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Abstract
Computationally expensive temperature and power grid analyses
are required during the design cycle to guide IC design. This pa-
per employs encoder-decoder based generative (EDGe) networks
to map these analyses to fast and accurate image-to-image and
sequence-to-sequence translation tasks. The network takes a power
map as input and outputs the temperature or IR drop map. We pro-
pose two networks: (i) ThermEDGe: a static and dynamic full-chip
temperature estimator and (ii) IREDGe: a full-chip static IR drop
predictor based on input power, power grid distribution, and power
pad distribution patterns. The models are design-independent and
must be trained just once for a particular technology and packaging
solution. ThermEDGe and IREDGe are demonstrated to rapidly
predict on-chip temperature and IR drop contours in milliseconds
(in contrast with commercial tools that require several hours or
more) and provide an average error of 0.6% and 0.008% respectively.
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1 Introduction
One of the major challenges faced by an advanced-technology node
IC designer is the overhead of large run-times of analysis tools. Fast
and accurate analysis tools that aid quick design turn-around are
particularly important for two critical, time-consuming simulations
that are performed several times during the design cycle:
• Thermal analysis which checks the feasibility of a place-
ment/floorplan solution by computing on-chip temperature
distributions in order to check for temperature hot spots.
• IR drop analysis in power distribution networks (PDNs),
which diagnoses the goodness of the PDN by determining
voltage (IR) drops from the power pads to the gates.

The underlying computational engines that form the crux of
both analyses are similar: both simulate networks of conductances
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Figure 1: Image-to-image translation using EDGe network.

and current/voltage sources by solving a large system of equations
of the form GV = J [1, 2] with millions to billions of variables.
In modern industry designs, a single full-chip temperature or IR
drop simulation can take hours to several hours. Accelerating these
analyses opens the door to optimizations in the design cycle that
iteratively invoke these engines under the hood.

Prior acceleration methods such as [3] techniques trade off ac-
curacy for speed by using a coarser finite element granularity.
However, the advent of machine learning (ML) has presented fast
and more accurate solutions by to these problems [4–11] by using
data from simulations of systems of millions of nodes. For ther-
mal analysis, existing ML-based solutions largely focus on coarser
system-level thermal modeling [4–6, 10]. The work in [11] predicts
temperature at a finer granularity, but uses coarse temperature
estimates as an input. The works in [6, 10] use post silicon perfor-
mance metrics as input to predict full-chip temperature and are not
suitable for predicting temperature during the design process. For
PDN analysis, the works in [7, 8] address incremental analysis, and
are not intended for full-chip estimation. The work in [9] proposes
a convolutional neural network (CNN)-based implementation for
full-chip IR drop prediction, using cell-level power maps as fea-
tures. However, it assumes similar resistance from each cell to the
power pads, which may not be valid for practical power grids with
irregular grid density. The ML techniques in [9, 11] both divide
the chip into regions (tiles), and the CNNs operate on each tile and
its near neighbors. Selecting an appropriate tile and window size
is nontrivial – small windows could violate the principle of local-
ity [12], causing inaccuracies, while large windows could result in
large models with significant runtimes for training and inference.
Our approach bypasses window size selection by providing the
entire power map as input, allowing ML to learn the window size
for accurate estimation of temperature and IR drop.

We translate static analysis problems to an image-to-image
translation task and dynamic analysis problems to video-to-video
translation. The inputs to the thermal analysis problem are the
power/current distributions and the outputs are the temperature
contours, while the inputs for the PDN analysis task are power
distributions, PDN density maps, and power bump pattern and the
outputs are the IR drop contours. The predicted output temperature
and IR drop contours are at the accuracy level of a million-node
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ground truth simulation. For static analysis, we employ fully con-
volutional (FC) EDGe networks for rapid and accurate thermal and
IR drop analysis. FC EDGe networks have proven to be very suc-
cessful with image-related problems with 2-D spatially distributed
data [13–16] when compared to other networks that operate with-
out spatial correlation awareness. For transient analysis, we use
long-short-term-memory (LSTM) based networks that maintain
memory of analyses at prior time steps.

Based on these concepts, this work proposes two novel ML-based
analyzers: ThermEDGe for both full-chip static and transient ther-
mal analysis, and IREDGe for full-chip static IR drop estimation.
The fast inference times of ThermEDGe and IREDGe enable full-
chip thermal and IR drop analysis in milliseconds, as opposed to
several hours using commercial tools. We obtain average error of
0.6% and 0.008% for ThermEDGe and IREDGe, respectively, over a
range of testcases. Our software has been released on GitHub [17].

Fig. 1 shows a general structure of an EDGe network. It con-
sists of two parts: (i) the encoder/downsampling path, which cap-
tures global features of the 2-D distributions of power dissipa-
tion, and produces a low-dimensional state space and (ii) the de-
coder/upsampling path, which transforms the state space into the
required detailed outputs (temperature or IR drop contours). The
EDGe network is well-suited for PDN/thermal analyses because:
(a) The convolutional nature of the encoder captures the dependence
of both problems on the spatial distributions of power. Unlike CNNs,
EDGe networks contain a decoder which acts as a generator to con-
vert the extracted power and PDN density features into accurate
high-dimensional full-chip temperature and IR drop contours.
(b) The trained EDGe network model for static analysis is design-
independent: it only stores the weights of the convolutional kernel,
and the same filter can be applied to any chip of any size for a given
technology and packaging solution. The selection of the network
topology (convolution filter size, number of convolution layers) is
related to the expected sizes of the hotspots rather than the size of
the chip: these sizes are generally similar for a given application
domain, technology, and packaging choice.
(c) Unlike prior methods [9] that operate tile-by-tile, where finding
the right tile and window size for accurate analysis is challenging,
the choice of window size is treated as an ML hyperparameter tuning
problem to decide the amount of input spatial information.

2 EDGe Network for Analysis

2.1 Problem Formulations
This section presents the ML-based framework for ThermEDGe and
IREDGe. The first step is to extract an appropriate set of features
from a standard design-flow environment. The layout database
provides the locations of each instance and block in the layout, as
outlined in Fig. 2(a). This may be combined with information from
a power analysis tool (Fig. 2(b)) that is used to build a 2-D spatial
power map over the die area.

For thermal analysis using ThermEDGe, both the inputs and
outputs are images for the static case, and a sequence of images
for the transient case. Each input image shows a 2-D die power
distribution (static) image, and each output image is a temperature
map across the die (Fig. 2). For static PDN analysis, the output is an
IR drop map across the full chip. However, in addition to the 2-D
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Figure 2: Data representation: Mapping PDN and thermal
analysis problems into image-to-image translations tasks.

power distributions, IREDGe has two other inputs:
(i) A PDN density map: This feature is generated by extracting the
average PDN pitch in each region of the chip. For example, when
used in conjunction with the PDN styles in [18, 19], where the chip
uses regionwise uniform PDNs, the average PDN density in each
region, across all metal layers, is provided as an input (Fig. 2(e)).
(ii) An effective distance to power pad: This feature represents the
equivalent distance from an instance to all power pads in the pack-
age. We compute the effective distance of each instance, de , to N
power pads as d−1e = d−11 + d

−1
2 + ... + d

−1
N where di is the distance

of the ith power pad from the instance. Intuitively, the effective
distance metric and the PDN density map together, represent the
equivalent resistance between the instance and the pad. The equiv-
alent resistance is a parallel combination of each path from the
instance to the pad. We use distance to each pad as a proxy for
the resistance. Fig. 2(f) shows a typical “checkerboard” power pad
layout for flip-chip packages [20, 21].

Temperature depends on the ability of the package and system
to conduct heat to the ambient, and IR drop depends on off-chip
(e.g., package) parasitics. In this work, our focus is strictly on-chip,
and both ThermEDGe and IR-EDGe are trained for fixed models of
a given technology, package, and system.

Next, we map these problems to standard ML networks:
• For static analysis, the problem formulations require a trans-
lation from an input power image to an output image, both
corresponding to contour maps over the same die area, and
we employ a U-Net-based EDGe network [14].
• The dynamic analysis problem requires the conversion of a
sequence of input power images, to a sequence of output im-
ages of temperature contours, and this problem is addressed
using an LSTM-based EDGe network [22].

We describe these networks in the rest of this section.

2.2 U-Nets for Static Analysis
2.2.1 Overview of U-Nets CNNs are successful in extracting 2-D
spatial information for image classification and image labeling
tasks, which have low-dimensional outputs (class or label). For
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PDN and thermal analysis tasks, the required outputs are high-
dimensional distributions of IR drop and temperature contours,
where the dimensionality corresponds to the number of pixels of
the image and the number of pixels is proportional to the size of
the chip. This calls for a generator network that can translate the
extracted low-dimensional power, PDN, and effective distance to
pad features from a CNN-like encoder back into high-dimensional
data representing the required output.

Power map Temperature map
Skip connections

2D convolution Max pool Concatenate 2D convolution transpose + upsample
2D_conv1

2D_conv2
2D_conv3 2D_conv_trans3

2D_conv_trans2
2D_conv_trans1

Encoder/downsampling path Decoder/upsampling path

Figure 3: U-Net-based static IREDGe and ThermEDGe.

Fig. 3 shows the structure of the EDGe network used for static
PDN and thermal analysis. It consists of two networks:
(a) Encoder/Downsampling Network Like a CNN, the network uti-
lizes a sequence of 2-D convolution andmax pooling layer pairs that
extract key features from the high-dimensional input feature set.
The convolution operation performs a weighted sum on a sliding
window across the image [23], and the max pooling layer reduces
the dimension of the input data by extracting the maximum value
from a sliding window across the input image. In Fig. 3, the fea-
ture dimension is halved at each stage by each layer pair, and after
several such operations, an encoded, low-dimensional, compressed
representation of the input data is obtained. For this reason, the
encoder is also called the downsampling path: intuitively, downsam-
pling helps understand the “what" (e.g., “Does the image contain
power or IR hotspots?”) in the input image but tends to be impre-
cise with the “where" information (e.g., the precise locations of the
hotspots). The latter is recovered by the decoder stages.
(b)Decoder/Upsampling Network Intuitively, the generative decoder
is responsible for retrieving the “where" information that was lost
during downsampling, This distinguishes an EDGe network from
its CNN counterpart. The decoder is implemented using the trans-
pose convolution [23] and upsampling layers. Upsampling layers
are functionally the opposite of a pooling layer, and increase the
dimension of the input data matrix by replicating rows and columns.
2.2.2 Use of Skip Connections Static IR drop and temperature are
strongly correlated to the input power – a region with high power
on the chip could potentially have an IR or temperature hotspot
in its vicinity. U-Nets [14] utilize skip connections between the
downsampling and upsampling paths, as shown in Fig. 3. These
connections take information from one layer and incorporate it
using a concatenation layer at a deeper stage skipping intermediate
layers, and appends it to the embedding along the z-dimension.

Skip connections combine the local power, PDN information, and
power pad locations from the downsampling path with the global
power information from the upsampling path, allowing the under-
lying input features to and directly shuttle to the layers closer to the
output. This helps recover the fine-grained (“where") details that are
lost in the encoder network (as stated before) during upsampling
in the decoder for detailed temperature and IR drop contours.
2.2.3 Receptive Fields in the Encoder and Decoder Networks The
characteristic of PDN and thermal analyses problems is that the
IR drop and temperature at each location depend on both the lo-
cal and global power information. During convolution, by sliding
averaging windows of an appropriate size across the input power
image, the network captures local spatially correlated distributions.
For capturing the larger global impact of power on temperature
and IR drop, max pooling layers are used after each convolution to
appropriately increase the size of the receptive field at each stage
of the network. The receptive field is defined as the region in the
input 2-D space that affects a particular pixel, and it determines the
impact local, neighboring, and global features have on the analyses.

In a deep network, the value of each pixel feature is affected by all
of the other pixels in the receptive field at the previous convolution
stage, with the largest contributions coming from pixels near the
center of the receptive field. Thus, each feature not only captures its
receptive field in the input image, but also gives an exponentially
higher weight to the middle of that region [24]. This matches with
our applications, where both thermal and IR maps for a pixel are
most affected by the features in the same pixel, and partially by
features in nearby pixels, with decreasing importance for those that
are farther away. The size of the receptive field at each stage in the
network is determined by the filter sizes and the number of the
convolutional and max pooling layers.

On both the encoder and decoder sides in Fig. 3, we use three
stacked convolution layers, each followed by 2×2 max-pooling
to extract the features from the power and PDN density images.
The number of layers and filter sizes are determined based on the
magnitude of the hotspot size encountered during design iterations.

2.3 LSTM-based Model for Transient Analysis
Long short termmemory (LSTM) based EDGe networks are a special
kind of recurrent neural network (RNN) that are known to be
capable of learning long term dependencies in data sequences, i.e.,
they have a memory component and are capable of learning from
past information in the sequence.

For transient thermal analysis, the structure of ThermEDGe is
shown in Fig. 4. The core architecture is an EDGe network, similar
to the static analysis problem described in Section 2.2, except that
the network uses additional LSTM cells to account for the time-
varying component. The figure demonstrates the time-unrolled
LSTM where input power frames are passed to the network one
frame at a time. The LSTM cell accounts for the history of the power
maps to generate the output temperature frames. The network is
used for sequence-to-sequence translation in transient thermal
analysis, where the input is a set of time-varying power maps and
the output is a set of time-varying temperature maps (Section 2.1).

Similar to the static ThermEDGe network (Fig. 3), the encoder
consists of convolution and max pooling layers to downsample
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Figure 4: LSTM-based network for transient ThermEDGe.
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and extract critical local and global spatial information and the
decoder consists of upsampling and transpose convolution layers
to upsample the encoded output. However, in addition, transient
ThermEDGe has LSTM layers in both the encoder and decoder.

A standard LSTM cell is shown in Fig. 5 (left). While the basic
LSTM cell uses fully connected layers within each gate, our applica-
tion uses a variation of an LSTM cell called a convolutional LSTM
(ConvLSTM) [25], shown in Fig. 5 (right). In this cell, the fully con-
nected layers in each gate are replaced by convolution layers that
capture spatial information. Thus, the LSTM-based EDGe network
obtains a spatiotemporal view that enables accurate inference.

3 EDGe Network Training
We train themodels in ThermEDGe and IREDGe to learn the temper-
ature and IR contours from the “golden" commercial tool-generated
or ground truth data. We train ThermEdge using the full physics-
based thermal simulations from the Ansys-Icepak [26] simulator,
incorporating off-chip thermal dynamics from package and system
thermal characteristics. IREDGe is trained using static IR drop dis-
tribution from a PDN analyzer [27] for various power, PDN density,
and power pad distributions.

3.1 Generating Training Data
Static ThermEDGe and IREDGe A challenge we faced to eval-
uate our experiments is the dearth of public domain benchmarks
that fit these applications. The IBM benchmarks [28], are potential
candidates for our applications, but they assume constant currents
per region and represent an older technology node. Therefore, we
generate our dataset which comprises of industry-relevant test-
cases, where each testcase represents industry-standard workloads

for commercial designs implemented in a FinFET technology. The
power images are of size 34×32 pixels, with each pixel representing
the power/temperature a 250µm×250µm tile on an 8.5mm×8mm
chip.1 Our training is specific to the resolution (250µm×250µm): for
another image resolution, the model must be retrained. We reiterate
that although the training is performed on chips of fixed size, as
we show (Section 4), inference can be performed on a chip of any
size as long as the resolution and technology remains the same.

For static ThermEDGe our training data is based on static Ansys-
Icepak [26] simulations of these testcases. For IREDGe, we synthe-
size irregular PDNs of varying densities for each dataset element
using PDN templates, as defined by OpeNPDN [19]. These templates
are a set of PDN building blocks, spanning multiple metal layers in
a 14nm commercial FinFET technology, which vary in their metal
utilization. For our testcases, we use three templates (high, medium,
and low density) and divide the chip into nine regions. As outlined
in Section 2.1, we use a checkerboard pattern of power pads that
vary in the bump pitch and offsets across the dataset.

The synthesized full-chip PDN, power pad locations, and power
distributions are taken as inputs into the IR analyzer [27] to obtain
training data for IREDGe. We create a dataset with 5000 datapoints
with a combination of 50 different power distributions, 10 different
PDN densities, and 10 different patterns of power pad distributions.
Transient ThermEDGe For the transient analysis problem, our
training data consists of 150 datapoints with time-varying work-
loads as features, and the time-varying temperatures from Ansys-
Icepak [26] as labels. For each testcase, we generate 45 time-step
simulations that range from 0 to 3000s, with irregular time intervals
from the thermal simulator. Each simulation to create an element of
the training dataset is expensive in terms of the time and memory
resources: one simulation of a 3000s time interval with 45 time-
steps can take 4 hours with 2 million nodes. Transient ThermEDGe
is trained using constant time steps of 15s which enables easy inte-
gration with existing LSTM architectures which have an implicit
assumption of uniformly distributed time steps, without requiring
additional features to account for the time.

3.2 Model Training
For the static analysis problem, ThermEDGe uses a static power
map and IREDGe uses a static power map, PDN density map, and
effective distance to power pad map as input to predict the corre-
sponding temperature and IR drop contours respectively. For the
transient thermal analysis problem, the input is a sequence of 200
power maps and the output is a sequence of 200 temperature con-
tours maps at a 15s time interval. The ML training hyperparameters
used for these models are listed in Table 1. The static ThermEDGe
and IREDGe models have 132,000 trainable parameters each and the
transient ThermEDGemodel has 235,000 parameters. It is important
to note that the same trained model can be utilized for any chip size
as long as the resolution is the same as that of the training data. In
addition, the number of parameters in the model is independent of
the size of the chip but scales with the size of the hotspot which are
generally similar for a given application domain, technology, and
packaging choice. A change in hotspot size or resolution demands

1Note that although the temperature and power map work at this resolution, the actual
simulation consists of millions of nodes; using fewer node (e.g.s, one node per pixel) is
grossly insufficient for accuracy.
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a change in the number of layers and receptive field sizes of the
models to accurately capture temperature and IR drop contours.

Table 1: ThermEDGe and IREDGe ML hyperparameters

ML hyperparameters Static
ThermEDGe IREDGe Transient

ThermEDGe

Model layer
parameters

2D_conv1
2D_conv_trans1

filter size 5×5 3×3 5×5
# filters 64 64 64

2D_conv2
2D_conv_trans2

filter size 3×3 3×3 3×3
# filters 32 32 32

2D_conv3
2D_conv_trans3

filter size 3×3 3×3 –
# filters 16 16 –

Max pool layers filter size 2×2 2×2 2×2

ConvLSTM filter size – – 7×7
# filters – – 16

Training
parameters

Epochs 500
Optimizer ADAM
Loss function Pixelwise MSE
Decay rate 0.98
Decap steps 1000
Regularizer L2
Regularization rate 1.00E-05
Learning rate 1.00E-03

We split the data in each set for training, validation, and test sets.
The training dataset is normalized by subtracting the mean and
dividing by the standard deviation and is used to train the network
using an ADAM optimizer [29] where the loss function is a pixel-
wise mean square error (MSE). The convolutional operation in the
encoder and the transpose convolution in the decoder are each
followed by ReLU activation to add non-linearity and L2 regulariza-
tion to prevent over fitting. The model is trained in Tensorflow 2.1
on an NVIDIA GeForce RTX2080Ti GPU. Training run-times are:
30m each for static ThermEDGe and IREDGe, and 6.5h for transient
ThermEDGe. We reiterate that this is a one-time cost for a given
technology node and package which is amortized over repeated
use over many design iterations for multiple chips.

4 Evaluation of TherEDGe and IREDGe

4.1 Experimental Setup and Metric Definitions
ThermEDGe and IREDGe are implemented using Python3.7 within
a Tensorflow 2.1 framework. We test the performance of our models
on 25 datapoints reserved in the testset (Section 3.2), labeled T1–
T25. As mentioned in Section 3.1, due the unavailability of new,
public domain benchmarks to evaluate our experiments, we use
benchmarks that represent commercial industry design workloads.
Error Metrics As a measure of goodness of ThermEDGe and
IREDGe predictions, we define a discretized regionwise error,
Terr =

���Ttrue −Tpred
���, whereTtrue is ground truth image, gener-

ated by commercial tools, andTpred the predicted image, generated
by ThermEDGe. IRerr is computed in a similar way. We report the
average and maximum values of Terr and IRerr for each testcase.
In addition, the percentage mean and maximum error are listed as
a fraction of a temperature corner, i.e., 105◦C for thermal analysis
and as a fraction of VDD= 0.7V for IR drop analysis.

4.2 Accuracy and Speed
Static ThermEDGe Results A comparison between the commer-
cial tool-generated temperature and the ThermEDGe-generated
temperature map for T1–T5 are listed in Table 2. The runtime of
static ThermEDGe for each the five testcases which are of size

Table 2: Results of ThermEDGe across 10 testcases.

Static ThermEDGe Transient ThermEDGe
Test Avg. Terr (C) Max Terr (C) Test Avg. Terr (C) Max Terr (C)
T1 0.64 (0.61%) 2.76 (2.63%) T6 0.51 (0.49%) 5.59 (5.32%)
T2 0.63 (0.60%) 2.67 (2.54%) T7 0.58 (0.55%) 6.17 (5.88%)
T3 0.65 (0.62%) 2.93 (2.79%) T8 0.57 (0.54%) 5.83 (5.55%)
T4 0.48 (0.46%) 2.22 (2.11%) T9 0.52 (0.50%) 6.32 (6.02%)
T5 0.75 (0.71%) 2.86 (2.72%) T10 0.56 (0.53%) 7.14 (6.80%)

34×32 is approximately 1.1ms in our environment. Across the five
testcases (five rows of the table), ThermEDGe has an average Terr
of 0.63◦C and a maximum Terr of 2.93◦C.2 These numbers are a
small fraction of the maximum ground truth temperature of these
testcases (85 – 150◦C). The fast runtimes imply that our method can
be used in the inner loop of a thermal optimizer, e.g., to evaluate
various chip configurations under the same packaging solution
(typically chosen early in the design process). For such applications,
this level of error is very acceptable.
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Figure 6: ThermEDGe static temperature estimation on T1:
(a) input normalized power distribution, (b) histogram of
Terr , (c) ground truth, and (d) predicted temperature map.

A graphical view of the predicted map for T1 is depicted in Fig. 6.
For a given input power distribution (Fig. 6(a)), we compare the
true temperature in Fig. 6(c) against the ThermEDGe-generated
temperature contours plots in Fig. 6(d). The discrepancy is visually
seen to be small. Numerically, the histogram in Fig. 6(b) shows the
distribution of %Terr where the worstcase %Terr is 2.63%.
Transient ThermEDGe Results Trained transient ThermEDGe
predicts the output 200-frame temperature sequence at a 15s in-
terval for the input power sequence. We summarize the results in
Table 2. The inference runtimes of T6–10 for a sequence 200 frames
of temperature contours is approximately 10ms in our setup. Across
the five testcases, the prediction has an averageTerr of 0.52% and a
maximum Terr of 6.80% as shown. The maximum Terr in our test-
cases occur during transients which do not have long-last effects
(e.g., on IC reliability). These errors are reduced to the averageTerr
values at sustained peak temperatures.

Fig. 7 (left) shows a single frame of a video with time-varying
power map for T6, where each frame (time-step) is after a 15s time
2Achieving this accuracy requires much finer discretization in Icepak.



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapatnekar

interval. The corresponding ground truth and predicted tempera-
ture contours are in center and right, respectively, of the figure.

Figure 7: A single frame of a video comparing ThermEDGe
prediction (right) against commercial tool (center) temper-
ature contours for T6 power map (left). [For an animated
version, visit the GitHub repository [17]]

IREDGe ResultsWe compare IREDGe-generated contours against
the contours generated by [27]. Across the five testcases in Table 3,
IREDGe has an average IRerr of 0.053mV and a worstcase max
IRerr of 0.34mV which corresponds to 0.008% and 0.048% of VDD
respectively. Given that static IR drop constraints are 1–2.5% of
VDD, a worstcase error of 0.34mV is acceptable in light of rapid
runtimes. We list the results of the testcases in Table 3 where the
percentage errors in IRerr are listed as fraction of VDD= 0.7V.

Table 3: Results of IREDGe for 10 different testcases. T16-
T20 have a chip size that was not in the training set.

Chip size: 34x32 Chip size: 68x32
Avg. IRerr (mV) Max IRerr (mV) Avg. IRerr (mV) Max IRerr (mV)

T11 0.052 (0.007%) 0.26 (0.03%) T16 0.035 (0.005%) 0.16 (0.02%)
T12 0.074 (0.011%) 0.34 (0.05%) T17 0.054 (0.008%) 0.42 (0.06%)
T13 0.036 (0.005%) 0.21 (0.03%) T18 0.035 (0.005%) 0.35 (0.05%)
T14 0.053 (0.008%) 0.24 (0.03%) T19 0.068 (0.010%) 0.22 (0.03%)
T15 0.051 (0.007%) 0.23 (0.03%) T20 0.061 (0.009%) 0.38 (0.05%)
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Figure 8: IREDGe data for T11: input (a) power map, (b) PDN
density map, (c) effective distance map, output (d) ground
truth, (e) predicted IR drop map, and (f) histogram of IRerr .

A detailed view of T11 is shown in Fig. 8. It compares the IREDGe-
generated IR drop contour plots against contour plot generated

V
ol

ta
ge

 (m
V

)

(a) (b)
0

1.5

(a) (b)

V
ol

ta
ge

 (m
V

)

Figure 9: Comparison between actual (left) and IREDGe-
predicted (right) IR drop contours for images of size 68×32
using a model that was trained on images of size 34×32.

by [27]. The input power maps, PDN density maps, and effective
distance to power pad maps are shown in Fig. 8(a), (b), and (c)
respectively. Fig. 8(d) and (e) shows the comparison between ground
truth and predicted value for the corresponding inputs. It is evident
that the plots are similar; numerically, the histogram in Fig. 8(f)
shows the %IRerr where the worst %IRerr is less than 0.02% of
VDD.
Size-independence Since the EDGe models only comprise the
trained weights of the convolutional kernels, the same model can
be reused to predict IR drop or temperature contours of a chip of
a different size. We demonstrate this using IREDGe on chips of
a different size (T16 – T20), using an input power distribution of
size 68 × 32. Fig. 9 compares the actual IR drop of T16 (left) and
the IREDGe-predicted (right) using a model which was trained on
34 × 32 power maps. The results on T16 – T20 are in Table 3.
Inference RuntimeAnalysis Table 4 compares the inference run-
times of our ML-based EDGe network approach against the golden
solvers. The runtimes are reported on a NVIDIA GeForce RTX
2080Ti GPU. With the millisecond inference times, and the trans-
ferable nature of our trained models, the one-time cost of training
the EDGe networks is easily amortized over multiple uses within a
design cycle, and over multiple designs.

Table 4: Runtimes of EDGe networks and golden analysis

Analysis type # Nodes Design
Area

Icepak/
PDNSim
runtimes

ThermEDGe/
IREDGe inference
runtimes

Static thermal 2.0 million 68 mm2 30 mins 1.1 ms
Transient thermal 2.0 million 68 mm2 210 mins 10 ms
Static IR drop 5.2 million 0.16 mm2 5 mins 1.1 ms

4.3 IREDGe Compared with PowerNet
We compare IREDGe against our implementation of PowerNet,
based on its description in [9]. The layout is divided into tiles, and
the CNN features are the 2-D power distributions (toggle rate-scaled
switching and internal power, total power, and leakage power)
within each tile and in a fixed window of surrounding tiles. The
trained CNN is used to predict the IR drop on a tile-by-tile basis
by sliding a window across all tiles on the chip. The work uses a
tile size of 5µm×5µm and takes into consideration a 31×31 tiled
neighborhood (window) power information as features. For a fair
comparison, we train IREDGe under a fixed PDN density and fixed
power pad locations that is used to train PowerNet. Qualitatively,
IREDGe is superior on three aspects:
(1) Tile and Window Size Selection: It is stated in [9] that when
the size of the tile is increased from 1µm×1µm to 5µm×5µm and
the size of the resulting window is increased to represent 31×31
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Figure 10: IREDGe versus PowerNet: IR drop error (left) and
runtimes (right). IREDGe is 2.9× faster at iso-error across
T21–T25 (0.16mm2 area).
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Figure 11: IR drop comparisons on T21: (a) ground truth, (b)
IREDGe, and (c) our implementation of PowerNet.

window of 25µm2 tiles instead of 1µm2 tiles, the accuracy of the
PowerNet model improves. In general, this is the expected behavior
with an IR analysis problem where the accuracy increases as more
global information is available, until a certain radius after which
the principle of locality holds [12]. IREDGe bypasses this tile-size
selection problem entirely by providing the entire power map as
input to IREDGe and allowing the network to learn the window
size that is needed for accurate IR estimation.
(2) Runtimes and accuracy: We compare IREDGe against our imple-
mentation of PowerNet on T21–25. These testcases have the same
power distributions in T11–15 except that all the five testscases
have identical uniform PDNs, and identical power pad distributions,
as required by PowerNet; IREDGe does not require this. Unlike Pow-
erNet, which trains and infers IR drop on a sliding tile-by-tile basis,
IREDGe has faster training and inference. IREDGe requires a single
inference, irrespective of the size of the chip while PowerNet per-
forms an inference for every tile in the chip. For this setup and data,
it takes 75 minutes to train PowerNet, as against 30 minutes for
IREDGe. Fig. 10 shows the comparison of inference times between
PowerNet and IREDGe at similar error levels. At the 25µm2 tile size,
both IREDGe and PowerNet have similar accuracies for T21–25
as shown in Fig. 10(a). At this error level, for 0.16 mm2 designs,
IREDGe is 2.9× faster than PowerNet (Fig. 10(a)).

(3) Piexelated IR drop maps: Since PowerNet uses a CNN to pre-
dict IR drop on a tile-by-tile basis, where each tile is 5µm × 5µm, the
resulting IR drop image is pixelated, and the predicted region value
does not correlate well with the neighboring regions. This is high-
lighted in Fig. 11 which compares IR drop contours from a golden
solver (Fig. 11(a)), IREDGe (Fig. 11(b)), and our implementation of
PowerNet (Fig. 11(c)) for T21.
5 Conclusion
This paper addresses the compute-intensive tasks of thermal and
IR analysis by proposing the use EDGe networks as apt ML-based

solutions. We successfully evaluate EDGe networks for these ap-
plications by developing two ML-based tools (i) ThermEDGe and
(ii) IREDGe for rapid on-chip (static and dynamic) thermal and
(static) IR analysis respectively. In principle, our methodology is
applicable to dynamic IR as well, but could not be exercised here
due to the unavailability of public-domain benchmarks. In forth-
coming work, we expand this method to make it more scalable and
demonstrate it on industry circuits for dynamic IR analysis [30].
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