


such as Bandit [19], can lead a training session without a clinician

present. Bandit could automatically modify the difficulty based on a

person’s performance, which increased engagement and improved

performance at higher difficulties for people with dementia [19].

While many existing systems consider user behavior or prefer-

ences for longitudinal interactions [11], few have been developed

for people with cognitive impairments. Managing robot behavior

in response to these preferences is particularly challenging when

working with people with progressive conditions such as dementia,

as their preferences and abilities may change quickly [8, 22].

Behavior Adaptation. Behavior adaptation is the ability for an

agent to modify its behavior in response to certain stimuli. In our

case, a robot would modify its behavior in response to a person’s

behavior, preferences, or abilities. A key element for behavior adap-

tation is interpreting how user data can inform a robot’s actions,

as well as how users respond to those actions. Researchers have

used countless methods to imbue social robots with this ability in

numerous contexts, including neurorehabilitation [9].

Among the most widely used methods for behavior adaptation

are reinforcement learning (RL) approaches. For instance, many

researchers model the behavior adaptation problem as a Markov

Decision Process (MDP) to enable robots to try different actions,

observe the results, and then modify their behavior during a cogni-

tive training session [2, 14, 15, 17, 21]. Approaches such as inverse

RL enable an agent to learn optimal behavior from an expert, such

as a robot observing a human therapist leading a treatment in order

to learn how to respond to a patient in future interactions [18, 23].

3 OURWORK TO DATE

In applications such as neurorehabilitation, integrating domain

knowledge from experts such as a therapist, or personal knowledge

from a caregiver, can help personalize treatment and maximize

its efficacy. Thus, in order to determine the efficacy of treatment

administered by a social robot and personalize these treatments to

individuals, it is crucial to give these stakeholders control over a

robot’s behavior. However, they often have low technology literacy

[24], which can serve as a barrier to effectively reprogramming

a robot. Existing frameworks to support novice programmers are

almost entirely procedural, require understanding code structure,

and do not allow high-level specification of desired behavior.

Methodology: Our system JESSIE (see Fig. 1) couples control

synthesis methods with an accessible tangible specification inter-

face to enable novice programmers to quickly and easily specify

complex robot behavior. Users specify the desired robot behavior

using our tangible specification interface, and JESSIE automati-

cally generates the associated robot control. Thus, clinicians can

customize robot behavior and reactions for personalized cognitive

training regimens in order to keep people engaged and focused on

overarching goals, rather than concerning themselves with specific

implementation details or individual robot actions [8].

Evaluation: We evaluated JESSIE in the context of enabling

users to develop cognitive training regimens for people with MCI.

We conducted a study with six neuropsychologists to assess the

system’s usability, specifically for clinicians with no programming

experience. We taught them how to use our specification interface

to create a program, allowed them to design their own sessions for

a person with MCI to complete with a Kuri robot, and concluded

the session with an open interview. We used a grounded theory

approach to identify overarching themes among participants [8].

Results and Discussion:We found that clinicians, who had no

prior experience programming robots, were able to use JESSIE to

program cognitive therapy sessions with personalized activities,

reactions, and constraints after little time or training. They reported

positive comments regarding its usability and gave suggestions

for improvement including increased support for personalization,

varying the robot’s status throughout treatment, and collaborative

goal setting. Our observations also suggest that JESSIE enables

novice programmers to leverage control synthesis techniques to

create complex, interactive sessions on a social robot, which would

take more time to write and test with procedural programming

languages. Thus, this system will enable the robotics community

to customize social robot behavior, adapt to end-user preferences,

and promote longitudinal HRI in numerous domains, extending the

scalability, accessibility, and personalization of social robots [8].

4 ONGOING AND REMAININGWORK

Moving forward, we will continue to work closely with neuropsy-

chologists and people with cognitive impairments while implement-

ing cognitive therapy sessions on a robot. By enabling these stake-

holders to create personalized therapy sessions using our system

JESSIE, we will further explore how to best consider their expertise

while adapting to user preferences to improve robot-assisted treat-

ment. In our discussions and explorations with stakeholders, we

will determine factors such as: a) ethical and design considerations

for designing technology for people with cognitive impairments, b)

appropriate features for modeling their preferences and abilities,

particularly those that might differ from people without cognitive

impairments, and c) appropriate behaviors for a robot to exhibit in

response to various preferences and abilities.

We will then extend JESSIE by implementing these behaviors on

a Kuri robot to perform pilot studies with people without cognitive

impairments. Thus, we can ascertain the robustness of our system

while minimizing risk to people with cognitive impairments. We

will ask participants to complete cognitive training sessions with

a robot over eight weeks to reflect a traditional training regimen.

During this time, the robot will gather interaction and performance

data as informed by our discussions with stakeholders.

We will use this data to develop novel behavior adaptation meth-

ods for longitudinal interactions with people with cognitive im-

pairments. We will first explore approaches such as RL and inverse

RL which have shown promise in other applications [2, 14, 15, 17,

18, 21, 23]. This will serve as a basis for our new methods that

can leverage expert knowledge and are suitable for the dynamic

preferences and abilities of people with cognitive impairments.

We will then implement these methods on physical robot sys-

tems and perform longitudinal studies with people with cognitive

impairments to evaluate their efficacy, usability, and acceptance for

cognitive neurorehabilitation. By applying principles of inclusive

design and working closely with stakeholders throughout the de-

velopment process, we aim to design robots that have the potential

to profoundly impact the way people manage their impairments,

receive care, and improve their everyday lives.
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