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Abstract. Many unicellular organisms allocate their key proteins asymmetrically
between the mother and daughter cells, especially in a stressed environment. A recent
theoretical model is able to predict when the asymmetry in segregation of key proteins
enhances the population fitness, extrapolating the solution at two limits where the
segregation is perfectly asymmetric (asymmetry ¢ = 1) and when the asymmetry is
small (0 < a < 1) [I]. We generalize the model by introducing stochasticity and use a
transport equation to obtain a self-consistent equation for the population growth rate
and the distribution of the amount of key proteins. We provide two ways of solving the
self-consistent equation: numerically by updating the solution for the self-consistent
equation iteratively and analytically by expanding moments of the distribution. With
these more powerful tools, we can extend the previous model by Lin et al. [I] to
include stochasticity to the segregation asymmetry. We show the stochastic model
is equivalent to the deterministic one with a modified effective asymmetry parameter
(aesr). We discuss the biological implication of our models and compare with other
theoretical models.

1. Introduction

Genetically identical unicellular organisms may nevertheless exhibit different traits such
as growth rate or generation time, a phenomenon known as phenotypic variability [2].
One cause of such diversity is the asymmetric allocation of key proteins at division.
For instance, some bacteria and eukaryotic cells accumulate protein aggregates when
exposed to stress and tend to segregate more of them to one of the two newborn cells
at a division event. As a result, the “rejuvenated” cells (i.e. those with less damage)
grow faster than the “senescent” cells [3H8]. There have been a number of theoretical
works [1, OHTT] trying to quantify the effect of asymmetric segregation of proteins to the
overall growth of the population. In this paper, we strengthen the theory developed by
Lin et al. [I] to relate the asymmetric protein segregation and the population growth
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rate by implementing a more general method involving transport equations and moment
expansions. This allows us to recover previous results rigorously, and go beyond them.
We extend the model to consider stochastic asymmetric segregation. Lastly, we compare
alternative models of asymmetric segregation by applying the self-consistent equations.

2. Model
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Figure 1: Single cell level model. For simplicity, we assume that every cell has a volume
Vi, = 1 at birth and divides when it reaches V; = 2. The amount of key proteins in a cell
increases in proportion to the added volume with a prefactor S. The generation time
T]op] is a function of the key protein concentration at birth (o, = Dy/V};). Asymmetry
a € [0,1] tunes the ratio of key proteins inherited by two offspring cells (a = 0 being
perfectly asymmetric, a = 1 being perfectly asymmetric). The plots on the right show
an example of generation time as a function of initial concentration of key protein which
is deleterious (top) or beneficial (bottom).

We define a generalization of the model proposed by Lin et al. [1]. Consider a
clonal microbial population that grows exponentially with rate A,. We assume that as a
cell grows by volume AV, the amount of key proteins D increases by AD = SAV. Each
cell’s inter-division time (7) is a function of the initial concentration of the key protein
(0p). For simplicity, suppose every cell is born with volume V, = 1 and divides when
the volume reaches V; = 2. As it divides, the key proteins segregate asymmetrically
according to the asymmetry parameter a: one daughter cell inherits lg—“ of the key
proteins from the mother and the other gets the rest. We call the key protein damaging
if the generation time 7[op] is an increasing function of the initial protein concentration
and beneficial if it is a decreasing function (figure [1).

While our analysis can be applied to any analytical function 7[o}], we assume the
instantaneous growth rate A[o] is a Hill-type function of the key protein concentration
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of the cell, as proposed by Lin et al. [1]. This assumptions by Lin et al. is based
on observations made in experimental studies, where growth rate function of microbes
often has an inflection point [6, [7].

o] =TT B
Tloo] = /12 vxl[a] v

2 1
= dv. 2
/1 V(o — S)/V + 5] 2)
Every time a cell divides, the asymmetry parameter a is randomly and
independently drawn from a probability distribution g(a). The deterministic model
by Lin et al. [I] assumes a delta function for g(a), but here we allow a to fluctuate.

3. Results

3.1. Transport equation

Recently, Levien et al. [12] showed that a transport equation can be used to get a
self-consistent equation for the population distribution of phenotype and population
growth rate even when the properties of the cells are correlated across the generations.
Here we follow their derivation by setting the phenotype of interest as the key protein
concentration at birth o,.

Assume that the population size is N at time ¢ and it grows exponentially with
the rate A,. Let us also assume that the population has reached a stable probability
distribution ¢ (u, oy, t), where u is time since birth, oy, is the key protein concentration
at birth, and ¢ is the global time. The probability distribution then evolves during an
infinitesimal time step dt as:

No(u, 03, t) = Ne MU (u — dt, oy, t — dt),

o o
Rearranging the terms and dividing both sides by dt, we get
o oy
90 T = MY (4)
In a steady state population, there is no dependence on t, so 0;¢) = 0. Therefore,
aw (U, Ub)
“ou =AY (u, o), (5)
¢(u7 Jb) = ¢(07 O—b)eiApu' (6)

The boundary conditions are set by the division. The probability distribution of
having a newborn cell with a protein concentration oy is

0(0,00) =2 [ [ flovlo, @ )g(a)(rloy), o) doyda (7)
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The probability distribution f(op|o},a’) and g(a’) depend on the physiological model we
choose. For instance, in a deterministic model, we have

1 1 ! 1 1—d
f(oploy,a’) = 5(5 (ab — —ga(aé + S)) + 55 (0{) — Ta(ag + S)) , (8)

gla') =d(a’ —a). (9)
Applying the solution given by Equation |§| (in the general case), we can eliminate
the dependence on u. Thus, we can rewrite to obtain a self-consistent equation:

Upirtn[0p] = 2//f(ab|0{,,a’)wbirth[a,’,]g(a’)e‘ApT[“/b]da{)da/. (10)

In the next section, we apply the self-consistent Equation [10| to a toy model of E. coli
recently published by Blitvic et al. [I3] as a simple example.

3.2. Toy model of the aging of E. coli [15]

Let us introduce a simple model published by Blitvic et al. to demonstrate how to
use our approach to connect the asymmetry between two newborn cells and population
growth rate [I3]. Blitvic et al. assume that as an E. coli cell divides, one daughter cell
is rejuvenated and the other senescent where the generation time of a rejuvenated cell
(T[R]) is shorter than a senescent cell (7[S]). In this model, there are two phenotype
x = S for a senescent cell and x = R for a rejuvenated one.

Then the transition density f(z|z’) from a phenotype 2’ to x is

flz]|z") = ;5(IL‘—R)+;5(ZL‘—S). (11)
The self-consistent equation is
vlel = [wl)f (el ye (12)
Integrating both sides with respect to z, we have
1 = ¢ MRl 4 o= 2p7[S], (13)

Because the exponential function is convex, by Jensen’s inequality,
1 = e~Mo7lS] 4 o=Ap7lB) 5 ge=Apirlel) (14)

where (7[z]) = 3(7[S] + 7[R]). Thus, the asymmetry of generation time of two
distinct phenotypes enhances the population growth rate if the mean of the generation
time, (7[x]) is kept constant. Note that Equation [13| was also derived in Ref. [14] in the
context of the asymmetric division of the budding yeast Saccharomyces cerevisiae.

In the next section, we solve Equation numerically and analytically more
generally.

3.3. Numerically solving the self-consistent equation

The self-consistent equation can be numerically solved by iterating the following
procedure. First, we start with initial guesses for the solutions ¢£?2th [0p] and AI(JO). We
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then update our guess for the distribution ¥p¢n[0p] using Equation . Next, we update
A, by using the Euler-Lotka equation [12], obtained by integrating Equation [10| with
respect to g,. This procedure is summarized in this set of equations:

T(n n— _ (n_l)T o/
Wlon] =2 [ flarlot, sl Totlg(a)e " elda do, (15)

Do)

Yl lon] = — DRI (16)
J dojiiinloi)
1=2 [ [ufiloilg(@)e ™ " ad dor, (17)

1?1(;1?1;11 0] and A" converge to constant values as n — co. Note that the solution

is not sensitive to the choice of @Z)f)?r)th and AZ()O). In [Appendix D| we discuss the shape of
the distribution ¥y [0
In Figure 2 we compare the numerical solution for Equation in the case of

deterministic a (i.e. g(a’) is a delta function) and the fitted exponential growth rate
obtained by simulating the population directly (see [Appendix A| for details of the

simulation).
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Figure 2: The relative population growth rate, compared to a = 0, is plotted against
the asymmetry a. The solid lines show the numerical solutions of Equation (10| and the
circles mark simulated population growth rates. (a) Beneficial protein (A\g = 0.2, \; =
1.2,n = 2), (b) Deleterious protein (Ag = 1, A\; = 0,n = 2). For numerical solutions, we
use wé?r)th[a] = 6(0, — S) and ALY = In2/A[S]. Error bars are smaller than the marker
size.

Figure [2| confirms that Equation has sufficient information for calculating the
population growth rate. The iterative procedure is more accurate, faster, and less
memory-intensive than a brute force simulation which involves exponentially growing
population size. However, the main shortcoming of the numerical solution is that it
does not give any insight about how A, depends on S and a. It is possible infer the
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relation by finding A, for various values of S and a, but for every parameter values, we
have to go through Equations [15]-[17] which is highly inefficient. For those reasons, the
moment expansion method we discuss in the following section is a good alternative way
of calculating A, for small a.

3.4. Moment expansion

Equation |10 can be approximately solved by expanding the moments of ¥yin|op]. For
simplicity, we start with the deterministic case. As we will explain in the following
sections, it is straightforward to generalize this moment expansion method to the
stochastic case.

When the key protein segregation is perfectly symmetric (i.e. a = 0), every cell
has a concentration of key protein of g, = S at cell birth. Therefore, for a small
a, the distribution ¥p;n[op] should be sharply peaked around S. Based on this, we
are motivated to expand the moment of the distribution around o, = S by defining
Aoy, = o, — S. In order to calculate the n-th moment, we multiply both sides of
Equation [I0] by Aoy and integrate them with respect to o,. We use Equations [§ and [J]
to specify f(oy|0;,a’) and g(a’). Invoking Newton’s binomial theorem, we obtain:

[n/2]
<Ao’£> _ 1 Z < n >a2m <Ao_gf2m(AO_b + QS)QmeprT[Aob+S]> ) (18)

2n=l = \2m

Note that by convention, (3) = 1 and [n/2]| is the greatest integer that is

less than or equal to n/2. From the right hand side of Equation , we can infer
that (Aof) = O(a?™/2). This means that by solving a system of 2k + 1 equations
(n = 0,--+,2k), we will find A, to O(a®*) accuracy. For each equation, we need to
expand the exponential function e *»714%+5] around Acg, = 0 to order a?\"/2). To

b
illustrate the process more clearly, let us calculate A, to O(a?) accuracy.
In2
_ . T[s)
Due to symmetry, A,[a] = A,[—a]. Thus, to solve A, to O(a?) is equivalent to finding a

If @ = 0, every cell has 0, = S when the population is stabilized, so A, =
coefficient C'y defined as below,

In2 9 4
A, = m(l—l—oza + O(a")). (19)

Taylor expanding 7[Acgy + S] around Aoy, = 0 to O(a?) we find
7"[S]

7[Aoy + S] = 7[S] + 7'[S]Acy, + 5

Aabz. (20)

Expanding e~ 4714745 t6 O(a?) leads to:

e~ ArTlAOHS] ; [1 —In2 (C’2a2 + TTI[[SS]] Aoy + (;E — hl;j[[g]f ) AU?)] .(21)

Applying these to Equation [18 while setting n = 0,1, or 2, we can set up a system of

three linear equations with the unknowns being Cs, (Ac,) and (Ac?). (Note that here
7]S] is a known function specified in the model.)
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1 2, TLS] 7"[S] 2\ BT,[S]Q 2
1=1-1In2|Ch”+ 715 (Aoy) + 275 (Aoy) R (Aoy) |, (22)
_ (Aoy)  In27'[S] 9
(Aoy) = 5 2 718 (Ady), (23)
2
(Ac?) = <AZ"> + 5%a”. (24)
Solving these, we get
An27[S] 5
Aoy) = — — 2
(o) =~ T S (25)
(Ao} = 5% (26)
27"[5] o T'[S]? o
== 2In2 . 2
C: R R (27)
Therefore, the population growth rate is
_ In2 27"[S] [S12\ s o
Ap_T[S] <1+< 3 7S] +21n27_2[s] S%a” | . (28)

This is general to any choice of 7[0}], but in particular, if the generation time is
described by Equation , we can rewrite the population growth rate in terms of A[S].

A, = \[S] <1 + 41?1\//2[5%5]52@2> : (29)

This second order solution for A, is consistent with the result by Lin et al. [1] but
is derived here more rigorously and more generally since it applies to any functional

form of 7[o,]. Furthermore, we can calculate A, to an arbitrarily high order as desired

by solving for A, = % (1 + Cya® + Cya* + - - ), as we elaborate in |[Appendix Cl

4. Phase transition of a.

In the previous sections, we explained how to solve Equation and predict the
population growth rate A, as a function of growth rate of a single cell A[o], protein
accumulation rate S, and asymmetry a. In the context of evolution, we can imagine that
a single-celled organism may adapt to environmental stress (characterized by S and A[o]
in our model) by tuning the asymmetry a. In population genetics, fitness of a population
is often defined as an exponential growth rate of the population size, and traits that
increase the fitness tend to survive longer due to natural selection [I5]. In fact, there
are several experimental studies reporting that segregation of protein aggregates tend
to become more asymmetric as temperature increases above the optimal temperature
[3H6]. In this section, we present how to find the optimal asymmetry a., the value of a
that maximizes the population growth rate A,, as a function of population accumulation
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rate S. As Lin et al. [I] did, we find a sharp phase transition of a. if the key protein is
deleterious and a smooth transition in the case of beneficial key protein.

Previously, Lin et al. [1] inferred a.[S] by interpolating the solutions near a = 0
and at ¢ = 1 with a minimal number of extrema. Lin et al. used a Landau approach to
find the population growth rate A, to O(a?) accuracy for a small a. In summary, the
Landau approach investigates the shape of the fitness curve f = Ay[a] — Ayfa = 0] as a
function of a at a given key protein accumulation rate S (i.e. the fitness is analogous
to a free energy with an order parameter a, and S to temperature). They derived the
relationship between the fitness f and asymmetry a from an equation for the total cell
volume, V' =3, v(t).

C?; =Y Aol (30)

Then they Taylor expand o] around o = S.
av d\
A v =2
o VLS| + ;U ( T

Using the fact that odd power terms of a should vanish due to symmetric cell

(O’@Z’—S)—i‘* 7 (O'b’i—S)Q—F"') . (31)

S

division in terms of volume and an ansatz that the variance of the distribution of oy
scales as a2, Lin et al. derived Equationwithout any knowledge about the distribution
Ylow).

Equation [29| breaks down as a approaches 1, but when a is exactly 1, there exists
a closed formula for A, due to the self-similarity in a population tree as illustrated in
Figure [3| Lin et al. showed that

iexp (—Ap[a =1] i:T[jS]) = 1. (32)

Interpolating the solutions at a ~ 0 and a = 1 with the minimal number of extrema,
Lin et al. infers the value of a. (i.e. what value of ¢ maximizes A, for a given S) as
described in Figure ] They found that the location of a. depends on the relative
magnitude of two critical values of S: S. and S,. Each of these two critical values arises
from the solutions at a ~ 0 and a = 1. S, is where the second derivative of \[S] is zero,
which means that the fitness near a = 0 changes its sign when S = S.. S, is where
Apla =1] = A,Ja = 0]. See Figure [4| for the inferred shape of the fitness curve at various
values of S relative to S. and S.. Note that a. is between 0 and 1 (marked by star in
Figure [4)) in the case of beneficial key protein when S is between S, and S..

Similar to the previous paper by Lin et al., we use an interpolation to infer where
the phase transition of a. is. In addition, we are equipped with a more rigorous way
of finding the population growth rate near a = 0 as described in Section [3.4 We
also have a transcendental equation for the slope of Ayfa] at a = 1, which we discuss

in depth in [Appendix Bl We denote the solution to Equation 32 as A, and expand
Ayla] = Ay (14 Ci(1 — a) + O((1 — @)?)). Finding the sign of C; makes it possible to
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t

Figure 3: The lineage tree for a population with a = 1 is self-similar. Specifically, a
population starting with a cell with no key protein at birth (o, = 0, marked by a green
circle) should all have the same population size as a function of time since birth of the
ancestor. Using this property Lin et al. derived Equation [32f [].

Damage Benefit
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Figure 4: Finding the optimal asymmetry a. by graphical interpolation [1]. Lin et
al. find the second derivative of the fitness (A,[a] — A,[0]) near a = 0 (solid line) and
numerically solve the self-consistent equation for a = 1 (Equation [32] filled circles).
Interpolating between the two limits with a minimal number of extrema, the authors
find what value of @ maximizes the fitness (empty stars). Unlike in the damage case, in
the benefit case, there is a large range of S where the fitness curve is convex near a = 0
and Ayfa = 1] < Ayla = 0] (i.e. Si < S < S.). This means that the population growth
rate is maximized when a is between 0 and 1.

predict whether A,[a = 1] is a local minimum (C; > 0) or a local maximum (C; < 0).
Using a similar moment expansion approach as we do for a ~ 0, we find the first
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coefficient C} in as
 §ERge M 2 BT kS| (Sisp(m 4 Do Do sl - HD)

4 3 . .
2 DO oM > imo TS iy 7[kS]

(33)

Here we can define another critical value S¢=! which is the value of S that makes
Cy = 0. Because 7'[kS] > 0 (7'[kS] < 0) for the damage (benefit) case, C} starts out
positive (negative) for a small S and becomes negative (positive) as S exceeds S*=!. In
other words, when S < S%=!, a = 1 is a local minimum (maximum) of A,[a], whereas
it becomes a local maximum (minimum) when S > S%=! in the damage (benefit) case.
This provides us an additional piece of information that we can use to infer whether
a. = 1 for a given S. For instance, in the case of damage (Mg = 1, \; = 0), S°=! ~ 0.592
is greater than S, ~ 0.558. This means that if S is between S, and S*=!, A,[a] should
have a local maximum below a = 1. When S is above both S, and S%=!, the population
growth rate is maximized at @ = 1 (i.e. a. = 1). This means that the transition of a, is
not a single discrete jump from a. = 0 to a. = 1, but rather a jump to an intermediate
a. € (0,1) and then a smooth increase to a, = 1. This process is illustrated in Figure
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Figure 5: Increase of A, relative to a = 0 against a, calculated by numerically solving
Equation . S increases as the line gets lighter (S = 0.554 to 0.592). The stars mark
a. for each S. If S < S,, then automatically, S < S. and S < S%=!. This means that
a = 0 is a local maximum and there is also another peak between a =0 and a = 1. At
S = S,, S < 8%7! which means that there is @ < 1 that has a higher A, than a = 0
and a = 1. Therefore, there should be a first-order phase transition at S < S,.

In the case of beneficial key proteins, Lin et al. found that a. = 1 for small S
and decreases smoothly to a. = 0 as S increases, but the start of that transition was
not specified. Based on [Appendix B|, we find that a. starts deviating from one at
S2=1 = 0.214 (blue dotted line in Figure [f] (a)), consistent with the numerical solution



A transport approach to relate asymmetric protein segregation and population growthll

of Equation . Comparing the solid blue line (a. predicted by the moment expansion
to the sixth order) and the orange dots (numerical simulation), note that the moment
expansion method does not successfully predict a. when the true a. value is close to
1. However, as S increases, and a. becomes closer to 0, the answers agree better, since
a* ~ 0 our approximation holds.

1.0{ 101 w R | NN
0.8 081
0.6 06{ . '
[} () 0.55 0.60 0.65 070
L] © B
04 0.4
0.2 0.2
0.0 : ! , 0.0
02 04 06 08 10 08 10
s

Figure 6: a., the value of a that maximizes the population growth rate, plotted against
S. The solid blue lines are the predictions made from the sixth order solution of A,
The orange points, each of which has an error bar, show a,. found by solving Equation
numerically as described in section[3.3] (a) Beneficial protein (Mg = 0.2, \; = 1.2,n = 2),
(b) Deleterious protein (Ag = 1, \; = 0,n = 2). The inset zooms in on the region around
S = 0.6. The dotted blue line shows where the slope of A, at @ = 1 changes its sign.
The red dashed line is at S = S, where Ayja = 0] = AyJa = 1] and the black dashed
line is at S = S, where \"[S] = 0 (i.e. the second derivative of A,[a] changes its sign at
a = 0). As anticipated, for (a) the exact numerics shows a second-order phase transition
coinciding with the blue dotted line, and a constant a. = 0 for .S larger than the dashed
black line. For (b), the exact numerics shows a first-order phase transition coinciding
with the red dashed line, and constant a. = 1 for S above the black dashed line.

5. Introducing noise

The moment expansion method can be easily generalized to the stochastic model where
a is drawn from a distribution g(a) every time a cell divides. Equation |18 becomes

1 2 2 2m _—A
n\ __ m n—2m m _—ApT[Ac,+S]
(Aop) = 5 m§:jo (2m) / g(a)a®da ( Aoy =" (Acy, + 28)™™e ). (34)

This implies that in the small a limit, we can define an effective a, a.g = /(a?),
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for which the population growth rate A, has the same formula independent of g(a).

)\II[S]
A, = AS] (14 222 5%02 (35)
ﬂ‘ .
P 4n2A[s]” e
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Figure 7: The change of population growth rate (A,[acx] — Ap[a = 0]) plotted against
the effective value of a where g(a) = U(a— 0,4, a+ 0,), a uniform distribution. The solid
lines show the numerical solutions of Equation 10| for o, = 0 and the circles correspond
to simulated values where a = 0 and o, = 0,0.1,0.2,---,1. (a) Beneficial protein
(Ao =0.2,A\; = 1.2,n =2), (b) Deleterious protein (A\g = 1, A\; = 0,n = 2).

In Figure m, we numerically solve Equation [10| where g(a) is a uniform distribution
(9(a) =U(a — 0,,a+ op) with a =0 and o, = 0,0.1,0.2,---1) and plot the population
growth rate against a.g = y/(a?). As predicted, a.g behaves exactly as a does in the
deterministic model for a broad range of o,. For a relatively large S and large o,, the
population growth rate obtained by simulating the exponentially growing population
starts to deviate from the second order prediction as shown in Figure[7] This conclusion
that stochastic segregation of key proteins increases effective asymmetry is analogous to
the finding made by Chao et al. [I1] about damage partitioning in E. coli that larger
fluctuations result in similar increase of the population growth as a fixed asymmetric
ratio.

6. Results when asymmetry a depends on the concentration of key proteins

So far, we have considered a model where the segregation ratio of key proteins
is independent from the amount of key proteins each cell has. However, there is
experimental evidence that the degree of asymmetry may depend on how much key
proteins a cell has [3 8]. Vedel et al. [6] studied how protein aggregates in E. coli
created in responds to heatshock are segregated differently between two daughters. One
of their results is that the asymmetric segregation parameter a is a function of the
amount of protein aggregates D, and if a is assumed to be constant, the fitness is
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underestimated. We can test the effect of dependence of a to D by replacing a with
a[D] in Equation

Uiren [0p] = 2/¢birth[0£]f(0b|0{,,a[0{, + S))eMloldoy. (36)

Here we replaced D with o+ .S since we assume the cell volume always is 1 at birth
and 2 at division. In Figure [§ we show the numerical value of population growth rate
increases due to asymmetry (Apfa] — Ap[a = 0]), while a is a function of the amount of
protein at division. Specifically, we set a[D] = tanh(kD) and tune k. In other words, we
assume a to increase from zero initially with the slope k and asymptotically approach
a = 1. Qualitatively, we expect the effective a to be small when S is small and to
become closer to 1 as S gets larger. We can check this intuition by writing down the
equation for the moments of ¥, analogous to Equation (18]

—— a=tanh(kD), k=0.1
a=tanh(kD), k= 0.5
0.06
a=tanh(kD), k=0.9
% a=1.00
o acls]
= 0.04
Il
5,
<
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=
< %
0.00 B OO >R
] ®
® *
—-0.02 3 *
* g %
0.0 0.2 0.4 0.6 0.8 1.0

S

Figure 8: The change of population growth rate (A,[a = tanh(kD)] — A,[a = 0]) plotted
against accumulation rate S. Here the key proteins are deleterious (A\g = 1,A\; = 0,n =
2). The blue cross show the values when «a is fixed at 1 (A,ja = 1] — Ay[a = 0]) and
the red circles show the change of the population growth rate when a is equal to the
optimal value a. at a given S.

1 2l
(Ag) = 5o 2 (22) (alAay + 25" Aop " (Agy + 25)2me 7B Sy (37)
m=0

If the slope of a[D] is small compared to a?, we can approximate a[Agy + 25]*™] ~
a[2S]. Note that the population growth rate can be higher with an adaptive a (e.g.
with & = 0.9, 0.55 < S < 0.65) than when a is fixed at a.[S] (orange dots in Figure [§)).
Qualitatively, this suggests that there is an advantage if each cell tunes the asymmetry
of segregation according to its level of damage.
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7. Discussion and outlook

In this paper, we investigate how asymmetric segregation of key proteins in microbial
organisms impact the population growth rate with a self-consistent equation (Equation
solved analytically and numerically. We adapt a physiological model proposed by
Lin et al. [I] and apply the transport equation to set up an equation for the distribution
of protein concentration at birth [o}] and population growth rate A, (Equation .
The equation can be solved by updating the solutions iteratively as elaborated in Section
. When the asymmetry is small (¢ < 1), A, can be approximated to a*" precision by
solving a set of linear equations with respect to the moments of ¢[o;] and A,. Similar
approximations can be made from the opposite limit, a ~ 1 (see. Changing
the accumulation rate of key proteins, S, we confirm the sharp phase transition of a.
for a deleterious protein and a smooth transition for a beneficial protein as Lin et al.
reported [I]. In addition, since numerically solving Equation (10| provides more precise
prediction of A, than a direct simulation of an exponentially growing population, we are
able to find that the phase transition in the case of damage is composed of a discrete
jump to a. between 0 and 1 and a smooth increase to a. = 1. We also explore different
physiological models motivated by experimental studies. We discuss the case where the
cell tunes the asymmetry with response to the amount of key proteins it has at division
and how the adaptive strategy may minimize the disadvantage of asymmetry when the
accumulation rate of damage is low. Finally, we show by generalizing our model that
even if the segregation ratio is on average symmetric, the noise can have a similar effect
as an asymmetric segregation.

There are many other aspects of asymmetric division in biology where our
theoretical framework might be useful for building a theoretical model [2 [16]. First,
there are many other ways that microbes develop phenotypic diversity rather than due
to asymmetric key protein segregation. For instance, budding yeast (Saccharomyces
cerevisiae) has cell size difference between a daughter (smaller cell) and mother cell
(bigger cell), whereas when a Caulobacter crescentus cell divides, one is non-motile
and reproductive and the other swarms and does not divide until maturation [17, [I8].
In the former case, introduction of volume asymmetry turns out to create interesting
correlations between the noise in growth and the population growth rate [19]. Second,
mortality rate rather than volumetric growth rate may depend on the key protein
concentration [20]. Lastly, connecting back to multicellular organisms, where the theory
of aging (soma theory) was first proposed [21], can be interesting both mathematically
and biologically. Major difference from microbial system is that the cells interact with
the neighbors and use the cues to make decisions [22]. Considering the geometry of
the tissue might complicate the model beyond the level of a self-consistent equation can
capture, but plants which have rigid tissue and simpler geometry may be a good starting
point for a theoretical investigation [23].
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Appendix A. Simulation details

When we explicitly simulate the exponentially growing population, we start with 100
cells with uniform distribution of age. We run until the number of cells reaches 5 x 10°
and find the slope of In(>> V(t)) after ¢ = 5. This use of sum of volume rather than the
number of cells for finding the population growth rate is because the volume increases
continuously and the growth rate should be equivalent if the cell size is controlled.
To solve Equation [10] we discretize the range of o3, and repeat the process described
in section [3.3[ until the difference between 1 and 2 [ [ wg?jth[ag] g(a )e‘Ag’nfl)T["ﬂda’ doy is
smaller than some tolerance value. This implies that Ag“l) = AI()”) and our solution for
A, has converged. Python scripts for the simulations are on our Githubl

Appendix B. A, when a ~ 1

The challenge for a highly asymmetric case is that the distribution tpn[op] is not
symmetric around S. Because one of two newborn cells is rejuvenated at each division,
we would expect the distribution to be skewed to the right and maximized near o, = 0.
This means that we should expand ¥pin[0p] around different values depending on when
the cell has been rejuvenated for the last time (i.e. generational age), in order to solve
the self-consistent equation. Categorizing cells based on their generational age, we can
rewrite the self-consistent equation as,

Yolos] = [ Y- wilof)f (o, Rlop)e 7 1otdo,
=0

Yiloy] = /@/’z‘—l[gzg]f(ffb,S|0£)6_APT[UUdUb(i > 0). (B.1)

Here 9;[0] is the probability that a cell has protein concentration o, at birth and
the generational age i. The transition function for the rejuvenated cell is f(o, R|o}) =
) <a — 52(of, + S)), and the senescent is f(co,S|oy) = ¢ (a — 22(o) + S)) Note that
the rejuvenating transition function does not depend on o (parent cell) if a = 1. This
is equivalent to the property used by Lin et al. [I] to find a closed formula for A,[a = 1]:

there is a self-symmetry in a population tree in a stable exponential growth.

1= iexp [— iApT[jS]

=0

. (B.2)

Here, we can use the fact that every v;[op] is a delta function if a = 1.
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bilor] = [ wialotlo(o, — (o} + S))ereMdoy
= 1]y, — Sle el
= tolo — isle” 2= TN > 0), (B.3)
bolon) = [ Y- wilot]a(o)emtldo
=0
= 4(0oy) /ilﬁo[% —iS]exp [— i:ApT[Jb — jS]] doy,. (B.4)
1=0

=0
By integrating vy|op] with respect to o, we get

1= iexp [— gApT[(i -S| = iexp [— ZlOApT[jS]

which is consistent with the previous paper [I]. Let’s call the unique solution for

: (B.5)

Equation , Ap1. Near a = 1, we can find the approximate population growth rate
by expanding A, = Ay (1+ C1(1 —a) + Co(1 —a)? + --+) where a < 1. As a deviates
from 1, we expect each delta function to broaden near o, = 5. Similar to the case of
a small a, we will find the moments of ;[0}] starting from the lowest order. Here we
will investigate the first order coefficient C. Importantly, finding the sign of C; will
allow us to predict whether A,[a = 1] is a local minimum (C; > 0) or a local maximum
(Cl < O)

Let us define da = 1 —a. To find C; we need to solve Equation B.1]to O(da). Thus,

we can rewrite the equations as
alo] = [ 3= lois (= (03 4. 5))
exp [—Aplf[ism + C1da) (1 + TT[[Z;] (o) — @'5))1 do),
bilor] = [ wialo1)d (o, — (1= 8a/2) (o} + 5)
exp [~ Api7[(i — 1)S](1 + C1da)

rli-0s) , .
(HT[(i—l)SJ(" ( ”S)>

For brevity, from now on, we shall write ¥; = [ ¢;[0p]doy, and (F[d0y)); = [ i[op] Flop, —
iS|doy,/ ;. First, let us integrate the ith equation (i > 0),

\Iji = /wi,l[ag]eprT[Ué]dag (B?)
— eiAplT[(ifl)S} /wifl[o-;)]

(1 — Ap7[(i — 1)S]Ci0a — Ay '[(i — 1)S](a) — (i — 1)S)) do)
= W;_qe M08 (1 A 7[(i = 1)S]Chda — (d03),_y A 7[(i — 1)S])

dO’b. (BG)

i-1 . i—1
= Ppe 2 =0 7S] (1 — Ay > 7[kS]Cida — (d0y), AplT’[k:S]> + O(6a?).

k=0
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For 7 = 0 we have
¥o= Y [wiloflelao
i=0

v;

|
,Mgs

-
I
—

=Ty > oA 305 7liS] <1 — Ay Y T[kS]Cida — (doy),, Api 7' [kS]

=0 k=0

) (B.8)

to O(da) accuracy. Using the definition of Ay - 1 =32, e M Ed:OT[jS], we can extract

an expression for the coefficient Cf.

D > Y e > B L)
>y e M Ko TS 2k S)6a
SR RS (Gon) X (o Tia
G rkS] S e X
Let us find (00y), for i > 0.

]‘ — Tl(i—
(on); = 36 Al ”S}/wm[aé]

%

((1 - 52‘L> (o} — (i — 1)S + i) —¢5>

(1 = Apu7[(@ — 1)S]C0a — Apy7'[(i — 1)S](0y, — (i — 1)S)) doy,

da 1 '
= _—ZS + — T e~ AnTli-DSly, (o), 4

]

= —*Z i \ﬁe—APIZ] L 7l=3)]
Yy _
2l S (50,
v,
1
— _ba SZ“‘; ) 4 (50) + O(6a2).
Ifi=0,
1 5a

(0o) = T, 2 Z¢m oy} (o, —mS + (m +1)5)
m=0

11— AplT[mS]C’15a — A1 7' [mS) (o, — mS)] doy,
1 da

\IJO 2 (m+ 1)S\I/m+1

m=0

?Z(m+1 “An 2008 L O(6a?).

(B.9)

(B.10)

(B.11)

(B.12)

This shows that (do}), is positive for small ¢ and becomes more and more negative
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as i increases. Applying this to Equation [B.9, we can find the slope near a = 1.

S, e M > o TliS] Z;g:o 7'[kS] (_k(k‘;l) + Z;?:O(m + 1)6—/\p > o ‘r[nS])
Cl - E A Zz 5] )
Sioge he=0 T N o TIRS]

(B.13)

Appendix C. Finding A,[a] to O(a*") (n > 1)

In order to calculate Ayfa] to O(a*") accuracy, we write A, and 7o} as

In2

A, = e <1+Zc%a ) (C.1)

2n (i) [S]

Tloy] = 7[95] Z@ ] ——=Aoy (C.2)
Using these, we write
n 2n (1) )
e~ Morlon] — exp [— In 2 (1 + Z nga2k> Z 7,—‘ 5] AU}I} . (C.3)
k=1 iz i'7[S]

Next, we should expand Equation and truncate any terms with higher order than
a®". We can also rewrite (o) (1 < m < 2n) as

(AcPF) Z D2k a¥ (C4)

ap" ") ZD%—H “, (C.5)

Maintaining only terms to O(a®*") and matching the coefficients of a?(1 < j < n), we
can solve the system of equations for D and C’s. We provide the SymPy code to find
the coefficients on our Github repository.

Appendix D. The shape of iy;n[0p] changes depending on asymmetry «

Here we present some examples of the distribution of protein concentration at birth
Ypirtn[op], which we find by numerically solving Equation (red circles). In each
simulation, we compare the numerically found distribution to a log-normal distribution
and a normal distribution that have the same mean and variance as the numerical
solution. In other words, we test whether it is possible to approximate the distribution of
key protein concentration to a log-normal or a normal distribution and simplify Equation
10l

When a is small and the segregation is noisy (o, > 0), the distribution can be
approximated as a Gaussian distribution or a log-normal distribution. However, as a
increases, the skewness of the distribution grows and the distribution becomes multi-
modal. This implies that with small average asymmetry, the first two moments of the
distribution have sufficient information for approximately solving Equation for A,
but as the segregation becomes more and more asymmetric, higher order terms of a
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Figure D1: Distribution tpn[0p] can be approximated as a Gaussian or a log-normal
distribution if | (a) | < 0,). (a) Beneficial protein (Ag = 0.2,\; = 1.2,n = 2), (b)
Deleterious protein (A\g = 1, \; = 0,n = 2). In both simulations, o, = 0.2 and (a) = 0.1
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Figure D2: Distribution tin|op] is in general skewed and multi-modal. (a) Beneficial
protein (Ao = 0.2, A\; = 1.2,n = 2), (b) Deleterious protein (A\g = 1,\; = 0,n = 2). In

both simulations, o, = 0.2 and (a) = 0.4

are necessary to accurately calculate the population growth rate. The exact value of a
where the Gaussian approximation breaks down depends on the shape of A[o] and S.
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Figure D3: The Gaussian approximation only holds for the small asymmetry case
because the skewness of distribution grows as a function of a. To illustrate this effect, we
plot the skewness of 1;n[0p] against the average of a for the damage and benefit case.
To visualize the change of distribution, we show distribution with different values of a.
The distributions are found numerically from the iterative solution of the self-consistent
equations. (a) Beneficial protein (A = 0.2, \; = 1.2,n = 2), (b) Deleterious protein
(Ao = 1,A1 = 0,n = 2). In both simulations, there is very small noise in a (o, = 0.02).
In both simulations, we use S = 0.5 and assume deterministic segregation (o, = 0).
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