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Asymptotic Convergence Rates of the Length of the
Longest Run(s) in an Inflating Bernoulli Net

Kai Ni, Shanshan Cao, and Xiaoming Huo

Abstract—In image detection, one problem is to test whether
the set, though mainly consisting of uniformly scattered points,
also contains a small fraction of points sampled from some (a
priori unknown) curve, for example, a curve with C'“-norm
bounded by S. One approach is to analyze the data by counting
membership in multiscale multianisotropic strips, which involves
an algorithm that delves into the length of the path connecting
many consecutive ‘“significant” nodes. In this paper, we develop
the mathematical formalism of this algorithm and analyze the
statistical property of the length of the longest significant run.
The rate of convergence is derived. Using percolation theory and
random graph theory, we present a novel probabilistic model
named, pseudo-tree model. Based on the asymptotic results for
the pseudo-tree model, we further study the length of the longest
significant run in an “inflating” Bernoulli net. We find that the
probability parameter p of significant node plays an important
role: there is a threshold p., such that in the cases of p < p.
and p > p., very different asymptotic behaviors of the length of
the significant runs are observed. We apply our results to the
detection of an underlying curvilinear feature and prove that the
test based on our proposed longest run theory is asymptotically
powerful.

Index Terms—Inflating Bernoulli net, pseudo-tree model,
longest significant run, curve detection, asymptotically powerful
test.

I. INTRODUCTION

N the application of image detection problems, one class of

questions is to determine whether or not some filamentary
structures are present in the noisy picture. There are a plethora
of available statistical methods that can, in principle, be used
for filaments detection and estimation. These include: Principle
curves in [1], [2], [3] and [4]; nonparametric, penalized,
maximum likelihood in [5]; parametric models in [6]; manifold
learning techniques in [7], [8] and [9]; gradient-based methods
in [10] and [11]; methods from computational geometry in
[12], [13] and [14]; faint line segment detection in [15];
Ship Wakes “V” shape detection against a highly cluttered
background in [16] and underlying curvilinear structure in
[17], [18] and [19]. See also [20], [21], and [22] for the
applications of the percolation theory in this area.

A. Background and Literature Review

One approach for this type of detection problems works
as follows. At localized batches, hypothesis testing is run to
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determine whether this batch may overlap with the underlying
structure. The hypothesis testing is run while the batch scans
through the entire image. The intuition is that if there is an
embedded structure, then the significant test results must be
clustered around the underlying structure. The difficulty comes
from the fact that there will be many false positives among
these tests. We want to take advantage of the fact that the false
positive testing results are not clustered, in relative to those that
overlap with the underlying feature. Our percolation analysis
is motivated by the above phenomenon.

Suppose we have an m-by-n array of nodes. A Bernoulli
random variable X; ; is associated with each node (i, j) such
that if X;,; = 1 then the node is significant (or open);
otherwise, insignificant (or closed). However, we suspect that
there is a sequence of nodes, with unknown location or
orientation, open or closed with a different probability p; > p.
In [23], it is shown that the length of the longest significant
run, denoted by |Lg(m,n)| throughout the paper, has the
following asymptotic rate of Erdds-Rényi type (See [24])

1o Lo(m )

=1 almost surely, (D)
=00 10gy )/ p(m p) 1

where p(m,p) is a constant depending on m, p, and also the
structure of the model.

However, the limitation of (1) is that m is fixed. Our paper
extends the previous work to derive the convergence rate of
the length of the longest significant run in the inflating model,
ie, m — oo and n — oo simultaneously. Our theory is
related to the percolation theory, in which we will introduce
the critical probability p. and divide our theory into the p > p.
phase and the p < p. phase. For percolation theory, books by
Grimmett [25] and Bollobas [26] are good references. Durrett
[27] systematically studies an oriented site percolation model,
which is similar to the model in this paper. See also the
references therein.

Applications of the aforementioned can be the following:

o Detection of filamentary structures in a background of
uniform random points in [17]. We are given N points
that might be uniformly distributed in the unit square
[0, 1]%. We wish to test whether the set, although mostly
consisting of the uniformly scattered points, also con-
tains a small fraction ey of points sampled from some
(unknown a priori) curve with C* norm bounded by S.
See also [28] for a more general case.

o Target tracking problem in [18]. Suppose we have an
infrared staring array. A distant moving object will create,
upon lengthy exposure, an image of a very faint track
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against a noisy background. We want to detect whether
there is such a moving object in a noisy image.

e Water quality in a network of streams in [29]. Water
quality in a network of streams is assessed by performing
a chemical analysis at various locations along the streams.
As a result, some locations are marked as problematic.
We may view the set of all tested locations as nodes
and connect pairs of adjacent nodes located on the same
stream, thereby creating a tree. We then assign to each
node the value 1 or 0, according to whether the location is
problematic or not. One can then imagine that one would
like to detect a path (or a family of paths) upstream of
a certain sensitive location to trace the existence of a
polluter or look for the existence of an anomalous path
upstream from the root of the system.

There is a multitude of applications for which our model
is relevant. Examples include the detection of hazardous
materials [30], target tracking [31] in sensor networks [32],
and disease outbreak detection [33]. Pixels in digital images
are also sensors, so that many other examples can be found in
the literature on image processing, such as road tracking [34],
fire prevention using satellite imagery [35], and the detection
of tumors in medical imaging [36].

The generalized likelihood ratio test, which is known as
the scan statistic in spatial statistics [37], [38], is by far
the most popular method in practice and is given different
names in different fields. Most of the methods related to scan
statistic assume that the clusters are in some parametric family
such as circular [39], elliptical [40], [41], or, more generally,
deformable templates [42], while others do not assume explicit
shapes [43], [44], [45], which leads to nonparametric models.

B. Our Contribution

We consider a nonparametric method based on the per-
colative properties of the network. The most basic approach
is based on the size of the longest significant run of the
graph after removing the nodes whose values fall under a
given threshold. If the graph is a one-dimensional lattice,
after thresholding, this corresponds to the test based on the
longest run [46], which [23] adapts for path detection in a thin
band. This test is studied in a series of papers such as [20]
under the name of maximum cluster test. A more sophisticated
statistic, which is the upper-level set scan statistic, is studied in
[47], [48], [49]. In its basic form, it scans over the connected
components of the graph after thresholding.

Recently, Langovoy et al. [20], [21], [22] employs the
theory of percolation and random graph to solve the image
detection problem. However, our methods in this paper are
different from the classic percolation theory since the nodes
here are not necessarily independent a priori.

Specifically, our work has three advantages.

1) We can drop the independence assumption among nodes
which is the fundamental assumption in the percolation
theory.

2) Our work is devoted to researching the asymptotic
behavior of the longest left-right significant run in the
lattice with a diverging m.
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3) Our model can be easily adapted to the three or higher
dimensional cases with some notations change, though
for simplicity, the paper is mostly written based on a
2-dimensional model.

In practice, our work places a fundamental theory on
practical problems involving the length of runs. One direct
motivation comes from a statistical detection problem. In [17],
the authors proposed a method called the multi-scale signifi-
cance run algorithm (MSRA) for the detection of curvilinear
filaments in noisy images. The main idea is to construct a
Bernoulli net. Each node has a value of 1 (significant) or 0
(insignificant). Two nodes are defined as connected if they
are neighbors (for example, their altitude difference is within
(), that is, they can simultaneously cover a curve of interest.
The length of the nodes in the longest significant run is used
as a test statistic. If the length of the run exceeds a certain
threshold, then we conclude that there exists an embedded
curve; otherwise, there is no embedded curve. To formulate
this as a well-defined probability problem, we test the null
hypothesis of a constant success probability p against the
alternative hypothesis that some nodes, being on a filament
with unknown location and length, have a greater probability
of success p; > p. Under the alternative, the length of the
longest significant run, |Lo(m,n)|, is more likely to exceed
(i.e., be greater than) a threshold, which, under the null
hypothesis, cannot be exceeded. In the approach of [17] the
values of these parameters can be chosen for testing. The
question is how to choose these parameters so that the power
of the test can be maximized. This becomes a design issue.
The relation between |Lg(m,n)| and other parameters must
be understood. The choice of parameters in the approach
of [17] is sufficient to guarantee the proof of asymptotic
optimality; Our research systematically searches the relation
between |Lo(m, n)| and these parameters.

In [23], the authors show that p(m,p) in (1), which is the
limit of conditional probability p,,(m,p) that there will be a
crossing for n columns conditioning on the fact that there is
a crossing in the previous (n — 1) columns, lies in (0,1) as
n — oo. Let A, ., 5,.5, denote the following set

A61762,51752 = {(mvn) : cln1+61 <m< e exp[n(qﬁ(p)f(;g)]}.

2)
The set A, c,.s,,6, essentially states that as the column
number n increases, m increases faster than any linear growth
of n and slower than some exponential growth of n. In our
work, we show that in the case of p < p., as m — 00, n — 0o
and (m,n) € Ac, ¢,.5,,5,» We have

pn(m,p) — exp{—d(p)};

and
|Lo(m,n)| = log(mn)/é(p) + op(1),

where ¢(p) is a positive function and will be defined in (6).
Applying our theory to the multi-scale detection method in
[17], we describe a multi-scale significant run algorithm that
can reliably detect the concentration of data near a smooth
curve, without knowing the smoothness information « or (3 in
advance, provided that the portion of points on the curve ey
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exceeds T'(a, B)NY/(1+2) Our T(a, B) is smaller than that
in [17], which indicates stronger detection ability using our
theory. In the target tracking problem, our method provides a
reliable threshold such that the false alarm probability vanishes
very quickly as we get more and more sample points.

The rest of the paper is organized as follows. In Section
II, we present a pseudo-tree model and study the critical
probability and its reliability problems. In Section III, we first
summarize the previous work of the Bernoulli net. Notice that
from any node in the inflating net, there exists a pseudo-tree,
defined in Section II. Based on the results on the pseudo-tree
model in Section II, we further provide the extensions to the
Bernoulli net beyond the fixed number of rows. We present
some potential applications of the longest run method in image
detection problems in Section IV. We conclude our work in
Section V. All proofs are relegated to Appendix A.

II. PSEUDO-TREE MODEL

In this section, we will first introduce the pseudo-tree model
in Section II-A. Then we provide our results on the critical
probability and the asymptotic behaviors on the significant
runs in pseudo-tree models in Section II-B. Finally, we extend
our model to the high-dimensional pseudo-tree model and
generalize our results in the 2D case in Section II-C.

A. Model Introduction

In this section, we first present a model which has some
similarity to a regular or complete-tree model ([50], [51]).
Consider, for example, the lattice with nodes of the form

V ={(i,j) € Z* : —iC < j <iC,i >0}, 3)

and oriented edges (¢,7) — (¢ + 1,5+ s), where |s] < C
and C' is the connectivity constraint. Throughout this paper,
we will treat C' as a constant and ignore the dependence on
C when the context is clear. We call (0,0) the origin of the
graph and sometimes use 0 to denote the origin. Let Y; ; be
the i.i.d. Bernoulli(p) state variables corresponding to the node
(,7). We say the node (,7) is significant, if ¥; ; = 1, and
insignificant if Y; ; = 0. In this paper, we are interested in
the length of significant runs starting at the origin, which is
a path consisting of only significant nodes in the graph. See
Figure 1 for a sketch of the model.

Note that even though the number of runs of length % in
the Pseudo-tree model and the regular tree model with 2C' 4+ 1
descendants is the same (both equal (2C'+ 1)k_1), the numbers
of nodes are considerably different in the first k£ columns—
about k2C for the former and about (2C + 1)* for the regular
tree.

Let p. denote the critical probability for the site percolation
in the Pseudo-tree model, defined as the supremum over all
p € (0,1) such that the size of the significant run at the origin
is finite with probability 1, which is mathematically defined
in Equation (4). To our knowledge, this model has not been
fully studied yet, and we will elaborate on some results in the
next section. Analogous to the model presented here, recent
papers ([51], [52]) have studied the oriented and non-oriented
significant clusters or runs in a regular lattice.
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(a) all possible paths in the Pseudo-tree model (b) a real run in the pseudo—tree model
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Fig. 1. A sketch of pseudo-tree model with the connectivity constraint C' = 2.
(a) gives all the possible edges in the model. In (b) solid nodes are significant.
The green path shows a possible real run in the pseudo-tree model

B. Results

In this section, we give some results about the significant
runs in Pseudo-tree model V' presented in (3). The difference
between the Pseudo-tree and Regular-tree model is that the
number of nodes in the former grows quadratically with the
depth, as opposed to growing exponentially with the depth in
the latter. Besides, in the Pseudo-tree model, different runs
may share the same edges, and therefore the behaviors of
distinct runs here are quite correlated.

1) Notations: We shall introduce some notations. We can
observe that there is only one node in the 0-th column, namely
the origin (0,0), and there are 2kC' + 1 nodes in the k-th
column, namely the nodes (k, —kC),...,(k,0),..., (k,kC).
For k € Z™, let B(k) = {(k,—kC),...,(k,0),...,(k,kC)}
be the set of nodes in k-th column in V.

Let 65(p) denote the probability that (0,0) is connectible
to the (k — 1)th column by a significant run, which implies,

Ok(p) = P,((0,0) ¢ B(k —1)).

In other words, 6 (p) is the probability that there is a signif-
icant run of length at least k starting at the origin. Given
any © = (x1,22) € Z2 let 0%(p) be the probability that
x connects the (z; + k — 1)-th column with a significant
run. It is easy to see that 67 (p) does not depend on the
status of the nodes before the zi-th column and 67(p) =
P,({x < B(z1 +k —1)}) = 6x(p). Because 6;(p) only
involves finitely many nodes, one can easily see that 0 (p) is
a continuous function of p € [0, 1]. Throughout the paper, we
will sometimes use n as a subscript instead of k.
2) Critical Probability: Given the above notations, we state
some properties of the function 6 (p) as follows:
o O, (p) < Ok, (p), if k1 > ko, which implies O(p) :=
limg_, o0 O (p) exists;
e 0;(0) =0 and 0;(1) = 1, for any k > 1, which implies
0(0) =0 and 0(1) =1;
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e 0;(p) and 6(p) are nondecreasing with respect to p.

Thus, 6(p) is the probability that there is a significant run in
V' starting from the origin and heading towards right forever
when the probability of a node to be open is p. In light of
this, we define p. to be the critical probability, i.e.,

pe :==sup{p € [0,1] : 6(p) = 0}. “4)

So p. is the critical probability, above which it is possible
to have an infinite significant run starting from any node in
Pseudo-tree model.

Recall that in the r-regular tree model, the critical proba-
bility p. = 1/r. Our first result shows that in the Pseudo-tree
model, the critical probability is no smaller than 1/r, where
r=2C+1 (See [26]).

Theorem 2.1. The critical probability of the Pseudo-tree
1

model p. > TS

In the beam-let model of [17], each node is connectable to
81 nodes in the next column. Thus this theorem explains the
reason that the authors there took the membership threshold
N* such that p = P(Poisson(2) > N*) = £ for some py €
(0,1).

3) Asymptotic rate of 0 (p): In this part, we show that on
the sub-critical phase p < p.

Ok(p) = Pp(0 < B(k — 1)) = O(k exp{—k¢(p)}),
where ¢(p) > 0 is a decreasing function of p.

Theorem 2.2. Suppose 0 < p < 1. There exist positive
constants o1 and oo, independent of p, and a unique function
o(p), such that

o1k~ exp{~ko(p)} < O (p) < ook exp{~ko(p)},  (5)
for any k > 1. In particular,

% — —o¢(p) as k — . (6)

The next corollary gives the limit of efi (1180).
Corollary 2.3.

Or(p)

= exp{— . 7

A e ) p{—¢(p)} (7

Given Theorem 2.2, one may speculate that ¢(p) — oo as
p — 0, since §(p) = 0 as p = 0, and by the theorem it holds
that ¢(p) > 0. We will show ¢(p) has the desired properties
as p < p. in the following corollary.

Corollary 2.4. The function ¢(p) := limy_, o —W have
the following properties:
1) &(p) is a continuous function on (0,1];
2) ¢(p) is strictly decreasing on (0,p.) and is a constant
equal to zero when p. < p < 1;
3) lim, 0 ¢(p) = oo.

Remark 2.5. By observing Corollary 2.4, Theorem 2.2 is of
no value when p > p. because ¢(p) is constantly O in the

supercritical phase.
Figure 2 gives the tendency of —W

different values of p when C' = 1.

against k for
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against k with p being

C. Extension to Pseudo-tree model in dimension d' = d + 1

This section emphasizes that our results above for the
Pseudo-Tree model can be extended to other graphs and, in
particular, to the analog of models in higher dimensions.

The pseudo-tree model in dimension d’ = d + 1 is the
analogous lattice of (3) in higher dimension

(G, g1, da) € ZY + —iCy < ji <iCh,
k=1,...,d,i>0},

Vi =

with oriented edges (¢, j1,...,ja) = (i+1,51+81,...,Ja+
sd), where |sy| < C, € Z*, k =1,...,d. We denote 6% (p)
to be the probability that there is a significant run of length at
least k starting at the origin and p? to be the critical probability.
We use the superscript d to emphasize the notation in higher
dimensions.

With these definitions of the graphs, we have the following
results in higher dimension. The proofs of these theorems do
not require any argument in addition to what we have already
presented, and so they are omitted.

Theorem 2.6. The critical probability of the forgoing pseudo-
tree model in dimension d = d + 1 satisfies p? >

1
(2C14+1)x...x(2Cq+1)"

Theorem 2.7. For 0 < p < 1, there exist positive constants af
and o4, independent of p, and there exists a unique function
¢4 (p), which is strictly decreasing and positive when p < pe;
constantly O otherwise, such that

otk exp{—ko!(p)} < 0i(p) < o5k exp{—ko?(p)},
for any k > 1. In particular, it follows that

log 6¢(p)
080D, gy,
More generally, let Z, be the set of nonnegative inte-
gers. For any set C C Z%, we may extend the condition
of the oriented edges to a more general condition such

(®)
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as (i7j17"'ajd) — (7’ + 17j1 + Sla"'>jd + Sd)’ where
(s1,...,84) € C. It is straightforward to get the analogous
results as above except that p. > 1/card{C}. Details are
omitted here.

III. BERNOULLI NET

In this section, we focus on studying the Bernoulli net in
a two-dimensional rectangular region, where both the number
of rows and columns can go to infinity. We first introduce
the model in Subsection III-A. Then we review the previous
results on Bernoulli, which mainly considers the scenario of a
fixed number of rows, in Subsection III-B1. Our results on the
asymptotic behaviors of the infinite Bernoulli net are presented
in Subsection III-B2, III-C, and III-D on conditional across
probability, rate of the longest significant run, and extensions
to higher dimensions, respectively.

A. Model Introduction

We consider an m-by-n array of nodes, in which there are m
rows and n columns. Such an array can be considered as a grid
in a two-dimensional rectangular region, ([1,n] x [1,m])NZ2.
Assume that each node with coordinate (7,5),1 <i<mn,1 <
j < m, is associated with a Bernoulli(p) state variable X ;
ie.,

P(XiJ = 1) =p= 1-— ]P)(Xi,j = 0),

where p € [0,1] is given. Assume state variables of nodes are
iid. If X; ; =1, then the node is called significant (or open);
otherwise, it is non-significant (or closed). Any two nodes in
the grid, say (i1,71) and (ia, j2) are connected if and only if
|i1 —ia] =1 and |j; — jo| < C, with C a prescribed positive
integer. Define a run of length ¢ as a run of ¢ connected nodes,
ie.,

{(i1,71), (i1 + 1,52), .., (31 + £ —1,5¢)
ljk — jr—1| < C,Vk =2,...,0}.

A significant (or open) run refers to a run with all the nodes
being significant. We call such a system a Bernoulli net.
We are interested in the length of the longest significance
run in this net. Throughout the paper, we denote the longest
significant run in this net by Lo(m,n) and its length by
|Lo(m,n)|. Though in some papers, runs, chains and clusters
have different definitions. Here we treat them as synonyms.
To be consistent throughout the paper, we will use runs in the
rest of the paper. Such a model is used in the detection of
filaments in a point cloud image ([17], [9]) and networks of
piecewise polynomial approximation ([28]).

Apparently, the length |Lo(m,n)| depends on parameters n,
m, p, and C. Figures 3 and 4 give graphical representations
of the relationships between the length |Lo(m, n)| and param-
eters C, p, m,n. The number of simulations is 1,000 for each
histogram. We present a summary of the results below.

(€))

o For fixed values of m and n, when the value of C or
p is increased, the distribution of |Lg(m,n)| changes
dramatically. These can be seen in Figure 3.

o For fixed values of C' and p, if the value of m or n
is doubled, the change of |Lo(m,n)| is not significant.
These can be seen in Figure 4.
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Fig. 3. (a) |Lo(m,n)| versus C: effects of connectivity. Every time when
the value of C' is doubled, the histogram of |Lg(m,n)| is shifted to the right
significantly. (b) |Lo(m,n)| versus p: effects of significance probability p.
When the value of p is increased, the histogram of |Lo(m, n)| is shifted to
the right.

B. A thin slab

1) Previous Work: In this section, we discuss the previous
work related to the model in [23], which focuses on the
scenario where the number of rows m is fixed. We will
discuss the relationship between ¢(p) mentioned in (6) and
the conditional across probability defined in [23]. We list the
results in [23]. For proofs of these results, please refer to [23]
and references therein.

The first result is motivated by reliability-focused work [53].

Theorem 3.1. Let Pi(m,p) = Pcp(|Lo(m, k)| = k) denote
the probability that the length of the longest significant run is
k, when there are exactly k columns and m rows. We have
(1= Pilm,p))" ™" <Boy(Lofmm| <k)
<[1 = g™ Pe(m,p)]"~**,
where ¢ =1 — p.

The following lemma introduces a constant p(m,p) de-
pending on m and p, which is important in the asymptotic
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Fig. 4. (¢) |Lo(m,n)| versus m: effects of heights. When the value of m
is doubled, the histogram of |Lo(m,n)| does not change dramatically. (d)
|Lo(m,n)| versus n: effects of the width of the Bernoulli net. Every time
when the value of n is doubled, the histogram of |Lo(m, n)| does not change
dramatically.

distribution of |Lg(m,n)|.

Lemma 3.2. Define pr(m,p) = %. There exists a

constant p(m,p) in (0, 1) that depends on m, C, and p, but
not on k such that

lim py(m,p) = p(m, p).
k—o0

Let a crossing be a significant run that passes all columns
from left to right. The ratio pg(m,p) is the conditional
probability that conditioning on the fact that there is a crossing
in the previous (k— 1) columns, there will be a crossing
for k£ columns. We may call this the chance of preserving
across significant runs or conditional across probability. The
foregoing lemma shows that as the number of columns goes
to infinity, the chance of preserving across significant runs
converges to a constant.
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Now we will recall the result in [23], which is a generaliza-
tion of the well-known Erdds-Rényi law (See [54], [55], [56]),
which is equivalent to the following theorem for m = 1 since
p(1,p) =p.

Theorem 3.3. For any fixed m € N, as n — oo, we have
|Lo(m,n)|

— 1,
1081/ p(m.p) T

almost surely.

Given this theorem, it is easy to obtain the following result,
which states the relation of p and (m,p). Since |Lo(m,n)]
actually depends on p, we use the notation |Lgy(m,n,p)| in
the next corollary to make the dependence explicit.

Corollary 3.4. Given a pair of positive integers mi, ms and
a pair of probabilities p1,ps with m1 < mg and p1 < pa, we
have

p(mi,p1) < p(ma,p1) and  p(mi,p1) < p(ma,p2)

Let us recall the result which states the asymptotic distribu-
tion of |Lo(m, n)|, the proof of which employs the Chen-Stein
approximation method. See [23] and [24].

Theorem 3.5. There exists a constant A1 > 0, that depends
only on m,C, and p but not on n, such that for any fixed t,
as n — oo, we have

]P)P(‘Lo(m’n” < logl/p(m,p) n+ t) - eXp{*Al : p(m7p)t}

The analogous result for a one-dimensional Bernoulli se-
quence is well known. See [57]. The foregoing theorems
provide a comprehensive description of the asymptotic distri-
bution of the length of the longest significant run |Lg(m,n)|
in a Bernoulli net when the row number m of the array is
fixed.

2) Asymptotic behavior of conditional across probability:
We see that all the results in the last subsection depend on
p(m,p). If p(m,p) — 1 as m — oo, then Theorems 3.3
and 3.5 may not hold. We shall next discuss the asymptotic
behavior of py(m,p).

Recall that 6(p) is the probability that there exists an
infinite significant run rooted at the origin and p, = sup{p €
[0,1],0(p) = 0}. We first consider a special case in the
array with m = oo and n = oo. In the following, if
m = oo, we employ the lattice of ([1,n] x Z) N Z? rather
than ([1,n] x [1,00]) N Z2. This theorem indicates that as
(m,n) — (00, 00), the behavior of the length of the longest
significant run will be quite different in the cases that p > p.
and p < pe.

Theorem 3.6. Let an array have 7" x 7 nodes, where 7+
denotes the set of all nonnegative integers. The probability
that there exists an infinite significant run (when the marginal
probability of a node to be open equal to p), denoted by p(p),

in the lattice satisfies
u(p) = 0, if p<pe
1, if p>pe.

We next separate our discussion into the super-critical
phase, where p > p. and the sub-critical phase, where p < p..
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Phase p > p.: Our first result shows that in the phase (a)

that p > p., p(m,p) — 1 as m — oo for any p > p.. ,._._-+-I- - - : . .

Theorem 3.7. For any p > p., we have 10 .
Jimp(m, p) = p(oo,p) =1 (11) ol ]

where p(0co,p) = limy_ye0 pr(00,p) = limy o0 %, b 1

and py (oo, p) is the conditional probability that there is a
crossing in the first k columns conditioned on the event that
there is a crossing in the first k — 1 columns when there are
infinitely many rows.

40 E

lengths of the longest significance run

We note that lim,_, p(m,p) = 1 in the case of p > p.. ol |
Recall that we introduce ¢(p) and its property in Corollary
2.4. ¢(p) =0 on p € [pc,1]. So we have the iterated limit

0.05 0.1 0.15 0.2 0.25 0.3
success probability: p

lim lim pg(m, p) = exp{=¢(p)}, (12) (b)

m—r0o0

when p € [p,, 1]. Recall that in (2), we define

9000
‘AC1702751752 = {(m,n) : ClnlJﬂSl <m<c exp[n(qS(p)f(sg)]}, 8000

for positive c¢1, ¢, 91 and 2. In the following, we use 7000

pn(m, p) instead of pi(m,p) and we will show below the 0000

double limit of p,(m,p) is exp{—¢(p)}, when p < p. as éjzzz
n — oo, m — oo and (m,n) € A, ¢,.6,.5, by Chen-Stein’s £ oo
approximation method (See [58]). 2000

1000
Phase p < p.: Recall that in Theorem 2.2, we introduce 0

6..(p), which is the probability that there is a significant run of
size n connecting the origin and B(n—1). In Theorem 3.1 we
introduce P, (m,p), which is the probability that the length
of the longest significant run is n when there are exactly n
columns. To determine the limit of p,(m,p) = %,
we need to know P,(m,p) when both n and m are very
large positive integers.

Theorem 3.8. Let ([1,n] x [1,m]) NZ? be the integer lattice
with the probability of nodes being open equal to p. Let
P, (m,p) be the probability of the event that there is a 4000
significant run from the first column to the last column of
the lattice, which is called an across run (or a crossing) in
Lemma 3.2. Then if p < p., we have

Po(m,p) = 1 — exp{=mby(p)} + o(1),

as m — 0o,n — 00 and (m,n) € Ac, c,.6,.5,- In particular,
we have p,(m,p) — exp{—a¢(p)} as m — oo,n — oo and 1500 |
(m,n) € Acye2,61,60-

p=0.05.

3500 -

3000

2500

2000

frequency

1000

In [23], the authors provide a method to calculates the values 500
of p(m,p) (see Table I), when m is small and fixed by finding ﬂ,_‘
8 10

L

—_

12 14 16 18 20

out the solution of m = 7P, where P is a transition matrix. 0 p . 6
See also (11) in [23]. o

One can use simulation to find ¢(p) in the case of p < Pe  gig 5. (a) An image plot, the distribution of | Lo(m, n)| (under n = 64, m —
and thus get some idea about p(m,p) as m becomes suffi- 128,C = 3) as a function of p (0 < p < 0.3075). The intensity of the image
ciently large. See Figure 2. The simulation below is done for is proportional to the frequency of |Lo(m, n)| (which is specified by the y-

.. . _ coordinate) given a value of p (which is the x-coordinate) out of 10,000
the length of the longeSt Slgmﬁcant run in [23] for n = 64, simulations. (b) A mesh plot of the same data as in (a). (¢) For p = 0.05,
m = 128, C = 3 and p = 0.05 when nodes are assumed to  the histogram of L is based on the same 10, 000 simulations. Note this can
be independent. See Figure 5. The result is based on 107 000 be viewed as one vertical slice from (a) or similarly a slice from (b).

simulations.
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TABLE I
THE VALUES OF p FOR DIFFERENT VALUES OF m AND p, WHEN C=1.
p 0.1 0.2 0.3 0.4 0.5 0.6
m=4 | 0.2444 | 0.4564 | 0.6341 | 0.7758 | 0.8804 | 0.9482
m=8 | 0.2654 | 0.4955 | 0.6869 | 0.8363 | 0.9383 | 0.9876
m=10 | 0.2691 | 0.5022 | 0.6958 | 0.8467 | 0.9486 | 0.9930

C. Rate of the longest significant run

The following is an extension of Theorem 2 in [23] in the
case that the Bernoulli net enlarges as m — oocand n — oo.
In the following, log denotes the logarithm with base e unless
the base is explicitly specified.

Theorem 3.9. When p < p., then as m — oo and n — o9,
we have that

|Lo(m,n)|
log(mmn)

in probability, (13)

o(p)’

where ¢(p) is a strictly decreasing, continuous function de-
fined in (6), which is positive in (0,p.) and constantly 0
otherwise.

From Theorem 3.9, it is apparent that asymptotically m
and n do not have a significant impact on the length of the
longest significant run |Lg(m, n)|. We showed that the critical
probability p. > ﬁ and |Lg(m,n)| will have significantly
different asymptotic behaviors between the case p < p. and
p > p.. Specifically, in Figure 3, on the left panel, where p
is fixed and C' increases, we can see a significant increase
on |Lo(m,n)|, especially when p. > Tlﬂ holds; on the
right panel, where C is fixed and p increases, we still can
see a significant increase on |Lg(m,n)|. In Figure 4, there
are no significant changes on |Ly(m, n)| as m or n increases.
To summarize, as C and p increase, |Lo(m,n)| will increase
dramatically while the increment of m and n do not have a
significant impact on the length |Lq(m, n)|.

D. Extension

This section emphasizes that our results above can be
extended to the case of models in higher dimensions.

e Inflating Bernoulli net in dimension d’ = d+1. This is the
graph with nodes ([1,n] x [1,m1] x ... x [1,mq]) NZZ.
Assume that each node with coordinate (i,7j1,...,j4),
1 S 7 § n,l S]k S mk,k = 1,...,diS
associated with a Bernoulli(p) random variables, where
p € [0,1] is given. Equip this graph with oriented edges
(4, J1,---5Ja) — (E+ 1,41 + $1,...,7a + Sa), where
sp =1,...,Cx, k = 1...,d for prescribed C} € Z™.
We say a run to be significant if all the nodes along
the run are significant and denote Ly(n,mq,...,mq) to
be the longest significant run in this model with length
|L0(7’L, mq,... ,md)|.

By Theorem 3.9, it is easy to see that we have the following
asymptotic rate of the longest significant run.

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Theorem 3.10. Let ¢°(p), defined in (8), be the higher dimen-
sional version of ¢(p). As n — 00, My —> 00, ..., Mg — OO,
we have that

) md) |
log(nmy ... mygq)

|L0(n7m17 s

in probability, (14)

. 1
¢4(p)
IV. APPLICATIONS

In this section, we are going to show some applications of
the above theory in hypothesis testing problems. In Section
IV-A, we first introduce the dynamic programming (DP) algo-
rithm [59] to find the longest significant run in an image. In
Section IV-B, we use the example of detecting an anomalous
run in a Bernoulli net to illustrate our theory on constructing
asymptotically powerful test. In Section IV-C, we consider the
multi-scale detection of filamentary structure. We first review
the results in the literature, and then we apply our theory on
longest run to solve this problem. The last application of target
tracking problems is shown in Section IV-D. We propose to
apply our longest run theory to detect the potential target. We
show that our method provides a reliable threshold such that
the false alarm probability vanishes very quickly as we get
more and more sample points.

Through this section, let Lo(n,m) and |Lg(n,m)| denote
the longest significant run and the length of the longest
significant run in ([1,n] x [1,m]) N Z2, respectively.

A. Dynamic programming algorithm finding |Lo(n, m)|

Let S be a set of nodes ([1,n] x [1,m]) N Z2. For a
node (i,j) € S, we use X;; ~ Bernoulli(py) to denote
the significance (insignificance) of node (i,j), where the
realization of 1 denotes the significance of node (i,7) and
0 denotes the insignificance of node (7, j). Let Y; be an array
{Y1(4,7) : 1 <i<m,1 < j <n}, such that

Yi(i,1) = X(@,1),fori=1,...,m;
Yl(ihj) = X(i7j>[1+.max. Yl(i/aj_D]a
i €Q(1)

fori=1,....m,j=2,...,n,

where Q(i) = {i' : |/ —i| < C,1 <4’ < m} denotes the set
containing neighboring indices of 4. Finally, the value |Lo(n)]
can be computed as follows:

max Y7(4, 7).

(s Vi)
It is not hard to see that this algorithm takes C'mn time for
C>0.

B. Detection of an anomalous run in a Bernoulli net

In this subsection, we consider the problem of detecting
an anomalous run in a Bernoulli net. For simplicity, we only
state the low dimension case, i.e., ([1,n] x [1,m]) N Z2. Let
L(n,m) be a class of runs in ([1,n] x [1,m]) N Z2, where
a run is defined as a subset of nodes which are connected
as in (9). Under the null hypothesis, each node (4, j) is i.i.d.
associated with a random variable X; ;, which has a Bernoulli
distribution with parameter pg, i.e.,

Ho(n,m) : X; ; ~ Bernoulli(py), i.i.d., (3, ).
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Under the alternative hypothesis, there exists an unknown run
L € L(n,m), and the variables with indexes in L have a
Bernoulli distribution with parameter p; > po, i.e.,

H, (7’1,, m) : Xi,j ~ Bernoulli(pl),V(i,j) e L;

X, ; ~ Bernoulli(po),V(4,7) € L,

for some unknown L.

Denote the length of the anomalous run L by |L|. For this
detection problem, we may consider the test based on the
longest significant run in the Bernoulli net ([1,n]x [1,m])NZ2.
By Erdos-Rényi law ([56]), the longest significant run in L
almost surely has the length of log, /,,, |L| as |L| — co. Thus
if

1081 /p, | L| > log(nm)/d(p),

the two hypotheses can be separated significantly. Let 7' be
such a test that if

[ Lo(n,m)| > log(nm)/¢(p),

we reject Ho(n, m); otherwise accept Hy(n, m).
For a test T, if T = 1 , we reject Hy and accept Hy
otherwise; then if

(15)

P(T = 0[H,) + P(T = 1|Hp) — 0, (16)

T is called an asymptotically powerful test in [19] and this
criterion (16) is widely used in cluster detection literatures
(See for example [51], [28], [52], [60]).

Theorem 4.1. Under the condition (15), the test T, which
is based on the length of the longest significant run, is an
asymptotically powerful test.

Proof. If (15) holds, then by Theorem 3.9, it is easy to see
that

P(|Lo(n,m)| > log(nm)/¢(p)|[Ho(n, m))

+P(|Lo(n, m)| < log(nm)/é(p)[Hi(n,m))  (17)
—0,
as (n,m) — (o0, 0). O

In general, this detection problem can be extended to
an exponential model, for instance, the following detection
problem in the model with normal distribution,

HY (n,m):  Xij~ N(0,1),4.i.d.,¥(i, 5);
versus
HY (n,om):  Xij~N(u1),¥(,j) € L;

Xij~ N(0> 1),Y(i,j) ¢ L,
for some unknown L and p > 0.

After thresholding the values at each node, it is equivalent
to the detection problem in the Bernoulli net. We are going to
discuss this problem in our future work. The test based on the
length of the longest significant run has also been considered
in [52], [20], [61].
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C. Multi-scale detection of filamentary structure

In this section, we will revisit the problem of multi-scale
detection of filamentary structure. This has been studied in
[17], which we review in Section IV-C1. We then revisit the
problem and apply our proposed theory to it in Section IV-C2.

1) Background: To be self-contained, we will recall the
problem of the length of the longest significant run proposed
in [17], where the authors present a detection method for
some filamentary structure in a background of uniform random
points. Suppose we have N data points X; € [0,1]%, which at
first glance seem to be uniformly distributed in the unit square.
Here, for 1 < a < 2, we define that Hélder(«, ) is the class
of functions g : [0,1] — [0, 1] with continuous derivative ¢’
that obeys

' (2) — g'(y)| < Bz —y|*".

Consider the problem of testing

Hp : X iLd. Uniform(0, 1)?,
versus
Hi(o,8): X, "5 (1 = en)Uniform(0, 1)
+¢n Uniform(graph(f)),
with unknown f € Hélder(«, ),

where graph(f) is the graph of the function f within the area
[0, 1]%. In other words, for the problem of testing, we believe
that a relatively small fraction €,, of points lie on a smooth
curve in the plane.

In [23], the detection model mentioned in [17] is partially
considered, and the authors present the convergence rate and
the asymptotic distribution of the longest significant run on
a Bernoulli Net. However, the row number of the model in
[23] is fixed, while in [17] the vertical size of the model
is increasing very fast when the number of random points
tends to infinity. Besides, the nodes in [23] are assumed to be
independent, while in [17] the nodes are only associated. See
[62].

We will review the model in [17] first. Suppose we have [NV
random points uniformly distributed in the square [0, 1] x [0, 1].
In particular, we use J = [log,(NN)] to denote its dyadic
logarithm. The variable j will index dyadic scales 277 and
will range over 0 < j < .J. We fix a positive integer S > 1 to
control the maximum of [slope| we will be able to detect.

Let R(j, k, {1, {2) be a parallelogram with vertical sides that
is w = 277 wide by t = 2~ (/=71 high, where j runs through
our set of scale indices {0,...,.J}. The regions in question
have a midline that bisects them vertically and will be tilted
at a variety of angles. And notice that these regions are highly
anisotropic.

The parameters k£ and ¢;,7 = 1,2, control the horizontal
location of the regions and the vertical location and the slope
of the midline. There is an underlying assumption that we
are only interested in regions whose major axis has a slope
bounded in absolute value by S.

To get a vivid impression of this model, see Figure 6 and
Figure 7 below. Let 61 = % and 6, = & (these depend
implicitly on j and N). The parallelogram R(j, k, {1, {2) will
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will have slope s = f29,. Here 0 < k < w™!, ¢; runs
through the set 0,...,0;' — 1 and /5 runs through the set
7562_1, U § 552_1. We gather all such regions at level
(scale) j in R(j) = {R(j, k, £1,¢2) : k,£1,05} and therefore
we have 27 x 2773+ % §.27=2i+2 41 or O(N?) parallelograms
in total. To organize the regions, we define a directed graph
G(j) = (V(4),E(5)), with vertices V(j) and edges £(7).

be centered at ¢ = ((k + 3)w,f161) and its middle line
1

t
w
X
Fig. 6. An Anisotropic ‘Strip” R
graph(f)
% Tube I(ﬂ

Fig. 7. graph(f) (in blue) covered by T'ube;(f) (in red).

The vertices are simply the regions R(j), i.e., V(j) = R(j).
The edges connect regions by good continuation, namely, to
regions that are horizontally adjacent, and that have altitudes
and slopes that are nearly the same, which are less than ¢ and
5 apart, respectively. Formally, we have the directed edges in
£(j) as

(k,l1,02) = (k+ 1,01 + l3 4+ u, by +v), (18)

where |u| < 4,|v] < 4 and we call (18) the connectivity
of edges. The mapping between these discrete parameters is

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

intended to ensure that the regions pack together horizontally
and that they are fairly closely spaced in both vertical position
and slope.

For every region R € R(j), we count the number of
the points that fall into R, denoted by N(R,j). We define
a significance indicator, which is nonzero when the counts
N(R,j) exceeds a prescribed threshold N*, i.e.,

5(R) = 1 n(Rj)>N*}- (19)

We say that N* is the counting threshold in the following.
The significance indicator may be viewed as a label on the
regions R, producing a sequence of a labeled graphs

%) = V), €3G),0(5)),

where o(j) = (s(R)) gives the labels on R € R(j). We call
this the j-th significance graph.

In each significance graph, we employ a depth-first search
algorithm to explore all significance paths

™= (R, Ra,..., Rpn),

that is, sequence of vertices that are:

(a) all significant, s(Ry) = 1;

(b) all connected, (Ry, Rx+1) € £(4)-

We record the maximum path length in each significant graph
as follows:

|Lﬁf‘;‘| = max{length(7) : m is a significant path in X(j)},
LN = mjax |L%:‘;‘| .

The decision of the hypothesis testing problem is that we
compare |L'%**| with a length threshold: If |LW**| < |Ly/,
accept Hy; if |[Ly?*| > | L%, then reject H.

We call |L%,| the decision threshold in the following. Under
the assumption that N points are randomly distributed in the
square [0,1] x [0,1], the counting threshold determines the
probability of {s(R) = 1}. Because the area of each region is
£, we have the following,

P(s(R) = 1) = P(Bin(N, %) > N,
where Bin(N, %) denotes the random variable with Binomial
distribution of parameters N and % Because Poisson(2) is
an approximation of Bin(N, %) when N is sufficiently large,
we use Poisson(2) instead in the following. The main result
of this multi-scale detection method in [17] is the following:

Theorem 4.2. There is a single choice of threshold N* and
|L%| so that for every o € (1,2] and B > 0, there is
T. (v, 3, S) such that for each ey > T, N—/(1+e)

P(test rejects H0|H1(a,ﬂ, S)—1, as n— oo,
and at the same time

P(test rejects HO‘HO) —0, as n— oo.

Remark 4.3. We give the specifications of the foregoing
thresholds.
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1) N*: In [17], the authors define N* such that

p = P(Poisson(2) > N*) < Po (20)

81’
where pg € (0,1) is some chosen number.
2) |L|: With the help of Erdos-Rényi law, the authors
define the decision threshold
|Lv| = 3logyp, N. (21)
3) Ti(«, B, S): The specification of Ty (e, 8, S) in Theorem
4.2 is a little bit complicated. First define

1
P" = ps, (22)

Let \* be a constant that satisfies
1 — px
5
N BTHE /1 + S2. See [17] for

P(Poisson(A\*) < N*) <
Then Ti(a,B,S) =
more details.

2) A revisit using the theory of longest run: In this part, we
will apply our theory to the model in [17] for the detection
problem. Consider the problem of testing

H()Z

versus

X iLd. Uniform(0, 1)?,

Hi(a,8):  Xi k% (1 = ex)Uniform(0, 1)

+en Uniform(graph(f)),
with unknown f € Hélder(a, §),

where N is the total number of points in [0, 1] x [0, 1] and
ey > T,N™Tia is the portion of the points lying on the
graph of the function.

We can see that when the number of random points N
in [0,1] x [0, 1] goes to infinity, the background of uniform
random points can be treated as sampled from a (spatial)
Poisson process. One of the properties of this Poisson process
is that for any subregion 2 in the unit square, the number of
points in this region, denoted by N({2), also has the Poisson
distribution with parameter NN - ||, where |{2| is the area of
Q, i.e., N(2) ~ Poi(N - |Q|). Another property of the (spatial)
Poisson process is that for any two non-overlapping regions 24
and ()5 in the unit square, the number of points in {2; and the
number of points in €9, i.e., N(£21) and N()2) respectively,
are independent.

Let us now rephrase the main results of [62] here.

Definition 4.4. Let T1,15,...,T, be n associated random
variables if Cov[f(T),g(T)] > 0, where T = (T1, T3, ..., Ty),
for all nondecreasing functions f and g, for which the expec-
tations E(f),E(g) and E(fg) exist.

It is known that

« any subset of associated random variables are associated;

« nondecreasing functions of associated random variables
are associated;

« independent random variables are associated

e letxy,...,x, be associated binary random variables, then

Py =s,...,2p, =5) > Plx; =35)...P(x, = 3),
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where s can be either O or 1.

Regarding the parallelograms defined in Section IV-C1, we
have the following lemma.

Lemma 4.5. As the number of points in the unit square tends
to infinity, The number of random points in two parallelograms
R1 and Ry are associated. Furthermore, they are independent
if Ry and Ry are non-overlapping.

Remark 4.6. This lemma can be simply proved by considering

E[(f(R1, R2) — f(Ry, R5))(9(R1, Re) — g(R1, Ry))] = 0,

where f,g are two nondecreasing functions of Ri, Ro, and
's RY are i.i.d. copy of Ry, Ra.

Indeed, if we use s(R) to denote the state (significant or
non-significant) of parallelogram R, then we have

P(s(R1) = a,s(R2) = a) = P(s(R1) = a)P(s(R2) = a),
(23)
where a is either 0 or 1. The equality in (23) holds when R,
does not overlap with R.
For a multi-scale detection problem, we construct an array
of nodes in

V=[1,27] x [1,2777H] x [-§27 741 92724 n 72,
(24)
where J = [log,(N)] and 0 < j < J. For any nodes

(k, 0y, 03) € [1,27]x[1,27 =9 H 1 x [-527 ~2F1 §2/=2i+1|nz3

in the array, the three components represent the location index,
the altitude index and the slope index, respectively. In light of
the nodes in two dimension, we might consider m = 275+«
(25-27727114-1) nodes in the same strip as a column and thus
there are n = 27 columns in total. For any node (k, {1, {s), it
can be connected to

(]i?-’-l,gl +€2+U,€2+’U)
€[1,27] x [1,27 7911 x [-8§27 72+ g9 =21 N 73,
(25
where |u| < 4, |v|] < 4. Each node is associated with a

parallelogram in the algorithm mentioned in [17] and therefore
it is open with probability

p=P(N(R) > N*) — P(Poisson(2) > N*), as

N — oo,

where N (R) is the number of points in the parallelogram R
and V* is a counting threshold to be specified later. Due to the
structure of the model in [17], the nodes in different columns
are independent and all the nodes here are associated as N —
0.

Consider the Pseudo-tree model in dimension 3, as in
Section II-C,

V2 ={(i,j1,72) € Z* : —4i < j1 < 4i, —4i < jo < 4i,i > 0},

with oriented edges (4, j1,72) — (i+1,j1+ 81, j2+82), where
|s1] < 4 and |s2| < 4. We denote 0% (p) to be the probability
that there is a significant run of length at least k starting
at the origin and p? to be the critical probability. Revisiting
the proofs of Theorems 2.1, 2.2 and 3.9 together with their
generalized results in Theorems 2.6, 2.7 and 3.10, we find
that these results do not depend on the independence of nodes
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in the same column. The condition that nodes are associated
in the same strip is sufficient for these theorems. By Theorem
2.7, there exist positive constants o} and o2, independent of
p, and there exists a unique function ¢?(p), which is strictly
decreasing and positive when p < p.; constantly 0 otherwise,

such that

otk exp{—k¢*(p)} < 0r(p) < o3k’ exp{—ke*(p)}

for any k£ > 1. In particular, it follows that

2
_10g i}g(p) N ¢2(p).

Since each node in the array can be connected with at most
81 nodes in the next column and hence p. > é by Theorem
2.6.

Though in [17], the authors consider all scales in {j : 0 <
j < J for J = [logy N1}, we will consider {j : 0 < j <
[%H only. We shall point out here that the restriction
on j is a fairly reasonable assumption for the following
reasons. First, notice that if we choose j > [w],
then the range of the slope index [—S27-2F1 §2/=2i+1]
will be fairly small. Hence the parallelograms w111 be almost
horizontal rectangles. Moreover, under Hj (a, 3), for scales

< [%ﬁfﬂ], the parallelograms in the same column will
be more overlapping which yields more significant nodes and
hence the longer length of the significant runs. And it is
easier to separate the null hypothesis H from the alternative
hypotheses H; («, 3). The most important reason is that, in
[17], the authors point out that under Hj («v, /3), there is some
scalar 7* such that the graph of the function is completely
covered by a tube of parallelograms in this scale like the case
in Flgure 7. We call this containing tube Tj-(f). It is shown

that j* = [Z%828] (See Lemma 2.1-2.3 and their proofs

a+1
in [17]). In other words, using only scalars j < (%]

is enough to cover the graph hence detect the filamentary
structure under Hj; («, B). Thus, it actually can save work to
consider only the scales no larger than [ 1082

Taﬁ] without loss
of generality. In case that o € (1,2] and 8 > 0 are unknown, it
is possible to use 0.5001.J instead of [JH%] for the reason
that [JH%} < 0.5001J as J — oo. Denote f%] by
cj, which is the scale under which the whole graph of the
function is guaranteed to be in a series of parallelograms, as
shown in Figure 7.

Now we specify the asymptotic thresholds for our purpose.
These thresholds are better and more intuitive than those in
[17]. Specifically, applying our theory, we set the threshold
parameters as follows.

o Let the membership threshold N* satisfy the following

property:

1
po = P(Poisson(2) > N*) < 3L < pe.

Here we can take N* = 6 so that pg ~ 0.0045338 < é
o Let the decision threshold |L%| be

2J log 2
d(po) ’

(1+d3)

for some small d3 > 0.
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o Define p* to be

CJ(I - (53)

eXp{—éb(po)m

} (26)
o We choose A* such that

P(Poisson(A*) > N*) > p*.
a,B,S) to be 2X\* 7w /1 + S2.

P(N(R) > N*) > p*,

o Finally, we define T (
27)
where N (R) is the number of points in the parallelogram

R.

Let |L'y**| denote the length of the longest significant run in
Lattice V, defined in (24). Note that there are 4522727 42741
nodes in V. We will have the following results.

Corollary 4.7. Under Hy, by Theorem 3.10, for any small €
and 63 > 0, with probability at least 1 — €, we have

log(45227 27 4 97+1)

LR <1+ /2B

2J log 2 (28)

<(1+%) ¢(po)

as N — oo.

Corollary 4.8. Under H,(«v, 8), with probability at least 1 — e
and for large N, by the Erdos- Rényi Law and the Egoroff’s
Theorem ([63]), we have that the length of the significant
run in the tube T}« (f) containing the function f, denoted by
|Lj«(f)], satisfies

ILi=(f)] > (1—ds)cslogy),.2 (29)
2J log 2

= (1+96 30

= LN, (€29)

as N — oo.

The inequality (29) is due to the fact that (27) holds for each
parallelogram in the containing tube T}« (f). The equality (30)
is due to the definition of p* in (26).

We thus can get the following conclusion:

Theorem 4.9. When ey > T.(a,3,S)N ™ T=, by (28) to
(31), the test based on the length of the longest significant
run is asymptotically powerful, i.e.,

P(ILR™| > | L | |Ho)
P(ILR™| < |Ly|[Hi(er, 8))

— 0, as N — oo,

— 0, as N — oo.

D. Target tracking problems

In this subsection, we study the target tracking problem. We
first provide the background towards this problem in Section
IV-D1. Then we pose a hypothesis testing problem and apply
our theory to it in Section IV-D2.
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1) Background: 1In this subsection, we discuss another
application of the theory. Let X; € {0,1}™, where m is an
integer. We have X; ; = 0 or 1, where X; ; denotes the jth
entry of X;. Here 7 is a time index and j is a location index.
X;; = 1 (or 0) corresponds to a target being present (or
absent) at location j and time 4.

We introduce the following probabilistic model to minic the
motion of targets over time. From X; to X;11,1 <¢<n—1,
we have:

1) Initialize X;; ; = 0 for all j.

2) If X;; =0, then set X;4; ; = X;41,; + 1 with proba-
bility pg (corresponding to a newly emerging object).

3) If X; ; = 1, there are four sub-cases:

a) Xi-‘rl,j—l = Xi+17j—1 + 1 with probability P1
(shifting left)
b) Xit1,; = Xiy1,; + 1 with probability p, (remain
the same location)
C) Xi+1’j+1 = Xi+1’j+1 + 1 with probability ps
(shifting right)
d) do nothing, with probability 1—p; —p2 —ps (object
vanishes).
Apparently, we must impose 0 < p; < 1, for i =
0,1,2,3 and p; + p2 +p3 < 1.

4) Finally, we take X, ; = min(1, X;;1 ;) to ensure that
each one of them is either one or zero. Note X form
the ground truth regarding the presence and locations of
the targets.

Below we consider how observations are generated.

5) Set Zij = Tij + €ij» where €ij I'I‘Vd N(O, 0'2), where 0'2

is a parameter, e.g., 02 = 1.
Note Z; = {z;,j7 = 1,2,...,m} is the observation at

time 1.
In [18], a hidden state Markov process model
is mentioned. In the above case, it is as follows:
X 0o — X 1 — X 2 — X 3 X4 — e
1 3 4 {
A Zy Z3 Zy

For our purpose, we may not emphasize this Markovian
aspect of the problem. Though it is important in the estimation
problem.

We pose a hypothesis testing problem in this case, i.e.,

Ho: al X;;=0 versus H;: some X;;=1.

(32)
The idea behind the hypothesis testing problem is to find
whether there is some newly emerging object at certain
location and time or the image just consists of white noisy
pixels. The null hypothesis setting corresponds to the scenario
where there is no target at all time and py is set to be pg = 0.
We will use the theory of the longest run to solve this problem
in the following subsection.

2) A revisit using the theory of the longest run: In this
subsection, we will use our theory to estimate an upper bound
of the length of the longest significant run in the target tracking
problem for an array of size m-by-n. Under the null hypothesis

Hy, the image of size [1,m] x [1, n] is just a white noise image

ii.d. .
and Z, ; = ¢; ; where ¢; ; "~ N(0, o2). For an arbitrary node
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Z; ; to be significant, we should provide a member threshold
Z*, i.e., the node is significant if Z; ; > Z* and insignificant
otherwise. Let V be the set of nodes under consideration, i.e.,

V={(i,j)€Z*:1<i<n,1<j<m}.

Let &£ be the set of edges from (i,5) € Vto (i+1,j+s) €V
such that |s| < 1. Let p = P(Z, ; > Z*) be the probability of
anode (i,7) € V to be significant. In order to make a decision,
we need to count the length of the longest significant nodes
among all the runs along the edges in &, i.e., the runs of the
following form

{(iajO)v(i+ ]-a.jl)a-~~a(i+£aj2) :
k1 —Jk| <L, k=0,...,0—1}.

We will use the length of the longest significant run, denoted
by |L**(m,n)|, as a statistic for the test. And a little bit
more consideration yields that under the null hypothesis Hp,
the run of significant nodes has the same structure as in (9)
with C = 1.

We can apply our theory to find a reasonable threshold. By
Theorem 2.1, the critical probability p. for the graph (V, &)
satisfies that p, > ﬁ Therefore, we may choose Z* such
that p = P(Z;; > Z*) < % for (i,j) € V. Thus if m
is constant, by Theorem 3.3, for any ¢; > 0, there exist
p(m,p) € (0,1) and N € Z* such that when n > N, we
have

|L22(m,n)| < (1404) 1081 /p(m,p) 7 With probability 1—eq,

for any 04 > 0. If m — oo, n — oo, then by Theorem 3.9,

for any €3 > 0 we have

log(mn)
¢(p)

So let the decision threshold |L7| be (1 +64)10gy /() 7 if

n — oo with fixed m; and (1+464) 220 if 1y — 00, m — oo.

Since the forgoing €; and eo are arbitray, if it happens that

|LP™(m,n)| > |L}], (33)

|[LT* (m,m)| < (1+ d4) with probability 1 — €.

then we can always reject Hy with false positive probability
close to 0 asymptotically.
In summary, we will have the following corollary.

Corollary 4.10. The longest run test defined in (33) can
always reject Hy with type I error close to 0 asymptotically
to the hypothesis testing problem in (32).

If we have more information on the structure of the observa-
tion matrix under the alternative hypothesis (such as condition
(15)), we can even obtain a stronger result that the longest
significant test is asymptotically powerful.

V. CONCLUSION

In this paper, we first study the Pseudo-tree model. We find
the upper and lower bounds of the asymptotic probability to
have a run with length k. By exploring the connection between
the Pseudo-tree model and the inflating Bernoulli net. We
then develop the asymptotic rate of the length of the longest
significant run in an inflating Bernoulli net as m — oo and
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n — oo. We further apply our theory to the image detection
problem to find reasonable thresholds, which yields a reliable
detection procedure. It is of interest to learn the value of the
function ¢(p) in the future. Also, for the portion of the nodes
in the suspicious curve, €y, we develop a lower bound, which
guarantees a reliable test. However, it remains our future work
to find the minimum bound of €y > 0, below which there is no
powerful statistical test. Finally, it is not easy to find p(m, p)
when m > 12, especially when we drop the independence
assumption among the nodes within the same column.

APPENDIX A
PROOFS

We present all the proofs in this section. Our proof tech-
niques in Section II and Section III mainly come from
the percolation theories, association results, and the Chen-
Stein Poisson approximations. The last two techniques are
also partly used in [23]. The proofs in this work are more
complicated than in the finite m scenario [23].

A. Proof of Theorem 2.1

The proof of Theorem 2.1 requires the following definition
and lemma. See [25].

Definition 1.1. Let V be the set of nodes in the pseudo-tree
and we take the sample space as

0= ]J{o1}.
veV

We take F to be the o-field of subsets of §) generated by
the finite-dimensional cylinders. We say an event A € F is
increasing, if the indicator function of A satisfies I4(X1) <
I14(Xs2) whenever X1 < X,, where X1, Xo are two realiza-
tions on 'V, ie, X1 :V — {0,1}, where X1(i,5) = 1 if the
node (i,7) is significant and X1(i,j) = 0 otherwise and X
has the same definition. Analogously, we say A decreasing set
if A, the complement of A, is increasing.

Lemma 1.2. (FKG Inequality) If A and B are both increasing

(or both decreasing) events in the lattice, then we have
P(AN B) > P(A)P(B).

The significant edge version of this lemma can be found in
Section 2.2 of [25]. The intuition behind this lemma is that
if there is an open path joining vertex u to vertex v, then it
becomes more likely that there is an open path joining vertex
z to vertex y than without a path from w to v. Replacing edge
by node in the proof in [25], the significant node version can
be shown analogously.

Proof of Theorem 2.1. Recall that 0;(p) = P,(0 < B(k —
1)). The event {0 +» B(k)} happens if and only if there is an
open node x € B(1), such that the origin (0, 0) is open and the
event {z <> B(k)} occurs. Of course, card(B(1)) = 2C + 1.
Therefore we have,

{0eBRI={ {J (0=2)n(@e Bk)}

{zeB(1)}
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14
This implies that
1-P,(0 < B(k))
=P,( (] (0« 2)[ )@+ Bk))
{zeB(1)} (34)
> JI B0 2)((@« Bk))
{zeB(1)}

=(1 — pby(p)) 2D,

where the inequality is due to Lemma 1.2 and the fact that

{0 & z} Nn{z < B(k)} is an increasing event and that

P,(x <» B(k)) =P,(0 <» B(k—1)) for any given z € B(1).
So by (34), we have that

Or+1(p) = Pp(0 <« B(k))
< 1= (1=pPy(0 4 By))?HY
= 1—(1—pb(p)P.

Given this, we investigate the function

fl) =1-(1—pz)’,

where r € Z*. We have
f'(z) =rp(1l —px)"' >0,
and
() = —r(r — Dp*(1 — pz)"2 < 0,Vz € (0,1).

So the function f(x) is always strictly increasing and concave
down and f(0) = 0. Besides, one can see that f'(0) = rp
and from this we have f(z) is always under the line y = x if
p < L. Let o be an arbitrary number in (0, 1) and generate a
sequence {x, }n>0, such that x,, 41 = f(z,,) for n > 0. Since
f(x) <2 when x € (0,1) and p < %, the sequence {zy }n>0
is strictly decreasing. On the other hand, it is easy to see
that x,, > 0 for any n > 0. Because a bounded decreasing
sequence must have a limit, we have that

0<z*= lim z,.
n—oo

By the continuity of f(z), one can easily see that

F@) = i, F(on) = Jg By =27

Since f(z) < = on (0, 1), it is obvious that the limit of the
sequence {xy}n,>0 is 0, i.e., z* = 0 for any starting point
xo € (O, 1).

1

Hence when < @+’

o(p)

= lim Hk_;,_](p)
k—o0

— lim P(0 < B(k))
k—o0

it leads to

< lim 1— (1 — pl(p))3e+Y

k—o0
= 0.
According to the definition p. := sup{p € [0,1] : 8(p) = 0},
it follows that p. > m O
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B. Proof of Theorem 2.2

Before proving the theorem, let us state the sub-additivity
lemma which can be found in [25].

Lemma 1.3. Sub-additive limit theorem. If (x, : r > 1) is
sub-additive, i.e., Tyin < Ty + T, for all m,n, then \ =
lim, o0 { == } exists and satisfies —oo < \ < oo. Furthermore,
we have .
. m
= inf{ - m >1}
and thus x,, > mM\ for all m.

Proof of Theorem 2.2. Given a positive integer [, it is not hard
to show that

card(B(l)) = (21C + 1).

Since the event {0 <+ B(I+k—1)} occurs if and only if there is
some z € B(l) such that both {0 <> z} and {z +> B(l4+k—1)}
occur, we have

Ok41(p) =Pp(0 > B(k+1-1))

= P( |J ({oezpn{ze Br+i-1)})
{zeB()}

< > B({0ezn{ze Bl+l-1)})
{zeB()}
1
=5 > P({0e 2)P({z ¢ Bk +1-1)})
{zeB()}
1
= Y Py({0 e 2B, ({0 4 Bk —1)}),
{zeB()}
where the third “=" is due to conditional probability,

P,({0 <>z} N{z < B(k+1—-1)})
= P,({z B(k+1—-1)}|{0« 2})P,({0 <> z})
= P,{ze Blk+1-1)}z=1)P,({0 < z})
(

P,({z < B(k+1—1)})

= S CEr e ()
1

= ;Pp({o © 2})Py
and the last equality is due to the fact that
P,({z < B(k+1—-1)}) =P,({0 & B(k—1)}),Vz € B(l).
Notice that P, (0 <> 2) < pf;(p) for any z € B(l). We have
Or+1(p) < (2IC +1)0i(p)0k (p)-
On the other hand, for any z € B(l), we have

Okt1(p) = Pp({0 B(k+1-1)})
> P,{0=2}n{z+< Bk+1-1)})

_ %pp({o & 2DP({z & Blk+1—1)})

{z < B(k+1-1)})

~Pp({0 & 2})Pp({0 <> B(k — 1)}),

Notice that

0(p) < %ﬂ%(

U foe:h<t P,({0 4 2}).

{zeB()}

>

{zeB()}
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It follows to have a node z € B(l) such that

01(p)
-P >
W{0e2h =2 mas T
Thus we have
1
> - .
If we let g(I) = log(2!C + 1), then the inequalities we get so
far are:
log(Ox+1(p)) log(0k(p)) + log(0k(p)) + g(1);

log (01 (p)) + log(0i(p)) — g(1).

lo g(1+213lcﬁ-1) <log2ifl <k.

<
log(Ok+1(p)) =
Notice that g(k+1)—g(k) =
Therefore, we have
log(0rx+i(p)) + g(k +1) +log2
log (0 (p)) + g(k) + log 2
+log(6i(p)) + g(1) + log 2;

IN

(35)

log(Or+1(p)) — g(k +1) —
log(0x(p)) — g(k) —
+log(6i(p)) — g(I) — log2.

Then by Lemma 1.3, we have
. 1
Jim —{log(6k(p))}
. 1
= lim ——{log(0x(p)) + g
k—oo k
. 1
= lim ——{log(0x(p)) — g(k)
k—oo k
This leads to

log(0k(p)) +g(k) +1og2 > —ko(p);
—log(0k(p)) + g(k) +1log2 > ko(p);

for all £ > 1. The theorem now follows (37) and (38) easily.
O

log 2

v

log 2 (36)

(k) +log 2}

—log 2}.

(37
(38)

C. Proof of Corollary 2.3
Proof. By inequality (35), we know that the sequence

{log(0x(p)) + g(k) + log 2} ken
is a sub-additive sequence. Thus by Lemma 1.3 we have

~¢(p) = lim log (6 (p)) +kg(k) +log?2
inf log(0x(p)) + g(k) + log2
keN k

Therefore, for any ¢y > 0, there exists some large kq such that
when k > kg, we have

o) < o)

L +€0,

which leads to

exp(—¢(p)) < (01(p))* exp(eo), Vk > ko.
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By inequality (36), we know that {g(k) + log2 —
log(0x(p)) }ken is a sub-additive sequence, therefore we have

g(k) +log 2 — log(6k(p))
< g(k—1)+log2 —log(fr-1(p))
+9(1) + log 2 — log(61(p))-
Divide by k on the left and by k£ — 1 on the right. It is easy to

see that for any €; > 0, there exists some large k; such that
when k > ki, we have

log(0x(p)) - log(fr-1(p))
k - k-1
It follows that when k > max{ko, k1 }, we have

— €71.

exp(=6(p)) < (61(p))F exp(eo) < ef%

By the same technique using (36) and (35), we can show that
for any ez, when k > ko for some large ko, we have

Ox(p)
Ox—1(p)
Since €, €1 and ey are arbitray, we have that

Or(p)
k—o0 ak—l (p)

exp(eo + €1/k).

exp(—p(p) + €2) > (Ox(p))* >

= exp{—¢(p)}.

D. Proof of Corollary 2.4

Before going to the proof of this corollary, we will first
introduce the following lemma.

Lemma 1.4. Let A be an increasing event which depends

only on finitely many nodes of a lattice. Then loglf’g”z()A is a

non-increasing function of p.

The proof of this lemma can be found in [25]. Though the
author in [25] shows the proof in a bond percolation problem,
it is very easy to adjust the proof for our purpose and we omit
the details.

Proof of Corollary 2.4. 1t is easy to see ¢(p) = 0 if p > p..
Indeed, since

B,(0 < B(k)) = 0(p) > 0,

it leads to
logP B(k—1
k—o0 k
B L
k—o00 k

when p > p. > m

Since 6 (p) only depends on the status of finitely many
sites, —1 log(0(p)) is a continuous function of p for any
k > 1. So it is sufficient to show that — log(6x(p)) converges
to ¢(p) uniformly on (0, 1]. By (37) and (38), we have for any
p € (0,1]

(g(k) +1og2) =0 as k— oo,

=

O(p) + 1 10804 (p))| <
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which does not depend on p at all. So ¢(p) is a continuous
function of p on (0, 1]. And it follows the fact that ¢(p.) = 0,
since

¢(pe) = lim ¢(p) = 0,
plpe
by continuity of ¢(p). To prove the strict monotonicity of ¢(p)
when 0 < p < p., we notice that {0 <+ B(k — 1)} is an
increasing event which only depends on finitely many edges.
Thus we apply the Lemma 1.4 to have that

log P, (0 <» B(k — 1)) S logPy(0 <» B(k — 1))

if a<b.
loga

logb

If we divide the above by k and take the limit as k — oo,
then we have

log()
> a
o) 2 )t
Soif 0 < a < b < p., we have ¢(a) > ¢(b). Thus the function
¢(p) is strictly decreasing on (0, p.).

To prove that lim, .o ¢(p) = oo, we use x(k) and x*(k)
to denote the number of all runs and significant runs respec-
tively in the Pseudo-tree model that connect 0 and B(k — 1)
respectively. It is not hard to see that x(k) = (2C +1)*~! and

E,(x*(k)) = p* x x(k). Therefore, we have the following
Ok (p) Pp(0 < B(k —1))
Py (X" (k) > 1)

Ep(X"(F))
= p"x (2C +1)*

if 0<a<b<1.

IN

So this will lead to the following fact

log 6
lim _log 0k (p) > —log(p x (2C 4+ 1)).
k—o0 k
So as p — 0, obviously ¢(p) — oo. O

E. Proof of Corollary 3.4

Proof. Given a realization
ti,; ~ Uniform(0,1),1 <i<mn,1 <j<m,

let «f > x5 > 0 be such that p; = P(¢;; > x7)
and p, = P(¢t;; > x3). Since t;; > x7 implies that
t;; > x5, one can easily see that each significant node
under threshold =] must be significant under =% and therefore
|Lo(mi,n,p1)] < |Lo(my,n,p2)| which by Theorem 3.3
leads to p(mi,p1) < p(mq,p2). Similarly, it is not hard to
see that |L0(m1,n,p1)| < \Lo(mg,n,p1)| since if m1 < mas,
([1,n] x [1,mq]) N Z* < ([1,n] x [1,me]) N Z2. Thus
p(mi,p1) < p(ma,p1). O

F. Proof of Theorem 3.6

Proof. Recall 0(p), defined in Subsection II-B2, is the proba-
bility that there is a significant run starting from a certain node
and heading towards right forever when the probability of a
node to be open is p. Let C(4,j) be a significant run starting
at (4, 7). In particular, C'is the one starting at (0, 0). The event
that there exists an infinite open cluster in the array does not
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depend on the status of finitely many columns of nodes. Thus
by the Kolmogorov zero-one law, p(p) can only be either 0
or 1. If p > p,, then of course 6(p) > 0. We have

p(p) = P(|C| = o0) = 6(p) > 0,

which implies that u(p) = 1 by the zero-one law. On the
other hand, because P(|C(i,5)] = o0) = P(|C| = ) =
0(p),v¥(i,7), if 8(p) = 0 or p < p., we have

p(p) <D P(C, )| = 00) = 0.
(i)

G. Proof of Theorem 3.7
Proof. We first prove

P
p(oo7p) - khm Pk:(OO,p) = lim k(OO7p) _ 1’
— 00

k—o0 Pk:—l(ooap)

in the case of p > p... Suppose that pj (0o, p) does not converge
to 1. Then since [0, 1] is a compact set, there must exist a
subsequence of {py (00, p)}rex, K C ZT, such that

lim

k(EK)—o00 pk(ooap) = pPo,

for some pg in [0,1). And there exists some constant p €
(0,1) slightly bigger than pg, such that

pr(00,p) < g,
for any sufficiently large k € KC . Therefore, we have

Pn(ooap) < H pk(ooap) < H p37

k(eK)<n k(eK)<n

(39)

since P, (0o, p), the probability of having a crossing when
there are exactly n columns, is equal to Pj(co,p) X
[T, pi(oc, p), which is no larger than

11 »-

k(eK)<n

It leads to the fact that

P,(co,p) =0, as n— oo

On the other hand, it is easy to see that P,,(co,p) > 0, (p) >
6(p) > 0 for any n when p > p., where 6, (p) and 0(p)
are defined in subsection II-B1. So there is a contradiction.
Therefore we should have the following,

pk(oovp) — 15 as k— 00,

when p > p..

Now we prove the first equality of (11) under p > p.. By
Corollary 3.4, we know the limit of p(m,p) exists as m goes
to oo and thus we have the following

lim p(m,p) = sup {p(m,p)} :=p".
m—>00 mezZ+
If we had p* < 1, then notice the fact that p(m, p) < p* for
every m, thus it would lead to

| Lo(m, n)|

— 1, as
1081 p(m.p) T

n — 00, 40)
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almost surely, for every m. We would have |Lo(m,n)| <
log; /,« n with probability 1, when n is sufficiently large for
every m. On the other hand, in the array of Z* x Z, we would
have positive probability (> 6,,(p) > 0(p) > 0) that there is
a significant run connecting the origin and the nth column.
This leads to the fact that we have a crossing in the first n
columns with positive probability for any positive integer n.
So given n sufficiently large, we may choose m(> 3n - C)
to be sufficiently large such that the model contains all the
possible significant runs in the first n columns starting at the
origin. Therefore with positive probability (> 0(p)), we have
a crossing in the first n columns which contradicts (40) above
because log;,,-n < n when n is large. The proof of the
theorem is completed. O

H. Proof of Theorem 3.8

Before the proof, let us recall the definitions of three
constants in [58]. Let I be an arbitrary index set, and for
a € I, let X, be a Bernoulli random variable with p, =
P(Xo, = 1) =1-PX, = 0) > 0. For each a € I,
suppose we have chose B, C I with o« € B,. We think
of B, as a “neighborhood of dependence” for «, such that
X, 1s independent or nearly independent of all of the X3 for
(8 not in B,. Define

bi = > ) papss
a€l BEB,
by = Z Z Pas, Where pog =E(X,Xg),
a€l a#BEB,y
b3 = Zsa,
ael
where

Sa = E|E{Xa — palo(Xg: B €T —By)}.
The following theorem can be found in [58].

Theorem 1.5. When by + by + bg — 0, the random variable

defined by
W = Z Xa,
acl
approximately has a Poisson distribution with mean
A=EW = Z Pa-
acl

Proof of Theorem 3.8. Let Z; be the indicator that there is
a significant run from (4,1) to the nth column, where i =
1,...,m.Let W, ., be the number of nodes in the first column
from which an across significant run starts, i.e.,

Wom = Z Z;.
i=1
Obviously that

The main idea of the Poisson approximation is that under
certain conditions
P(Wy,m = 0)
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can be approximated by Poisson(\) where the Poisson param-
eter A will be computed below.

To verify the conditions for the Poisson approximation, we
first define the neighborhood of ¢, 1 < ¢ < m, as

NG@)={j:|li—-jl<2-n-C+1,1<j<m}

Define three constants b1, by and bs as in [58] which depend
onn, m, C and p. Let 0(Z; : Z; ¢ N(i)) be the o-algebra
generated by {Z, : Z; ¢ N(i)}. If j ¢ N(i), then clearly
|7 —i] >2-n-C+1 which leads to the fact that Z; and Z;
are independent. For b3, we have

by = ZE\E(Zi—E(ZmIo(Zj:Zj & N(i))|

= O7

For by, we have

b= Y Y E(Z)E,(Z)
i=1 jEN(3)
= Z Pp(Zi = 1)Pp(Z; =1)
i=1jeN (i)
(fact 1)
< ) ) Y Oalp)
i=1 JEN()

By Theorem 2.2, when p < p., we have a constant 0 > 0 and
¢(p) > 0 such that

On(p) < o - nexp{—no(p)}.
And therefore, it follows that
by < m-(2n-C+1)-0% -n? exp{—2n-¢(p)}
< 0@ -exp{-n- (62 + ¢(p))}).
For by, we have

> Y ElZi-Z)

i=1jEN(i),j#i

— Qi > EuZi-Z)

=1 jEN(i),j>i

= Qi > Pp(Zi=1 and Z;=1)

1=1 jEN(3),5>1

- zipp(zi =1)-
i=1

ba =

> PZy=1Zi=1)
JEN(i),7>1
< 2 Pp(Zi=1)-(n-C+]1)
i=1

(fact 1, 2) 9
< O(m-n”-exp{-n-¢(p)})
(fact 3) 9
< O(n® - exp{—n - d2}).
In the foregoing, we have used the following fact:
) P(Z;=1)<0,(p),Vi=1,...,mand 0 < p < p;
2) On(p) < O(n-exp{—n-¢(p)});
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3) O(n'*t91) < m < O(exp{n - (¢(p) — 62)}) for some
sufficiently small §;,d2 > 0.

Loosely speaking, b; measures the neighborhood size, by mea-
sures the expected number of neighbors of a given occurrence
and b3 measures the dependence between an event and the
number of occurrences outside its neighborhood. Now let us
consider the Poisson parameter A which is E(W,, ,,,). When
O(n'*91) < m for some sufficiently small §; > 0, by
Theorem 2.2 it is easy to see that

A~ mb,(p) =m -exp{—n- (¢(p) + o(1))}

as m sufficiently large since O(n'*%) < m is enough to
relieve the boundary effects. By Theorem 1 of [58], the
Poisson approximation gives

[P(Whm = 0) — exp{—A}|

S min{l, %} . (b1 —+ bg + bg)
< O(n?-exp{-n- (62 + ¢(p))}) + O(n” - exp{~n - 62})
< O exp{—n-b:}).

Therefore, under the sub-critical phase, i.e., p < p., if m, n are
sufficiently large with O(n'*91) < m < O(exp{n - (¢(p) —
d2)}), then we have

P(Wy,m =0) 41
= exp{-mOa(p)} +o(1) )
exp{—m - exp{—n - (6(p) + o(1))}} + o(1). 43)

Note that mf,(p) = mexp{—n(é(p) + o(1))} <
O(exp{—n(d2 + o(1)}) can be sufficiently small if n is
sufficiently large. Since 1 —exp{—z} = 2+ O(z?) as z — 0,
when p < p. by Corollary 2.3 we have

P, (m,p)
P,_1(m,p)
1 — exp{—mby(p)} + o(1)
1 — exp{—mb,—1(p)} + o(1)
mb,(p) + O(m?03 (p)}) + o(1)
mby—1(p) + O(m?60;_,(p)}) + o(1)

0 (p)
) — exp{—a(p)}.

as m — oo,n — oo and (m,n) € A¢, ¢,.5, .6, O

pn(map) =

L. Proof of Theorem 3.9

Proof. This proof was first used in [52] for a regular lattice
model. Let 67 (p) denote the probability that x = (x1,z2) €
([1,m] x [1,n])NZ? connects the x5+ k — 1-th column, which
is denoted by B(xs + k — 1), with a significant run. One can
easily see that 07 (p) = 05 (p). Recall the definition of ¢(p) in
the following,

— _ lim M,

k—o0 k
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Let € < 1/2 be a small positive number and £}, ,,(e) = [(1+
€)log(mn)/é(p)]. By the second inequality in (5), it is not
hard to see that

P(|Lo(m,n)| > k;’,’m(e))
C B U o Bt K@ - 1)

z€([1,m]x[1,n])NZ2

< Z P(x < B(xa + k;f, . (€) — 1))

z€([1,m]x[1,n])NZ?
< mnosky, ,(€) exp{—Fk;, ,(€)(p)}

Since o9 is a constant and ¢(p) > 0 when p < p., when m
and n are sufficiently large, it follows that

mnos k;‘,‘m (€) exp{ —k’;tb,n (€)o(p)}

< mnexp{—(1—¢/2)ky, ,(€)o(p)}

< mnexp{—(1—¢/2)(1 + ¢) log(mn)}
— (mn)f(efez)/Q

— 0, as m,n— o0

since € — €2 > 0.

On the other hand, let I = (W] and let k. ,,(¢)
be [(1 — €)log(mn)/é(p)]. Let ' 2?... 27 € ([1,m] x
[1,n]) N Z? be nodes separated from each other and the
boundary of ([1,m] x [1,n]) NZ? by at least 3 (logmlogn)?.
For sufficiently large m and n, it is not hard to see that the
I events {z' <+ B(zh + k;, ,(€) — 1)} are independent and
have equal probabilities. Therefore, for large m and n, by the
first inequality of (5) we have that

P(|Lo(m, n)| < km.n(€))

IN

P () {a% < B+ knn(e) — 1)}
i=1,...,1

(1 -P(a’ & Blay+ ki n(e) — 1))

= (=0, @)

< (1= 01k (€)) " expf{—kim n()d(p)})

When m and n are sufficiently large, it follows that

(1= 01(kp 1 (6))~H exp{—k, ,()0(p)})

< (1—exp{—(1+¢/2)k;, (o)}
< (1—exp{—(1+¢/2)(1— € logmn})’
< ( *(mn)71+6/2+62/2)mn/(10gmlogn)2
mn)'~¢/2(mn)/? /(log m log n)?
< (1—(mn)—1+e/2>( ) (mn)*/(logmlogn)
< exp{—(mn)*?/(logmlogn)?}
— 0, as m,n — oo.
Therefore, as m,n — oo, we have ‘ngé% - d>(1p) in
probability. O
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