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Abstract. Many unicellular organisms allocate their key proteins asymmetrically

between the mother and daughter cells, especially in a stressed environment. A recent

theoretical model is able to predict when the asymmetry in segregation of key proteins

enhances the population fitness, extrapolating the solution at two limits where the

segregation is perfectly asymmetric (asymmetry a = 1) and when the asymmetry is

small (0 ≤ a� 1) [1]. We generalize the model by introducing stochasticity and use a

transport equation to obtain a self-consistent equation for the population growth rate

and the distribution of the amount of key proteins. We provide two ways of solving the

self-consistent equation: numerically by updating the solution for the self-consistent

equation iteratively and analytically by expanding moments of the distribution. With

these more powerful tools, we can extend the previous model by Lin et al. [1] to

include stochasticity to the segregation asymmetry. We show the stochastic model

is equivalent to the deterministic one with a modified effective asymmetry parameter

(aeff). We discuss the biological implication of our models and compare with other

theoretical models.

1. Introduction

Genetically identical unicellular organisms may nevertheless exhibit different traits such

as growth rate or generation time, a phenomenon known as phenotypic variability [2].

One cause of such diversity is the asymmetric allocation of key proteins at division.

For instance, some bacteria and eukaryotic cells accumulate protein aggregates when

exposed to stress and tend to segregate more of them to one of the two newborn cells

at a division event. As a result, the “rejuvenated” cells (i.e. those with less damage)

grow faster than the “senescent” cells [3–8]. There have been a number of theoretical

works [1, 9–11] trying to quantify the effect of asymmetric segregation of proteins to the

overall growth of the population. In this paper, we strengthen the theory developed by

Lin et al. [1] to relate the asymmetric protein segregation and the population growth
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rate by implementing a more general method involving transport equations and moment

expansions. This allows us to recover previous results rigorously, and go beyond them.

We extend the model to consider stochastic asymmetric segregation. Lastly, we compare

alternative models of asymmetric segregation by applying the self-consistent equations.

2. Model

Figure 1: Single cell level model. For simplicity, we assume that every cell has a volume

Vb = 1 at birth and divides when it reaches Vd = 2. The amount of key proteins in a cell

increases in proportion to the added volume with a prefactor S. The generation time

τ [σb] is a function of the key protein concentration at birth (σb = Db/Vb). Asymmetry

a ∈ [0, 1] tunes the ratio of key proteins inherited by two offspring cells (a = 0 being

perfectly asymmetric, a = 1 being perfectly asymmetric). The plots on the right show

an example of generation time as a function of initial concentration of key protein which

is deleterious (top) or beneficial (bottom).

We define a generalization of the model proposed by Lin et al. [1]. Consider a

clonal microbial population that grows exponentially with rate Λp. We assume that as a

cell grows by volume ∆V , the amount of key proteins D increases by ∆D = S∆V . Each

cell’s inter-division time (τ) is a function of the initial concentration of the key protein

(σb). For simplicity, suppose every cell is born with volume Vb = 1 and divides when

the volume reaches Vd = 2. As it divides, the key proteins segregate asymmetrically

according to the asymmetry parameter a: one daughter cell inherits 1+a
2

of the key

proteins from the mother and the other gets the rest. We call the key protein damaging

if the generation time τ [σb] is an increasing function of the initial protein concentration

and beneficial if it is a decreasing function (figure 1).

While our analysis can be applied to any analytical function τ [σb], we assume the

instantaneous growth rate λ[σ] is a Hill-type function of the key protein concentration
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of the cell, as proposed by Lin et al. [1]. This assumptions by Lin et al. is based

on observations made in experimental studies, where growth rate function of microbes

often has an inflection point [6, 7].

λ[σ] =
λ0 + λ1σ

n

1 + σn
, (1)

τ [σb] =
∫ 2

1

1

V λ[σ]
dV

=
∫ 2

1

1

V λ[(σb − S)/V + S]
dV. (2)

Every time a cell divides, the asymmetry parameter a is randomly and

independently drawn from a probability distribution g(a). The deterministic model

by Lin et al. [1] assumes a delta function for g(a), but here we allow a to fluctuate.

3. Results

3.1. Transport equation

Recently, Levien et al. [12] showed that a transport equation can be used to get a

self-consistent equation for the population distribution of phenotype and population

growth rate even when the properties of the cells are correlated across the generations.

Here we follow their derivation by setting the phenotype of interest as the key protein

concentration at birth σb.

Assume that the population size is N at time t and it grows exponentially with

the rate Λp. Let us also assume that the population has reached a stable probability

distribution ψ(u, σb, t), where u is time since birth, σb is the key protein concentration

at birth, and t is the global time. The probability distribution then evolves during an

infinitesimal time step dt as:

Nψ(u, σb, t) = Ne−Λpdtψ(u− dt, σb, t− dt),

= N(1− Λpdt)

(
ψ(u, σb, t)− dt

∂ψ

∂u
− dt∂ψ

∂t

)
. (3)

Rearranging the terms and dividing both sides by dt, we get

∂ψ

∂u
+
∂ψ

∂t
= −Λpψ. (4)

In a steady state population, there is no dependence on t, so ∂tψ = 0. Therefore,

∂ψ(u, σb)

∂u
= −Λpψ(u, σb), (5)

ψ(u, σb) = ψ(0, σb)e
−Λpu. (6)

The boundary conditions are set by the division. The probability distribution of

having a newborn cell with a protein concentration σb is

ψ(0, σb) = 2
∫ ∫

f(σb|σ′b, a′)g(a′)ψ(τ [σ′b], σ
′
b)dσ

′
bda
′. (7)
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The probability distribution f(σb|σ′b, a′) and g(a′) depend on the physiological model we

choose. For instance, in a deterministic model, we have

f(σb|σ′b, a′) =
1

2
δ

(
σb −

1 + a′

2
(σ′b + S)

)
+

1

2
δ

(
σ′b −

1− a′

2
(σ′b + S)

)
, (8)

g(a′) = δ(a′ − ā). (9)

Applying the solution given by Equation 6 (in the general case), we can eliminate

the dependence on u. Thus, we can rewrite to obtain a self-consistent equation:

ψbirth[σb] = 2
∫ ∫

f(σb|σ′b, a′)ψbirth[σ′b]g(a′)e−Λpτ [σ′b]dσ′bda
′. (10)

In the next section, we apply the self-consistent Equation 10 to a toy model of E. coli

recently published by Blitvic et al. [13] as a simple example.

3.2. Toy model of the aging of E. coli [13]

Let us introduce a simple model published by Blitvic et al. to demonstrate how to

use our approach to connect the asymmetry between two newborn cells and population

growth rate [13]. Blitvic et al. assume that as an E. coli cell divides, one daughter cell

is rejuvenated and the other senescent where the generation time of a rejuvenated cell

(τ [R]) is shorter than a senescent cell (τ [S]). In this model, there are two phenotype

x = S for a senescent cell and x = R for a rejuvenated one.

Then the transition density f(x|x′) from a phenotype x′ to x is

f(x|x′) =
1

2
δ(x−R) +

1

2
δ(x− S). (11)

The self-consistent equation is

ψ[x] =
∫
ψ[x′]f(x|x′)e−Λpτ [x′]dx′. (12)

Integrating both sides with respect to x, we have

1 = e−Λpτ [R] + e−Λpτ [S]. (13)

Because the exponential function is convex, by Jensen’s inequality,

1 = e−Λpτ [S] + e−Λpτ [R] > 2e−Λp〈τ [x]〉, (14)

where 〈τ [x]〉 = 1
2
(τ [S] + τ [R]). Thus, the asymmetry of generation time of two

distinct phenotypes enhances the population growth rate if the mean of the generation

time, 〈τ [x]〉 is kept constant. Note that Equation 13 was also derived in Ref. [14] in the

context of the asymmetric division of the budding yeast Saccharomyces cerevisiae.

In the next section, we solve Equation 10 numerically and analytically more

generally.

3.3. Numerically solving the self-consistent equation

The self-consistent equation 10 can be numerically solved by iterating the following

procedure. First, we start with initial guesses for the solutions ψ
(0)
birth[σb] and Λ(0)

p . We
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then update our guess for the distribution ψbirth[σb] using Equation 10. Next, we update

Λp by using the Euler-Lotka equation [12], obtained by integrating Equation 10 with

respect to σb. This procedure is summarized in this set of equations:

ψ̃
(n)
birth[σb] = 2

∫
f(σb|σ′b, a′)ψ

(n−1)
birth [σ′b]g(a′)e−Λ

(n−1)
p τ [σ′b]da′dσ′b, (15)

ψ
(n)
birth[σb] =

ψ̃
(n)
birth[σb]∫

dσ′bψ̃
(n)
birth[σ′b]

, (16)

1 = 2
∫ ∫

ψ
(n)
birth[σ′b]g(a′)e−Λ

(n)
p τ [σ′b]da′dσ′b. (17)

ψ
(n)
birth[σb] and Λ(n)

p converge to constant values as n → ∞. Note that the solution

is not sensitive to the choice of ψ
(0)
birth and Λ(0)

p . In Appendix D, we discuss the shape of

the distribution ψbirth[σb].

In Figure 2, we compare the numerical solution for Equation 10 in the case of

deterministic a (i.e. g(a′) is a delta function) and the fitted exponential growth rate

obtained by simulating the population directly (see Appendix A for details of the

simulation).

(a) (b)

Figure 2: The relative population growth rate, compared to a = 0, is plotted against

the asymmetry a. The solid lines show the numerical solutions of Equation 10 and the

circles mark simulated population growth rates. (a) Beneficial protein (λ0 = 0.2, λ1 =

1.2, n = 2), (b) Deleterious protein (λ0 = 1, λ1 = 0, n = 2). For numerical solutions, we

use ψ
(0)
birth[σ] = δ(σb − S) and Λ(0)

p = ln 2/λ[S]. Error bars are smaller than the marker

size.

Figure 2 confirms that Equation 10 has sufficient information for calculating the

population growth rate. The iterative procedure is more accurate, faster, and less

memory-intensive than a brute force simulation which involves exponentially growing

population size. However, the main shortcoming of the numerical solution is that it

does not give any insight about how Λp depends on S and a. It is possible infer the
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relation by finding Λp for various values of S and a, but for every parameter values, we

have to go through Equations 15 - 17, which is highly inefficient. For those reasons, the

moment expansion method we discuss in the following section is a good alternative way

of calculating Λp for small a.

3.4. Moment expansion

Equation 10 can be approximately solved by expanding the moments of ψbirth[σb]. For

simplicity, we start with the deterministic case. As we will explain in the following

sections, it is straightforward to generalize this moment expansion method to the

stochastic case.

When the key protein segregation is perfectly symmetric (i.e. a = 0), every cell

has a concentration of key protein of σb = S at cell birth. Therefore, for a small

a, the distribution ψbirth[σb] should be sharply peaked around S. Based on this, we

are motivated to expand the moment of the distribution around σb = S by defining

∆σb = σb − S. In order to calculate the n-th moment, we multiply both sides of

Equation 10 by ∆σnb and integrate them with respect to σb. We use Equations 8 and 9

to specify f(σb|σ′b, a′) and g(a′). Invoking Newton’s binomial theorem, we obtain:

〈∆σnb 〉 =
1

2n−1

bn/2c∑
m=0

(
n

2m

)
a2m

〈
∆σn−2m

b (∆σb + 2S)2me−Λpτ [∆σb+S]
〉
. (18)

Note that by convention,
(
n
0

)
= 1 and bn/2c is the greatest integer that is

less than or equal to n/2. From the right hand side of Equation 18, we can infer

that 〈∆σnb 〉 = O(a2bn/2c). This means that by solving a system of 2k + 1 equations

(n = 0, · · · , 2k), we will find Λp to O(a2k) accuracy. For each equation, we need to

expand the exponential function e−Λpτ [∆σb+S] around ∆σb = 0 to order a2bn/2c. To

illustrate the process more clearly, let us calculate Λp to O(a2) accuracy.

If a = 0, every cell has σb = S when the population is stabilized, so Λp = ln 2
τ [S]

.

Due to symmetry, Λp[a] = Λp[−a]. Thus, to solve Λp to O(a2) is equivalent to finding a

coefficient C2 defined as below,

Λp =
ln 2

τ [S]
(1 + C2a

2 +O(a4)). (19)

Taylor expanding τ [∆σb + S] around ∆σb = 0 to O(a2) we find

τ [∆σb + S] = τ [S] + τ ′[S]∆σb +
τ ′′[S]

2
∆σ2

b . (20)

Expanding e−Λpτ [∆σb+S] to O(a2) leads to:

e−Λpτ [∆σb+S] =
1

2

[
1− ln 2

(
C2a

2 +
τ ′[S]

τ [S]
∆σb +

(
τ ′′[S]

2τ [S]
− ln 2

2

τ ′[S]2

τ [S]2

)
∆σ2

b

)]
. (21)

Applying these to Equation 18 while setting n = 0, 1, or 2, we can set up a system of

three linear equations with the unknowns being C2, 〈∆σb〉 and 〈∆σ2
b 〉. (Note that here

τ [S] is a known function specified in the model.)
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1 = 1− ln 2

[
C2a

2 +
τ ′[S]

τ [S]
〈∆σb〉+

τ ′′[S]

2τ [S]
〈∆σ2

b 〉 −
ln 2

2

τ ′[S]2

τ [S]2
〈∆σ2

b 〉
]
, (22)

〈∆σb〉 =
〈∆σb〉

2
− ln 2

2

τ ′[S]

τ [S]
〈∆σ2

b 〉, (23)

〈∆σ2
b 〉 =

〈∆σ2
b 〉

4
+ S2a2. (24)

Solving these, we get

〈∆σb〉 = −4 ln 2

3

τ ′[S]

τ [S]
S2a2, (25)

〈∆σ2
b 〉 =

4

3
S2a2, (26)

C2 = −2

3

τ ′′[S]

τ [S]
S2 + 2 ln 2

τ ′[S]2

τ 2[S]
S2. (27)

Therefore, the population growth rate is

Λp =
ln 2

τ [S]

(
1 +

(
−2

3

τ ′′[S]

τ [S]
+ 2 ln 2

τ ′[S]2

τ 2[S]

)
S2a2

)
. (28)

This is general to any choice of τ [σb], but in particular, if the generation time is

described by Equation 2, we can rewrite the population growth rate in terms of λ[S].

Λp = λ[S]

(
1 +

λ′′[S]

4 ln 2λ[S]
S2a2

)
. (29)

This second order solution for Λp is consistent with the result by Lin et al. [1] but

is derived here more rigorously and more generally since it applies to any functional

form of τ [σb]. Furthermore, we can calculate Λp to an arbitrarily high order as desired

by solving for Λp = ln 2
τ [S]

(1 + C2a
2 + C4a

4 + · · ·), as we elaborate in Appendix C.

4. Phase transition of ac

In the previous sections, we explained how to solve Equation 10 and predict the

population growth rate Λp as a function of growth rate of a single cell λ[σ], protein

accumulation rate S, and asymmetry a. In the context of evolution, we can imagine that

a single-celled organism may adapt to environmental stress (characterized by S and λ[σ]

in our model) by tuning the asymmetry a. In population genetics, fitness of a population

is often defined as an exponential growth rate of the population size, and traits that

increase the fitness tend to survive longer due to natural selection [15]. In fact, there

are several experimental studies reporting that segregation of protein aggregates tend

to become more asymmetric as temperature increases above the optimal temperature

[3–6]. In this section, we present how to find the optimal asymmetry ac, the value of a

that maximizes the population growth rate Λp, as a function of population accumulation
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rate S. As Lin et al. [1] did, we find a sharp phase transition of ac if the key protein is

deleterious and a smooth transition in the case of beneficial key protein.

Previously, Lin et al. [1] inferred ac[S] by interpolating the solutions near a = 0

and at a = 1 with a minimal number of extrema. Lin et al. used a Landau approach to

find the population growth rate Λp to O(a2) accuracy for a small a. In summary, the

Landau approach investigates the shape of the fitness curve f = Λp[a]− Λp[a = 0] as a

function of a at a given key protein accumulation rate S (i.e. the fitness is analogous

to a free energy with an order parameter a, and S to temperature). They derived the

relationship between the fitness f and asymmetry a from an equation for the total cell

volume, V =
∑
i vi(t).

dV

dt
=
∑
i

λ[σb,i]vi. (30)

Then they Taylor expand λ[σ] around σ = S.

dV

dt
= V λ[S] +

∑
i

vi

(
dλ

dσ

∣∣∣∣∣
S

(σb,i − S) +
1

2

d2λ

dσ2

∣∣∣∣∣
S

(σb,i − S)2 + · · ·
)
. (31)

Using the fact that odd power terms of a should vanish due to symmetric cell

division in terms of volume and an ansatz that the variance of the distribution of σb
scales as a2, Lin et al. derived Equation 29 without any knowledge about the distribution

ψ[σb].

Equation 29 breaks down as a approaches 1, but when a is exactly 1, there exists

a closed formula for Λp due to the self-similarity in a population tree as illustrated in

Figure 3. Lin et al. showed that

∞∑
i=0

exp

−Λp[a = 1]
i∑

j=0

τ [jS]

 = 1. (32)

Interpolating the solutions at a ≈ 0 and a = 1 with the minimal number of extrema,

Lin et al. infers the value of ac (i.e. what value of a maximizes Λp for a given S) as

described in Figure 4. They found that the location of ac depends on the relative

magnitude of two critical values of S: Sc and S∗. Each of these two critical values arises

from the solutions at a ≈ 0 and a = 1. Sc is where the second derivative of λ[S] is zero,

which means that the fitness near a = 0 changes its sign when S = Sc. S∗ is where

Λp[a = 1] = Λp[a = 0]. See Figure 4 for the inferred shape of the fitness curve at various

values of S relative to Sc and S∗. Note that ac is between 0 and 1 (marked by star in

Figure 4) in the case of beneficial key protein when S is between S∗ and Sc.

Similar to the previous paper by Lin et al., we use an interpolation to infer where

the phase transition of ac is. In addition, we are equipped with a more rigorous way

of finding the population growth rate near a = 0 as described in Section 3.4. We

also have a transcendental equation for the slope of Λp[a] at a = 1, which we discuss

in depth in Appendix B. We denote the solution to Equation 32 as Λp1 and expand

Λp[a] = Λp1(1 + C1(1 − a) + O((1 − a)2)). Finding the sign of C1 makes it possible to
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Figure 3: The lineage tree for a population with a = 1 is self-similar. Specifically, a

population starting with a cell with no key protein at birth (σb = 0, marked by a green

circle) should all have the same population size as a function of time since birth of the

ancestor. Using this property Lin et al. derived Equation 32 [1].

Figure 4: Finding the optimal asymmetry ac by graphical interpolation [1]. Lin et

al. find the second derivative of the fitness (Λp[a] − Λp[0]) near a = 0 (solid line) and

numerically solve the self-consistent equation for a = 1 (Equation 32, filled circles).

Interpolating between the two limits with a minimal number of extrema, the authors

find what value of a maximizes the fitness (empty stars). Unlike in the damage case, in

the benefit case, there is a large range of S where the fitness curve is convex near a = 0

and Λp[a = 1] < Λp[a = 0] (i.e. S∗ < S < Sc). This means that the population growth

rate is maximized when a is between 0 and 1.

predict whether Λp[a = 1] is a local minimum (C1 > 0) or a local maximum (C1 < 0).

Using a similar moment expansion approach as we do for a ≈ 0, we find the first
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coefficient C1 in Appendix B as

C1 =
S

2

∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ
′[kS]

(∑∞
m=0(m+ 1)e−Λp

∑m

n=0
τ [nS] − k(k+1)

2

)
∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ [kS]
. (33)

Here we can define another critical value Sa=1
c which is the value of S that makes

C1 = 0. Because τ ′[kS] > 0 (τ ′[kS] < 0) for the damage (benefit) case, C1 starts out

positive (negative) for a small S and becomes negative (positive) as S exceeds Sa=1
c . In

other words, when S < Sa=1
c , a = 1 is a local minimum (maximum) of Λp[a], whereas

it becomes a local maximum (minimum) when S > Sa=1
c in the damage (benefit) case.

This provides us an additional piece of information that we can use to infer whether

ac = 1 for a given S. For instance, in the case of damage (λ0 = 1, λ1 = 0), Sa=1
c ≈ 0.592

is greater than S∗ ≈ 0.558. This means that if S is between S∗ and Sa=1
c , Λp[a] should

have a local maximum below a = 1. When S is above both S∗ and Sa=1
c , the population

growth rate is maximized at a = 1 (i.e. ac = 1). This means that the transition of ac is

not a single discrete jump from ac = 0 to ac = 1, but rather a jump to an intermediate

ac ∈ (0, 1) and then a smooth increase to ac = 1. This process is illustrated in Figure

5.

Figure 5: Increase of Λp relative to a = 0 against ac calculated by numerically solving

Equation 10. S increases as the line gets lighter (S = 0.554 to 0.592). The stars mark

ac for each S. If S < S∗, then automatically, S < Sc and S < Sa=1
c . This means that

a = 0 is a local maximum and there is also another peak between a = 0 and a = 1. At

S = S∗, S < Sa=1
c , which means that there is a < 1 that has a higher Λp than a = 0

and a = 1. Therefore, there should be a first-order phase transition at S < S∗.

In the case of beneficial key proteins, Lin et al. found that ac = 1 for small S

and decreases smoothly to ac = 0 as S increases, but the start of that transition was

not specified. Based on Appendix B, we find that ac starts deviating from one at

Sa=1
c = 0.214 (blue dotted line in Figure 6 (a)), consistent with the numerical solution
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of Equation 10. Comparing the solid blue line (ac predicted by the moment expansion

to the sixth order) and the orange dots (numerical simulation), note that the moment

expansion method does not successfully predict ac when the true ac value is close to

1. However, as S increases, and ac becomes closer to 0, the answers agree better, since

a2 ≈ 0 our approximation holds.

(a) (b)

Figure 6: ac, the value of a that maximizes the population growth rate, plotted against

S. The solid blue lines are the predictions made from the sixth order solution of Λp.

The orange points, each of which has an error bar, show ac found by solving Equation 10

numerically as described in section 3.3. (a) Beneficial protein (λ0 = 0.2, λ1 = 1.2, n = 2),

(b) Deleterious protein (λ0 = 1, λ1 = 0, n = 2). The inset zooms in on the region around

S = 0.6. The dotted blue line shows where the slope of Λp at a = 1 changes its sign.

The red dashed line is at S = S∗ where Λp[a = 0] = Λp[a = 1] and the black dashed

line is at S = Sc where λ′′[S] = 0 (i.e. the second derivative of Λp[a] changes its sign at

a = 0). As anticipated, for (a) the exact numerics shows a second-order phase transition

coinciding with the blue dotted line, and a constant ac = 0 for S larger than the dashed

black line. For (b), the exact numerics shows a first-order phase transition coinciding

with the red dashed line, and constant ac = 1 for S above the black dashed line.

5. Introducing noise

The moment expansion method can be easily generalized to the stochastic model where

a is drawn from a distribution g(a) every time a cell divides. Equation 18 becomes

〈∆σnb 〉 =
1

2n−1

bn/2c∑
m=0

(
n

2m

)∫
g(a)a2mda

〈
∆σn−2m

b (∆σb + 2S)2me−Λpτ [∆σb+S]
〉
. (34)

This implies that in the small a limit, we can define an effective a, aeff =
√
〈a2〉,
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for which the population growth rate Λp has the same formula independent of g(a).

Λp = λ[S]

(
1 +

λ′′[S]

4 ln 2λ[S]
S2a2

eff

)
. (35)

(a) (b)

Figure 7: The change of population growth rate (Λp[aeff ] − Λp[a = 0]) plotted against

the effective value of a where g(a) = U(ā−σa, ā+σa), a uniform distribution. The solid

lines show the numerical solutions of Equation 10 for σa = 0 and the circles correspond

to simulated values where ā = 0 and σa = 0, 0.1, 0.2, · · · , 1. (a) Beneficial protein

(λ0 = 0.2, λ1 = 1.2, n = 2), (b) Deleterious protein (λ0 = 1, λ1 = 0, n = 2).

In Figure 7, we numerically solve Equation 10 where g(a) is a uniform distribution

(g(a) = U(ā− σa, ā+ σb) with ā = 0 and σa = 0, 0.1, 0.2, · · · 1) and plot the population

growth rate against aeff =
√
〈a2〉. As predicted, aeff behaves exactly as a does in the

deterministic model for a broad range of σa. For a relatively large S and large σa, the

population growth rate obtained by simulating the exponentially growing population

starts to deviate from the second order prediction as shown in Figure 7. This conclusion

that stochastic segregation of key proteins increases effective asymmetry is analogous to

the finding made by Chao et al. [11] about damage partitioning in E. coli that larger

fluctuations result in similar increase of the population growth as a fixed asymmetric

ratio.

6. Results when asymmetry a depends on the concentration of key proteins

So far, we have considered a model where the segregation ratio of key proteins

is independent from the amount of key proteins each cell has. However, there is

experimental evidence that the degree of asymmetry may depend on how much key

proteins a cell has [3, 8]. Vedel et al. [6] studied how protein aggregates in E. coli

created in responds to heatshock are segregated differently between two daughters. One

of their results is that the asymmetric segregation parameter a is a function of the

amount of protein aggregates D, and if a is assumed to be constant, the fitness is
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underestimated. We can test the effect of dependence of a to D by replacing a with

a[D] in Equation 10.

ψbirth[σb] = 2
∫
ψbirth[σ′b]f(σb|σ′b, a[σ′b + S])e−Λpτ [σ′b]dσ′b. (36)

Here we replaced D with σ′b+S since we assume the cell volume always is 1 at birth

and 2 at division. In Figure 8, we show the numerical value of population growth rate

increases due to asymmetry (Λp[a]− Λp[a = 0]), while a is a function of the amount of

protein at division. Specifically, we set a[D] = tanh(kD) and tune k. In other words, we

assume a to increase from zero initially with the slope k and asymptotically approach

a = 1. Qualitatively, we expect the effective a to be small when S is small and to

become closer to 1 as S gets larger. We can check this intuition by writing down the

equation for the moments of ψbirth analogous to Equation 18.

Figure 8: The change of population growth rate (Λp[a = tanh(kD)]−Λp[a = 0]) plotted

against accumulation rate S. Here the key proteins are deleterious (λ0 = 1, λ1 = 0, n =

2). The blue cross show the values when a is fixed at 1 (Λp[a = 1] − Λp[a = 0]) and

the red circles show the change of the population growth rate when a is equal to the

optimal value ac at a given S.

〈∆σnb 〉 =
1

2n−1

bn/2c∑
m=0

(
n

2m

)〈
a[∆σb + 2S]2m∆σn−2m

b (∆σb + 2S)2me−Λpτ [∆σb+S]
〉
. (37)

If the slope of a[D] is small compared to a2, we can approximate a[∆σb + 2S]2m] ≈
a[2S]. Note that the population growth rate can be higher with an adaptive a (e.g.

with k = 0.9, 0.55 < S < 0.65) than when a is fixed at ac[S] (orange dots in Figure 8).

Qualitatively, this suggests that there is an advantage if each cell tunes the asymmetry

of segregation according to its level of damage.
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7. Discussion and outlook

In this paper, we investigate how asymmetric segregation of key proteins in microbial

organisms impact the population growth rate with a self-consistent equation (Equation

10) solved analytically and numerically. We adapt a physiological model proposed by

Lin et al. [1] and apply the transport equation to set up an equation for the distribution

of protein concentration at birth ψ[σb] and population growth rate Λp (Equation 10).

The equation can be solved by updating the solutions iteratively as elaborated in Section

3.3. When the asymmetry is small (a� 1), Λp can be approximated to a2n precision by

solving a set of linear equations with respect to the moments of ψ[σb] and Λp. Similar

approximations can be made from the opposite limit, a ≈ 1 (see Appendix B). Changing

the accumulation rate of key proteins, S, we confirm the sharp phase transition of ac
for a deleterious protein and a smooth transition for a beneficial protein as Lin et al.

reported [1]. In addition, since numerically solving Equation 10 provides more precise

prediction of Λp than a direct simulation of an exponentially growing population, we are

able to find that the phase transition in the case of damage is composed of a discrete

jump to ac between 0 and 1 and a smooth increase to ac = 1. We also explore different

physiological models motivated by experimental studies. We discuss the case where the

cell tunes the asymmetry with response to the amount of key proteins it has at division

and how the adaptive strategy may minimize the disadvantage of asymmetry when the

accumulation rate of damage is low. Finally, we show by generalizing our model that

even if the segregation ratio is on average symmetric, the noise can have a similar effect

as an asymmetric segregation.

There are many other aspects of asymmetric division in biology where our

theoretical framework might be useful for building a theoretical model [2, 16]. First,

there are many other ways that microbes develop phenotypic diversity rather than due

to asymmetric key protein segregation. For instance, budding yeast (Saccharomyces

cerevisiae) has cell size difference between a daughter (smaller cell) and mother cell

(bigger cell), whereas when a Caulobacter crescentus cell divides, one is non-motile

and reproductive and the other swarms and does not divide until maturation [17, 18].

In the former case, introduction of volume asymmetry turns out to create interesting

correlations between the noise in growth and the population growth rate [19]. Second,

mortality rate rather than volumetric growth rate may depend on the key protein

concentration [20]. Lastly, connecting back to multicellular organisms, where the theory

of aging (soma theory) was first proposed [21], can be interesting both mathematically

and biologically. Major difference from microbial system is that the cells interact with

the neighbors and use the cues to make decisions [22]. Considering the geometry of

the tissue might complicate the model beyond the level of a self-consistent equation can

capture, but plants which have rigid tissue and simpler geometry may be a good starting

point for a theoretical investigation [23].
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Appendix A. Simulation details

When we explicitly simulate the exponentially growing population, we start with 100

cells with uniform distribution of age. We run until the number of cells reaches 5× 106

and find the slope of ln(
∑
V (t)) after t = 5. This use of sum of volume rather than the

number of cells for finding the population growth rate is because the volume increases

continuously and the growth rate should be equivalent if the cell size is controlled.

To solve Equation 10, we discretize the range of σb and repeat the process described

in section 3.3 until the difference between 1 and 2
∫ ∫

ψ
(n)
birth[σ′b]g(a′)e−Λ

(n−1)
p τ [σ′b]da′dσ′b is

smaller than some tolerance value. This implies that Λ(n−1)
p ≈ Λ(n)

p and our solution for

Λp has converged. Python scripts for the simulations are on our Github.

Appendix B. Λp when a ≈ 1

The challenge for a highly asymmetric case is that the distribution ψbirth[σb] is not

symmetric around S. Because one of two newborn cells is rejuvenated at each division,

we would expect the distribution to be skewed to the right and maximized near σb = 0.

This means that we should expand ψbirth[σb] around different values depending on when

the cell has been rejuvenated for the last time (i.e. generational age), in order to solve

the self-consistent equation. Categorizing cells based on their generational age, we can

rewrite the self-consistent equation (10) as,

ψ0[σb] =
∫ ∞∑

i=0

ψi[σ
′
b]f(σb,R|σ′b)e−Λpτ [σ′b]dσ′b,

ψi[σb] =
∫
ψi−1[σ′b]f(σb, S|σ′b)e−Λpτ [σ′b]dσb(i > 0). (B.1)

Here ψi[σb] is the probability that a cell has protein concentration σb at birth and

the generational age i. The transition function for the rejuvenated cell is f(σ,R|σ′b) =

δ
(
σ − 1−a

2
(σ′b + S)

)
, and the senescent is f(σ, S|σ′b) = δ

(
σ − 1+a

2
(σ′b + S)

)
. Note that

the rejuvenating transition function does not depend on σ′b (parent cell) if a = 1. This

is equivalent to the property used by Lin et al. [1] to find a closed formula for Λp[a = 1]:

there is a self-symmetry in a population tree in a stable exponential growth.

1 =
∞∑
i=0

exp

− i∑
j=0

Λpτ [jS]

 . (B.2)

Here, we can use the fact that every ψi[σb] is a delta function if a = 1.

https://github.com/jiseonmin/asymmetric_segregation
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ψi[σb] =
∫
ψi−1[σ′b]δ(σb − (σ′b + S))e−Λpτ [σ′b]dσ′b

= ψi−1[σb − S]e−Λpτ [σb−S]

= ψ0[σb − iS]e−
∑i

j=1
Λpτ [σb−jS](i > 0), (B.3)

ψ0[σb] =
∫ ∞∑

i=0

ψi[σ
′
b]δ(σb)e

−Λpτ [σ′b]dσ′b

= δ(σb)
∫ ∞∑

i=0

ψ0[σb − iS] exp

− i∑
j=0

Λpτ [σb − jS]

 dσ′b. (B.4)

By integrating ψ0[σb] with respect to σb, we get

1 =
∞∑
i=0

exp

− i∑
j=0

Λpτ [(i− j)S]

 =
∞∑
i=0

exp

− i∑
j=0

Λpτ [jS]

 , (B.5)

which is consistent with the previous paper [1]. Let’s call the unique solution for

Equation B.5, Λp,1. Near a = 1, we can find the approximate population growth rate

by expanding Λp = Λp1(1 + C1(1 − a) + C2(1 − a)2 + · · ·) where a < 1. As a deviates

from 1, we expect each delta function to broaden near σb = iS. Similar to the case of

a small a, we will find the moments of ψi[σb] starting from the lowest order. Here we

will investigate the first order coefficient C1. Importantly, finding the sign of C1 will

allow us to predict whether Λp[a = 1] is a local minimum (C1 > 0) or a local maximum

(C1 < 0).

Let us define δa = 1−a. To find C1 we need to solve Equation B.1 to O(δa). Thus,

we can rewrite the equations as

ψ0[σb] =
∫ ∞∑

i=0

ψi[σ
′
b]δ

(
σb −

δa

2
(σ′b + S)

)

exp

[
−Λp1τ [iS](1 + C1δa)

(
1 +

τ ′[iS]

τ [iS]
(σ′b − iS)

)]
dσ′b,

ψi[σb] =
∫
ψi−1[σ′b]δ (σb − (1− δa/2)(σ′b + S))

exp [−Λp1τ [(i− 1)S](1 + C1δa)(
1 +

τ ′[(i− 1)S]

τ [(i− 1)S]
(σ′b − (i− 1)S)

)]
dσb. (B.6)

For brevity, from now on, we shall write Ψi =
∫
ψi[σb]dσb and 〈F [δσb]〉i =

∫
ψi[σb]F [σb−

iS]dσb/Ψi. First, let us integrate the ith equation (i > 0),

Ψi =
∫
ψi−1[σ′b]e

−Λpτ [σ′b]dσ′b (B.7)

= e−Λp1τ [(i−1)S]
∫
ψi−1[σ′b]

(1− Λp1τ [(i− 1)S]C1δa− Λp1τ
′[(i− 1)S](σ′b − (i− 1)S)) dσ′b

= Ψi−1e
−Λp1τ [(i−1)S]

(
1− Λp1τ [(i− 1)S]C1δa− 〈δσb〉i−1 Λp1τ

′[(i− 1)S]
)

= Ψ0e
−Λp1

∑i−1

j=0
τ [jS]

(
1− Λp1

i−1∑
k=0

τ [kS]C1δa− 〈δσb〉k Λp1τ
′[kS]

)
+O(δa2).
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For i = 0 we have

Ψ0 =
∞∑
i=0

∫
ψi[σ

′
b]e
−Λpτ [σ′b]dσ′b

=
∞∑
i=1

Ψi

= Ψ0

∞∑
i=0

e−Λp1

∑i

j=0
τ [jS]

(
1− Λp1

i∑
k=0

τ [kS]C1δa− 〈δσb〉k Λp1τ
′[kS]

)
,(B.8)

to O(δa) accuracy. Using the definition of Λp1 - 1 =
∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS], we can extract

an expression for the coefficient C1.

C1 = −
∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ
′[kS]〈δσb〉k∑∞

i=0 e
−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ [kS]δa

= −
∑∞
k=0 τ

′[kS] 〈δσb〉k
∑∞
i=k e

−Λp1

∑i

j=0
τ [jS]

δa
∑∞
k=0 τ [kS]

∑∞
i=k e

−Λp1

∑i

j=0
τ [jS]

. (B.9)

Let us find 〈δσb〉i for i > 0.

〈σb〉i =
1

Ψi

e−Λp1τ [(i−1)S]
∫
ψi−1[σ′b]((

1− δa

2

)
(σ′b − (i− 1)S + iS)− iS

)
(1− Λp1τ [(i− 1)S]C1δa− Λp1τ

′[(i− 1)S](σ′b − (i− 1)S)) dσ′b

= −δa
2
iS +

1

Ψi

e−Λp1τ [(i−1)S]Ψi−1 〈δσb〉i−1

= −δa
2

i∑
k=0

(i− k)S
Ψi−k

Ψi

e−Λp1

∑k

j=1
τ [(i−j)]

+
Ψ0

Ψi

e−Λp1

∑i−1

j=0
τ [jS] 〈δσb〉0

= −δaS
2

i(i+ 1)

2
+ 〈δσb〉0 +O(δa2). (B.10)

If i = 0,

〈δσb〉0 =
1

Ψ0

δa

2

∞∑
m=0

ψm[σ′b] (σ′b −mS + (m+ 1)S)

[1− Λp1τ [mS]C1δa− Λp1τ
′[mS](σ′b −mS)] dσ′b

=
1

Ψ0

δa

2

∞∑
m=0

(m+ 1)SΨm+1 (B.11)

=
δa

2

∞∑
m=0

(m+ 1)Se−Λp1

∑m

n=0
τ [nS] +O(δa2). (B.12)

This shows that 〈δσb〉i is positive for small i and becomes more and more negative
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as i increases. Applying this to Equation B.9, we can find the slope near a = 1.

C1 =
S

2

∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ
′[kS]

(
−k(k+1)

2
+
∑∞
m=0(m+ 1)e−Λp

∑m

n=0
τ [nS]

)
∑∞
i=0 e

−Λp1

∑i

j=0
τ [jS]∑i

k=0 τ [kS]
.(B.13)

Appendix C. Finding Λp[a] to O(a2n) (n > 1)

In order to calculate Λp[a] to O(a2n) accuracy, we write Λp and τ [σb] as

Λp =
ln 2

τ [S]

(
1 +

n∑
k=1

C2ka
2k

)
, (C.1)

τ [σ′b] = τ [S]
2n∑
i=0

τ (i)[S]

i!τ [S]
∆σ′ib . (C.2)

Using these, we write

e−Λpτ [σb] = exp

[
− ln 2

(
1 +

n∑
k=1

C2ka
2k

)
2n∑
i=0

τ (i)[S]

i!τ [S]
∆σib

]
. (C.3)

Next, we should expand Equation 18 and truncate any terms with higher order than

a2n. We can also rewrite 〈σmb 〉 (1 ≤ m ≤ 2n) as

〈∆σ2k
b 〉 =

n∑
j=k

D
(2j)
2k a2j, (C.4)

〈∆σ2k−1
b 〉 =

n∑
j=k

D
(2j)
2k+1a

2j. (C.5)

Maintaining only terms to O(a2n) and matching the coefficients of a2j(1 ≤ j ≤ n), we

can solve the system of equations for D and C’s. We provide the SymPy code to find

the coefficients on our Github repository.

Appendix D. The shape of ψbirth[σb] changes depending on asymmetry a

Here we present some examples of the distribution of protein concentration at birth

ψbirth[σb], which we find by numerically solving Equation 10 (red circles). In each

simulation, we compare the numerically found distribution to a log-normal distribution

and a normal distribution that have the same mean and variance as the numerical

solution. In other words, we test whether it is possible to approximate the distribution of

key protein concentration to a log-normal or a normal distribution and simplify Equation

10.

When a is small and the segregation is noisy (σa > 0), the distribution can be

approximated as a Gaussian distribution or a log-normal distribution. However, as a

increases, the skewness of the distribution grows and the distribution becomes multi-

modal. This implies that with small average asymmetry, the first two moments of the

distribution have sufficient information for approximately solving Equation 10 for Λp,

but as the segregation becomes more and more asymmetric, higher order terms of a

https://github.com/jiseonmin/asymmetric_segregation
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(a) (b)

Figure D1: Distribution ψbirth[σb] can be approximated as a Gaussian or a log-normal

distribution if | 〈a〉 | � σa). (a) Beneficial protein (λ0 = 0.2, λ1 = 1.2, n = 2), (b)

Deleterious protein (λ0 = 1, λ1 = 0, n = 2). In both simulations, σa = 0.2 and 〈a〉 = 0.1

(a) (b)

Figure D2: Distribution ψbirth[σb] is in general skewed and multi-modal. (a) Beneficial

protein (λ0 = 0.2, λ1 = 1.2, n = 2), (b) Deleterious protein (λ0 = 1, λ1 = 0, n = 2). In

both simulations, σa = 0.2 and 〈a〉 = 0.4

are necessary to accurately calculate the population growth rate. The exact value of a

where the Gaussian approximation breaks down depends on the shape of λ[σ] and S.
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(a) (b)

Figure D3: The Gaussian approximation only holds for the small asymmetry case

because the skewness of distribution grows as a function of a. To illustrate this effect, we

plot the skewness of ψbirth[σb] against the average of a for the damage and benefit case.

To visualize the change of distribution, we show distribution with different values of a.

The distributions are found numerically from the iterative solution of the self-consistent

equations. (a) Beneficial protein (λ0 = 0.2, λ1 = 1.2, n = 2), (b) Deleterious protein

(λ0 = 1, λ1 = 0, n = 2). In both simulations, there is very small noise in a (σa = 0.02).

In both simulations, we use S = 0.5 and assume deterministic segregation (σa = 0).
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