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Abstract. Methods for source detection in high noise environments are important for8

single-photon emission computed tomography (SPECT) medical imaging and especially9

crucial for homeland security applications, which is our main interest. In the latter case, one10

deals with passively detecting the presence of low emission nuclear sources with significant11

background noise (with Signal To Noise Ratio (SNR) 1% or less). In passive emission12

problems, direction sensitive detectors are needed, to match the dimensionalities of the13

image and the data. Collimation, used for that purpose in standard Anger γ-cameras, is14

not an option. Instead, Compton γ-cameras (and their analogs for other types of radiation)15

can be utilized. Backprojection methods suggested before by two of the authors and their16

collaborators enable detection in the presence of a random uniform background. In most17

practical applications, however, cargo packing in shipping containers and trucks creates18

regions of strong absorption and scattering, while leaving some streaming gaps open. In such19

cases backprojection methods prove ineffective and lose their detection ability. Nonetheless,20

visual perception of the backprojection pictures suggested that some indications of presence21

of a source might still be in the data. To learn such features (if they do exist), a deep22

neural network approach is implemented in 2D, which indeed exhibits higher sensitivity and23

specificity than the backprojection techniques in a low scattering case and works well when24

presence of complex cargo makes backprojection fail completely.25
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Deep learning for source detection 2

1. Introduction28

Checking for presence of illicit nuclear materials (most probably in small quantities and29

shielded by cargo) at border crossings and shipping cargo containers in harbors is an30

important homeland security task. Ideally, one would try to reconstruct from the detected31

signals the source distribution inside the cargo. When the data is sufficiently well behaved32

(e.g., in SPECT), analytic reconstruction is often possible [30]. However, in a very low SNR33

environment, as in the case of illicit nuclear source detection, this is impossible. Indeed, the34

forward analytic (integral transform type) models are not applicable. Moreover, even if they35

were, attempts of any filtration in FBP-type techniques lead to reconstruction deterioration.36

The saving grace is that in this case practitioners are mostly interested in getting reliable37

(i.e., with low rates of false positives and false negatives) information about the presence of38

a source, rather than its exact location.39

In passive emission imaging, detectors must be direction sensitive. Indeed, otherwise the40

data measured has insufficient dimension for recovery of an image. Directional information41

is especially critical when SNR is too low for the intensity fluctuations that arise due to42

the presence of a source to be statistically significant. The following options for obtaining43

directional sensitivity are available:44

• Mechanical collimation, when only rays incident along (or close to) a certain line are45

allowed to reach the detector (see Section 2). This, while determining the incoming46

photon’s direction, significantly reduces the signal strength and thus becomes unsuitable47

for low SNR.48

• Compton γ-cameras represent a more recent, and gaining its appreciation, type of γ49

radiation detectors that determine a surface cone of possible incident trajectories, rather50

than the exact directions.51

• Neutron detectors are being developed that (albeit based on different physics principles)52

produce similar cone information and lead to similar mathematical analysis.53

Backprojection detection technique introduced in [5, 33] relied upon finding suspicious54

locations. It utilized the following three assumptions:55

(i) geometric smallness of the source (usually of linear dimension on the order of 1% of the56

linear cargo size);57

(ii) existence of a sufficient number of particles from the source reaching the detector being58

ballistic (non-scattered);59

(iii) unstructured strong random background.60

The idea is rather simple: backprojecting the incoming trajectories (or, in the Compton case,61

the whole surface cones of possible trajectories) of particles, one hopes that maybe, due to62

sufficient presence of ballistic particles detected from the source, one can see a statistically63

significant accumulation at the geometrically small source’s location (see Fig. 1)64

Page 2 of 27AUTHOR SUBMITTED MANUSCRIPT - IP-102603.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



Deep learning for source detection 3

Figure 1. An idea of the backprojection method.

Analysis done in [5] provided a crude formula for the total number N of particles (and

thus observation time) needed to make detection with high (on the order of 99%) sensitivity

and specificity (i.e., with low levels of false negatives and false positives).

N &

(
8

S

)
p(1− p). (1)

Here p is the ratio of the linear dimension of the source relative to the dimension of the cargo65

and S is the SNR, defined as the proportion of the ballistic particles from the source versus66

the total number of source and background particles. In the cases considered in [5] N had67

to be on the order of 600000, which is not unrealistic for γ photons not screened by heavily68

shielding cargo. High specificity has been hardwired into the method, so satisfying (1) was69

only needed in [5, 6] to ensure high sensitivity.70

The implementation of the technique worked as follows [5, 6]: the data was71

backprojected, which resulted in a large background level throughout the volume. When72

the object was completely surrounded by detectors, this level was essentially constant and73

the mean was removed. When the detectors did not surround the object completely (e.g.,74

no detector below the object), the global mean is irrelevant, and at each location the mean75

over a smaller patch was removed. After this clean-up the locations with an intensity less76

than five standard deviations above the mean suggested by the Central Limit Theorem were77

cut off. The results were interpreted as indications of a source being present. Thousands78

of Monte Carlo simulations showed that the inequality (1) performs well and if N is at or79

above this threshold, detection occurs with high sensitivity and specificity ‡.80

This technique works reasonably well in the absence of complex cargo, but starts failing81

if such cargo is present [6], due to the second and third assumptions being inapplicable§.82

However, visual inspection of the backprojected data (see [6]) seems to indicate that the83

data might still contain a signature of the source presence. Indeed, when the method of [5]84

was applied to some cases of complex cargo in [6], despite its failure to detect presence85

of the source, such signatures (e.g., different highlighting of the pathways between cargo86

boxes) seemed to appear only when a source was present (see Figure 2). The reader should87

‡ An alternative Bayesian approach was implemented in [33].
§ This cargo problem is mostly non-existent when detecting neutrons coming from the source. However,

some other (non-mathematical) issues arise, such as for instance lower number of particles detected.
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Deep learning for source detection 4

take into account that the color scales are different in the three pictures there and assigned88

automatically by the visualization software. This is of no importance, since it is not the89

intensity, but rather the patterns of highlighted pathways between boxes seem different.

Figure 2. (Left): Example of complex cargo configuration for which backprojection

methods fail (i.e., no statistically suspicious locations are found). The red spot denotes the

source location, the grey area represents iron and the white area represents air. (Middle):

Backprojection results in absence of source. (Right): Backprojection results in presence of

source.

90

No model of this effect has been developed, no telling features have been learned, and91

thus no detection algorithm came out of such observations.92

This has led the authors to attempt deep learning for the source inference in the93

hope that a network could learn what we could not. Our main goal is to detect the94

presence/absence of a source, not necessarily its location. If there is high probability of95

presence of the source, in practice one would check the cargo with other (hand-held) devices.96

However, one also needs to achieve high specificity, to avoid large numbers of false positives.97

One should note that quality of tomographic image reconstructions using neural98

networks has been questioned recently, see e.g. [7,8]. This critique, however, does not apply99

to the problem at hand, where we only look for a binary output rather than an image.100

We describe now the structure of the article. Section 2 contains a brief description101

of the Compton type cameras and references to the known analytic approaches. Success102

of deploying neural networks is predicated upon our access to sufficient data for neural103

network training. Thus, the first step - generating various complex cargo scenarios is104

described in Section 3. To avoid the inverse crime (overfitting), different processes of105

generating cargos are used for creating training and testing samples. Then, in absence106

of real data (which would require having weapons grade nuclear materials and physically107

creating thousands of different cargoes), we use (Section 4) the technique of forward radiation108

transport simulations customarily used in nuclear engineering. As has been mentioned, the109

actual type of radiation is mathematically irrelevant, but to be close to real world scenarios110

and numerical parameter values, the case of γ-photons coming from an U-238 source and111

real world material parameters for cargo are used. The design of the network is described112

in section 5. The results are presented in Section 6. Additional remarks can be found in113

section 7. Acknowledgements are provided in section 8. The algorithm description is located114

in the Appendix.115
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Deep learning for source detection 5

2. Collimated and Compton γ-Cameras116

Mechanical collimators (see Figure 3) can be installed in front of a direction insensitive117

γ−camera to block all particles but those incident along (or close to) a desired trajectory.118

Mechanical collimators are widely used in medical imaging. They, however, significantly

Figure 3. Light collimation diagram

119

attenuate the signal and require rotating the detector (or the object). In the applications120

with sufficiently high SNR, this additional data loss is not such a problem. In dealing with121

low SNR signals however, this renders recovery of weak signals impossible. For this reason122

one can consider Compton type cameras instead.123

The Compton camera is a type of γ-particle detector‖ that does not attenuate the124

incident particles. The price to pay is that it provides less precise direction information125

than collimation would give. Namely, only a surface cone of possible incoming directions126

is measured rather than a precise trajectory (see Fig 4). In the absence of mechanical

Figure 4. Surface cone produced by Compton camera from particle detection

127

collimation, signal strength is effectively maintained, although the directional information128

is less precise and thus data analysis becomes more complex. On the other hand, the data129

provided is significantly over-determined (e.g., the space of cones in 3D is five-dimensional,130

‖ As we have mentioned before, novel neutron detectors (albeit based upon different physics rather than

Compton scattering) that provide mostly similar cone information are currently being developed.
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Deep learning for source detection 6

versus the unknown distribution being three-dimensional). This turns out not to be a131

bad thing at all, but rather a blessing for stable inversion (see [30] for details and further132

references).133

A variety of exact inversion formulas from Compton data of filtered-backprojection and134

other types have been developed and implemented (see [30] and references therein). The135

choices are much more diverse than for the usual Radon transform inversions (see [24]). The136

reason is that the Compton data is highly overdetermined. It was shown that this feature137

can be used to get high quality reconstructions in SPECT in presence of 50% noise and138

higher. However, this is a far cry from the low SNRs encountered in the homeland security139

problems described above.140

3. Simulating Cargo Scenarios141

If one intends to tackle a problem using deep learning, it is natural to start by acquiring142

large amounts of training and testing data.143

In order to obtain rich training data for a neural network, at least thousands (better144

hundreds of thousands or millions) of cargo configurations are needed. Due to the sensitive145

nature of the materials involved in this work, we are unable to procure real-world data, so we146

resort to synthetic simulation. The high computation costs of these simulations restricted147

us to several thousands of samples, reaching up to 4× 105. However, our results (see Section148

6) already show a success in detection.149

To start, we randomly produce several thousand cargo configurations and compute150

forward radiation data simulations with up to four randomly placed sources and without151

them for each one. In order to avoid overfitting (and an inverse crime), different cargo152

generation procedures are used for producing the training and testing data.153

3.1. Procedural Generation of Training Cargo Configurations154

A square cargo hold of size of 2.4m × 2.4m is assumed and partitioned into 2.4cm × 2.4cm155

cells (the possible source would occupy one of them). Each cell can be indexed via a pair of156

row and column indices, (i, j), with 1 ≤ i, j ≤ 100 and is assigned a material identification157

number IDi,j. These numbers correspond to a variety of materials, including Air, concrete,158

highly enriched uranium, iron, cotton, wood, plastic, and fertilized (their detailed chemical159

content described in [6]).160

Real cargo typically consists of several boxes with small spaces in between. In order161

to emulate this, an algorithm is implemented to generate different cargo configurations. It162

consists of three main steps:163

• A network of several horizontal and vertical “corridors” between boxes with random164

widths and locations is generated. The number of corridors c is selected randomly in a165

desired range cmin ≤ c ≤ cmax.166
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Deep learning for source detection 7

Figure 5. A selection of cargo configurations procedurally generated via Algorithm 1

• The resulting configurations are unlikely to be symmetric, while real cargo might happen167

to be symmetric. To check whether symmetry plays any role in detectability¶, a portion168

of the samples produced are “symmetrized” by enforcing various (rotation and mirror)169

symmetry rules.170

• Connected components of the rest of the space are identified as distinct “cargo boxes.”171

Then material contents are assigned to all boxes. In a subset of (rather than all)172

symmetric cargo configurations, material contents are also “symmetrized” according to173

the corresponding rule.174

Generating the corridors between pieces of cargo is performed using a modification of175

the procedure outlined in [11] for generating road networks. For the training set, we only176

use networks consisting of horizontal and vertical segments, while for the testing set tilted177

and non-orthogonal pathways are allowed.178

Remark. Instead of selecting corridor locations uniformly randomly, their locations for179

training are selected according to a probability distribution generated from a type of gradient180

noise developed in [25] in order to automate the production of realistic looking textures in181

computer graphics. A different algorithm is used for testing samples.182

Identification of connected components (“boxes”) is performed using SciPy’s (Scientific183

Python, a popular Python package for scientific computing [17]) implementation of the184

algorithms outlined in [32].185

The entire generation procedure is summarized in Algorithm 1 in the Appendix (Section186

9).187

3.2. Procedural Generation of Testing Cargo Configurations188

To avoid the inverse crime of overfitting, testing configurations are produced by a somewhat189

similar, but independent algorithm. Namely, the middle points, the lengths and width of the190

¶ Disclosure: Our results show that symmetries do not influence detectability.
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Deep learning for source detection 8

corridors are selected randomly and independently. Moreover, the corridors are not required191

to be vertical or horizontal, or even orthogonal at their intersections anymore. Finding the192

boxes (connected components of the complement) and filling them with materials is also193

done randomly, similarly to the training case.194

3.3. Source placement195

A source of a (randomized) strength corresponding to approximately 1% SNR is placed196

randomly into the cargo.197

Multiple sources (0, 1, 2, 3, or 4) are also modeled to see the effect on detection. Two198

scenarios are used:199

(i) when all the sources have the same strength ≈ 1% SNR200

and201

(ii) when the strength of the source is diluted between several locations.202

One naturally expects deterioration of the detection in the 2nd case, while a priori it would203

not be surprising if it happened in the 1st as well (although our results will demonstrate204

that this does not happen). Indeed, the backprojection detection, as well most probably205

the one by deep networks, if successful, should use some geometric assumptions (e.g.,206

geometric smallness of the source), since the source’s strength alone would not be statistically207

significant. Thus, multiplying the number of sources in principle might degrade the geometric208

features of importance (albeit one does not know what these are).209

4. Forward radiation simulations210

As previously mentioned, the nature of particles is irrelevant, but in order to be in realistic211

situations, the γ particle detection is considered, where the material parameters and emission212

and background rates that are used assume realistic values.213

After the cargo scenario has been created, one needs to simulate training and testing214

data by solving a massive forward radiation transport computation. Fortunately, reliable215

simulation tools have been developed by nuclear engineering researchers.216

4.1. Physics Preliminary217

U-238 (Uranium-238) photons from the 1.001 MeV emission line have mean-free-path in218

high-Z materials sufficiently high to be detected outside the container (13.3mm mean-free-219

paths) [28]. In our application, sources of background radiation include a concrete base220

located some distance below the container. (Cosmic rays and other natural sources can be221

easily included and do not influence the results much.) These background sources radiate at222

much higher energies than 1.001 MeV, including 1.461 MeV from Potassium-40, 1.12 MeV223

and 1.76 MeV from Bismuth-214, and 2.61 MeV from Thallium-208 (Bismuth and Thallium224

are products of the decay of Uranium-238 and Thorium 232 respectively, and are present in225
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Deep learning for source detection 9

trace amounts in concrete). Gamma photons which downscatter from these sources into the226

energy group surrounding the 1.001 MeV line account for the noise in our signal. Gamma227

photons from the source will also undergo scattering and absorption within the volume of the228

container, which will reduce the number of ballistic source particles reaching the detectors229

placed around the container, thus weakening the signal.230

4.2. Mathematics of the forward radiation data simulation231

The radiation transport within the cargo container is modeled by the linear Boltzmann

equation, given below using the multigroup approximation:

~Ω · ~∇+ Σg
t (~r)Ψ

g(~r, ~Ω) =
G∑

g′=1

L∑
l=0

Σg′→g
s,l (~r)

l∑
m=−l

Φg′

l,m(~r) +Qg(~r, ~Ω) (2)

where ~r ∈ D is the position, ~Ω ∈ S2 the set of discrete directions and g ∈ [1, G] the energy

group. D is the volume of the cargo container, S2 is the unit sphere, G is the total number of

energy groups, Ψg is the photon angular flux in the energy group g, Σg
t is the total interaction

cross section in group g, Σg′→g
s,l is the lth−Legendre moment of the scattering cross section

from group g′ to group g, L is the maximum anisotropy expansion order, and Qg is the

volumetric source of photons in group g (stemming from the U-238 source). The moments

of the angular flux are given by

Φg
l,m(~r) =

∫
4π

Yl,m(~Ω)Ψg(~r, ~Ω)dΩ (3)

where Yl,m is the spherical harmonic of order of l and degree m. Eq. (2) is supplied with

boundary conditions:

Ψg(~r, ~Ω) = hg(~r, ~Ω) ∀~r ∈ ∂D− (4)

where ∂D− is the incoming boundary defined as ∂D− = {~r ∈ ∂D such that ~Ω·~n(~r) < 0} with232

~n(~r) the outward unit normal vector at position ~r. The function hg describes the background233

radiation due to a large concrete slab underneath the container, as previously described.234

Cross sections for various materials were generated using NJOY-99 [23]. The multigroup235

structure employed ranges from 1.00099 MeV to 2.61449 MeV with narrow bands centered236

at the radiation lines of the background and U-238.237

For the purposes of this paper, calculations are carried out in two-dimensional space238

and only the energy group corresponding to the 1.001 MeV line is considered after solving239

Eq. (2). The photon transport equation, Eq. (2), is discretized using standard techniques:240

(i) Sn product Gauss-Legendre-Tchebychev angular quadrature [27] is employed (only a241

small number of polar angles are needed, but a very high number of azimuthal angles242

are needed to resolve properly the angular distribution in the 2D domain.)243

(ii) Spatial discretization based on a standard bilinear discontinuous finite element technique244

with upwinding at cell interfaces. [26, 31]245
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Deep learning for source detection 10

(iii) Transport sweeps and Source Iteration are employed to solve the resulting system. [21]246

Once the transport equation (2) has been solved, the outgoing angular photon flux at any247

boundary edge in 2D is recorded, which serves as the input data for use in Deep Learning248

and Backprojection.249

Once configurations have been generated, a radiating source emitting an expected250

8042.17 photons per second at 1.001 MeV is randomly placed, a forward radiative transfer251

equation is solved, and from its solution the radiation angular flux distribution on the252

boundary of the cargo is collected.253

Due to linearity of (2), the situations of presence of zero to four randomly placed sources254

could (and were) easily incorporated.255

5. Convolutional Neural Network256

Using a fully connected network for the problem seems to be hardly feasible even in 2D,257

less so in 3D, in particular due to high dimensionality of the Compton camera data. The258

saving grace here is that, as in many imaging problems [22], one expects that the important259

correlations occur mostly between close pixels, and hence convolutional neural networks,260

which are much more compact due to weight sharing, offer a hope. We thus construct, train,261

and test a deep convolutional neural network (CNN). This hand-waving argument for using262

CNN needs to be confirmed by computations, which is done in this text.263

The suggested CNN architecture is summarized in Figure 6 below. The input data

dimension is 144 × 103 = 400 × 360 × 1, as we model 400 equally spaced detectors with

360 equally spaced angular bins and only one energy bin is used. The network is trained

on 1689 unique simulated cargo configurations with varying numbers of sources present. By

exploiting the fact that the Boltzmann equation (2) is linear, we can produce multiple new

samples from each configuration by taking varying combinations of sources and detectors.

We simulate up to four sources per configuration, and four linear arrays of detectors along

each edge of the cargo. This leads to a total of 1689 × 15 × 16 = 405360 total samples.

The various combinations are summarized in Table 1 Below. The output of the CNN is two

Number

of

Sources

One

Detector

Two

Adjacent

Detectors

Two

Opposite

Detectors

Three

Detectors

Four

Detectors

Total

0 6756 6756 3378 6756 1689 25335

1 27024 27024 13512 27024 6756 101340

2 40536 40536 20268 40536 10134 152010

3 27024 27024 13512 27024 6756 101340

4 6756 6756 3378 6756 1689 25335

Total 108096 108096 54048 108096 27024 405360

Table 1. Number of training samples in each category
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Deep learning for source detection 11

probability measures: Pd on {0, 1} and Pn on {0, 1, 2, 3, 4}. A source is determined to be

present if P(x = 1) > 0.5, and absent otherwise. Pn predicts the number of sources present,

which we set to k = argmax0≤j≤4Pn(x = j). The loss function used for training is the binary

cross-entropy loss:

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (5)

where y is the network prediction and ŷ is the target value (see [15]). The CNN was264

trained on simulations of a localized source in the presence of high background noise265

(SNR = 0.01). In all cases, early stopping is used to halt training before over-fitting.266

The various hyper-parameter values used in training are summarized in Table 2 below. The267

CNN is implemented using Keras with Tensorflow as its backend. Keras is a high level API268

(Application Programming Interface) for interfacing with machine learning toolkits such as269

Tensorflow, Theano, and Microsoft Cognitive Toolkit. It helps streamline the construction270

and training of neural networks [12]. Tensorflow is Google’s machine learning toolkit and was271

chosen due to its scalability, wide range of features, and the wide range of documentation272

and tutorials available [1]. Any parameters not explicitly mentioned here were set to default273

values.

Figure 6. CNN architecture used for source detection. The left-most cell shows an example

of the detector data input to the CNN. 2×2 Max pooling layers are placed after every second

convolutional layer.

274

6. Results275

After training the CNN, we considered a large variety of cargo scenarios to test and to276

compare and contrast the performance of the CNN against the backprojection method277

of [5, 6]. We detail some interesting specific example scenarios in Sections 6.1 and 6.2. We278

then investigate the statistical performance of the CNN on large scale data sets to evaluate279

the sensitivity and specificity of the CNN in Section 6.3, and to assess its performance280

with different numbers of sources and detectors in Section 6.4. Finally, in Section 6.5 we281

discuss the relation between cargo configuration and exposure time and how this affects the282

practicality of our technique.283
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Deep learning for source detection 12

Optimization Method Adam (See [18])

Activation RELU (Softmax at output)

Bias True

Convolution Window Size 3x3

Learning Rate 2.0× 10−5

Learning Rate Decay Rate 0

Batch Size 4

Early Stopping Patience 3 epochs

Loss Binary Cross-Entropy

Table 2. Hyper-parameters used during training

6.1. Example Scenarios284

We describe now several (out of many, see later on in this text) sample results of testing the285

trained network on various scenarios not included in the training set.286

6.1.1. Example #1287

This configuration (right) as well as backprojection (left) with source present is shown288

in Figure 7 below. The backprojection procedure described in the Introduction did not289

lead to any statistically significant detection. We, however, show the raw (not cleaned290

up) backprojection picture for the reader to notice the corridor highlighting phenomenon291

observed in [6]. The network, on the other hand, succeeds in detecting presence of the292

source. This is one of the heavy iron configurations which has a shorter exposure time (18293

seconds for 101,180 background particles).
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Figure 7. Left: Backprojection with no source detected. Right: Cargo configuration with

source location indicated by arrow. 101,180 particles detected, 100,185 background particles

and 995 source particles. Exposure time is 18 seconds.

294
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Deep learning for source detection 13

6.1.2. Example #2295

Next we consider the scenario shown in Figure 8, where backprojection fails to detect296

the source (and thus is not shown), but the network succeeds. Here the exposure time297

needed for the detection is significantly longer. In this configuration a long thick iron slab298

effectively blocks one side of the detectors. Smaller chunks of iron spread throughout the299

container further attenuate the signal along certain trajectories. As a result, it would take300

9 hours and 26 minutes to detect the needed 101,092 particles. Unless one is talking about301

a shipping container, this is practically unfeasible. As the results in Section 6.3 show, twice302

shorter time would still do decently, and even five times shorter time might sometimes be303

used, although at the expense of higher false positive rate.
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Figure 8. Cargo configuration with source location indicated by arrow. 101,092 particles

detected, 100,095 background particles and 997 source particles. Exposure time is 9 hours

and 26 minutes.

304

6.1.3. Example #3305

Here we consider a somewhat more tenable scenario shown in Figure 9, where306

backprojection fails to detect the source, yet the network succeeds. In this case the exposure307

time is 50 minutes and 17 seconds for 100,866 particles. In this configuration several large308

blocks of iron are periodically tiled in the container, with the source located within one of309

the blocks.310

6.1.4. Example #4311

Now we consider a somewhat extreme scenario (Figure 10), where both approaches312

succeed in detecting the source. In this case the exposure time is 3 days and 12 hours313

for collecting 101,272 particles. In this configuration one very large block of iron in the314

center of the container surrounds the source. The source is still localized relatively well by315

backprojection for this scenario. Most of the cargo is filled with a homogeneous material,316

which might explain why backprojection did not fail.317
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Figure 9. Cargo configuration with source location indicated by arrow. 100,866 particles

detected, 99,867 background particles and 999 source particles. Exposure time is 50 minutes

and 17 seconds.
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Figure 10. Left: Backprojection with source detected. Right: Cargo configuration with

source location indicated by arrow. 101,272 particles detected, 100,328 background particles

and 944 source particles. Exposure time is 3 days and 12 hours.

6.1.5. Example #5318

Next, we consider a rather easy scenario (Figure 11), where both backprojection and319

the network succeed. In this case the exposure time is 276 milliseconds for 100,898 particles.320

In this configuration several small blocks of different materials are spread throughout the321

container. Only an insignificant amount of particles are scattered, so backprojection recovers322

the source distribution extremely well.323
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Figure 11. Left: Backprojection with source detected. Right: Cargo configuration with

source configuration indicated by arrow. 100,898 particles detected, 99,911 background

particles and 987 source particles. Exposure time is 276milliseconds.

6.2. Generalization to more complex scenarios324

Now we will include more complex situations, considerably different from the ones used for325

training. Namely, the corridors are not necessarily aligned vertically and horizontally, nor are326

intersecting corridors orthogonal. The algorithm of producing configurations was different327

from the one used in training. Additionally, we allow multiple sources to be present. The328

results show that the network passes well this generalization test.329

6.2.1. Example #6330

In this configuration (see Figure 12) several iron blocks are spread throughout the331

container, but a sufficient amount of low attenuating paths exist between the sources and332

detector arrays for backprojection to recover the sources well. There are two sources present333

very near to each other. This clearly aids the backprojection method in successfully detecting334

the sources. The CNN also succeeds in detecting presence of both of the sources. Here the335

exposure time is 649 milliseconds for 101,497 particles.336

6.2.2. Example #7337

In this configuration (Figure 13) several heavy iron blocks cut diagonally through the338

container slightly off-center. Three sources are present in this scenario, the two sources339

around the middle are localized well with backprojection, since most of the materials only340

weakly attenuate the signal, but the source on the other side of the heavy iron has several341

attenuating materials to contend with, so the backprojection smears its signature throughout342

the diagonal corridor it’s in. Both backprojection and the CNN successfully predict that there343

is a source, although backprojection fails to locate the third source. This third source may344

prove difficult for the CNN to contend with as well, as the CNN predicts there are only two345
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Figure 12. Left: Backprojection with source detected. Right: Cargo configuration with

source configuration indicated by arrow. 101,497 particles detected, 99,492 background

particles and 2,005 source particles. Exposure time is 649 milliseconds.

sources present. Here the exposure time is 371 milliseconds for 102,790 particles.
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Figure 13. Left: Backprojection with source detected. Right: Cargo configuration with

source configuration indicated by arrow. 102,790 particles detected, 99,846 background

particles and 2,944 source particles. Exposure time is 371 milliseconds.

346

6.2.3. Example #8347

Here several iron blocks surround the center of the container (Figure 14). Four sources348

are present in this scenario, two of them directly adjacent (and thus hard to distinguish in349

the picture) and all four are near the center of the container. In this case backprojection fails350

to localize any of the sources due the limited angular information in the signal as a result of351

the attenuating properties of the iron. The CNN, on the other hand succeeds in detecting352
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Deep learning for source detection 17

the presence of all four of the sources, even despite the close proximity of two of them. Here353

the exposure time is 1.97 seconds for 103,789 particles.
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Figure 14. Cargo configuration with source configuration indicated by arrow. 103,789

particles detected, 99,900 background particles and 3,889 source particles. Exposure time

is 1.97 seconds.

354

6.2.4. Example #9355

Finally, we consider a simple case where backprojection and the CNN both succeed. In356

this case there is ample angular information for backprojection to localize the source well357

and the CNN correctly predicts the presence of a single source. The exposure time is 21.92358

seconds for 100,672 particles. The configuration can be seen in Figure 15 below.
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Figure 15. Left: Backprojection with source detected. Right: Cargo configuration with

source configuration indicated by arrow. 100,672 particles detected, 99,683 background

particles and 989 source particles. Exposure time is 21.92 seconds.

359
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6.3. Performance on Large Scale Dataset360

To test the statistical performance of the CNN on a large scale, 1738 unique cargo361

configurations are generated using an alternate (to avoid possible inverse crime) generative362

scheme. For each cargo configuration all four linear detector arrays are present, from zero up363

to four sources are randomly placed and simulated independently, so that by using linearity364

of (2) we can produce 1738× 16 = 27808 testing samples. Particle detections are simulated365

for an exposure time measured by the expected background detection levels of 20000, 50000366

and 100000 particles. The data were fed into the trained CNN for source presence detection.367

The results for presence detection are summarized in Table 3 below. The results obtained368

clearly confirm our expectations (see Section 1).369

Expected Particle Count Sensitivity Specificity

100000 99.90% 99.71%

50000 99.78% 94.59%

20000 99.81% 36.36%

Table 3. Sensitivity and specificity of the CNN source detection with each source having

1% SNR.

We remind the reader that sensitivity, or true positive rate, shows the success of370

determining the presence of a source (i.e., few false negatives), while specificity reflects371

how well the absence of the source is detected (i.e., few false positives). High specificity was372

hardwired into the BP techniques [5, 6], it was only the sensitivity that was questionable.373

The accuracy of the prediction generally increases with particle count (and thus374

observation time), and sufficient particle counts are required for successful detection. At375

the low levels (e.g., of 20000 particles and lower) the network seems biased to think that376

a source is always present. This clearly leads to near 100% sensitivity and an extremely377

low specificity, which makes the detection practically not feasible, due to high level of false378

positives.. An explanation could be that the features that are being detected (albeit we do379

not know what they are) are non-smooth, vs. large smooth background. When the total380

count is low, the whole dataset becomes non-smooth, which tricks the network.381

For comparison, we show below the analogous backprojection results, which are382

significantly worse. This is not surprising, since the basic assumptions for this technique383

are not satisfied. For 105 particles CNN succeeds extremely well and beats hands down the384

backprojection technique, which often does not show any statistically significant deviations385

and thus does not detect presence of the source. Notice that six times higher number of386

detected particles was required in [5, 33] for backprojection stable detection, even without387

complex cargo being involved.388
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Deep learning for source detection 19

Expected Particle Count Sensitivity Specificity

100000 71.04% 99.31%

50000 65.55% 99.31%

20000 52.13% 98.91%

Table 4. Sensitivity and specificity of the backprojection source detection with each source

having 1% SNR.

6.4. Number of sources and number of detector arrays389

Here we address the question of whether one has to completely surround the object with four390

detectors, or some results can be achieved with three, two, or one flat detector arrays. We391

thus have simulated each cargo configuration with zero to four independent sources randomly392

placed. Just as with the training data, we take several combinations of which sources and393

detector arrays are present. The combinations are summarized in Table 5 below.

Number

of

Sources

One

Detector

Two

Adjacent

Detectors

Two

Opposite

Detectors

Three

Detectors

Four

Detectors

Total

0 6952 6952 3476 6952 1738 26070

1 27808 27808 13904 27808 6952 104280

2 41712 41712 20856 41712 10428 156420

3 27808 27808 13904 27808 6952 104280

4 6952 6952 3476 6952 1738 26070

Total 111232 111232 55616 111232 27808 417120

Table 5. Number of testing samples in each category

394

Particle detections are simulated for an exposure time measured by the expected395

background detection levels of 20000, 50000 and 100000 particles. The data were fed into396

the trained CNN for inference. The results for presence detection are summarized in the bar397

graphs below, with detailed tables posted in [8].398

Additionally, we investigated the effect of scaling the strength of each source so that399

altogether they had the same strength as a single source, thus effectively diluting the localized400

signature of the source. In the case of backprojection the localized nature of the source is401

the key justification for the method of [5]. This would lead one to believe that splitting the402

source strength will make it more difficult for the CNN to detect any source presence, which403

is indeed confirmed by the results summarized in Table 6 below.404

6.5. Observation time405

The above results are presented in terms of the total number of particles detected. The406

conclusion is natural: the larger - the better. The number of detected particles obviously407
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Figure 16. Sensitivity and specificity of the source detection.
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Figure 17. Accuracy of the number of source detection.
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Expected Particle Count Sensitivity

one

source

Sensitivity

two

sources

Sensitivity

three

sources

Sensitivity

four

sources

Specificity

100000 99.74% 96.57% 89.67% 82.62% 99.71%

50000 99.68% 97.25% 93.51% 89.13% 94.59%

20000 99.99% 99.95% 99.86% 99.77% 36.36%

Table 6. Sensitivity and specificity of the source detection techniques with split source

strength.

increases with (essentially proportional to) the time of observation. However, the slope of408

this increase clearly depends significantly on the type and configuration of the cargo. Thus,409

the exposure time required to reach a certain level of particle detections is a function of410

the configuration of the cargo, including source location, material composition, material411

placement, and background strength. This makes it difficult to predict boundary flux rates,412

even if the configuration is known, without solving the Boltzmann equation (2).413

To make a fair numerical experiment, many heavily iron (and thus very shielding) cargo414

scenarios have been included. Namely, the set of all samples have been divided into 24 sets of415

equal size, and the probability of choosing iron as the filling of boxes was increasing linearly416

from zero in the first group to almost one in the 24th one. Figure 18 contains the histogram417

of the number of runs vs. time required for detection for thousands of configuration runs418

for detecting the presence of a source emitting on the order of 1000 particles (assuming four419

detectors). The vast majority would require time measured in seconds.420

Generally speaking, one would epect the large bin on the left-hand side to correspond421

to configurations with less high-Z materials, and the larger bins on the right-hand side422

correspond to configurations with more high-Z materials. It can certainly become unrealistic423

to detect many source particles in some of the latter cases. Nevertheless, as is evidenced by424

some of the examples presented, as well as statistics presented in Section 6.3, quite a few425

configurations of high-Z material exist where presence of source(s) source can be detected426

in a reasonable amount of time. These lower exposure time scenarios would be the most427

appropriate cases for detecting illicit nuclear materials at border crossings. Some of the428

longer exposure times (on the order of several minutes to perhaps several days) would be429

appropriate for detection of illicit nuclear materials in shipping containers on cargo ships,430

where scanning can be done while the container is in transit.431

Additionally, it is important to note that if one restricts oneself to a smaller number of432

detector arrays (incomplete view), it will take longer to reach the same exposure level and433

thus would add to the number of undetected cases.434
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Figure 18. Histogram of the number of runs vs. exposure times required for detection

for the testing data set. These times are computed in the case that all four linear detector

arrays are present and anywhere between one and four sources are present.

7. Remarks and Conclusions435

• Our work shows that the deep learning approach significantly improves over detection by436

backprojection techniques of [6,30,33] and works for complex attenuating and scattering437

cargo scenarios, where the latter fails completely. This confirms the opinion expressed438

in [6] that some information about source presence was there.439

• This article concentrates on the cases of presence of complex cargo and much (an order440

of magnitude) lower number of γ-photon detected than in [5, 33]. This makes the441

backprojection detection algorithm of these works not only weak, but also groundless.442

• The network performs well detecting the number of up to four sources (although443

naturally somewhat less successfully than detecting mere presence of a source).444

• The authors want to make clear that when producing the results of this paper, no445

processing (e.g., backprojecting) of the raw detector data is done before feeding it to the446

network. Since the authors do not know what features would be of importance, we have447

decided to not impose our prejudices on the data (especially taking into account that448

backprojection is a smoothing operator, and the relevant information is most probably449

contained in some sharper features).450

• The exposure time required for detection is discussed in Section 6.5. The histogram in451

Figure 18 shows detection in a matter of second for a vast majority of configurations.452

It is clear that there are some unbeatable shieldings, so one cannot aim for the 100%453

success rate. In such cases, other detection techniques could be used: from methods454

of detecting presence of significant amounts of (shielding) high-Z materials, to neutron455

emission detection, to human intelligence.456
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• A strong effort has been made to avoid committing an inverse crime. The testing samples457

have been produced by an algorithm independent of the one used for the training data.458

The testing cargo geometries were different from the ones not encountered in the training459

data, so there was no intersection between the two data-sets.460

• A variety of symmetry rules, including rotational symmetry and mirror symmetry were461

applied randomly to some of the configurations and their material content, to check462

whether presence or absence of the symmetry influence the detectability. The network463

performance does not seem to react to this.464

• The reader should not think that retraining was needed for different tasks and situations,465

e.g. for heavy iron cargo, or for detecting the number of sources, rather their mere466

presence. This all was done with a single trained network.467

• Four planar Compton detectors forming a square surrounding the object of interrogation468

were assumed. It seems that this is the most practical design of such detectors. Effects469

of removal of some of the detectors have also been studied (Section 6.4).470

The rectangular shape causes some problems, though, e.g. in backprojection method471

they create (easily removable) corner artifacts. More importantly, this design lacks full472

rotational invariance, which could be beneficial for the NN design. On the other hand,473

the rectangular case is challenged by appearance of tilted cargo structures in the test474

samples, while they were absent in the training data. The network, however, clearly has475

overcome this difficulty.476

• Deep learning techniques have been applied for SPECT image reconstruction, but as it477

has been mentioned in the text the level of SNR we are dealing with in this work makes478

any attempt to image reconstruction rather than binary detection impossible.479

• There are various further improvements that one should attempt (and are being480

attempted). Some of them are addressed below.481

(i) It would have been great to figure out what specifically were the signs of presence482

of the source that the network has learned. This would open a door for developing483

more analytic methods. However, at this moment the authors do not know what484

these features are.485

(ii) Producing many more training data is a serious stumbling block in 2D, and486

especially in 3D case.487

(iii) The CNN architecture should be improved, aiming to reach shorter observation488

time and even lower SNR levels.489

(iv) We are working on moving to the more realistic 3D situation. The significant490

difference here is, first, the much higher dimensionality of the data (5D) and491

corresponding much more massive computations that are needed. Second, in492

3D, unlike 2D (where a cone consists just of two rays), the Compton data differ493

significantly from the usual Radon ones. In particular, an issue arises of how to bin494

the five-dimensional Compton data in such a way, that the use of CNN could be495

warranted.496
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(v) The neural network (NN) approach should be tested on real data, which the authors497

clearly do not have. However, the radiative transport forward computations we498

used are commonly practiced in nuclear engineering, seem to be very realistic, and499

involve realistic material parameters. There is a chance that when novel neutron500

detectors that are being developed are deployed, we could get some real data.501

(vi) The approach we describe indicates presence of a source, but not its location (at502

least in the heavy iron cargo case). One wonders whether location can also be503

attempted.504

(vii) Although the results presented have been obtained by the same once trained NN,505

during research various designs of the NN and training sets have been experimented506

with, all showing consistent ability of detection. It would be still important to study507

further the model uncertainty (e.g., by using the dropout technique [14]). This will508

be done in a future work.509

Meanwhile, although the testing samples often deviated from the structures used510

in the training set, our results have shown that the NN generalized extremely well.511

High experimental levels of the sensitivity and specificity, as well as more detailed512

information presented in Section 6.3 about statistical spread of the results instill513

confidence in the suitability of the network as a detection tool.514

The imperfection of Compton camera detections has been partially addressed by515

randomizing the source strength and location and finite bin sizes for the detected516

data. Depending on the quality of the future detectors, the bin sizes might have to517

be increased and new study conducted.518

(viii) When source particles scatter they lose energy. If source particles downscatter to519

lower energy groups we will lose them in our data since we only use the highest520

energy group. It would be interesting to try and use these lower energy groups in521

either a 3D convolution with 1 channel or a 2D convolution with multiple channels522

to see if we can get better results.523
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9. Appendix: Algorithm for Procedural Generation of Cargo Configurations604

Algorithm 1: Procedural Cargo Configuration

Generate Perlin noise in cargo;

Initialize nx and ny to desired number of vertical and horizontal boundaries

(numbers can be chosen randomly);

Sum Perlin noise over rows and columns to produce noise function on edge of cargo;

Randomly select nx distinct x−coordinates for vertical boundaries and ny distinct

y−coordinates for horizontal boundaries according to edge noise functions. Store

in x and y respectively.;

niter = 0 ;

while nx > 0 or ny > 0 do

if niter is even and nx > 0 then
Determine all existing boundary points along the line (x[niter/2], y).

Randomly select a starting point ys and ending point ye from among the

existing boundary points according to previously generated Perlin noise.

Set all points between (x[niter/2], ys) and (x[niter/2], ye) to boundary

points.;

nx = nx − 1;

niter = niter + 1;

else if niter is odd and ny > 0 then
Determine all existing boundary points along the line (x, (y[(niter − 1)/2]).

Randomly select a starting point xs and ending point xe from among the

existing boundary points according to previously generated Perlin noise.

Set all points between (xs, (y[(niter − 1)/2]) and (xe, (y[(niter − 1)/2]) to

boundary points.;

ny = ny − 1;

niter = niter + 1;

end

Identify connected components (Scipy.Measure.Label);

if Rotational Symmetry Desired then
Copy one quadrant of the configuration over all others with appropriate

rotation;

if Mirror Symmetry Desired then

Copy one side of the configuration over the other with mirroring ;

... Randomly assign material identification to each connected component ;

Save configuration to file;

Result: Single cargo configuration
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