

ACCEPTED MANUSCRIPT

Deep learning for 2D passive source detection in presence of complex cargo

To cite this article before publication: Weston Baines *et al* 2020 *Inverse Problems* in press <https://doi.org/10.1088/1361-6420/abb51d>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by-nc-nd/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1
2
3
4
5
6
7
8 **Deep learning for 2D passive source detection in**
9 **presence of complex cargo**

10 3 26 August 2020
11
12
13

14 4 **W. Baines¹, P. Kuchment², and J. Ragusa³**
15 5
16 6
17 7

¹ Mathematics Department, Texas A&M University, College Station, TX, USA

² Mathematics Department, Texas A&M University, College Station, TX, USA

³ Nuclear Engineering Department, Texas A&M University, College Station, TX, USA

18
19
20 **Abstract.** Methods for source detection in high noise environments are important for
21 single-photon emission computed tomography (SPECT) medical imaging and especially
22 crucial for homeland security applications, which is our main interest. In the latter case, one
23 deals with passively detecting the presence of low emission nuclear sources with significant
24 background noise (with Signal To Noise Ratio (*SNR*) 1% or less). In passive emission
25 problems, direction sensitive detectors are needed, to match the dimensionalities of the
26 image and the data. Collimation, used for that purpose in standard Anger γ -cameras, is
27 not an option. Instead, Compton γ -cameras (and their analogs for other types of radiation)
28 can be utilized. Backprojection methods suggested before by two of the authors and their
29 collaborators enable detection in the presence of a random uniform background. In most
30 practical applications, however, cargo packing in shipping containers and trucks creates
31 regions of strong absorption and scattering, while leaving some streaming gaps open. In such
32 cases backprojection methods prove ineffective and lose their detection ability. Nonetheless,
33 visual perception of the backprojection pictures suggested that some indications of presence
34 of a source might still be in the data. To learn such features (if they do exist), a deep
35 neural network approach is implemented in 2D, which indeed exhibits higher sensitivity and
36 specificity than the backprojection techniques in a low scattering case and works well when
37 presence of complex cargo makes backprojection fail completely.
38
39

40
41 26 **Keywords:** source detection, Compton camera, illicit nuclear material
42
43

44
45 27 Submitted to: *Inverse Problems*
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3 28 **1. Introduction**

4 29 Checking for presence of illicit nuclear materials (most probably in small quantities and
5 30 shielded by cargo) at border crossings and shipping cargo containers in harbors is an
6 31 important homeland security task. Ideally, one would try to reconstruct from the detected
7 32 signals the source distribution inside the cargo. When the data is sufficiently well behaved
8 33 (e.g., in SPECT), analytic reconstruction is often possible [30]. However, in a very low SNR
9 34 environment, as in the case of illicit nuclear source detection, this is impossible. Indeed, the
10 35 forward analytic (integral transform type) models are not applicable. Moreover, even if they
11 36 were, attempts of any filtration in FBP-type techniques lead to reconstruction deterioration.
12 37 The saving grace is that in this case practitioners are mostly interested in getting reliable
13 38 (i.e., with low rates of false positives and false negatives) information about the presence of
14 39 a source, rather than its exact location.

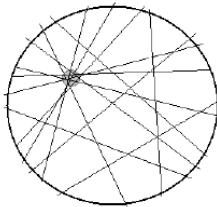
20 40 In passive emission imaging, detectors must be direction sensitive. Indeed, otherwise the
21 41 data measured has insufficient dimension for recovery of an image. Directional information
22 42 is especially critical when SNR is too low for the intensity fluctuations that arise due to
23 43 the presence of a source to be statistically significant. The following options for obtaining
24 44 directional sensitivity are available:

- 27 45 • *Mechanical collimation*, when only rays incident along (or close to) a certain line are
28 46 allowed to reach the detector (see Section 2). This, while determining the incoming
29 47 photon's direction, significantly reduces the signal strength and thus becomes unsuitable
30 48 for low SNR.
- 33 49 • *Compton γ -cameras* represent a more recent, and gaining its appreciation, type of γ
34 50 radiation detectors that determine a surface cone of possible incident trajectories, rather
35 51 than the exact directions.
- 37 52 • Neutron detectors are being developed that (albeit based on different physics principles)
38 53 produce similar cone information and lead to similar mathematical analysis.

40 54 Backprojection detection technique introduced in [5, 33] relied upon finding suspicious
41 55 **locations**. It utilized the following three assumptions:

- 43 56 (i) geometric smallness of the source (usually of linear dimension on the order of 1% of the
44 57 linear cargo size);
- 46 58 (ii) existence of a sufficient number of particles from the source reaching the detector being
47 59 **ballistic** (non-scattered);
- 49 60 (iii) unstructured strong random background.

51 61 The idea is rather simple: backprojecting the incoming trajectories (or, in the Compton case,
52 62 the whole surface cones of possible trajectories) of particles, one hopes that maybe, due to
53 63 sufficient presence of ballistic particles detected from the source, one can see a statistically
54 64 significant accumulation at the geometrically small source's location (see Fig. 1)

12 **Figure 1.** An idea of the backprojection method.
13
14

15 Analysis done in [5] provided a crude formula for the total number N of particles (and
16 thus observation time) needed to make detection with high (on the order of 99%) sensitivity
17 and specificity (i.e., with low levels of false negatives and false positives).
18

$$19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 60$$

$$N \gtrsim \left(\frac{8}{S}\right) p(1 - p). \quad (1)$$

65 Here p is the ratio of the linear dimension of the source relative to the dimension of the cargo
66 and S is the SNR, defined as the proportion of the ballistic particles from the source versus
67 the total number of source and background particles. In the cases considered in [5] N had
68 to be on the order of 600000, which is not unrealistic for γ photons **not** screened by heavily
69 shielding cargo. High specificity has been hardwired into the method, so satisfying (1) was
70 only needed in [5, 6] to ensure high sensitivity.

71 The implementation of the technique worked as follows [5, 6]: the data was
72 backprojected, which resulted in a large background level throughout the volume. When
73 the object was completely surrounded by detectors, this level was essentially constant and
74 the mean was removed. When the detectors did not surround the object completely (e.g.,
75 no detector below the object), the global mean is irrelevant, and at each location the mean
76 over a smaller patch was removed. After this clean-up the locations with an intensity less
77 than five standard deviations above the mean suggested by the Central Limit Theorem were
78 cut off. The results were interpreted as indications of a source being present. Thousands
79 of Monte Carlo simulations showed that the inequality (1) performs well and if N is at or
80 above this threshold, detection occurs with high sensitivity and specificity ‡.

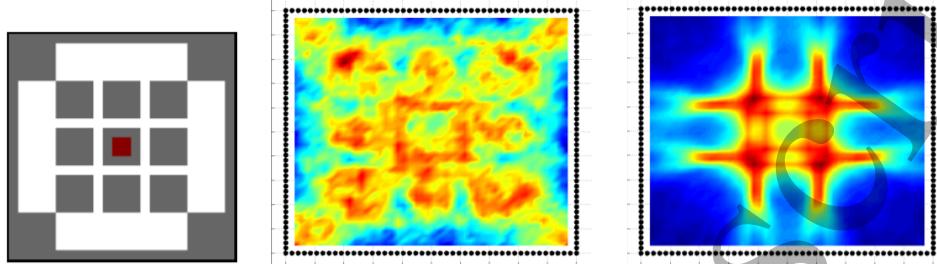
81 This technique works reasonably well in the absence of complex cargo, but starts failing
82 if such cargo is present [6], due to the second and third assumptions being inapplicable§.
83 However, visual inspection of the backprojected data (see [6]) seems to indicate that the
84 data **might** still contain a signature of the source presence. Indeed, when the method of [5]
85 was applied to some cases of complex cargo in [6], despite its failure to detect presence
86 of the source, such signatures (e.g., different highlighting of the pathways between cargo
87 boxes) seemed to appear only when a source was present (see Figure 2). The reader should

‡ An alternative Bayesian approach was implemented in [33].

§ This cargo problem is mostly non-existent when detecting neutrons coming from the source. However, some other (non-mathematical) issues arise, such as for instance lower number of particles detected.

1 *Deep learning for source detection* 4
2
3

4 88 take into account that the color scales are different in the three pictures there and assigned
5 89 automatically by the visualization software. This is of no importance, since it is not the
6 90 intensity, but rather the patterns of highlighted pathways between boxes seem different.



18 **Figure 2.** (Left): Example of complex cargo configuration for which backprojection
19 methods fail (i.e., no statistically suspicious locations are found). The red spot denotes the
20 91 source location, the grey area represents iron and the white area represents air. (Middle):
21 92 Backprojection results in absence of source. (Right): Backprojection results in presence of
22 93 source.

24 94 No model of this effect has been developed, no telling features have been learned, and
25 95 thus no detection algorithm came out of such observations.

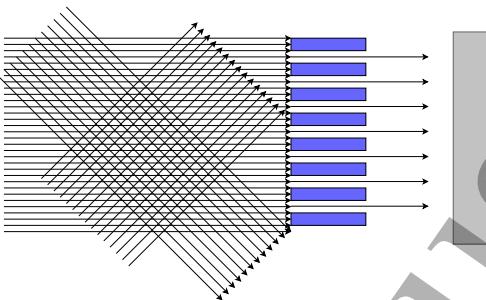
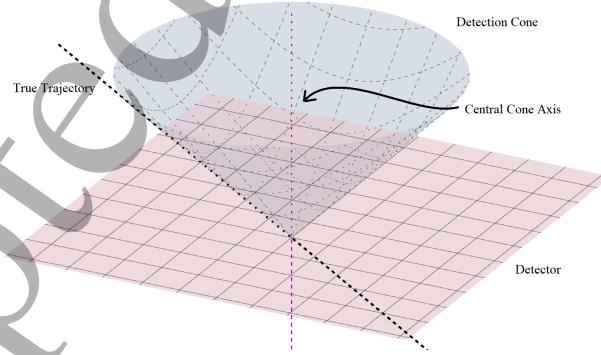
26 96 This has led the authors to attempt deep learning for the source inference in the
27 97 hope that a network could learn what we could not. Our main goal is to detect the
28 98 presence/absence of a source, not necessarily its location. If there is high probability of
29 99 presence of the source, in practice one would check the cargo with other (hand-held) devices.
30 100 However, one also needs to achieve high specificity, to avoid large numbers of false positives.

31 101 One should note that quality of tomographic image reconstructions using neural
32 102 networks has been questioned recently, see e.g. [7,8]. This critique, however, does not apply
33 103 to the problem at hand, where we only look for a binary output rather than an image.

34 104 We describe now the structure of the article. Section 2 contains a brief description
35 105 of the Compton type cameras and references to the known analytic approaches. Success
36 106 of deploying neural networks is predicated upon our access to sufficient data for neural
37 107 network training. Thus, the first step - generating various complex cargo scenarios is
38 108 described in Section 3. To avoid the inverse crime (overfitting), different processes of
39 109 generating cargos are used for creating training and testing samples. Then, in absence
40 110 of real data (which would require having weapons grade nuclear materials and physically
41 111 creating thousands of different cargoes), we use (Section 4) the technique of forward radiation
42 112 transport simulations customarily used in nuclear engineering. As has been mentioned, the
43 113 actual type of radiation is mathematically irrelevant, but to be close to real world scenarios
44 114 and numerical parameter values, the case of γ -photons coming from an U-238 source and
45 115 real world material parameters for cargo are used. The design of the network is described
46 116 in section 5. The results are presented in Section 6. Additional remarks can be found in
47 117 section 7. Acknowledgements are provided in section 8. The algorithm description is located
48 118 in the Appendix.

1 *Deep learning for source detection*

2 5

3 **2. Collimated and Compton γ -Cameras**4 116 Mechanical collimators (see Figure 3) can be installed in front of a direction insensitive
5 117 γ -camera to block all particles but those incident along (or close to) a desired trajectory.
6 1187 Mechanical collimators are widely used in medical imaging. They, however, significantly
8 11921 **Figure 3.** Light collimation diagram22 119 attenuate the signal and require rotating the detector (or the object). In the applications
23 120 with sufficiently high *SNR*, this additional data loss is not such a problem. In dealing with
24 121 low *SNR* signals however, this renders recovery of weak signals impossible. For this reason
25 122 one can consider Compton type cameras instead.26 123 The **Compton camera** is a type of γ -particle detector|| that does not attenuate the
27 124 incident particles. The price to pay is that it provides less precise direction information
28 125 than collimation would give. Namely, only a surface cone of possible incoming directions
29 126 is measured rather than a precise trajectory (see Fig 4). In the absence of mechanical
30 12747 **Figure 4.** Surface cone produced by Compton camera from particle detection48 127 collimation, signal strength is effectively maintained, although the directional information
49 128 is less precise and thus data analysis becomes more complex. On the other hand, the data
50 129 provided is significantly over-determined (e.g., the space of cones in 3D is five-dimensional,
51 13052 || As we have mentioned before, novel neutron detectors (albeit based upon different physics rather than
53 127 Compton scattering) that provide mostly similar cone information are currently being developed.

54 128

55 129

56 130

57 127

58 128

59 129

60 130

1 *Deep learning for source detection*

2 6

3 131 versus the unknown distribution being three-dimensional). This turns out not to be a
4 132 bad thing at all, but rather a blessing for stable inversion (see [30] for details and further
5 133 references).6 134 A variety of exact inversion formulas from Compton data of filtered-backprojection and
7 135 other types have been developed and implemented (see [30] and references therein). The
8 136 choices are much more diverse than for the usual Radon transform inversions (see [24]). The
9 137 reason is that the Compton data is highly overdetermined. It was shown that this feature
10 138 can be used to get high quality reconstructions in SPECT in presence of 50% noise and
11 139 higher. However, this is a far cry from the low SNRs encountered in the homeland security
12 140 problems described above.13 **3. Simulating Cargo Scenarios**14 141 If one intends to tackle a problem using deep learning, it is natural to start by acquiring
15 142 large amounts of training and testing data.16 143 In order to obtain rich training data for a neural network, at least thousands (better
17 144 hundreds of thousands or millions) of cargo configurations are needed. Due to the sensitive
18 145 nature of the materials involved in this work, we are unable to procure real-world data, so we
19 146 resort to synthetic simulation. The high computation costs of these simulations restricted
20 147 us to several thousands of samples, reaching up to 4×10^5 . However, our results (see Section
21 148 6) already show a success in detection.22 149 To start, we randomly produce several thousand cargo configurations and compute
23 150 forward radiation data simulations with up to four randomly placed sources and without
24 151 them for each one. In order to avoid overfitting (and an inverse crime), different cargo
25 152 generation procedures are used for producing the training and testing data.26 *3.1. Procedural Generation of Training Cargo Configurations*27 153 A square cargo hold of size of $2.4m \times 2.4m$ is assumed and partitioned into $2.4cm \times 2.4cm$
28 154 cells (the possible source would occupy one of them). Each cell can be indexed via a pair of
29 155 row and column indices, (i, j) , with $1 \leq i, j \leq 100$ and is assigned a material identification
30 156 number $ID_{i,j}$. These numbers correspond to a variety of materials, including Air, concrete,
31 157 highly enriched uranium, iron, cotton, wood, plastic, and fertilized (their detailed chemical
32 158 content described in [6]).33 159 Real cargo typically consists of several boxes with small spaces in between. In order
34 160 to emulate this, an algorithm is implemented to generate different cargo configurations. It
35 161 consists of three main steps:36 162 • A network of several horizontal and vertical “corridors” between boxes with random
37 163 widths and locations is generated. The number of corridors c is selected randomly in a
38 164 desired range $c_{min} \leq c \leq c_{max}$.

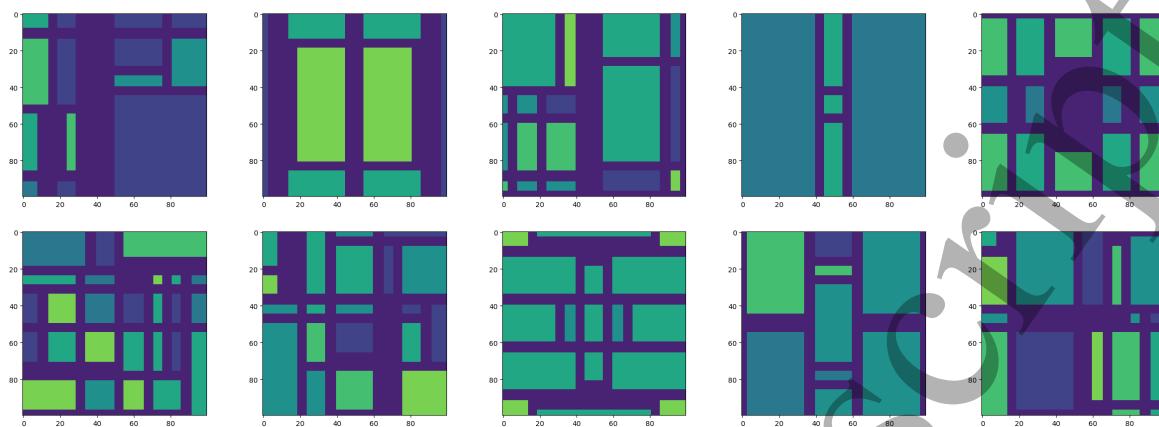
1
2 *Deep learning for source detection*3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 5. A selection of cargo configurations procedurally generated via Algorithm 1

- 167 The resulting configurations are unlikely to be symmetric, while real cargo might happen
168 to be symmetric. To check whether symmetry plays any role in detectability ¶, a portion
169 of the samples produced are “symmetrized” by enforcing various (rotation and mirror)
170 symmetry rules.
- 171 • Connected components of the rest of the space are identified as distinct “cargo boxes.”
172 Then material contents are assigned to all boxes. In a subset of (rather than all)
173 symmetric cargo configurations, material contents are also “symmetrized” according to
174 the corresponding rule.

32 Generating the corridors between pieces of cargo is performed using a modification of
33 the procedure outlined in [11] for generating road networks. For the training set, we only
34 use networks consisting of horizontal and vertical segments, while for the testing set tilted
35 and non-orthogonal pathways are allowed.

37 *Remark.* Instead of selecting corridor locations uniformly randomly, their locations for
38 training are selected according to a probability distribution generated from a type of gradient
39 noise developed in [25] in order to automate the production of realistic looking textures in
40 computer graphics. A different algorithm is used for testing samples.

43 Identification of connected components (“boxes”) is performed using SciPy’s (Scientific
44 Python, a popular Python package for scientific computing [17]) implementation of the
45 algorithms outlined in [32].

47 The entire generation procedure is summarized in Algorithm 1 in the Appendix (Section
48 9).

51 *3.2. Procedural Generation of Testing Cargo Configurations*

53 To avoid the inverse crime of overfitting, testing configurations are produced by a somewhat
54 similar, but independent algorithm. Namely, the middle points, the lengths and width of the

56 ¶ Disclosure: Our results show that symmetries do not influence detectability.

1 *Deep learning for source detection*

2 8

3 191 corridors are selected randomly and independently. Moreover, the corridors are not required
4 192 to be vertical or horizontal, or even orthogonal at their intersections anymore. Finding the
5 193 boxes (connected components of the complement) and filling them with materials is also
6 194 done randomly, similarly to the training case.

7 195 *3.3. Source placement*

8 196 A source of a (randomized) strength corresponding to approximately 1% SNR is placed
9 197 randomly into the cargo.

10 198 Multiple sources (0, 1, 2, 3, or 4) are also modeled to see the effect on detection. Two
11 199 scenarios are used:

12 200 (i) when all the sources have the same strength $\approx 1\%$ SNR
13 201 and

14 202 (ii) when the strength of the source is diluted between several locations.

15 203 One naturally expects deterioration of the detection in the 2nd case, while *a priori* it would
16 204 not be surprising if it happened in the 1st as well (although our results will demonstrate
17 205 that this does not happen). Indeed, the backprojection detection, as well most probably
18 206 the one by deep networks, if successful, should use some geometric assumptions (e.g.,
19 207 geometric smallness of the source), since the source's strength alone would not be statistically
20 208 significant. Thus, multiplying the number of sources in principle might degrade the geometric
21 209 features of importance (albeit one does not know what these are).

22 210 **4. Forward radiation simulations**

23 211 As previously mentioned, the nature of particles is irrelevant, but in order to be in realistic
24 212 situations, the γ particle detection is considered, where the material parameters and emission
25 213 and background rates that are used assume realistic values.

26 214 After the cargo scenario has been created, one needs to simulate training and testing
27 215 data by solving a massive forward radiation transport computation. Fortunately, reliable
28 216 simulation tools have been developed by nuclear engineering researchers.

29 217 *4.1. Physics Preliminary*

30 218 U-238 (Uranium-238) photons from the 1.001 MeV emission line have mean-free-path in
31 219 high-Z materials sufficiently high to be detected outside the container (13.3mm mean-free-
32 220 paths) [28]. In our application, sources of background radiation include a concrete base
33 221 located some distance below the container. (Cosmic rays and other natural sources can be
34 222 easily included and do not influence the results much.) These background sources radiate at
35 223 much higher energies than 1.001 MeV, including 1.461 MeV from Potassium-40, 1.12 MeV
36 224 and 1.76 MeV from Bismuth-214, and 2.61 MeV from Thallium-208 (Bismuth and Thallium
37 225 are products of the decay of Uranium-238 and Thorium 232 respectively, and are present in

1 *Deep learning for source detection*

2 9

3 226 trace amounts in concrete). Gamma photons which downscatter from these sources into the
 4 227 energy group surrounding the 1.001 MeV line account for the noise in our signal. Gamma
 5 228 photons from the source will also undergo scattering and absorption within the volume of the
 6 229 container, which will reduce the number of ballistic source particles reaching the detectors
 7 230 placed around the container, thus weakening the signal.

10 *4.2. Mathematics of the forward radiation data simulation*

11 The radiation transport within the cargo container is modeled by the linear Boltzmann
 12 equation, given below using the multigroup approximation:

$$13 \quad \vec{\Omega} \cdot \vec{\nabla} + \Sigma_t^g(\vec{r})\Psi^g(\vec{r}, \vec{\Omega}) = \sum_{g'=1}^G \sum_{l=0}^L \Sigma_{s,l}^{g' \rightarrow g}(\vec{r}) \sum_{m=-l}^l \Phi_{l,m}^{g'}(\vec{r}) + Q^g(\vec{r}, \vec{\Omega}) \quad (2)$$

14 where $\vec{r} \in \mathcal{D}$ is the position, $\vec{\Omega} \in \mathbb{S}^2$ the set of discrete directions and $g \in [1, G]$ the energy
 15 group. \mathcal{D} is the volume of the cargo container, \mathbb{S}^2 is the unit sphere, G is the total number of
 16 energy groups, Ψ^g is the photon angular flux in the energy group g , Σ_t^g is the total interaction
 17 cross section in group g , $\Sigma_{s,l}^{g' \rightarrow g}$ is the l^{th} -Legendre moment of the scattering cross section
 18 from group g' to group g , L is the maximum anisotropy expansion order, and Q^g is the
 19 volumetric source of photons in group g (stemming from the U-238 source). The moments
 20 of the angular flux are given by

$$21 \quad \Phi_{l,m}^g(\vec{r}) = \int_{4\pi} Y_{l,m}(\vec{\Omega}) \Psi^g(\vec{r}, \vec{\Omega}) d\Omega \quad (3)$$

22 where $Y_{l,m}$ is the spherical harmonic of order of l and degree m . Eq. (2) is supplied with
 23 boundary conditions:

$$24 \quad \Psi^g(\vec{r}, \vec{\Omega}) = h^g(\vec{r}, \vec{\Omega}) \quad \forall \vec{r} \in \partial\mathcal{D}^- \quad (4)$$

25 where $\partial\mathcal{D}^-$ is the incoming boundary defined as $\partial\mathcal{D}^- = \{\vec{r} \in \partial\mathcal{D} \text{ such that } \vec{\Omega} \cdot \vec{n}(\vec{r}) < 0\}$ with
 26 $\vec{n}(\vec{r})$ the outward unit normal vector at position \vec{r} . The function h^g describes the background
 27 radiation due to a large concrete slab underneath the container, as previously described.
 28 Cross sections for various materials were generated using NJOY-99 [23]. The multigroup
 29 structure employed ranges from 1.00099 MeV to 2.61449 MeV with narrow bands centered
 30 at the radiation lines of the background and U-238.

31 For the purposes of this paper, calculations are carried out in two-dimensional space
 32 and only the energy group corresponding to the 1.001 MeV line is considered after solving
 33 Eq. (2). The photon transport equation, Eq. (2), is discretized using standard techniques:

34 (i) S_n product Gauss-Legendre-Tchebychev angular quadrature [27] is employed (only a
 35 small number of polar angles are needed, but a very high number of azimuthal angles
 36 are needed to resolve properly the angular distribution in the 2D domain.)

37 (ii) Spatial discretization based on a standard bilinear discontinuous finite element technique
 38 with upwinding at cell interfaces. [26, 31]

1 *Deep learning for source detection* 10
23 246 (iii) Transport sweeps and Source Iteration are employed to solve the resulting system. [21]
45 247 Once the transport equation (2) has been solved, the outgoing angular photon flux at any
6 248 boundary edge in 2D is recorded, which serves as the input data for use in Deep Learning
7 249 and Backprojection.8 250 Once configurations have been generated, a radiating source emitting an expected
9 251 8042.17 photons per second at 1.001 MeV is randomly placed, a forward radiative transfer
10 252 equation is solved, and from its solution the radiation angular flux distribution on the
11 253 boundary of the cargo is collected.12 254 Due to linearity of (2), the situations of presence of zero to four randomly placed sources
13 255 could (and were) easily incorporated.14 256 **5. Convolutional Neural Network**
1516 257 Using a fully connected network for the problem seems to be hardly feasible even in 2D,
17 258 less so in 3D, in particular due to high dimensionality of the Compton camera data. The
18 259 saving grace here is that, as in many imaging problems [22], one expects that the important
19 260 correlations occur mostly between close pixels, and hence convolutional neural networks,
20 261 which are much more compact due to weight sharing, offer a hope. We thus construct, train,
21 262 and test a deep convolutional neural network (CNN). This hand-waving argument for using
22 263 CNN needs to be confirmed by computations, which is done in this text.23 The suggested CNN architecture is summarized in Figure 6 below. The input data
24 dimension is $144 \times 10^3 = 400 \times 360 \times 1$, as we model 400 equally spaced detectors with
25 360 equally spaced angular bins and only one energy bin is used. The network is trained
26 on 1689 unique simulated cargo configurations with varying numbers of sources present. By
27 exploiting the fact that the Boltzmann equation (2) is linear, we can produce multiple new
28 samples from each configuration by taking varying combinations of sources and detectors.
29 We simulate up to four sources per configuration, and four linear arrays of detectors along
30 each edge of the cargo. This leads to a total of $1689 \times 15 \times 16 = 405360$ total samples.
31 The various combinations are summarized in Table 1 Below. The output of the CNN is two
32 4133
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Number of Sources	One Detector	Two Adjacent Detectors	Two Opposite Detectors	Three Detectors	Four Detectors	Total
0	6756	6756	3378	6756	1689	25335
1	27024	27024	13512	27024	6756	101340
2	40536	40536	20268	40536	10134	152010
3	27024	27024	13512	27024	6756	101340
4	6756	6756	3378	6756	1689	25335
Total	108096	108096	54048	108096	27024	405360

56 **Table 1.** Number of training samples in each category
57
58
59
60

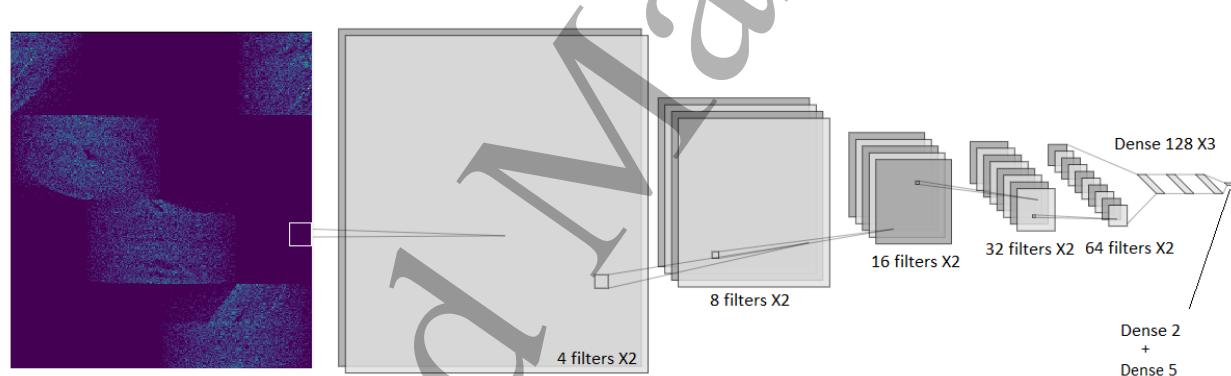
1 *Deep learning for source detection*

2 11

3 probability measures: \mathbb{P}_d on $\{0, 1\}$ and \mathbb{P}_n on $\{0, 1, 2, 3, 4\}$. A source is determined to be
 4 present if $\mathbb{P}(x = 1) > 0.5$, and absent otherwise. \mathbb{P}_n predicts the number of sources present,
 5 which we set to $k = \text{argmax}_{0 \leq j \leq 4} \mathbb{P}_n(x = j)$. The loss function used for training is the binary
 6 cross-entropy loss:
 7

$$10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 60 \quad \mathcal{L}(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y}), \quad (5)$$

264 where y is the network prediction and \hat{y} is the target value (see [15]). The CNN was
 265 trained on simulations of a localized source in the presence of high background noise
 266 ($SNR = 0.01$). In all cases, early stopping is used to halt training before over-fitting.
 267 The various hyper-parameter values used in training are summarized in Table 2 below. The
 268 CNN is implemented using Keras with Tensorflow as its backend. Keras is a high level API
 269 (Application Programming Interface) for interfacing with machine learning toolkits such as
 270 Tensorflow, Theano, and Microsoft Cognitive Toolkit. It helps streamline the construction
 271 and training of neural networks [12]. Tensorflow is Google's machine learning toolkit and was
 272 chosen due to its scalability, wide range of features, and the wide range of documentation
 273 and tutorials available [1]. Any parameters not explicitly mentioned here were set to default
 274 values.



38 **Figure 6.** CNN architecture used for source detection. The left-most cell shows an example
 39 of the detector data input to the CNN. 2×2 Max pooling layers are placed after every second
 40 convolutional layer.
 41

274 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 **6. Results**

275 After training the CNN, we considered a large variety of cargo scenarios to test and to
 276 compare and contrast the performance of the CNN against the backprojection method
 277 of [5, 6]. We detail some interesting specific example scenarios in Sections 6.1 and 6.2. We
 278 then investigate the statistical performance of the CNN on large scale data sets to evaluate
 279 the sensitivity and specificity of the CNN in Section 6.3, and to assess its performance
 280 with different numbers of sources and detectors in Section 6.4. Finally, in Section 6.5 we
 281 discuss the relation between cargo configuration and exposure time and how this affects the
 282 practicality of our technique.
 283

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Deep learning for source detection

12

Optimization Method	Adam (See [18])
Activation	RELU (Softmax at output)
Bias	True
Convolution Window Size	3x3
Learning Rate	2.0×10^{-5}
Learning Rate Decay Rate	0
Batch Size	4
Early Stopping Patience	3 epochs
Loss	Binary Cross-Entropy

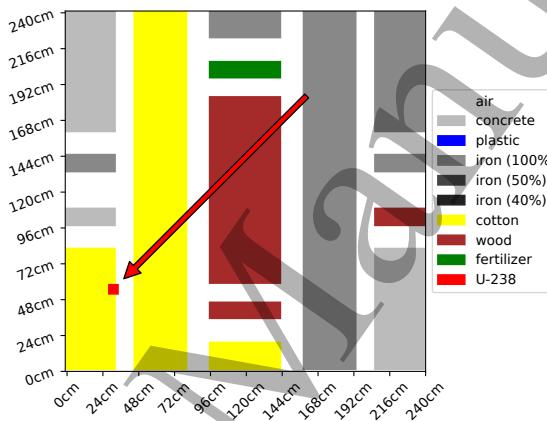
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Table 2. Hyper-parameters used during training284
285
286
6.1. Example Scenarios287
288
289
290
291
292
293
We describe now several (out of many, see later on in this text) sample results of testing the trained network on various scenarios not included in the training set.294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
359.1
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
459.1
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509.1
510
511
512
513
514
515
516
517
518
519
519.1
520
521
522
523
524
525
526
527
528
529
529.1
530
531
532
533
534
535
536
537
538
539
539.1
540
541
542
543
544
545
546
547
548
549
549.1
550
551
552
553
554
555
556
557
558
559
559.1
560
561
562
563
564
565
566
567
568
569
569.1
570
571
572
573
574
575
576
577
578
579
579.1
580
581
582
583
584
585
586
587
588
589
589.1
590
591
592
593
594
595
596
597
598
599
599.1
600
601
602
603
604
605
606
607
608
609
609.1
610
611
612
613
614
615
616
617
618
619
619.1
620
621
622
623
624
625
626
627
628
629
629.1
630
631
632
633
634
635
636
637
638
639
639.1
640
641
642
643
644
645
646
647
648
649
649.1
650
651
652
653
654
655
656
657
658
659
659.1
660
661
662
663
664
665
666
667
668
669
669.1
670
671
672
673
674
675
676
677
678
679
679.1
680
681
682
683
684
685
686
687
688
689
689.1
690
691
692
693
694
695
696
697
698
699
699.1
700
701
702
703
704
705
706
707
708
709
709.1
710
711
712
713
714
715
716
717
718
719
719.1
720
721
722
723
724
725
726
727
728
729
729.1
730
731
732
733
734
735
736
737
738
739
739.1
740
741
742
743
744
745
746
747
748
749
749.1
750
751
752
753
754
755
756
757
758
759
759.1
760
761
762
763
764
765
766
767
768
769
769.1
770
771
772
773
774
775
776
777
778
779
779.1
780
781
782
783
784
785
786
787
788
789
789.1
790
791
792
793
794
795
796
797
798
799
799.1
800
801
802
803
804
805
806
807
808
809
809.1
810
811
812
813
814
815
816
817
818
819
819.1
820
821
822
823
824
825
826
827
828
829
829.1
830
831
832
833
834
835
836
837
838
839
839.1
840
841
842
843
844
845
846
847
848
849
849.1
850
851
852
853
854
855
856
857
858
859
859.1
860
861
862
863
864
865
866
867
868
869
869.1
870
871
872
873
874
875
876
877
878
879
879.1
880
881
882
883
884
885
886
887
888
889
889.1
890
891
892
893
894
895
896
897
898
898.1
899
900
901
902
903
904
905
906
907
908
909
909.1
910
911
912
913
914
915
916
917
918
919
919.1
920
921
922
923
924
925
926
927
928
929
929.1
930
931
932
933
934
935
936
937
938
939
939.1
940
941
942
943
944
945
946
947
948
949
949.1
950
951
952
953
954
955
956
957
958
959
959.1
960
961
962
963
964
965
966
967
968
969
969.1
970
971
972
973
974
975
976
977
978
979
979.1
980
981
982
983
984
985
986
987
988
988.1
989
989.1
990
991
992
993
994
995
996
997
997.1
998
999
999.1
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009.1
1010
1011
1012
1013
1014
1015
1016
1017
1018
1018.1
1019
1019.1
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029.1
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039.1
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049.1
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059.1
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069.1
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079.1
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088.1
1089
1089.1
1090
1091
1092
1093
1094
1095
1096
1097
1097.1
1098
1099
1099.1
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109.1
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119.1
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129.1
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139.1
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149.1
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159.1
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169.1
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179.1
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188.1
1189
1189.1
1190
1191
1192
1193
1194
1195
1196
1197
1197.1
1198
1199
1199.1
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209.1
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219.1
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229.1
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239.1
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249.1
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259.1
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269.1
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279.1
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288.1
1289
1289.1
1290
1291
1292
1293
1294
1295
1296
1297
1297.1
1298
1299
1299.1
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309.1
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319.1
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329.1
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339.1
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349.1
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359.1
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369.1
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379.1
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388.1
1389
1389.1
1390
1391
1392
1393
1394
1395
1396
1397
1397.1
1398
1399
1399.1
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409.1
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419.1
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429.1
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439.1
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449.1
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459.1
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469.1
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479.1
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488.1
1489
1489.1
1490
1491
1492
1493
1494
1495
1496
1497
1497.1
1498
1499
1499.1
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509.1
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519.1
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529.1
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539.1
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549.1
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559.1
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569.1
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579.1
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588.1
1589
1589.1
1590
1591
1592
1593
1594
1595
1596
1597
1597.1
1598
1599
1599.1
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609.1
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619.1
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629.1
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639.1
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649.1
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659.1
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669.1
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679.1
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688.1
1689
1689.1
1690
1691
1692
1693
1694
1695
1696
1697
1697.1
1698
1699
1699.1
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709.1
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719.1
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729.1
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739.1
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749.1
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759.1
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769.1
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779.1
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788.1
1789
1789.1
1790
1791
1792
1793
1794
1795
1796
1797
1797.1
1798
1799
1799.1
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809.1
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819.1
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829.1
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839.1
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849.1
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859.1
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869.1
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879.1
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888.1
1889
1889.1
1890
1891
1892
1893
1894
1895
1896
1897
1897.1
1898
1899
1899.1
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909.1
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919.1
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929.1
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939.1
1940
19

1 *Deep learning for source detection*

2 13

3 295 *6.1.2. Example #2*

4 296 Next we consider the scenario shown in Figure 8, where backprojection fails to detect
 5 297 the source (and thus is not shown), but the network succeeds. Here the exposure time
 6 298 needed for the detection is significantly longer. In this configuration a long thick iron slab
 7 299 effectively blocks one side of the detectors. Smaller chunks of iron spread throughout the
 8 300 container further attenuate the signal along certain trajectories. As a result, it would take
 9 301 9 hours and 26 minutes to detect the needed 101,092 particles. Unless one is talking about
 10 302 a shipping container, this is practically unfeasible. As the results in Section 6.3 show, twice
 11 303 shorter time would still do decently, and even five times shorter time might sometimes be
 12 304 used, although at the expense of higher false positive rate.



33 **Figure 8.** Cargo configuration with source location indicated by arrow. 101,092 particles
 34 detected, 100,095 background particles and 997 source particles. Exposure time is 9 hours
 35 and 26 minutes.

36 305 *6.1.3. Example #3*

37 306 Here we consider a somewhat more tenable scenario shown in Figure 9, where
 38 307 backprojection fails to detect the source, yet the network succeeds. In this case the exposure
 39 308 time is 50 minutes and 17 seconds for 100,866 particles. In this configuration several large
 40 309 blocks of iron are periodically tiled in the container, with the source located within one of
 41 310 the blocks.

42 311 *6.1.4. Example #4*

43 312 Now we consider a somewhat extreme scenario (Figure 10), where both approaches
 44 313 succeed in detecting the source. In this case the exposure time is 3 days and 12 hours
 45 314 for collecting 101,272 particles. In this configuration one very large block of iron in the
 46 315 center of the container surrounds the source. The source is still localized relatively well by
 47 316 backprojection for this scenario. Most of the cargo is filled with a homogeneous material,
 48 317 which might explain why backprojection did not fail.

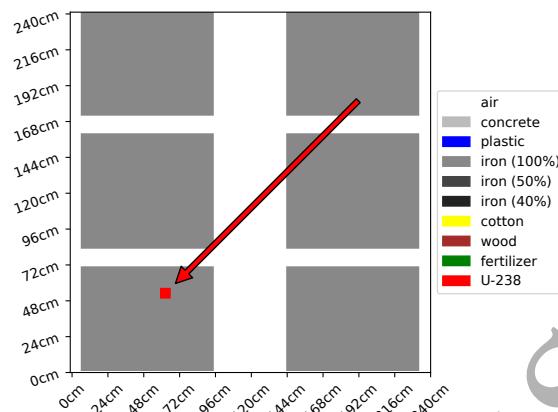


Figure 9. Cargo configuration with source location indicated by arrow. 100,866 particles detected, 99,867 background particles and 999 source particles. Exposure time is 50 minutes and 17 seconds.

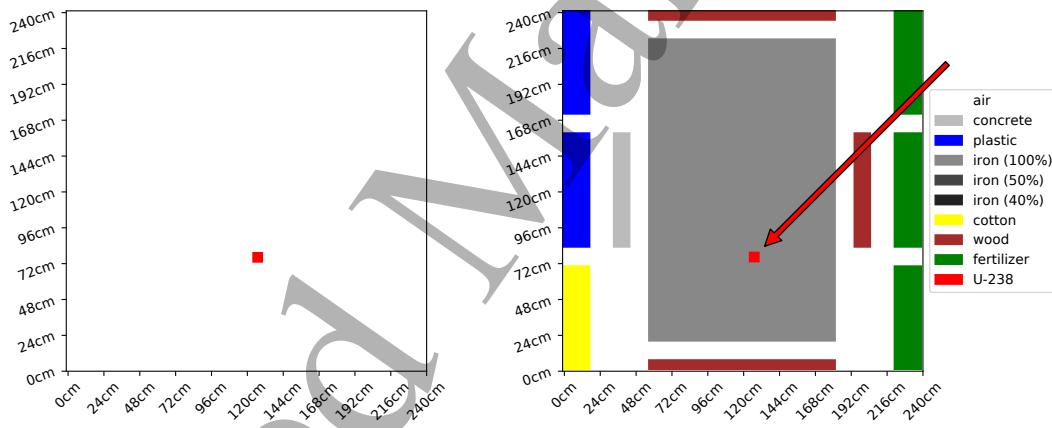


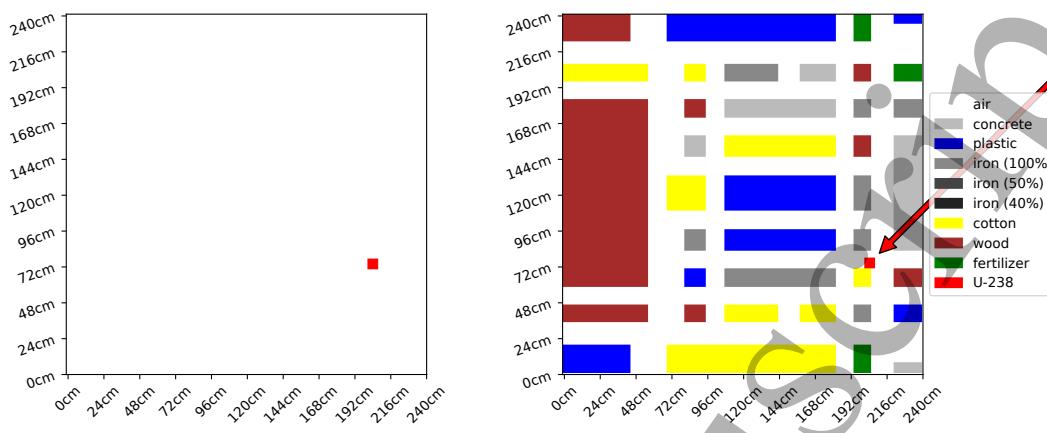
Figure 10. Left: Backprojection with source detected. Right: Cargo configuration with source location indicated by arrow. 101,272 particles detected, 100,328 background particles and 944 source particles. Exposure time is 3 days and 12 hours.

44
318 6.1.5. *Example #5*

45
319 Next, we consider a rather easy scenario (Figure 11), where both backprojection and
46 the network succeed. In this case the exposure time is 276 milliseconds for 100,898 particles.
47
320 In this configuration several small blocks of different materials are spread throughout the
48 container. Only an insignificant amount of particles are scattered, so backprojection recovers
49 the source distribution extremely well.
50
323

1
2
3
4
5 *Deep learning for source detection*

15



19
20 **Figure 11.** Left: Backprojection with source detected. Right: Cargo configuration with
21 source configuration indicated by arrow. 100,898 particles detected, 99,911 background
22 particles and 987 source particles. Exposure time is 276milliseconds.
23

24 324 *6.2. Generalization to more complex scenarios*
25

26 Now we will include more complex situations, considerably different from the ones used for
27 training. Namely, the corridors are not necessarily aligned vertically and horizontally, nor are
28 intersecting corridors orthogonal. The algorithm of producing configurations was different
29 from the one used in training. Additionally, we allow multiple sources to be present. The
30 results show that the network passes well this generalization test.
31
32

33 330 *6.2.1. Example #6*
34

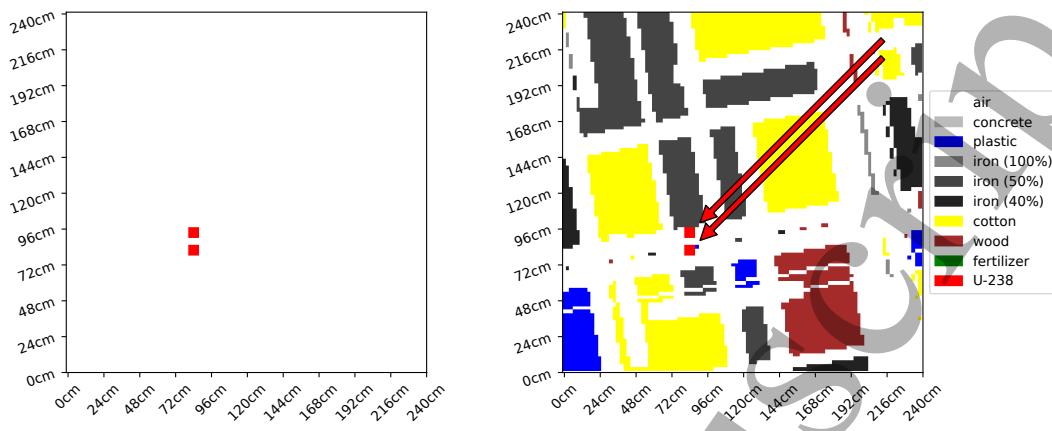
35 In this configuration (see Figure 12) several iron blocks are spread throughout the
36 container, but a sufficient amount of low attenuating paths exist between the sources and
37 detector arrays for backprojection to recover the sources well. There are two sources present
38 very near to each other. This clearly aids the backprojection method in successfully detecting
39 the sources. The CNN also succeeds in detecting presence of both of the sources. Here the
40 exposure time is 649 milliseconds for 101,497 particles.
41
42

43 337 *6.2.2. Example #7*
44

45 In this configuration (Figure 13) several heavy iron blocks cut diagonally through the
46 container slightly off-center. Three sources are present in this scenario, the two sources
47 around the middle are localized well with backprojection, since most of the materials only
48 weakly attenuate the signal, but the source on the other side of the heavy iron has several
49 attenuating materials to contend with, so the backprojection smears its signature throughout
50 the diagonal corridor it's in. Both backprojection and the CNN successfully predict that there
51 is a source, although backprojection fails to locate the third source. This third source may
52 prove difficult for the CNN to contend with as well, as the CNN predicts there are only two
53
54
55
56
57
58
59
60

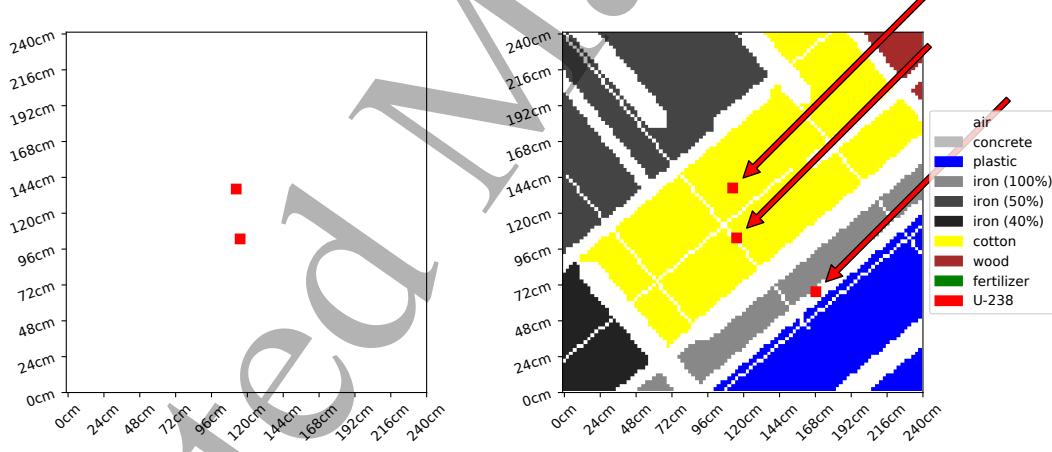
1
2
3
4
5 *Deep learning for source detection*

16



19 **Figure 12.** Left: Backprojection with source detected. Right: Cargo configuration with
20 source configuration indicated by arrow. 101,497 particles detected, 99,492 background
21 particles and 2,005 source particles. Exposure time is 649 milliseconds.

24 sources present. Here the exposure time is 371 milliseconds for 102,790 particles.



42 **Figure 13.** Left: Backprojection with source detected. Right: Cargo configuration with
43 source configuration indicated by arrow. 102,790 particles detected, 99,846 background
44 particles and 2,944 source particles. Exposure time is 371 milliseconds.

45

346

47

347

48 *6.2.3. Example #8*

49

348

50

349

51

350

52

351

53

352

54

353

55

354

56

355

57

356

58

357

59

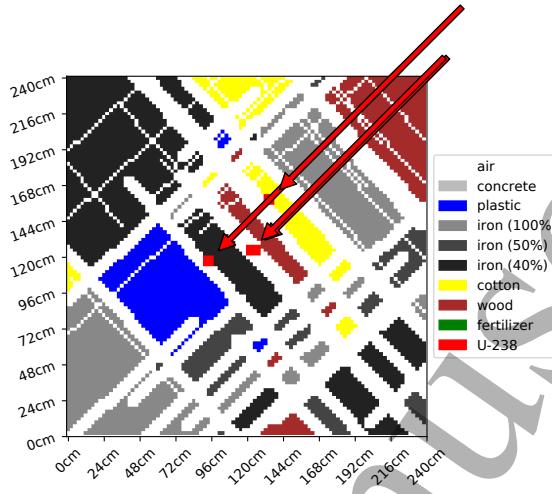
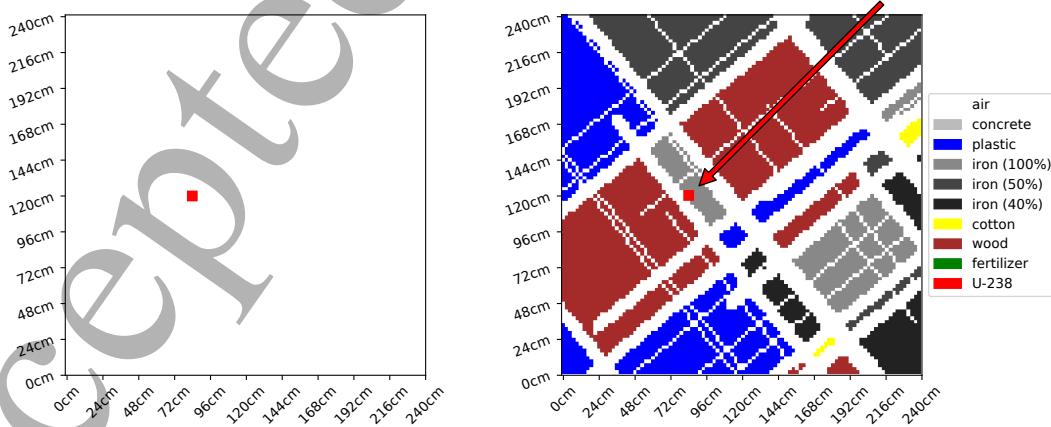
358

60

Here several iron blocks surround the center of the container (Figure 14). Four sources are present in this scenario, two of them directly adjacent (and thus hard to distinguish in the picture) and all four are near the center of the container. In this case backprojection fails to localize any of the sources due the limited angular information in the signal as a result of the attenuating properties of the iron. The CNN, on the other hand succeeds in detecting

1 *Deep learning for source detection*

2 17

3 353 the presence of all four of the sources, even despite the close proximity of two of them. Here
4 5 the exposure time is 1.97 seconds for 103,789 particles.23 **Figure 14.** Cargo configuration with source configuration indicated by arrow. 103,789
24 354 particles detected, 99,900 background particles and 3,889 source particles. Exposure time
25 5 is 1.97 seconds.26 355 6.2.4. *Example #9*27 356 Finally, we consider a simple case where backprojection and the CNN both succeed. In
28 357 this case there is ample angular information for backprojection to localize the source well
29 358 and the CNN correctly predicts the presence of a single source. The exposure time is 21.92
30 5 seconds for 100,672 particles. The configuration can be seen in Figure 15 below.52 359 **Figure 15.** Left: Backprojection with source detected. Right: Cargo configuration with
53 5 the source configuration indicated by arrow. 100,672 particles detected, 99,683 background
54 5 particles and 989 source particles. Exposure time is 21.92 seconds.

1 *Deep learning for source detection* 18
2
34 *6.3. Performance on Large Scale Dataset*
5

6 To test the statistical performance of the CNN on a large scale, 1738 unique cargo
7 configurations are generated using an alternate (to avoid possible inverse crime) generative
8 scheme. For each cargo configuration all four linear detector arrays are present, from zero up
9 to four sources are randomly placed and simulated independently, so that by using linearity
10 of (2) we can produce $1738 \times 16 = 27808$ testing samples. Particle detections are simulated
11 for an exposure time measured by the expected background detection levels of 20000, 50000
12 and 100000 particles. The data were fed into the trained CNN for source presence detection.
13 The results for presence detection are summarized in Table 3 below. The results obtained
14 clearly confirm our expectations (see Section 1).
15
16

Expected Particle Count	Sensitivity	Specificity
100000	99.90%	99.71%
50000	99.78%	94.59%
20000	99.81%	36.36%

24 **Table 3.** Sensitivity and specificity of the CNN source detection with each source having
25 1% SNR.
26
27

28 We remind the reader that sensitivity, or true positive rate, shows the success of
29 determining the presence of a source (i.e., few false negatives), while specificity reflects
30 how well the absence of the source is detected (i.e., few false positives). High specificity was
31 hardwired into the BP techniques [5, 6], it was only the sensitivity that was questionable.
32
33

34 The accuracy of the prediction generally increases with particle count (and thus
35 observation time), and sufficient particle counts are required for successful detection. At
36 the low levels (e.g., of 20000 particles and lower) the network seems biased to think that
37 a source is always present. This clearly leads to near 100% sensitivity and an extremely
38 low specificity, which makes the detection practically not feasible, due to high level of false
39 positives.. An explanation could be that the features that are being detected (albeit we do
40 not know what they are) are non-smooth, vs. large smooth background. When the total
41 count is low, the whole dataset becomes non-smooth, which tricks the network.
42
43

44 For comparison, we show below the analogous backprojection results, which are
45 significantly worse. This is not surprising, since the basic assumptions for this technique
46 are not satisfied. For 10^5 particles CNN succeeds extremely well and beats hands down the
47 backprojection technique, which often does not show any statistically significant deviations
48 and thus does not detect presence of the source. Notice that six times higher number of
49 detected particles was required in [5, 33] for backprojection stable detection, even without
50 complex cargo being involved.
51
52

Expected Particle Count	Sensitivity	Specificity
100000	71.04%	99.31%
50000	65.55%	99.31%
20000	52.13%	98.91%

Table 4. Sensitivity and specificity of the backprojection source detection with each source having 1% SNR.

389 6.4. Number of sources and number of detector arrays

390 Here we address the question of whether one has to completely surround the object with four
 391 detectors, or some results can be achieved with three, two, or one flat detector arrays. We
 392 thus have simulated each cargo configuration with zero to four independent sources randomly
 393 placed. Just as with the training data, we take several combinations of which sources and
 detector arrays are present. The combinations are summarized in Table 5 below.

Number of Sources	One Detector	Two Adjacent Detectors	Two Opposite Detectors	Three Detectors	Four Detectors	Total
0	6952	6952	3476	6952	1738	26070
1	27808	27808	13904	27808	6952	104280
2	41712	41712	20856	41712	10428	156420
3	27808	27808	13904	27808	6952	104280
4	6952	6952	3476	6952	1738	26070
Total	111232	111232	55616	111232	27808	417120

Table 5. Number of testing samples in each category

Particle detections are simulated for an exposure time measured by the expected background detection levels of 20000, 50000 and 100000 particles. The data were fed into a trained CNN for inference. The results for presence detection are summarized in the bar graphs below, with detailed tables posted in [8].

399 Additionally, we investigated the effect of scaling the strength of each source so that
 400 altogether they had the same strength as a single source, thus effectively diluting the localized
 401 signature of the source. In the case of backprojection the localized nature of the source is
 402 the key justification for the method of [5]. This would lead one to believe that splitting the
 403 source strength will make it more difficult for the CNN to detect any source presence, which
 404 is indeed confirmed by the results summarized in Table 6 below.

405 6.5. Observation time

406 The above results are presented in terms of the total number of particles detected. The
 407 conclusion is natural: the larger - the better. The number of detected particles obviously

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Deep learning for source detection

20

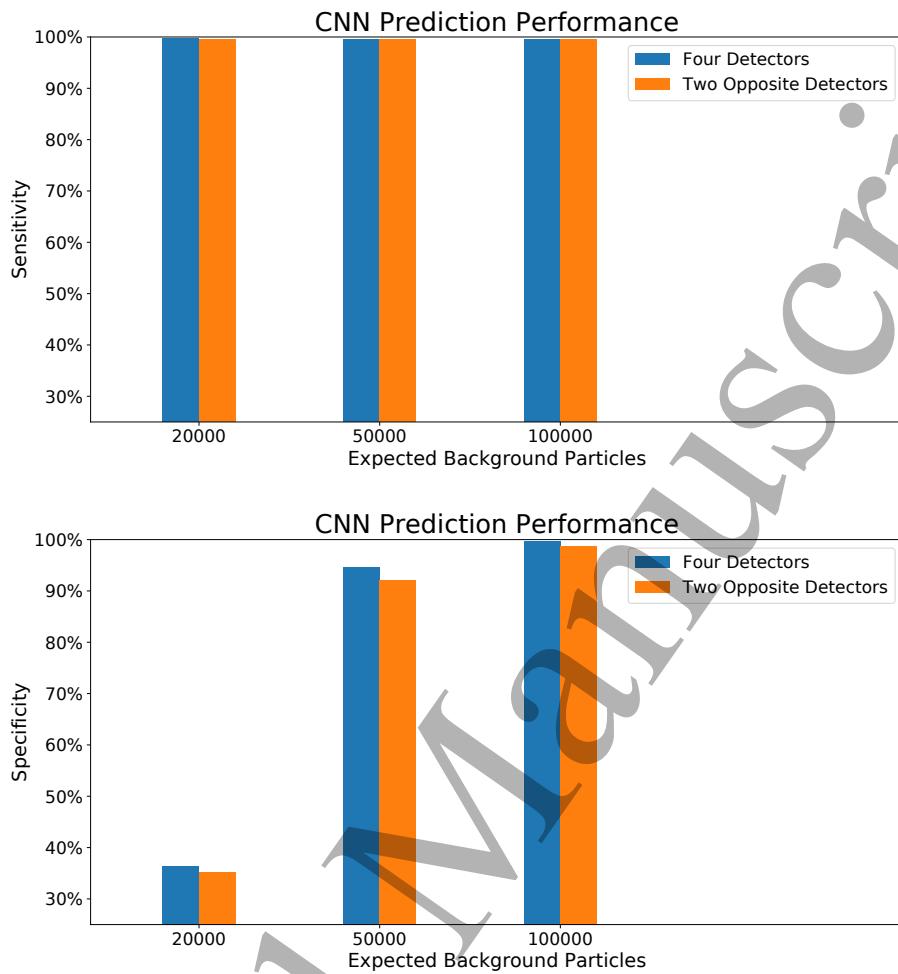


Figure 16. Sensitivity and specificity of the source detection.

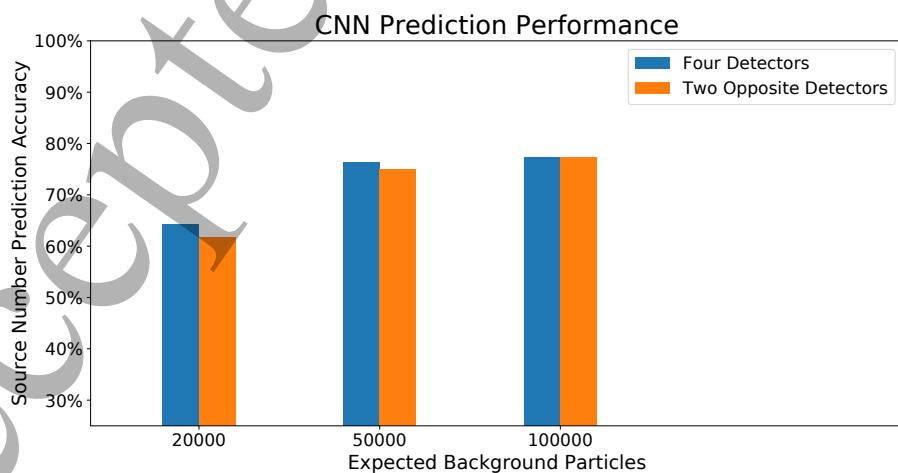


Figure 17. Accuracy of the number of source detection.

Expected Particle Count	Sensitivity one source	Sensitivity two sources	Sensitivity three sources	Sensitivity four sources	Specificity
100000	99.74%	96.57%	89.67%	82.62%	99.71%
50000	99.68%	97.25%	93.51%	89.13%	94.59%
20000	99.99%	99.95%	99.86%	99.77%	36.36%

Table 6. Sensitivity and specificity of the source detection techniques with split source strength.

408 increases with (essentially proportional to) the time of observation. However, the slope of
409 this increase clearly depends significantly on the type and configuration of the cargo. Thus,
410 the exposure time required to reach a certain level of particle detections is a function of
411 the configuration of the cargo, including source location, material composition, material
412 placement, and background strength. This makes it difficult to predict boundary flux rates,
413 even if the configuration is known, without solving the Boltzmann equation (2).

414 To make a fair numerical experiment, many heavily iron (and thus very shielding) cargo
415 scenarios have been included. Namely, the set of all samples have been divided into 24 sets of
416 equal size, and the probability of choosing iron as the filling of boxes was increasing linearly
417 from zero in the first group to almost one in the 24th one. Figure 18 contains the histogram
418 of the number of runs vs. time required for detection for thousands of configuration runs
419 for detecting the presence of a source emitting on the order of 1000 particles (assuming four
420 detectors). The vast majority would require time measured in seconds.

421 Generally speaking, one would expect the large bin on the left-hand side to correspond
422 to configurations with less high-Z materials, and the larger bins on the right-hand side
423 correspond to configurations with more high-Z materials. It can certainly become unrealistic
424 to detect many source particles in some of the latter cases. Nevertheless, as is evidenced by
425 some of the examples presented, as well as statistics presented in Section 6.3, quite a few
426 configurations of high-Z material exist where presence of source(s) source can be detected
427 in a reasonable amount of time. These lower exposure time scenarios would be the most
428 appropriate cases for detecting illicit nuclear materials at border crossings. Some of the
429 longer exposure times (on the order of several minutes to perhaps several days) would be
430 appropriate for detection of illicit nuclear materials in shipping containers on cargo ships,
431 where scanning can be done while the container is in transit.

432 Additionally, it is important to note that if one restricts oneself to a smaller number of
433 detector arrays (incomplete view), it will take longer to reach the same exposure level and
434 thus would add to the number of undetected cases.

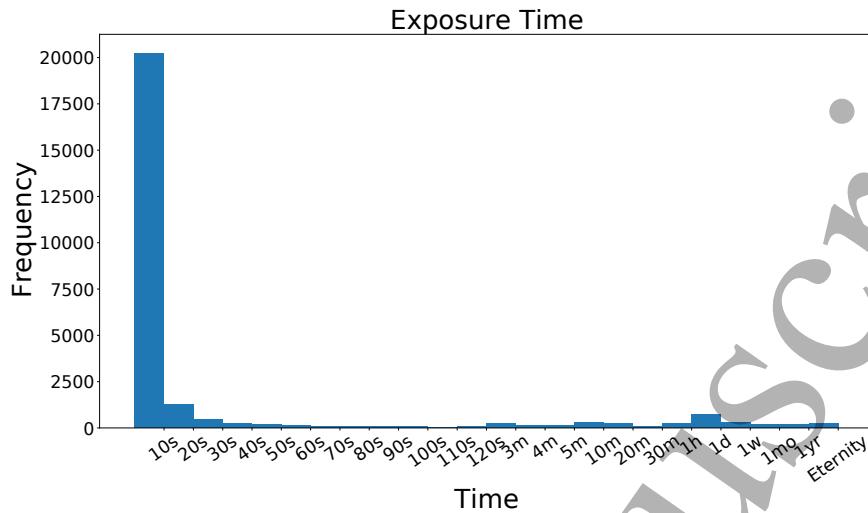


Figure 18. Histogram of the number of runs vs. exposure times required for detection for the testing data set. These times are computed in the case that all four linear detector arrays are present and anywhere between one and four sources are present.

435 7. Remarks and Conclusions

- 436 • Our work shows that the deep learning approach significantly improves over detection by
437 backprojection techniques of [6,30,33] and works for complex attenuating and scattering
438 cargo scenarios, where the latter fails completely. This confirms the opinion expressed
439 in [6] that some information about source presence was there.
- 440 • This article concentrates on the cases of presence of complex cargo and much (an order
441 of magnitude) lower number of γ -photon detected than in [5, 33]. This makes the
442 backprojection detection algorithm of these works not only weak, but also groundless.
- 443 • The network performs well detecting the number of up to four sources (although
444 naturally somewhat less successfully than detecting mere presence of a source).
- 445 • The authors want to make clear that when producing the results of this paper, no
446 processing (e.g., backprojecting) of the raw detector data is done before feeding it to the
447 network. Since the authors do not know what features would be of importance, we have
448 decided to not impose our prejudices on the data (especially taking into account that
449 backprojection is a smoothing operator, and the relevant information is most probably
450 contained in some sharper features).
- 451 • The exposure time required for detection is discussed in Section 6.5. The histogram in
452 Figure 18 shows detection in a matter of second for a vast majority of configurations.
453 It is clear that there are some unbeatable shieldings, so one cannot aim for the 100%
454 success rate. In such cases, other detection techniques could be used: from methods
455 of detecting presence of significant amounts of (shielding) high-Z materials, to neutron
456 emission detection, to human intelligence.

3 457 • A strong effort has been made to avoid committing an inverse crime. The testing samples
4 458 have been produced by an algorithm independent of the one used for the training data.
5 459 The testing cargo geometries were different from the ones not encountered in the training
6 460 data, so there was no intersection between the two data-sets.

7 461 • A variety of symmetry rules, including rotational symmetry and mirror symmetry were
8 462 applied randomly to some of the configurations and their material content, to check
9 463 whether presence or absence of the symmetry influence the detectability. The network
10 464 performance does not seem to react to this.

11 465 • The reader should not think that retraining was needed for different tasks and situations,
12 466 e.g. for heavy iron cargo, or for detecting the number of sources, rather their mere
13 467 presence. This all was done with a single trained network.

14 468 • Four planar Compton detectors forming a square surrounding the object of interrogation
15 469 were assumed. It seems that this is the most practical design of such detectors. Effects
16 470 of removal of some of the detectors have also been studied (Section 6.4).
17 471 The rectangular shape causes some problems, though, e.g. in backprojection method
18 472 they create (easily removable) corner artifacts. More importantly, this design lacks full
19 473 rotational invariance, which could be beneficial for the NN design. On the other hand,
20 474 the rectangular case is challenged by appearance of tilted cargo structures in the test
21 475 samples, while they were absent in the training data. The network, however, clearly has
22 476 overcome this difficulty.

23 477 • Deep learning techniques have been applied for SPECT image reconstruction, but as it
24 478 has been mentioned in the text the level of SNR we are dealing with in this work makes
25 479 any attempt to image reconstruction rather than binary detection impossible.

26 480 • There are various further improvements that one should attempt (and are being
27 481 attempted). Some of them are addressed below.

28 482 (i) It would have been great to figure out what specifically were the signs of presence
29 483 of the source that the network has learned. This would open a door for developing
30 484 more analytic methods. However, at this moment the authors do not know what
31 485 these features are.

32 486 (ii) Producing many more training data is a serious stumbling block in 2D, and
33 487 especially in 3D case.

34 488 (iii) The CNN architecture should be improved, aiming to reach shorter observation
35 489 time and even lower SNR levels.

36 490 (iv) We are working on moving to the more realistic 3D situation. The significant
37 491 difference here is, first, the much higher dimensionality of the data (5D) and
38 492 corresponding much more massive computations that are needed. Second, in
39 493 3D, unlike 2D (where a cone consists just of two rays), the Compton data differ
40 494 significantly from the usual Radon ones. In particular, an issue arises of how to bin
41 495 the five-dimensional Compton data in such a way, that the use of CNN could be
42 496 warranted.

Deep learning for source detection

24

- (v) The neural network (NN) approach should be tested on real data, which the authors clearly do not have. However, the radiative transport forward computations we used are commonly practiced in nuclear engineering, seem to be very realistic, and involve realistic material parameters. There is a chance that when novel neutron detectors that are being developed are deployed, we could get some real data.
- (vi) The approach we describe indicates presence of a source, but not its location (at least in the heavy iron cargo case). One wonders whether location can also be attempted.
- (vii) Although the results presented have been obtained by the same once trained NN, during research various designs of the NN and training sets have been experimented with, all showing consistent ability of detection. It would be still important to study further the model uncertainty (e.g., by using the dropout technique [14]). This will be done in a future work.
Meanwhile, although the testing samples often deviated from the structures used in the training set, our results have shown that the NN generalized extremely well. High experimental levels of the sensitivity and specificity, as well as more detailed information presented in Section 6.3 about statistical spread of the results instill confidence in the suitability of the network as a detection tool.

524 8. Acknowledgements

525 The first two authors acknowledge the support from the National Science Foundation through
526 the DMS grant #1816430 and Texas A&M Cyclotron Institute. The third author has been
527 partially supported through a grant by the Department of the Defense, Defense Threat
528 Reduction Agency under Award No. HDTRA1-18-1-0020. The content of the article does
529 not necessarily reflect the position or the policy of the federal government, and no official
530 endorsement should be inferred.

531 The authors are truly indebted to the three referees, whose detailed comments served
532 not only to improve exposition, but even more importantly, attracted our attention to some
533 features we have missed.

4 534 **References**

5 535 [1] Abadi M, et. al. 2015 Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems <https://www.tensorflow.org/>

6 536

7 537 [2] Adams M P, Adams M L, Hawkins W D, Smith T, Rauchwerger L, Amato N M, Bailey T S and Falgout
8 538 R D 2013 Provably optimal parallel transport sweeps on regular grids *International Conference on
9 539 Mathematics and Computational Methods Applied to Nucl. Sci. & Eng.* **4** 2535

10 540 [3] Adams M P, Adams M L, McGraw C N and Till A T 2015 Provably optimal parallel transport sweeps
11 541 with non-contiguous partitions *ANS MC2015-Joint International Conference on Mathematics and
12 542 Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC)
13 543 Method* **2** 1218

14 544 [4] Adams M P, Adams M L, Hawkins W D, Smith T, Rauchwerger L, Amato N M, Bailey T S, Falgout R
15 545 D, Kunen A and Brown P 2020 Provably optimal parallel transport sweeps on semi-structured grids
16 546 *Journal of Computational Physics* **01/2020** 109234

17 547 [5] Allmaras M, Darrow D, Hristova Y, Kanschat G and Kuchment P 2010 Detecting small low emission
18 548 radiating sources *Inverse Problems & Imaging*, **7(1)** 47

19 549 [6] Allmaras M, Ciabatti A, Hristova Y, Kuchment P, Olson A and Ragusa J 2016 Passive Detection
20 550 of Small Low-Emission Sources: Two-Dimensional Numerical Case Studies *Nuclear Sci. and Eng.*
21 551 **184(1)** 125

22 552 [7] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, Anders C. Hansen, On instabilities of deep
23 553 learning in image reconstruction and the potential costs of AI, *Proceedings of the National Academy
24 554 of Sciences* May 2020, 201907377; DOI: 10.1073/pnas.1907377117

25 555 [8] Baines W., Kuchment P, Ragusa J, Preprint arXiv:2003.04089.

26 556 [9] Bell G I and Glasstone S 1970 *Nuclear reactor theory*. (Malabar, FL: Krieger Publishing Company)

27 557 [10] Carlson B G 1955 *Solutions of the Transport Equation by SN Approximations* (Los Alamos, NM: Los
28 558 Alamos Scientific Laboratory)

29 559 [11] Chen G, Esch G, Wonka P, Müller P and Zhang E 2008 Interactive Procedural Street Modeling *ACM
30 560 Trans. Graph.* **27** 1

31 561 [12] Chollet F 2015 Keras *GitHub* <https://github.com/fchollet/keras>

32 562 [13] Duderstadt J J and Martin W R 1979 *Transport theory* (New York, NY: John Wiley & Sons)

33 563 [14] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: representing model uncertainty in deep
34 564 learning, *Proceedings of the 33rd International Conference on Machine Learning*, New York, NY,
35 565 USA, 2016. JMLR: W&CP volume **48**.

36 566 [15] Goodfellow I, Bengio Y and Courville A 2016 *Deep Learning* (Cambridge, MA: MIT Press)

37 567 [16] Hawkins W D, Bailey T S, Adams M L, Brown P N, Kunen A J, Adams M P, Smith T, Amato N M
38 568 and Rauchwerger L 2014 Validation of Full-Domain Massively Parallel Transport Sweep Algorithms
39 569 *Trans. Amer. Nucl. Soc.* **111** 699

40 570 [17] Jones E, et. al. 2001 SciPy: Open Source Scientific Tools for Python <http://www.scipy.org/>

41 571 [18] Kingma D P and Ba J 2015 Adam: A Method for Stochastic Optimization *International Conference on
42 572 Learning Representations*

43 573 [19] Lamarsh J 1966 *Introduction to nuclear reactor theory*. (Boston, MA: Addison-Wesley series in nuclear
44 574 engineering. Addison-Wesley Pub. Co.)

45 575 [20] Lesaint P and Raviart P A 1974 On a finite element method for solving the neutron transport equation.
46 576 *Mathematical Aspects of Finite Elements in Partial Differential Equations*, **33** 89

47 577 [21] Lewis E E and Miller W F 1984 *Computational methods of neutron transport* (United States: John
48 578 Wiley and Sons, Inc.)

49 579 [22] Liu W, Wang Z, Liu X, Zeng N, Liu Y and Alsaadi F 2017 A survey of deep neural network architectures
50 580 and their applications, *Neurocomputing* **234** 11

51 581 [23] MacFarlane R and Muir D 1994 *The NJOY nuclear data processing system version 91* (Los Alamos,
52 582 NM: Los Alamos Scientific Laboratory)

1 *Deep learning for source detection*

26

3 [24] Natterer F 2001 *Mathematics of computerized tomography* (Philadelphia, PA: SIAM: Society for
4 Industrial and Applied Mathematics)

5 [25] Perlin K 1985 An Image Synthesizer *Proceedings of the 12th Annual Conference on Computer Graphics*
6 and *Interactive Techniques* **10** 287

7 [26] Reed W H and Hill T R 1973 Triangular mesh methods for the neutron transport equation. *National*
8 *topical meeting on mathematical models and computational techniques for analysis of nuclear systems*
9 Los Alamos Report LA-UR-73-479

10 [27] Sánchez R and Ragusa J 2011 On the construction of galerkin angular quadratures *Nuclear Science*
11 and *Engineering* **169**(2) 133

12 [28] Santi P A 2013 Passive nondestructive assay of nuclear materials (Los Alamos NM: Los Alamos Scientific
13 Laboratory) Los Alamos Report LA-UR-73-479

14 [29] Emil Y. Sidky, Iris Lorente, Jovan G. Brankov, Xiaochuan Pan, Do CNNs solve the CT inverse problem?,
15 2020, arXiv preprint arXiv:2005.10755

16 [30] Terzioglu F, Kuchment P and Kunyansky L 2018 Compton camera imaging and the cone transform :
17 A brief overview *Inverse Problems* **34**(5) 054002.

18 [31] Wareing T, McGhee J, Morel J and Pautz S 2001 Discontinuous finite element Sn methods on three-
19 dimensional unstructured grids *Nuclear Science and Engineering*, **138**(3) 256

20 [32] Wu K, Otoo E and Shoshani A 2005 Optimizing connected component labeling algorithms *Medical*
21 *Imaging 2005: Image Processing* **5747** 1965

22 [33] Xun X, Mallick B, Carroll R and Kuchment P 2011 Bayesian approach to detection of small low emission
23 sources *Inverse Problems* **27**(11) 115009

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1 *Deep learning for source detection*

27

3 604 **9. Appendix: Algorithm for Procedural Generation of Cargo Configurations**

4

5

6

7 **Algorithm 1:** Procedural Cargo Configuration

8

9

10 Generate Perlin noise in cargo;

11 Initialize n_x and n_y to desired number of vertical and horizontal boundaries

12 (numbers can be chosen randomly);

13 Sum Perlin noise over rows and columns to produce noise function on edge of cargo;

14 Randomly select n_x distinct x -coordinates for vertical boundaries and n_y distinct15 y -coordinates for horizontal boundaries according to edge noise functions. Store16 in x and y respectively.;

17

18 $n_{iter} = 0$;19 **while** $n_x > 0$ or $n_y > 0$ **do**

20

21 **if** n_{iter} is even and $n_x > 0$ **then**22 Determine all existing boundary points along the line $(x[n_{iter}/2], y)$.23 Randomly select a starting point y_s and ending point y_e from among the

24 existing boundary points according to previously generated Perlin noise.

25 Set all points between $(x[n_{iter}/2], y_s)$ and $(x[n_{iter}/2], y_e)$ to boundary

26 points.;

27

28 $n_x = n_x - 1$;29 $n_{iter} = n_{iter} + 1$;

30

31 **else if** n_{iter} is odd and $n_y > 0$ **then**32 Determine all existing boundary points along the line $(x, (y[(n_{iter} - 1)/2]))$.33 Randomly select a starting point x_s and ending point x_e from among the

34 existing boundary points according to previously generated Perlin noise.

35 Set all points between $(x_s, (y[(n_{iter} - 1)/2]))$ and $(x_e, (y[(n_{iter} - 1)/2]))$ to

36 boundary points.;

37

38 $n_y = n_y - 1$;39 $n_{iter} = n_{iter} + 1$;

40

41 **end**

42 Identify connected components (Scipy.Measure.Label);

43 **if** Rotational Symmetry Desired **then**

44 Copy one quadrant of the configuration over all others with appropriate

45 rotation;

46 **if** Mirror Symmetry Desired **then**

47 Copy one side of the configuration over the other with mirroring ;

48 ... Randomly assign material identification to each connected component ;

49 Save configuration to file;

50 **Result:** Single cargo configuration

51

52

53

54

55

56

57

58

59

60