ρ(m,p) n with probability 1−ε1,

for any δ4 > 0. If m → ∞, n → ∞, then by Theorem 3.9,
for any ε2 > 0 we have

|Lmax
T (m,n)| ≤ (1 + δ4)

log(mn)

φ(p)
with probability 1− ε2.

So let the decision threshold |L∗T | be (1 + δ4) log1/ρ(m,p) n if
n→∞ with fixed m; and (1+δ4) log(mn)

φ(p) if n→∞,m→∞.
Since the forgoing ε1 and ε2 are arbitray, if it happens that

|Lmax
T (m,n)| > |L∗T | , (33)

then we can always reject H0 with false positive probability
close to 0 asymptotically.

In summary, we will have the following corollary.

Corollary 4.10. The longest run test defined in (33) can
always reject H0 with type I error close to 0 asymptotically
to the hypothesis testing problem in (32).

If we have more information on the structure of the observa-
tion matrix under the alternative hypothesis (such as condition
(15)), we can even obtain a stronger result that the longest
significant test is asymptotically powerful.

V. CONCLUSION

In this paper, we first study the Pseudo-tree model. We find
the upper and lower bounds of the asymptotic probability to
have a run with length k. By exploring the connection between
the Pseudo-tree model and the inflating Bernoulli net. We
then develop the asymptotic rate of the length of the longest
significant run in an inflating Bernoulli net as m → ∞ and
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n → ∞. We further apply our theory to the image detection
problem to find reasonable thresholds, which yields a reliable
detection procedure. It is of interest to learn the value of the
function φ(p) in the future. Also, for the portion of the nodes
in the suspicious curve, εN , we develop a lower bound, which
guarantees a reliable test. However, it remains our future work
to find the minimum bound of εN > 0, below which there is no
powerful statistical test. Finally, it is not easy to find ρ(m, p)
when m ≥ 12, especially when we drop the independence
assumption among the nodes within the same column.

APPENDIX A
PROOFS

We present all the proofs in this section. Our proof tech-
niques in Section II and Section III mainly come from
the percolation theories, association results, and the Chen-
Stein Poisson approximations. The last two techniques are
also partly used in [23]. The proofs in this work are more
complicated than in the finite m scenario [23].

A. Proof of Theorem 2.1

The proof of Theorem 2.1 requires the following definition
and lemma. See [25].

Definition 1.1. Let V be the set of nodes in the pseudo-tree
and we take the sample space as

Ω =
∏
v∈V
{0, 1}.

We take F to be the σ-field of subsets of Ω generated by
the finite-dimensional cylinders. We say an event A ∈ F is
increasing, if the indicator function of A satisfies IA(X1) ≤
IA(X2) whenever X1 ≤ X2, where X1, X2 are two realiza-
tions on V , i.e., X1 : V → {0, 1}, where X1(i, j) = 1 if the
node (i, j) is significant and X1(i, j) = 0 otherwise and X2

has the same definition. Analogously, we say A decreasing set
if A, the complement of A, is increasing.

Lemma 1.2. (FKG Inequality) If A and B are both increasing
(or both decreasing) events in the lattice, then we have
P(A

⋂
B) ≥ P(A)P(B).

The significant edge version of this lemma can be found in
Section 2.2 of [25]. The intuition behind this lemma is that
if there is an open path joining vertex u to vertex v, then it
becomes more likely that there is an open path joining vertex
x to vertex y than without a path from u to v. Replacing edge
by node in the proof in [25], the significant node version can
be shown analogously.

Proof of Theorem 2.1. Recall that θk(p) = Pp(0 ↔ B(k −
1)). The event {0↔ B(k)} happens if and only if there is an
open node x ∈ B(1), such that the origin (0, 0) is open and the
event {x↔ B(k)} occurs. Of course, card(B(1)) = 2C + 1.
Therefore we have,

{0↔ B(k)} = {
⋃

{x∈B(1)}

((0↔ x) ∩ (x↔ B(k)))}

This implies that

1− Pp(0↔ B(k))

=Pp(
⋂

{x∈B(1)}

(0↔ x)
⋂

(x↔ B(k)))

≥
∏

{x∈B(1)}

Pp((0↔ x)
⋂

(x↔ B(k)))

=(1− pθk(p))(2C+1),

(34)

where the inequality is due to Lemma 1.2 and the fact that
{0 ↔ x} ∩ {x ↔ B(k)} is an increasing event and that
Pp(x↔ B(k)) = Pp(0↔ B(k−1)) for any given x ∈ B(1).

So by (34), we have that

θk+1(p) = Pp(0↔ B(k))

≤ 1− (1− pPp(0↔ Bk−1))(2C+1)

= 1− (1− pθk(p))(2C+1).

Given this, we investigate the function

f(x) = 1− (1− px)r,

where r ∈ Z+. We have

f ′(x) = rp(1− px)r−1 > 0,

and

f ′′(x) = −r(r − 1)p2(1− px)r−2 < 0, ∀x ∈ (0, 1).

So the function f(x) is always strictly increasing and concave
down and f(0) = 0. Besides, one can see that f ′(0) = rp
and from this we have f(x) is always under the line y = x if
p < 1

r . Let x0 be an arbitrary number in (0, 1) and generate a
sequence {xn}n≥0, such that xn+1 = f(xn) for n ≥ 0. Since
f(x) < x when x ∈ (0, 1) and p < 1

r , the sequence {xn}n≥0

is strictly decreasing. On the other hand, it is easy to see
that xn ≥ 0 for any n ≥ 0. Because a bounded decreasing
sequence must have a limit, we have that

0 ≤ x∗ ≡ lim
n→∞

xn.

By the continuity of f(x), one can easily see that

f(x∗) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x∗.

Since f(x) < x on (0, 1), it is obvious that the limit of the
sequence {xn}n≥0 is 0, i.e., x∗ = 0 for any starting point
x0 ∈ (0, 1).

Hence when p < 1
(2C+1) , it leads to

θ(p)

= lim
k→∞

θk+1(p)

= lim
k→∞

P(0↔ B(k))

≤ lim
k→∞

1− (1− pθk(p))(2C+1)

= 0.

According to the definition pc := sup{p ∈ [0, 1] : θ(p) = 0},
it follows that pc ≥ 1

(2C+1) .
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B. Proof of Theorem 2.2

Before proving the theorem, let us state the sub-additivity
lemma which can be found in [25].

Lemma 1.3. Sub-additive limit theorem. If (xr : r ≥ 1) is
sub-additive, i.e., xm+n ≤ xm + xn for all m,n, then λ =
limr→∞{xrr } exists and satisfies−∞ ≤ λ <∞. Furthermore,
we have

λ = inf{xm
m

: m ≥ 1}

and thus xm ≥ mλ for all m.

Proof of Theorem 2.2. Given a positive integer l, it is not hard
to show that

card(B(l)) = (2lC + 1).

Since the event {0↔ B(l+k−1)} occurs if and only if there is
some z ∈ B(l) such that both {0↔ z} and {z ↔ B(l+k−1)}
occur, we have

θk+l(p) = Pp(0↔ B(k + l − 1))

= Pp(
⋃

{z∈B(l)}

({0↔ z} ∩ {z ↔ B(k + l − 1)}))

≤
∑

{z∈B(l)}

Pp({0↔ z} ∩ {z ↔ B(k + l − 1)})

=
1

p

∑
{z∈B(l)}

Pp({0↔ z})Pp({z ↔ B(k + l − 1)})

=
1

p

∑
{z∈B(l)}

Pp({0↔ z})Pp({0↔ B(k − 1)}),

where the third “=” is due to conditional probability,

Pp({0↔ z} ∩ {z ↔ B(k + l − 1)})
= Pp({z ↔ B(k + l − 1)}|{0↔ z})Pp({0↔ z})
= Pp({z ↔ B(k + l − 1)}|z = 1)Pp({0↔ z})

=
Pp({z ↔ B(k + l − 1)})

Pp(z = 1)
Pp({0↔ z})

=
1

p
Pp({0↔ z})Pp({z ↔ B(k + l − 1)})

and the last equality is due to the fact that

Pp({z ↔ B(k + l− 1)}) = Pp({0↔ B(k − 1)}), ∀z ∈ B(l).

Notice that Pp(0↔ z) ≤ pθl(p) for any z ∈ B(l). We have

θk+l(p) ≤ (2lC + 1)θl(p)θk(p).

On the other hand, for any z ∈ B(l), we have

θk+l(p) = Pp({0↔ B(k + l − 1)})
≥ Pp({0↔ z} ∩ {z ↔ B(k + l − 1)})

=
1

p
Pp({0↔ z})Pp({z ↔ B(k + l − 1)})

=
1

p
Pp({0↔ z})Pp({0↔ B(k − 1)}),

Notice that

θl(p) ≤
1

p
Pp(

⋃
{z∈B(l)}

{0↔ z}) ≤ 1

p

∑
{z∈B(l)}

Pp({0↔ z}).

It follows to have a node z ∈ B(l) such that

1

p
Pp({0↔ z}) ≥ θl(p)

(2lC + 1)
.

Thus we have

θk+l(p) ≥
1

(2lC + 1)
θl(p)θk(p).

If we let g(l) = log(2lC + 1), then the inequalities we get so
far are:

log(θk+l(p)) ≤ log(θk(p)) + log(θk(p)) + g(l);

log(θk+l(p)) ≥ log(θk(p)) + log(θl(p))− g(l).

Notice that g(k+ l)−g(k) = log(1+ 2lC
2kC+1 ) ≤ log 2 if l ≤ k.

Therefore, we have

log(θk+l(p)) + g(k + l) + log 2

≤ log(θk(p)) + g(k) + log 2 (35)
+ log(θl(p)) + g(l) + log 2;

log(θk+l(p))− g(k + l)− log 2

≥ log(θk(p))− g(k)− log 2 (36)
+ log(θl(p))− g(l)− log 2.

Then by Lemma 1.3, we have

φ(p) := lim
k→∞

−1

k
{log(θk(p))}

= lim
k→∞

−1

k
{log(θk(p)) + g(k) + log 2}

= lim
k→∞

−1

k
{log(θk(p))− g(k)− log 2}.

This leads to

log(θk(p)) + g(k) + log 2 ≥ −kφ(p); (37)
− log(θk(p)) + g(k) + log 2 ≥ kφ(p); (38)

for all k ≥ 1. The theorem now follows (37) and (38) easily.

C. Proof of Corollary 2.3

Proof. By inequality (35), we know that the sequence

{log(θk(p)) + g(k) + log 2}k∈N

is a sub-additive sequence. Thus by Lemma 1.3 we have

−φ(p) = lim
k→∞

log(θk(p)) + g(k) + log 2

k

= inf
k∈N

log(θk(p)) + g(k) + log 2

k

Therefore, for any ε0 > 0, there exists some large k0 such that
when k > k0, we have

−φ(p) ≤ log(θk(p))

k
+ ε0,

which leads to

exp(−φ(p)) ≤ (θk(p))
1
k exp(ε0), ∀k > k0.
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By inequality (36), we know that {g(k) + log 2 −
log(θk(p))}k∈N is a sub-additive sequence, therefore we have

g(k) + log 2− log(θk(p))

≤ g(k − 1) + log 2− log(θk−1(p))

+g(1) + log 2− log(θ1(p)).

Divide by k on the left and by k−1 on the right. It is easy to
see that for any ε1 > 0, there exists some large k1 such that
when k > k1, we have

log(θk(p))

k
≥ log(θk−1(p))

k − 1
− ε1.

It follows that when k > max{k0, k1}, we have

exp(−φ(p)) ≤ (θk(p))
1
k exp(ε0) ≤ θk(p)

θk−1(p)
exp(ε0 + ε1/k).

By the same technique using (36) and (35), we can show that
for any ε2, when k > k2 for some large k2, we have

exp(−φ(p) + ε2) ≥ (θk(p))
1
k ≥ θk(p)

θk−1(p)
.

Since ε0, ε1 and ε2 are arbitray, we have that

lim
k→∞

θk(p)

θk−1(p)
= exp{−φ(p)}.

D. Proof of Corollary 2.4

Before going to the proof of this corollary, we will first
introduce the following lemma.

Lemma 1.4. Let A be an increasing event which depends
only on finitely many nodes of a lattice. Then log Pp(A)

log p is a
non-increasing function of p.

The proof of this lemma can be found in [25]. Though the
author in [25] shows the proof in a bond percolation problem,
it is very easy to adjust the proof for our purpose and we omit
the details.

Proof of Corollary 2.4. It is easy to see φ(p) = 0 if p > pc.
Indeed, since

Pp(0↔ B(k)) ≥ θ(p) > 0,

it leads to

0 ≤ φ(p) = lim
k→∞

− logPp(0↔ B(k − 1))

k

≤ lim
k→∞

− log θ(p)

k
= 0,

when p > pc ≥ 1
(2C+1) .

Since θk(p) only depends on the status of finitely many
sites, − 1

k log(θk(p)) is a continuous function of p for any
k ≥ 1. So it is sufficient to show that − 1

k log(θk(p)) converges
to φ(p) uniformly on (0, 1]. By (37) and (38), we have for any
p ∈ (0, 1]∣∣∣∣φ(p) +

1

k
log(θk(p))

∣∣∣∣ ≤ 1

k
(g(k) + log 2)→ 0 as k →∞,

which does not depend on p at all. So φ(p) is a continuous
function of p on (0, 1]. And it follows the fact that φ(pc) = 0,
since

φ(pc) = lim
p↓pc

φ(p) = 0,

by continuity of φ(p). To prove the strict monotonicity of φ(p)
when 0 < p < pc, we notice that {0 ↔ B(k − 1)} is an
increasing event which only depends on finitely many edges.
Thus we apply the Lemma 1.4 to have that

logPa(0↔ B(k − 1))

log a
≥ logPb(0↔ B(k − 1))

log b
if a ≤ b.

If we divide the above by k and take the limit as k → ∞,
then we have

φ(a) ≥ φ(b)
log( 1

a )

log( 1
b )

if 0 < a ≤ b ≤ 1.

So if 0 < a < b < pc, we have φ(a) > φ(b). Thus the function
φ(p) is strictly decreasing on (0, pc).

To prove that limp→0 φ(p) = ∞, we use χ(k) and χ∗(k)
to denote the number of all runs and significant runs respec-
tively in the Pseudo-tree model that connect 0 and B(k − 1)
respectively. It is not hard to see that χ(k) = (2C+1)k−1 and
Ep(χ∗(k)) = pk × χ(k). Therefore, we have the following

θk(p) = Pp(0↔ B(k − 1))

= Pp(χ∗(k) ≥ 1)

≤ Ep(χ∗(k))

= pk × (2C + 1)k

So this will lead to the following fact

lim
k→∞

− log θk(p)

k
≥ − log(p× (2C + 1)).

So as p→ 0, obviously φ(p)→∞.

E. Proof of Corollary 3.4

Proof. Given a realization

ti,j ∼ Uniform(0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

let x∗1 ≥ x∗2 > 0 be such that p1 = P(ti,j > x∗1)
and p2 = P(ti,j > x∗2). Since ti,j > x∗1 implies that
ti,j > x∗2, one can easily see that each significant node
under threshold x∗1 must be significant under x∗2 and therefore
|L0(m1, n, p1)| ≤ |L0(m1, n, p2)| which by Theorem 3.3
leads to ρ(m1, p1) ≤ ρ(m1, p2). Similarly, it is not hard to
see that |L0(m1, n, p1)| ≤ |L0(m2, n, p1)| since if m1 ≤ m2,
([1, n] × [1,m1]) ∩ Z2 ⊂ ([1, n] × [1,m2]) ∩ Z2. Thus
ρ(m1, p1) ≤ ρ(m2, p1).

F. Proof of Theorem 3.6

Proof. Recall θ(p), defined in Subsection II-B2, is the proba-
bility that there is a significant run starting from a certain node
and heading towards right forever when the probability of a
node to be open is p. Let C(i, j) be a significant run starting
at (i, j). In particular, C is the one starting at (0, 0). The event
that there exists an infinite open cluster in the array does not
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depend on the status of finitely many columns of nodes. Thus
by the Kolmogorov zero-one law, µ(p) can only be either 0
or 1. If p > pc, then of course θ(p) > 0. We have

µ(p) ≥ P(|C| =∞) = θ(p) > 0,

which implies that µ(p) = 1 by the zero-one law. On the
other hand, because P(|C(i, j)| = ∞) = P(|C| = ∞) =
θ(p), ∀(i, j), if θ(p) = 0 or p < pc, we have

µ(p) ≤
∑
(i,j)

P(|C(i, j)| =∞) = 0.

G. Proof of Theorem 3.7

Proof. We first prove

ρ(∞, p) = lim
k→∞

ρk(∞, p) = lim
k→∞

Pk(∞, p)
Pk−1(∞, p)

= 1,

in the case of p > pc. Suppose that ρk(∞, p) does not converge
to 1. Then since [0, 1] is a compact set, there must exist a
subsequence of {ρk(∞, p)}k∈K, K ⊂ Z+, such that

lim
k(∈K)→∞

ρk(∞, p) = ρ0,

for some ρ0 in [0, 1). And there exists some constant ρ∗0 ∈
(0, 1) slightly bigger than ρ0, such that

ρk(∞, p) < ρ∗0,

for any sufficiently large k ∈ K . Therefore, we have

Pn(∞, p) ≤
∏

k(∈K)≤n

ρk(∞, p) ≤
∏

k(∈K)≤n

ρ∗0, (39)

since Pn(∞, p), the probability of having a crossing when
there are exactly n columns, is equal to P1(∞, p) ×∏n
i=1 ρi(∞, p), which is no larger than∏

k(∈K)≤n

ρ∗0.

It leads to the fact that

Pn(∞, p)→ 0, as n→∞.

On the other hand, it is easy to see that Pn(∞, p) ≥ θn(p) ≥
θ(p) > 0 for any n when p > pc, where θn(p) and θ(p)
are defined in subsection II-B1. So there is a contradiction.
Therefore we should have the following,

ρk(∞, p)→ 1, as k →∞,

when p > pc.
Now we prove the first equality of (11) under p > pc. By

Corollary 3.4, we know the limit of ρ(m, p) exists as m goes
to ∞ and thus we have the following

lim
m→∞

ρ(m, p) = sup
m∈Z+

{ρ(m, p)} := ρ∗.

If we had ρ∗ < 1, then notice the fact that ρ(m, p) ≤ ρ∗ for
every m, thus it would lead to

|L0(m,n)|
log1/ρ(m,p) n

→ 1, as n→∞, (40)

almost surely, for every m. We would have |L0(m,n)| ≤
log1/ρ∗ n with probability 1, when n is sufficiently large for
every m. On the other hand, in the array of Z+×Z, we would
have positive probability (≥ θn(p) ≥ θ(p) > 0) that there is
a significant run connecting the origin and the nth column.
This leads to the fact that we have a crossing in the first n
columns with positive probability for any positive integer n.
So given n sufficiently large, we may choose m(≥ 3n · C)
to be sufficiently large such that the model contains all the
possible significant runs in the first n columns starting at the
origin. Therefore with positive probability (> θ(p)), we have
a crossing in the first n columns which contradicts (40) above
because log1/ρ∗ n � n when n is large. The proof of the
theorem is completed.

H. Proof of Theorem 3.8

Before the proof, let us recall the definitions of three
constants in [58]. Let I be an arbitrary index set, and for
α ∈ I , let Xα be a Bernoulli random variable with pα ≡
P(Xα = 1) = 1 − P(Xα = 0) > 0. For each α ∈ I ,
suppose we have chose Bα ⊂ I with α ∈ Bα. We think
of Bα as a “neighborhood of dependence” for α, such that
Xα is independent or nearly independent of all of the Xβ for
β not in Bα. Define

b1 ≡
∑
α∈I

∑
β∈Bα

pαpβ ,

b2 ≡
∑
α∈I

∑
α6=β∈Bα

pαβ , where pαβ = E(XαXβ),

b3 ≡
∑
α∈I

sα,

where

sα ≡ E
∣∣E{Xα − pα

∣∣σ(Xβ : β ∈ I −Bα)}
∣∣ .

The following theorem can be found in [58].

Theorem 1.5. When b1 + b2 + b3 → 0, the random variable
defined by

W ≡
∑
α∈I

Xα,

approximately has a Poisson distribution with mean

λ ≡ EW =
∑
α∈I

pα.

Proof of Theorem 3.8. Let Zi be the indicator that there is
a significant run from (i, 1) to the nth column, where i =
1, . . . ,m. Let Wn,m be the number of nodes in the first column
from which an across significant run starts, i.e.,

Wn,m =
m∑
i=1

Zi.

Obviously that

Pn(m, p) = 1− P(Wn,m = 0).

The main idea of the Poisson approximation is that under
certain conditions

P(Wn,m = 0)
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can be approximated by Poisson(λ) where the Poisson param-
eter λ will be computed below.

To verify the conditions for the Poisson approximation, we
first define the neighborhood of i, 1 ≤ i ≤ m, as

N(i) = {j : |i− j| < 2 · n · C + 1, 1 ≤ j ≤ m}.

Define three constants b1, b2 and b3 as in [58] which depend
on n, m, C and p. Let σ(Zj : Zj 6∈ N(i)) be the σ-algebra
generated by {Zj : Zj 6∈ N(i)}. If j 6∈ N(i), then clearly
|j − i| ≥ 2 · n · C + 1 which leads to the fact that Zi and Zj
are independent. For b3, we have

b3 =
m∑
i=1

E
∣∣E(Zi − E(Zi))

∣∣σ(Zj : Zj 6∈ N(i))
∣∣

= 0,

For b1, we have

b1 =
m∑
i=1

∑
j∈N(i)

Ep(Zi)Ep(Zj)

=
m∑
i=1

∑
j∈N(i)

Pp(Zi = 1)Pp(Zj = 1)

(fact 1)
≤

m∑
i=1

θn(p)
∑

j∈N(i)

θn(p)

By Theorem 2.2, when p < pc, we have a constant σ > 0 and
φ(p) > 0 such that

θn(p) ≤ σ · n exp{−nφ(p)}.

And therefore, it follows that

b1 ≤ m · (2n · C + 1) · σ2 · n2 · exp{−2n · φ(p)}
≤ O(n3 · exp{−n · (δ2 + φ(p))}).

For b2, we have

b2 =

m∑
i=1

∑
j∈N(i),j 6=i

Ep(Zi · Zj)

= 2
m∑
i=1

∑
j∈N(i),j>i

Ep(Zi · Zj)

= 2

m∑
i=1

∑
j∈N(i),j>i

Pp(Zi = 1 and Zj = 1)

= 2
m∑
i=1

Pp(Zi = 1) ·
∑

j∈N(i),j>i

Pp(Zj = 1|Zi = 1)

≤ 2
m∑
i=1

Pp(Zi = 1) · (n · C + 1)

(fact 1, 2)
≤ O(m · n2 · exp{−n · φ(p)})

(fact 3)
≤ O(n2 · exp{−n · δ2}).

In the foregoing, we have used the following fact:
1) P(Zi = 1) ≤ θn(p), ∀i = 1, . . . ,m and 0 < p < pc;
2) θn(p) ≤ O(n · exp{−n · φ(p)});

3) O(n1+δ1) ≤ m ≤ O(exp{n · (φ(p) − δ2)}) for some
sufficiently small δ1, δ2 > 0.

Loosely speaking, b1 measures the neighborhood size, b2 mea-
sures the expected number of neighbors of a given occurrence
and b3 measures the dependence between an event and the
number of occurrences outside its neighborhood. Now let us
consider the Poisson parameter λ which is E(Wn,m). When
O(n1+δ1) ≤ m for some sufficiently small δ1 > 0, by
Theorem 2.2 it is easy to see that

λ ≈ mθn(p) = m · exp{−n · (φ(p) + o(1))}

as m sufficiently large since O(n1+δ1) ≤ m is enough to
relieve the boundary effects. By Theorem 1 of [58], the
Poisson approximation gives

|P(Wn,m = 0)− exp{−λ}|

≤ min{1, 1

λ
} · (b1 + b2 + b3)

≤ O(n2 · exp{−n · (δ2 + φ(p))}) +O(n2 · exp{−n · δ2})
≤ O(n2 · exp{−n · δ2}).

Therefore, under the sub-critical phase, i.e., p < pc, if m,n are
sufficiently large with O(n1+δ1) ≤ m ≤ O(exp{n · (φ(p) −
δ2)}), then we have

P(Wn,m = 0) (41)
= exp{−mθn(p)}+ o(1) (42)
= exp{−m · exp{−n · (φ(p) + o(1))}}+ o(1). (43)

Note that mθn(p) = m exp{−n(φ(p) + o(1))} ≤
O(exp{−n(δ2 + o(1)}) can be sufficiently small if n is
sufficiently large. Since 1− exp{−x} = x+O(x2) as x→ 0,
when p < pc by Corollary 2.3 we have

ρn(m, p) =
Pn(m, p)

Pn−1(m, p)

=
1− exp{−mθn(p)}+ o(1)

1− exp{−mθn−1(p)}+ o(1)

=
mθn(p) +O(m2θ2

n(p)}) + o(1)

mθn−1(p) +O(m2θ2
n−1(p)}) + o(1)

→ θn(p)

θn−1(p)
→ exp{−φ(p)}.

as m→∞, n→∞ and (m,n) ∈ Ac1,c2,δ1,δ2 .

I. Proof of Theorem 3.9

Proof. This proof was first used in [52] for a regular lattice
model. Let θxk(p) denote the probability that x = (x1, x2) ∈
([1,m]× [1, n])∩Z2 connects the x2 +k−1-th column, which
is denoted by B(x2 + k − 1), with a significant run. One can
easily see that θxk(p) = θk(p). Recall the definition of φ(p) in
the following,

φ(p) = − lim
k→∞

log θk(p)

k
= − lim

k→∞

log θxk(p)

k
.
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Let ε < 1/2 be a small positive number and k+
m,n(ε) = d(1 +

ε) log(mn)/φ(p)e. By the second inequality in (5), it is not
hard to see that

P(|L0(m,n)| > k+
m,n(ε))

= P(
⋃

x∈([1,m]×[1,n])∩Z2

(x↔ B(x2 + k+
m,n(ε)− 1)))

≤
∑

x∈([1,m]×[1,n])∩Z2

P(x↔ B(x2 + k+
m,n(ε)− 1))

≤ mnσ2k
+
m,n(ε) exp{−k+

m,n(ε)φ(p)}

Since σ2 is a constant and φ(p) > 0 when p < pc, when m
and n are sufficiently large, it follows that

mnσ2k
+
m,n(ε) exp{−k+

m,n(ε)φ(p)}
≤ mn exp{−(1− ε/2)k+

m,n(ε)φ(p)}
≤ mn exp{−(1− ε/2)(1 + ε) log(mn)}
= (mn)−(ε−ε2)/2

→ 0, as m,n→∞

since ε− ε2 > 0.
On the other hand, let I = d mn

(logm logn)2 e and let k−m,n(ε)

be b(1 − ε) log(mn)/φ(p)c. Let x1, x2 . . . , xI ∈ ([1,m] ×
[1, n]) ∩ Z2 be nodes separated from each other and the
boundary of ([1,m]× [1, n])∩Z2 by at least 1

2 (logm log n)2.
For sufficiently large m and n, it is not hard to see that the
I events {xi ↔ B(xi2 + k−m,n(ε) − 1)} are independent and
have equal probabilities. Therefore, for large m and n, by the
first inequality of (5) we have that

P(|L0(m,n)| < km,n(ε))

≤ P

 ⋂
i=1,...,I

{xi ↔ B(xi2 + k−m,n(ε)− 1)}


=

(
1− P(xi ↔ B(xi2 + k−m,n(ε)− 1))

)I
= (1− θk−m,n(ε)(p))

I

≤ (1− σ1(k−m,n(ε))−1 exp{−k−m,n(ε)φ(p)})I

When m and n are sufficiently large, it follows that

(1− σ1(k−m,n(ε))−1 exp{−k−m,n(ε)φ(p)})I

≤ (1− exp{−(1 + ε/2)k−m,n(ε)φ(p)})I

≤ (1− exp{−(1 + ε/2)(1− ε) logmn})I

≤ (1− (mn)−1+ε/2+ε2/2)mn/(logm logn)2

≤
(

1− (mn)−1+ε/2
)(mn)1−ε/2(mn)ε/2/(logm logn)2

≤ exp{−(mn)ε/2/(logm log n)2}
→ 0, as m,n→∞.

Therefore, as m,n → ∞, we have |L0(m,n)|
logmn → 1

φ(p) in
probability.
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