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Abstract. Methods for source detection in high noise,environments are important for
single-photon emission computed tomography’ (SPECT) medical imaging and especially
crucial for homeland security applications, which is our'main interest. In the latter case, one
deals with passively detecting the presence of low emission nuclear sources with significant
background noise (with Signal To Noisé Ratio (SNR) 1% or less). In passive emission
problems, direction sensitive detectors are/ needed, to match the dimensionalities of the
image and the data. Collimation, used for'that purpose in standard Anger y-cameras, is
not an option. Instead, Compton y-cameras (and their analogs for other types of radiation)
can be utilized. Backprojection methods suggested before by two of the authors and their
collaborators enable detection'insthe presence of a random uniform background. In most
practical applications, however, cargo packing in shipping containers and trucks creates
regions of strong absorption and seattering, while leaving some streaming gaps open. In such
cases backprojectiommethods prove ineffective and lose their detection ability. Nonetheless,
visual perception of the backprojection pictures suggested that some indications of presence
of a source might still be'in, the data. To learn such features (if they do exist), a deep
neural network approach is implemented in 2D, which indeed exhibits higher sensitivity and
specificity thansherbackprojection techniques in a low scattering case and works well when
presence of complex cargo makes backprojection fail completely.

source deteetion, Compton camera, illicit nuclear material
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1. Introduction

Checking for presence of illicit nuclear materials (most probably in small quantities, and
shielded by cargo) at border crossings and shipping cargo container§ in harbors is an
important homeland security task. Ideally, one would try to reconstruct fromythe detected
signals the source distribution inside the cargo. When the data is sufficiently well"behaved
(e.g., in SPECT), analytic reconstruction is often possible [30]. However, ima very low SNR
environment, as in the case of illicit nuclear source detection, this is smpossible. Indeed, the
forward analytic (integral transform type) models are not applicable;,Moreover, even if they
were, attempts of any filtration in FBP-type techniques lead to réconstruetion deterioration.
The saving grace is that in this case practitioners are mostly intérested in getting reliable
(i.e., with low rates of false positives and false negatives) informatiom’about the presence of
a source, rather than its exact location.

In passive emission imaging, detectors must be direction semsitive. Indeed, otherwise the
data measured has insufficient dimension for recovery of amyimage. Directional information
is especially critical when SNR is too low for the intemsity/fluctuations that arise due to
the presence of a source to be statistically significant. The following options for obtaining
directional sensitivity are available:

e Mechanical collimation, when only rays‘incident along (or close to) a certain line are
allowed to reach the detector (see Section 2). This, while determining the incoming

photon’s direction, significantly reduces the signal strength and thus becomes unsuitable
for low SNR.

o Compton y-cameras reptesent a more recent, and gaining its appreciation, type of ~
radiation detectors that determine a surface cone of possible incident trajectories, rather
than the exact directions.

e Neutron detectors are being developed that (albeit based on different physics principles)
produce similar cone information and lead to similar mathematical analysis.

Backprojection detection techmique introduced in [5, 33] relied upon finding suspicious
locations. It utilized.the following three assumptions:

(i) geometric smallness of the source (usually of linear dimension on the order of 1% of the
linear cargo.size);

(ii) existence of a sufficient number of particles from the source reaching the detector being
ballistic (nen=scattered);

(iii) unstructured strong random background.

Thezdea is rather simple: backprojecting the incoming trajectories (or, in the Compton case,
the 'whole surface cones of possible trajectories) of particles, one hopes that maybe, due to
sufficient presence of ballistic particles detected from the source, one can see a statistically
significant accumulation at the geometrically small source’s location (see Fig. 1)
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Figure 1. An idea of the backprojection method.

Analysis done in [5] provided a crude formula for the total mamber'N" of particles (and
thus observation time) needed to make detection with high (on the®rder of 99%) sensitivity
and specificity (i.e., with low levels of false negatives and false,positives).

Nz (%) p(1-p), 1)

Here p is the ratio of the linear dimension of the source telative to the dimension of the cargo
and S is the SNR, defined as the proportion of the ballistic particles from the source versus
the total number of source and backgrouud particles. In the cases considered in [5] N had
to be on the order of 600000, which is not untrealistie:for v photons not screened by heavily
shielding cargo. High specificity has been hardwired into the method, so satisfying (1) was
only needed in [5,6] to ensure high Sensitivity-

The implementation of the teehnique worked as follows [5, 6]: the data was
backprojected, which resulted in a large background level throughout the volume. When
the object was completely surrounded by detectors, this level was essentially constant and
the mean was removed. When/the detectors did not surround the object completely (e.g.,
no detector below the object), the global mean is irrelevant, and at each location the mean
over a smaller patch was removed. After this clean-up the locations with an intensity less
than five standard deviations above the mean suggested by the Central Limit Theorem were
cut off. The results were interpreted as indications of a source being present. Thousands
of Monte Carlo simulationg,showed that the inequality (1) performs well and if N is at or
above this threshold, detection occurs with high sensitivity and specificity 1.

This techniqueworks reasonably well in the absence of complex cargo, but starts failing
if such cargo 48 present [6], due to the second and third assumptions being inapplicables.
However, visual inspection of the backprojected data (see [6]) seems to indicate that the
data mightystill'éontain a signature of the source presence. Indeed, when the method of [5]
was applied tosome cases of complex cargo in [6], despite its failure to detect presence
of thegsoureey'such signatures (e.g., different highlighting of the pathways between cargo
boxes) seemed to appear only when a source was present (see Figure 2). The reader should

1 An alternative Bayesian approach was implemented in [33].
g Lhis cargo problem is mostly non-existent when detecting neutrons coming from the source. However,
some other (non-mathematical) issues arise, such as for instance lower number of particles detected.
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take into account that the color scales are different in the three pictures there and assigned
automatically by the visualization software. This is of no importance, since itssnot the
intensity, but rather the patterns of highlighted pathways between boxes seem,different.

t*‘ N
K7 &6
o o LA

i -

Figure 2. (Left): Example of complex cargo configuration for which backprojection
methods fail (i.e., no statistically suspicious locatiofis,are found). The red spot denotes the
source location, the grey area represents iron and the white area represents air. (Middle):
Backprojection results in absence of source. (Right): Backprojection results in presence of
source.

No model of this effect has been developedy no telling features have been learned, and
thus no detection algorithm came out of such observations.

This has led the authors to attempt deep learning for the source inference in the
hope that a network could learn what we,couldrnot. Our main goal is to detect the
presence/absence of a source, not/mecessarily its location. If there is high probability of
presence of the source, in practice one would check the cargo with other (hand-held) devices.
However, one also needs to achieve high speeificity, to avoid large numbers of false positives.

One should note that ‘quality of tomographic image reconstructions using neural
networks has been questioned recentlyy see e.g. [7,8]. This critique, however, does not apply
to the problem at hand, where we only look for a binary output rather than an image.

We describe now thesstructure of the article. Section 2 contains a brief description
of the Compton type cameras and references to the known analytic approaches. Success
of deploying neural networks is predicated upon our access to sufficient data for neural
network training. Thus, the first step - generating various complex cargo scenarios is
described in Section 3.7\ To avoid the inverse crime (overfitting), different processes of
generating cargos are used for creating training and testing samples. Then, in absence
of real data (which,would require having weapons grade nuclear materials and physically
creating thousands of different cargoes), we use (Section 4) the technique of forward radiation
transport’simulations customarily used in nuclear engineering. As has been mentioned, the
actual type of radiation is mathematically irrelevant, but to be close to real world scenarios
and mumerical parameter values, the case of y-photons coming from an U-238 source and
real world material parameters for cargo are used. The design of the network is described
in section 5. The results are presented in Section 6. Additional remarks can be found in
section 7. Acknowledgements are provided in section 8. The algorithm description is located
in the Appendix.
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2. Collimated and Compton y-Cameras

Mechanical collimators (see Figure 3) can be installed in front of a direction insensitive
~v—camera to block all particles but those incident along (or close to) a desired trajectory.
Mechanical collimators are widely used in medical imaging. They, howeyery significantly

.2

Figure 3. Light collimation diagram

attenuate the signal and require rotating the deteetor (or'the object). In the applications
with sufficiently high SN R, this additional data loss is mot such a problem. In dealing with
low SN R signals however, this renders recovery of weak signals impossible. For this reason
one can consider Compton type cameras instead.:

The Compton camera is a type of v-particle detector|| that does not attenuate the
incident particles. The price to payuis that it. provides less precise direction information
than collimation would give. Namely, only a surface cone of possible incoming directions
is measured rather than a preeise trajectory (see Fig 4). In the absence of mechanical

Detection Cone

True/rajectory ™~

Central Cone Axis

" Detector

Figure 4. Surface cone produced by Compton camera from particle detection

collimation, signal strength is effectively maintained, although the directional information
is less precise and thus data analysis becomes more complex. On the other hand, the data
provided is significantly over-determined (e.g., the space of cones in 3D is five-dimensional,

| As we have mentioned before, novel neutron detectors (albeit based upon different physics rather than
Compton scattering) that provide mostly similar cone information are currently being developed.
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versus the unknown distribution being three-dimensional). This turns out not toybe a
bad thing at all, but rather a blessing for stable inversion (see [30] for details and,further
references).

A variety of exact inversion formulas from Compton data of filtered-backprojeetion and
other types have been developed and implemented (see [30] and references therein). WThe
choices are much more diverse than for the usual Radon transform inversions (see [24]). “The
reason is that the Compton data is highly overdetermined. It was shown that. this feature
can be used to get high quality reconstructions in SPECT in presence of 50% noise and
higher. However, this is a far cry from the low SNRs encountered in the homeland security
problems described above.

3. Simulating Cargo Scenarios

If one intends to tackle a problem using deep learningg.it is natural to start by acquiring
large amounts of training and testing data.

In order to obtain rich training data for a neural metwork, at least thousands (better
hundreds of thousands or millions) of cargo configurations are needed. Due to the sensitive
nature of the materials involved in this work, we are unable to procure real-world data, so we
resort to synthetic simulation. The high ecomputation costs of these simulations restricted
us to several thousands of samples, reaching up to 4 10°. However, our results (see Section
6) already show a success in detection:

To start, we randomly produce several thousand cargo configurations and compute
forward radiation data simulations with upyto four randomly placed sources and without
them for each one. In order topavoid overfitting (and an inverse crime), different cargo
generation procedures are used/for preducing the training and testing data.

3.1. Procedural Generation of Training Cargo Configurations

A square cargo hold ‘of Size of :2:4m x 2.4m is assumed and partitioned into 2.4cm X 2.4cm
cells (the possible source would occupy one of them). Each cell can be indexed via a pair of
row and column indieesy, (7, ), with 1 < 7,5 < 100 and is assigned a material identification
number /D; ;. These numbers correspond to a variety of materials, including Air, concrete,
highly enrichedsuraniumy; iron, cotton, wood, plastic, and fertilized (their detailed chemical
content described in)[6]).

Real cargontypically consists of several boxes with small spaces in between. In order
to emulate thisy an algorithm is implemented to generate different cargo configurations. It
consists ofithree main steps:

e A network of several horizontal and vertical “corridors” between boxes with random
widths and locations is generated. The number of corridors ¢ is selected randomly in a
desired range ¢pin < ¢ < Cras-

Page 6 of 27
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o . . o .
. . . . .

Figure 5. A selection of cargo configurations procedurally generated via Algorithm 1

e The resulting configurations are unlikely to be symmetric, while real cargo might happen
to be symmetric. To check whether symmetry plays any rele in detectability ¥, a portion
of the samples produced are “symmetrized” by enforeing various (rotation and mirror)
symmetry rules.

e Connected components of the rest of the space are identified as distinct “cargo boxes.”
Then material contents are assigned ‘to all. boxes. In a subset of (rather than all)
symmetric cargo configurations, material, contents are also “symmetrized” according to
the corresponding rule.

Generating the corridors between pieees.of cargo is performed using a modification of
the procedure outlined in [11]for generating road networks. For the training set, we only
use networks consisting of horizontal and vertical segments, while for the testing set tilted
and non-orthogonal pathways are allowed.

Remark. Instead of selecting corridor locations uniformly randomly, their locations for
training are selected according to a probability distribution generated from a type of gradient
noise developed in [25)in order to automate the production of realistic looking textures in
computer graphics. A different algorithm is used for testing samples.

Identification of conmected components (“boxes”) is performed using SciPy’s (Scientific
Python, a popular RPython package for scientific computing [17]) implementation of the
algorithms outlined.in [32].

The entire generation’procedure is summarized in Algorithm 1 in the Appendix (Section
9).

3.2. fProcedural Generation of Testing Cargo Configurations

To aveid the inverse crime of overfitting, testing configurations are produced by a somewhat
similar, but independent algorithm. Namely, the middle points, the lengths and width of the

¥ Disclosure: Our results show that symmetries do not influence detectability.
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corridors are selected randomly and independently. Moreover, the corridors are not required
to be vertical or horizontal, or even orthogonal at their intersections anymore. Einding the
boxes (connected components of the complement) and filling them with materials is\also
done randomly, similarly to the training case.

3.3. Source placement

A source of a (randomized) strength corresponding to approximately 1% SNR is placed
randomly into the cargo.

Multiple sources (0, 1,2,3, or 4) are also modeled to see théweffeetion detection. Two
scenarios are used:

(i) when all the sources have the same strength ~ 1% SNR
and

(ii) when the strength of the source is diluted between'Several locations.

One naturally expects deterioration of the detection/imithe 2nd case, while a prior: it would
not be surprising if it happened in the 1st as welly(althouigh our results will demonstrate
that this does not happen). Indeed, the backprojection detection, as well most probably
the one by deep networks, if successful; should use some geometric assumptions (e.g.,
geometric smallness of the source), since the source’s strength alone would not be statistically
significant. Thus, multiplying the number of sources in principle might degrade the geometric
features of importance (albeit one’does not know what these are).

4. Forward radiation simulations

As previously mentioned, the nature of particles is irrelevant, but in order to be in realistic
situations, the v particle detectioniissconsidered, where the material parameters and emission
and background rates that are used assume realistic values.

After the cargo scenarioshas been created, one needs to simulate training and testing
data by solving a massive forward radiation transport computation. Fortunately, reliable
simulation tools have been developed by nuclear engineering researchers.

4.1. Physics Preliminary

U-238 (Uraniwm-238) photons from the 1.001 MeV emission line have mean-free-path in
high-Z materials sufficiently high to be detected outside the container (13.3mm mean-free-
paths) [28]. In' our application, sources of background radiation include a concrete base
located some distance below the container. (Cosmic rays and other natural sources can be
easily included and do not influence the results much.) These background sources radiate at
much higher energies than 1.001 MeV, including 1.461 MeV from Potassium-40, 1.12 MeV
and.1.76 MeV from Bismuth-214, and 2.61 MeV from Thallium-208 (Bismuth and Thallium
are products of the decay of Uranium-238 and Thorium 232 respectively, and are present in

Page 8 of 27
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trace amounts in concrete). Gamma photons which downscatter from these sources ito the
energy group surrounding the 1.001 MeV line account for the noise in our signalesGamma
photons from the source will also undergo scattering and absorption within the yolume of the
container, which will reduce the number of ballistic source particles reaching the detectors
placed around the container, thus weakening the signal.

4.2. Mathematics of the forward radiation data simulation
The radiation transport within the cargo container is modeled by the linear Boltzmann
equation, given below using the multigroup approximation:

G l

Q- V + S9(F)WI(F, ZZEQ )Y B (7 Q? (7, ) (2)

'=1 =0 m==l

~

where 7 € D is the position, Q) € S? the set of discreté"directions and g € [1,G] the energy
group. D is the volume of the cargo container, S? is the unit sphere, G is the total number of
energy groups, U9 is the photon angular flux in the.energy group g, X7 is the total interaction

/
. o
cross section in group g, X779

is the [*"—Legendre moment of the scattering cross section
from group ¢ to group g, L is the maximum anisotropy expansion order, and (9 is the
volumetric source of photons in group g (stemming from the U-238 source). The moments

of the angular flux are given by
&, (7) = / Vi ()09 (7, ) d (3)
4

where Y], is the spherical harmonic of order of [ and degree m. Eq. (2) is supplied with
boundary conditions:
UIE Q)= W (7 Q)  ViedD” (4)
where 9D~ is the incoming beundary defined as 9D~ = {7 € 9D such that Q-7(7) < 0} with
() the outward unitynérmabwector at position 7. The function h9 describes the background
radiation due to a large eonarete slab underneath the container, as previously described.
Cross sections for garious materials were generated using NJOY-99 [23]. The multigroup
structure employed ranges from 1.00099 MeV to 2.61449 MeV with narrow bands centered
at the radiatiomglines ofrthe background and U-238.
For the purposes of this paper, calculations are carried out in two-dimensional space
and only the energy group corresponding to the 1.001 MeV line is considered after solving
Eq. (2)./The photon transport equation, Eq. (2), is discretized using standard techniques:

(i) Sp product Gauss-Legendre-Tchebychev angular quadrature [27] is employed (only a
small number of polar angles are needed, but a very high number of azimuthal angles
aremnéeded to resolve properly the angular distribution in the 2D domain.)

(it).Spatial discretization based on a standard bilinear discontinuous finite element technique
with upwinding at cell interfaces. [26,31]
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(iii) Transport sweeps and Source Iteration are employed to solve the resulting system. [21]

Once the transport equation (2) has been solved, the outgoing angular photon flux‘at any
boundary edge in 2D is recorded, which serves as the input data for use in Deep Learning
and Backprojection.

Once configurations have been generated, a radiating source emitting an. expected
8042.17 photons per second at 1.001 MeV is randomly placed, a forward radiative transfer
equation is solved, and from its solution the radiation angular fluxndistribution on the
boundary of the cargo is collected.

Due to linearity of (2), the situations of presence of zero to four randemly placed sources
could (and were) easily incorporated.

5. Convolutional Neural Network

Using a fully connected network for the problem seemsito be hardly feasible even in 2D,
less so in 3D, in particular due to high dimensionality of the' Compton camera data. The
saving grace here is that, as in many imaging problems [22]yone expects that the important
correlations occur mostly between close pixels, and hence convolutional neural networks,
which are much more compact due to weight,sharing, offer a hope. We thus construct, train,
and test a deep convolutional neural network (GNN), This hand-waving argument for using
CNN needs to be confirmed by computationsy which is done in this text.

The suggested CNN architecture is summarized in Figure 6 below. The input data
dimension is 144 x 103 = 400 x 360 x I, as we model 400 equally spaced detectors with
360 equally spaced angular bins and only one energy bin is used. The network is trained
on 1689 unique simulated cargo_configurations with varying numbers of sources present. By
exploiting the fact that the Boltzmanniequation (2) is linear, we can produce multiple new
samples from each configuration by.taking varying combinations of sources and detectors.
We simulate up to four sourges per configuration, and four linear arrays of detectors along
each edge of the cargos This leads to a total of 1689 x 15 x 16 = 405360 total samples.
The various combinations,are,summarized in Table 1 Below. The output of the CNN is two

Number One Two Two Three Four Total
of Deteetor’ | Adjacent | Opposite | Detectors | Detectors
Sources Detectors | Detectors
0 6756 6756 3378 6756 1689 25335
1 27024 27024 13512 27024 6756 101340
2 40536 40536 20268 40536 10134 152010
3 27024 27024 13512 27024 6756 101340
4 6756 6756 3378 6756 1689 25335
Total 108096 108096 54048 108096 27024 405360

Table 1. Number of training samples in each category

Page 10 of 27
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probability measures: Py on {0,1} and P, on {0,1,2,3,4}. A source is determinedsto be
present if P(z = 1) > 0.5, and absent otherwise. P, predicts the number of sourcesspresent,
which we set to k = argmax,;<4P,(z = j). The loss function used for trainingis the binary
cross-entropy loss:

L(y,§) = —ylog g — (1 —y)log(1 — ), ()
where y is the network prediction and ¢ is the target value (see [13])s. The 'CNN was
trained on simulations of a localized source in the presence of high baeckground noise
(SNR = 0.01). In all cases, early stopping is used to halt training before over-fitting.
The various hyper-parameter values used in training are summarized innFable 2 below. The
CNN is implemented using Keras with Tensorflow as its backend. Keras is a high level API
(Application Programming Interface) for interfacing with maghine learning toolkits such as
Tensorflow, Theano, and Microsoft Cognitive Toolkit. It helps stzeamline the construction
and training of neural networks [12]. Tensorflow is Google’s machine learning toolkit and was
chosen due to its scalability, wide range of features, and the wide range of documentation
and tutorials available [1]. Any parameters not explicitly mentioned here were set to default
values.

) Dense 128 X3
| — %ﬁlﬁ}% AN

H =

—ai . 32 filters X2 64 filters X2
16 filters X2

o

8 filters X2

Dense 2
+

4 filters X2
| i Dense 5

Figure 6. CNN architecture used for source detection. The left-most cell shows an example
of the detector data input to the CNN. 2 x 2 Max pooling layers are placed after every second
convolutional layer.

6. Results

After training/the CNN, /we considered a large variety of cargo scenarios to test and to
comparesand contrast the performance of the CNN against the backprojection method
of [5,6]. "We detail some interesting specific example scenarios in Sections 6.1 and 6.2. We
thendnvestigate the statistical performance of the CNN on large scale data sets to evaluate
the sensitivity and specificity of the CNN in Section 6.3, and to assess its performance
with different numbers of sources and detectors in Section 6.4. Finally, in Section 6.5 we
discuss the relation between cargo configuration and exposure time and how this affects the
practicality of our technique.
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Optimization Method

Adam (See [18])

Activation RELU (Softmax at output)
Bias True
Convolution Window Size 3x3 &
Learning Rate 2.0 x 1075
Learning Rate Decay Rate 0
Batch Size 4
Early Stopping Patience 3 epochs

Loss

Binary Cross-Entr

Table 2. Hyper-parameters used during training

6.1. Example Scenarios

in Figure 7 below. The backprojection prec

icles).
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We describe now several (out of many, see later on in thi t) sample results of testing the
trained network on various scenarios not included i training set.

Example #1

This configuration (right) as well as roje (left) with source present is shown
escribed in the Introduction did not
e, however, show the raw (not cleaned
tice the corridor highlighting phenomenon
hand, succeeds in detecting presence of the
iron configurations which has a shorter exposure time (18

air

concrete
Il plastic
B iron (100%)
I iron (50%)
Il iron (40%)

cotton
s wood
Il fertilizer
. U-238

Figure 7. Left: Backprojection with no source detected. Right: Cargo configuration with
source location indicated by arrow. 101,180 particles detected, 100,185 background particles
and 995 source particles. Exposure time is 18 seconds.
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6.1.2.  Example #2

Next we consider the scenario shown in Figure 8, where backprojection failsste. detect
the source (and thus is not shown), but the network succeeds. Here the exposure time
needed for the detection is significantly longer. In this configuration a long thickiiron’slab
effectively blocks one side of the detectors. Smaller chunks of iron spread’ threughout,the
container further attenuate the signal along certain trajectories. As a result, it would take
9 hours and 26 minutes to detect the needed 101,092 particles. Unless oneis talking about
a shipping container, this is practically unfeasible. As the results in/Section 6.3 show, twice
shorter time would still do decently, and even five times shorter time might sometimes be
used, although at the expense of higher false positive rate.

ot L
192 air
6o 7 concrete
v I plastic
anc® T e ‘- iron (100%)
B iron (50%)
4200 M iron (40%)
] cotton
966“ B wood
oo . fertilizer
T A - U238
8¢ |
28
N S NN
Q(' b‘(’ %(, ,L(z b(z Qb b‘(a %b ,1((/ b(/ Qb
TR AV R A o PG O

Figure 8. Cargo/configuration with source location indicated by arrow. 101,092 particles
detected, 100,095 background particles and 997 source particles. Exposure time is 9 hours
and 26 minutes.

6.1.3.  FExample #3

Here we consider ,a somewhat more tenable scenario shown in Figure 9, where
backprojection fails to. detectithe source, yet the network succeeds. In this case the exposure
time is 50 minutes and 17 seconds for 100,866 particles. In this configuration several large

blocks of iron are periodically tiled in the container, with the source located within one of
the blocks.

6.1.4. MFxample #/

Now, we consider a somewhat extreme scenario (Figure 10), where both approaches
succeed in detecting the source. In this case the exposure time is 3 days and 12 hours
for ‘eollecting 101,272 particles. In this configuration one very large block of iron in the
center of the container surrounds the source. The source is still localized relatively well by
backprojection for this scenario. Most of the cargo is filled with a homogeneous material,
which might explain why backprojection did not fail.
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air .
[0 concrete
I plastic
B iron (100%)
I iron (50%)
I iron (40%)

cotton
. wood
. fertilizer
. U-238
43¢
28 ]
e e S e e S e o
& a8 o & & b o F &
'»v'\ta\;»\y\p@,f,mv

Figure 9. Cargo configuration with source locati
detected, 99,867 background particles and 999 source
and 17 seconds.
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Figure 10. : Backprojection with source detected. Right: Cargo configuration with
source | on ndi d by arrow. 101,272 particles detected, 100,328 background particles

and 944 articles. Exposure time is 3 days and 12 hours.
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6.1.5.  Exampl
Next, w i rather easy scenario (Figure 11), where both backprojection and
the network eed. In this case the exposure time is 276 milliseconds for 100,898 particles.
In this comfigu several small blocks of different materials are spread throughout the
container. Only an insignificant amount of particles are scattered, so backprojection recovers
cbb

the s ution extremely well.

v
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3
4
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14 2 | ac® m
15 e | e ]
16 Qcmo(z& ;& %I(»& ;@ ;@ Ib& Ib& Ib& I(z& I(z& (,& ccm (;6\ (5(\ (§Q ;§Q (5(\ I(/(° (4(0 '(/6\ '(46\ I(§° I(§°
17 Dl R L SR I LS R P G N I AR
18
19 Figure 11. Left: Backprojection with source detéeted. Right: Cargo configuration with
20 source configuration indicated by arrow. 100,898 particles detected, 99,911 background
21 particles and 987 source particles. Exposure time i§:276milliseconds.
22
23
;;‘ 0 0.2. Generalization to more complex scenarios
26 s Now we will include more complex situations, considerably different from the ones used for
27 .. . . ; . .
28 26 training. Namely, the corridors are not necessarily aligned vertically and horizontally, nor are
29 37 intersecting corridors orthogonal. The algorithm of producing configurations was different
30 »s from the one used in training. Additionallyjywe allow multiple sources to be present. The

1 . . .

22 s20 results show that the network passes wellithis generalization test.
33
g;‘ w0 6.2.1.  Ezample #6
36 331 In this configuration (seel Figure 12) several iron blocks are spread throughout the
37 ;2 container, but a sufficient amount,offlow attenuating paths exist between the sources and
gg ;13 detector arrays for backprojection to recover the sources well. There are two sources present
40 s very near to each other. /T'his.clearly aids the backprojection method in successfully detecting
41 15 the sources. The CNN also succeeds in detecting presence of both of the sources. Here the
4; 16 exposure time is 649 milliseconds for 101,497 particles.
4
44
45 s 0.2.2.  Ezample #7
2? 338 In this configuration (Figure 13) several heavy iron blocks cut diagonally through the
48 ;30 container slightly off-center. Three sources are present in this scenario, the two sources
49 a0 around the middle are localized well with backprojection, since most of the materials only
?1) s weakly attenuate the signal, but the source on the other side of the heavy iron has several
52 s attenuating materials to contend with, so the backprojection smears its signature throughout
53 s3  the diagonal corridor it’s in. Both backprojection and the CNN successfully predict that there
g;‘ ;s 18 a source, although backprojection fails to locate the third source. This third source may
56 us prove difficult for the CNN to contend with as well, as the CNN predicts there are only two
57
58
59
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Figure 12. Left: Backprojection with source detéeted. Right: Cargo configuration with

source configuration indicated by arrow.

101,497 particles detected, 99,492 background

particles and 2,005 source particles. Exposure timeis 649 milliseconds.

sources present. Here the exposure time is 371 milliseconds for 102,790 particles.
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Figure 13, Left: Backprojection with source detected. Right: Cargo configuration with

source configuration indicated by arrow.

102,790 particles detected, 99,846 background

particles,and, 2,944 source particles. Exposure time is 371 milliseconds.

6.2.3.  MFxample #8

Here several iron blocks surround the center of the container (Figure 14). Four sources

are present in this scenario, two of them directly adjacent (and thus hard to distinguish in

thepicture) and all four are near the center of the container. In this case backprojection fails

to localize any of the sources due the limited angular information in the signal as a result of

the.attenuating properties of the iron. The CNN, on the other hand succeeds in detecting
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i 53 the presence of all four of the sources, even despite the close proximity of two of themy Here
5 the exposure time is 1.97 seconds for 103,789 particles.
6
7
8 -
9 ¥
10 e
11 1927 L air
12 I = pesic [
13 XAM'“\ [ | ?ron(loo%)
B iron (50%)
14 420 W iron (40%)
» -
16 o m— fesiizal
17 ” - U238
o
18 *
19 e
20 gc‘“d}(\ R R IR S
21 Vv ™ A B ,\/’\z ,\/‘X ,\,b ,\,fb ,1"\, ,L\x
22
23 Figure 14. Cargo configuration with source cenfiguration indicated by arrow. 103,789
24 particles detected, 99,900 background particles and 3,889 source particles. Exposure time
25 is 1.97 seconds.
26
354
27
28
29 w5 0.2.4.  FEzample #9
30 356 Finally, we consider a simple ¢ase wherebackprojection and the CNN both succeed. In
Y p proj
g; 37 this case there is ample angular information for backprojection to localize the source well
33 s and the CNN correctly predicts the presence of a single source. The exposure time is 21.92
34 seconds for 100,672 particles. Theconfiguration can be seen in Figure 15 below.
35
36
37
38 200 80
39 1&66“ ] 7_16C‘“
40 xg'LCm 1 x‘ﬂ-d“ air
2 =
XAD‘C‘“ 1 X“Ad“ B iron (100%)
43 o | | I iron (50%)
0C! 0 Il iron (40%)
44 ] 2 cotton
o © Y w
45 o ] ° = fe?:i:jizer
46 72" 72 d = U238
47 a8 28
48 -LAL‘“ )l 'LAC‘“
49 Qe T T oc®
50 Q(.l ’Lb‘o Q’(.l q/(.l Q’L@OQ&\\FVL@\/@Q’L@@WL q;\,b(./ 0(.4 (}Q
51
52 Figure 15. Left: Backprojection with source detected. Right: Cargo configuration with
53 source configuration indicated by arrow. 100,672 particles detected, 99,683 background
gg’ particles and 989 source particles. Exposure time is 21.92 seconds.
56 359
57
58
59
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6.3. Performance on Large Scale Dataset

To test the statistical performance of the CNN on a large scale, 1738 unique cargo
configurations are generated using an alternate (to avoid possible inverse crime).generative
scheme. For each cargo configuration all four linear detector arrays are presefit, from zero up
to four sources are randomly placed and simulated independently, so thatfby usinglinearity
of (2) we can produce 1738 x 16 = 27808 testing samples. Particle detections are’simulated
for an exposure time measured by the expected background detectionevels of:20000, 50000
and 100000 particles. The data were fed into the trained CNN for source presence detection.
The results for presence detection are summarized in Table 3 below. The results obtained
clearly confirm our expectations (see Section 1).

Expected Particle Count | Sensitivity, | Specificity
100000 99.90% 99.71%
50000 99.78% 94.59%
20000 99.81% 36.36%

Table 3. Sensitivity and specificity of the CNN source detection with each source having
1% SNR.

We remind the reader that sensitivity, or true positive rate, shows the success of
determining the presence of a souree.(i.e., few false negatives), while specificity reflects
how well the absence of the source is detected (i.e., few false positives). High specificity was
hardwired into the BP techniques [5, 6], it"was only the sensitivity that was questionable.

The accuracy of the prediction generally increases with particle count (and thus
observation time), and sufficient particle counts are required for successful detection. At
the low levels (e.g., of 20000 particles and lower) the network seems biased to think that
a source is always present #This cléarly leads to near 100% sensitivity and an extremely
low specificity, which makes/the detection practically not feasible, due to high level of false
positives.. An explanation could be that the features that are being detected (albeit we do
not know what they are)iare)non-smooth, vs. large smooth background. When the total
count is low, the whole dataset becomes non-smooth, which tricks the network.

For comparison, we show below the analogous backprojection results, which are
significantly worse. This is not surprising, since the basic assumptions for this technique
are not satisfied. For 10° particles CNN succeeds extremely well and beats hands down the
backprojeetion technique, which often does not show any statistically significant deviations
and thus does not detect presence of the source. Notice that six times higher number of
detected particles was required in [5,33] for backprojection stable detection, even without
complex cargo being involved.

Page 18 of 27



Page 19 of 27

AUTHOR SUBMITTED MANUSCRIPT - IP-102603.R3

; Deep learning for source detection 19
2 Expected Particle Count | Sensitivity | Specificity

5 100000 71.04% 99.31%

6 50000 65.55% 99.31%

: 20000 52.13% | 98.91%

?O Table 4. Sensitivity and specificity of the backprojection source detedtion withheach source
1 having 1% SNR.

12

12 0 0.4. Number of sources and number of detector arrays

12 s0 Here we address the question of whether one has to completely stirround the object with four
17 ;1 detectors, or some results can be achieved with three, two, or one flat, detector arrays. We
18 52 thus have simulated each cargo configuration with zero to four independent sources randomly
;g 53 placed. Just as with the training data, we take several ¢ombinations of which sources and
21 detector arrays are present. The combinations are summarized in Table 5 below.

22

23 Number One Two Two Three Four Total

;g of Detector | Adjacent | Opposite |Detectors | Detectors

26 Sources Detectors | Detectors

27 0 6952 6952 3476 6952 1738 26070

i 1 27808 27808 13901 27808 6952 104280

30 2 41712 41712 20856 41712 10428 156420

g; 3 27808 27808 13904 27808 6952 104280

33 4 6952 6952 3476 6952 1738 26070

34 Total 111232 111232 55616 111232 27808 417120

22 Table 5. Number of testing samples in each category

37 394

gg 305 Particle detections are/simulated for an exposure time measured by the expected
40 s background detectiomnylévelsiof 20000, 50000 and 100000 particles. The data were fed into
41 s07  the trained CNN for inference, The results for presence detection are summarized in the bar
fé 23 graphs below, with/detailed tables posted in [8].

44 399 Additionally;we investigated the effect of scaling the strength of each source so that
45 wo altogether theyzhad thessame strength as a single source, thus effectively diluting the localized
j? w1 signature of the'source. Tn"the case of backprojection the localized nature of the source is
48 w2 the key justification for the method of [5]. This would lead one to believe that splitting the
49 a3 source strength\will make it more difficult for the CNN to detect any source presence, which
g? ws 18 indeed @enfirmed by the results summarized in Table 6 below.

52

;31 ws  0.5.°0Qbservation time

55 206 ' The above results are presented in terms of the total number of particles detected. The
g? wr, ¢onclusion is natural: the larger - the better. The number of detected particles obviously
58

59
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Figure 17. Accuracy of the number of source detection.
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Expected Particle Count | Sensitivity | Sensitivity | Sensitivity | Sensitivity | Specificity
one two three four
source sources sources sources
100000 99.74% 96.57% 89.67% 82.62% 99.71%
50000 99.68% 97.25% 93.51% 89.13% 94.59%
20000 99.99% 99.95% 99.86% 99.77% 36.36%

Table 6. Sensitivity and specificity of the source detection techmiques with split source
strength.

increases with (essentially proportional to) the time of observation. However, the slope of
this increase clearly depends significantly on the type and configuration of the cargo. Thus,
the exposure time required to reach a certain level of paxticle detections is a function of
the configuration of the cargo, including source location, material composition, material
placement, and background strength. This makes it difficultito predict boundary flux rates,
even if the configuration is known, without solving the'Boltzmann equation (2).

To make a fair numerical experiment, many heawily iron (and thus very shielding) cargo
scenarios have been included. Namely, theset of'all samples have been divided into 24 sets of
equal size, and the probability of choosing iron. as thefilling of boxes was increasing linearly
from zero in the first group to almost one inithe 24t one. Figure 18 contains the histogram
of the number of runs vs. time required. for detection for thousands of configuration runs
for detecting the presence of a source emitting on the order of 1000 particles (assuming four
detectors). The vast majority would requiretime measured in seconds.

Generally speaking, one/would epect the large bin on the left-hand side to correspond
to configurations with less high-Z materials, and the larger bins on the right-hand side
correspond to configurations with more high-7Z materials. It can certainly become unrealistic
to detect many source parti€les in some of the latter cases. Nevertheless, as is evidenced by
some of the examples presented, 'as well as statistics presented in Section 6.3, quite a few
configurations of high=Z material exist where presence of source(s) source can be detected
in a reasonable amount ofitime. These lower exposure time scenarios would be the most
appropriate cases for detecting illicit nuclear materials at border crossings. Some of the
longer exposure times (on the order of several minutes to perhaps several days) would be
appropriate for detection of illicit nuclear materials in shipping containers on cargo ships,
where scanning’can be done while the container is in transit.

Additionally, it 1s important to note that if one restricts oneself to a smaller number of
detector arrays (incomplete view), it will take longer to reach the same exposure level and
thus weuld add to the number of undetected cases.
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Figure 18. Histogram of the number of runs_vs. exposure times required for detection
for the testing data set. These times are computed in, the case that all four linear detector
arrays are present and anywhere between ong and four sources are present.

7. Remarks and Conclusions

Our work shows that the deep learning approach significantly improves over detection by
backprojection techniques of [6,30,33] and works for complex attenuating and scattering
cargo scenarios, where the latter'fails completely. This confirms the opinion expressed
in [6] that some information about source presence was there.

This article concentrates'omthe cases of presence of complex cargo and much (an order
of magnitude) lower numper of, y-photon detected than in [5,33]. This makes the
backprojection detection algorithm of these works not only weak, but also groundless.

The network perform§ well detecting the number of up to four sources (although
naturally somewhat less sucgessfully than detecting mere presence of a source).

The authors want to make clear that when producing the results of this paper, no
processing (e.ggrbackprojecting) of the raw detector data is done before feeding it to the
network. Since the authors do not know what features would be of importance, we have
decided to not impose our prejudices on the data (especially taking into account that
backprojection is a smoothing operator, and the relevant information is most probably
containeddin some sharper features).

The'exposure time required for detection is discussed in Section 6.5. The histogram in
Figure 18 shows detection in a matter of second for a vast majority of configurations.
It is clear that there are some unbeatable shieldings, so one cannot aim for the 100%
success rate. In such cases, other detection techniques could be used: from methods
of detecting presence of significant amounts of (shielding) high-7Z materials, to neutron
emission detection, to human intelligence.
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e A strong effort has been made to avoid committing an inverse crime. The testing samples

have been produced by an algorithm independent of the one used for the traiming data.
The testing cargo geometries were different from the ones not encountered in the training
data, so there was no intersection between the two data-sets.

A variety of symmetry rules, including rotational symmetry and mirrer symmetry weére
applied randomly to some of the configurations and their material content, to check
whether presence or absence of the symmetry influence the detectability:. The network
performance does not seem to react to this.

The reader should not think that retraining was needed for differentitasks and situations,
e.g. for heavy iron cargo, or for detecting the number of sources, rather their mere
presence. This all was done with a single trained network.

Four planar Compton detectors forming a square surrounding thie object of interrogation
were assumed. It seems that this is the most practical design of such detectors. Effects
of removal of some of the detectors have also been studied (Section 6.4).

The rectangular shape causes some problems, though, e.g. in backprojection method
they create (easily removable) corner artifactsmMore importantly, this design lacks full
rotational invariance, which could be benefigial forithe NN design. On the other hand,
the rectangular case is challenged by appearaneeof tilted cargo structures in the test
samples, while they were absent in the training data. The network, however, clearly has
overcome this difficulty.

Deep learning techniques have been applied for SPECT image reconstruction, but as it
has been mentioned in the text the level of SNR we are dealing with in this work makes
any attempt to image reconstruction rather than binary detection impossible.

There are various further” improvements that one should attempt (and are being
attempted). Some of them are addressed below.

(i) It would have begn great to figure out what specifically were the signs of presence
of the source thatithe network has learned. This would open a door for developing
more analytic methods. However, at this moment the authors do not know what
these features are.

(ii) Producing many more training data is a serious stumbling block in 2D, and
especially in,. 3D /case.

(iii) The/CNN .architecture should be improved, aiming to reach shorter observation
timeyand even lower SNR levels.

(iv) /We are working on moving to the more realistic 3D situation. The significant
difference here is, first, the much higher dimensionality of the data (5D) and
corresponding much more massive computations that are needed. Second, in
3D, unlike 2D (where a cone consists just of two rays), the Compton data differ
significantly from the usual Radon ones. In particular, an issue arises of how to bin
the five-dimensional Compton data in such a way, that the use of CNN could be
warranted.
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(v) The neural network (NN) approach should be tested on real data, which the authors
clearly do not have. However, the radiative transport forward computations we
used are commonly practiced in nuclear engineering, seem to be very xealistic, and
involve realistic material parameters. There is a chance that when novel.neutron
detectors that are being developed are deployed, we could get some real data:

(vi) The approach we describe indicates presence of a source, but mot its location (at
least in the heavy iron cargo case). One wonders whether locatien can also be
attempted.

(vii) Although the results presented have been obtained by the same once trained NN,
during research various designs of the NN and training gets have been experimented
with, all showing consistent ability of detection. It would'be still important to study
further the model uncertainty (e.g., by using the dropeut technique [14]). This will
be done in a future work.

Meanwhile, although the testing samples oftemndeviated from the structures used
in the training set, our results have shown that the NN generalized extremely well.
High experimental levels of the sensitivity and gpecificity, as well as more detailed
information presented in Section 6.3 about statistical spread of the results instill
confidence in the suitability of the network as a detection tool.

The imperfection of Compton camera,detections has been partially addressed by
randomizing the source strength and location and finite bin sizes for the detected
data. Depending on the guality ofithe future detectors, the bin sizes might have to
be increased and new study conducted.

(viii) When source particles scatter theylose energy. If source particles downscatter to
lower energy groups we will lose them in our data since we only use the highest
energy group. It would be interesting to try and use these lower energy groups in
either a 3D convolutionwith/1 channel or a 2D convolution with multiple channels
to see if we can get better results.
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2 ss 9. Appendix: Algorithm for Procedural Generation of Cargo Configurations
5

6

7 Algorithm 1: Procedural Cargo Configuration

g Generate Perlin noise in cargo;

10 Initialize n, and n, to desired number of vertical and horizontal boundaries

N (numbers can be chosen randomly);

:g Sum Perlin noise over rows and columns to produce noise function on edge of cargo;
14 Randomly select n, distinct z—coordinates for vertical boundaries and n, distinct
15 y—coordinates for horizontal boundaries according to edgé noise functions. Store
1? in x and y respectively.;

18 Niter = 0 ;

19 while n, >0 orn, >0 do

;? if 1o is even and n, > 0 then

22 Determine all existing boundary points along the line (z[n.-/2],v).

23 Randomly select a starting point y, and ending point y. from among the
;g existing boundary points according o previously generated Perlin noise.
26 Set all points between (x[nyg/2], ys) and (Z[nier/2], ye) to boundary

27 points.;

i e =Ny — 1;

30 Niter = Niter + 1

31 else if n;., is odd and n, > 0'then

32 Determine all existing boundary,points along the line (z, (y[(nier — 1)/2]).
;i Randomly select a'starting point =, and ending point z. from among the
35 existing boundary points,according to previously generated Perlin noise.
36 Set all points between (g, (y[(niter — 1)/2]) and (ze, (y[(nier — 1)/2]) to
2573 boundary points.;

39 Ny = ny — 1;

40 Niter = Nitepst 1;

41

42 end

43 Identify connected eoemponents (Scipy.Measure.Label);

44 if Rotational Symmetry Desired then

22 Copy one quadrant of the configuration over all others with appropriate

47 rotation;

48 if Mirror Symmetry Desired then

gg ‘ Copy one side of the configuration over the other with mirroring ;

51 «pRandomly assign material identification to each connected component ;

52 Save configuration to file;

;31 Result: Single cargo configuration

55

56

57

58

59



