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ABSTRACT We study a quantum entanglement distribution switch that serves k users in a star topology.
We model variants of the system as continuous-time Markov chains (CTMCs) and obtain expressions for
switch capacity, expected number of qubits stored in memory at the switch, and the quantum memory
occupancy distribution. We obtain a number of analytic results for systems in which measurements are
imperfect, the links are homogeneous or heterogeneous and for switches that have an infinite or finite number
of quantum memories, or buffers. In addition, we model the effect of decoherence of quantum states and
associated cut-off times on their storage using a simple model. From numerical observations, we discover
that decoherence-associated cut-off times have little effect on capacity and expected number of stored qubits
for homogeneous systems. For heterogeneous systems, especially those operating near the boundaries of
their stability regions (i.e., systems that are nearly unstable), buffer size and decoherence can have significant
effects on performance metrics. We also learn that in general, increasing the buffer size from one to two
qubits per link is advantageous to most systems, while increasing the buffer size further yields diminishing
returns. The analytical results obtained in this work can serve as a useful guide toward the future design of
quantum switches – e.g., by allowing the designer to determine how many quantum memories suffice for a
given number of users – as well as provide valuable insight on the performance of these and similar devices.

INDEX TERMS remote entanglement generation, quantum repeaters

I. INTRODUCTION
Entanglement is an essential component of quantum com-
putation, information, and communication. Its applications
include quantum cryptography (e.g., [1]–[5]), distributed
quantum computing (e.g., [6], [7]), quantum sensing (e.g.,
multipartite entanglement for quantum metrology [8], [9]
and spectroscopy [10]; quantum machine learning [11]), and
it offers advantages to quantum communication (see, e.g.,
[12], [13]). These applications drive the increasing need for
a quantum switching network that can supply end-to-end
entanglement to groups of endpoints that request them [14]–
[17]. To realize such quantum systems, several architectures
have been proposed to support high entanglement generation
rates, high fidelity, and long coherence times [18]–[23].

In this paper, we study in detail the most basic and
fundamental component of a quantum network – a single

quantum switch that serves k users in a star topology. Each
user has a dedicated link connected to the switch. In the most
general case, the switch serves n-partite entangled states to
sets of users according to incoming requests, where n ≤ k.
To achieve this, link-level entangled states are generated
at a constant rate across each link, resulting in two-qubit
maximally-entangled states (i.e., Bell pairs or EPR states).
These qubits are stored at local quantum memories: one
from each Bell pair at the user and the other at the switch.
When enough link-level entanglement is accrued (at least n
Bell pairs at n different links), the switch performs multi-
qubit measurements to provide end-to-end entanglement to
user groups of size n. When n = 2, the switch uses Bell-
state measurements (BSMs) and when n ≥ 3, it uses n-
qubit Greenberger-Horne-Zeilinger (GHZ) basis measure-
ments [24]. In this work, we focus on the case of n = 2 –

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

i.e., the case of bipartite-only switching, although some prior
work on n ≥ 3, as well as n being allowed to switch between
2 or 3 will be discussed in Section II.

The objective of this work is to characterize the perfor-
mance of such a device, for example by determining its ca-
pacity (defined as the maximum achievable rate of entangle-
ment switching), and deriving expressions for the expected
quantum memory occupancy under various assumptions –
e.g., while assuming a particular quantum memory coherence
time or limitations on the available number of memories.
We accomplish this objective by constructing a simple, yet
descriptive model of a quantum switch: we determine a small
number of important model parameters and abstract away
the specifics of implementation and physical platform. For
instance, we do not focus on a specific method of entangle-
ment generation on a link, and we do not analyze a specific
quantum memory implementation; rather, we include the rate
of entanglement generation and memory coherence times
as configurable system parameters. This way, our model is
agnostic to hardware architecture and protocol specifics, and
is kept general. Subsequently, when we analyze the model,
we obtain results that are often interpretable and intuitive.

We consider systems in which links may generate entan-
glement at different rates and where the switch can store one
or more qubits (each entangled with another qubit held by a
user) per link. Throughout this paper, we refer to these pairs
of stored qubits as stored entanglements. Another factor that
impacts performance is decoherence of quantum states and
subsequent qubit storage cut-off times that may be imposed
by the switch or an application to prevent the consumption
of low-fidelity states; we model this and study its effect. The
main metric of interest for this network is its capacity C, i.e.,
the maximum possible number of end-to-end entanglements
served by the switch per time unit. Another metric of interest
is the expected number of qubits Q in memory at the switch,
E[Q]. Where possible, we also derive in closed-form the
distribution of the number of stored qubits at the switch.
Both C and E[Q] depend on the values of k, n, entangle-
ment generation and decoherence rates, number of quantum
memories (often referred to as buffer size throughout this
manuscript), and the switching mechanism, including the
scheduling policy used by the switch.

Contributions of this work are as follows: by modeling
the switch as a continuous-time Markov chain (CTMC), we
derive C and E[Q] for n = 2 for a first-in, first-out schedul-
ing policy on successfully-generated entanglement, and study
how they vary as functions of k, buffer size, and decoherence
rate or qubit storage cut-off times. From our analysis, we
gain valuable insight into which factors influence capacity
the most, and which ones are of lesser consequence. For
instance, we find that when n = 2 and links are identical,
the number of links and their entanglement generation rate
are the most impactful, while decoherence-associated cut-off
times for qubit storage and link buffer size have little effect on
capacity and E[Q]. However, the same is not true in the case
of non-identical links, where the distribution of entanglement

generation rates, combined with finite coherence time, can
drastically affect both C and E[Q]. Last, we compare our
results for the n = 2, identical-link, negligible decoherence,
infinite buffer case against a logically more accurate discrete-
time Markov chain (DTMC) model studied in [25] and find
that the differences in predictions of the performance metrics
are small.

The remainder of this paper is organized as follows: in Sec-
tion II, we discuss relevant background and related work. In
Section III, we cover modeling techniques, assumptions, and
objectives. In Section IV, we introduce our CTMC models
for n = 2 and present their analyses. Numerical observations
are discussed in Section V. In Section VI, we discuss ways
in which some of our modeling assumptions may be relaxed.
We conclude in Section VII.

II. BACKGROUND
In [22], Herbauts et al. implement an entanglement distri-
bution network intended for quantum communication ap-
plications. The fidelities of entanglement generated in this
network were 93% post-distribution, and fidelities of 99%
were shown to be achievable. The demonstration entails dis-
tributing bipartite entanglement to any pair of users wishing
to share entanglement in a multi-user network (there were
eight users in the experimental setup). Delivering multiple
bipartite entangled states was shown to be possible virtually
simultaneously. The authors specifically cite a possible ap-
plication of the network in a scenario where a single central
switch dynamically allocates two-party entanglement to any
pair of users in a static network. In this paper, we study
variants of this system, but here we additionally assume that
the switch has the ability to store entangled qubits for future
use.

In this work, we do not make an assumption about the
fidelity of successfully-generated entanglement – neither at
the link nor at the end-to-end levels – and focus only on a
switching policy that maximizes the entanglement switching
rate. While this is a good starting point for quantum switch
analysis, being able to make quantitative statements about
the fidelity of entanglement is another important question.
The analysis of such a study, which will likely have to
incorporate some form of entanglement purification, e.g.,
[26], is left as an open question and a subject of future
work, although we add some discussion on how this may be
accomplished in Section VI. Since the original introduction
of our quantum switch model in [27], Coopmans et al. studied
the effect of memory coherence time on the average fidelity
of the end-to-end entanglement served to the users by the
switch, using NetSquid, a discrete-event simulation frame-
work for quantum networks [28]. In their work, decoherence
was modeled as exponential T2 noise, and the simulated
switch did not implement the qubit storage cut-off policy
we consider here; but the authors were nevertheless able to
use our decoherence-free models and validate our theoretical
findings for the switch capacity as a function of buffer size,
which are in close agreement with the simulation.
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In recent years, there have been other promising experi-
mental demonstrations for realizing the fundamental com-
ponents of quantum repeater architectures. For instance, in
[18], Bhaskar et al. implement quantum-memory-enhanced
quantum communication to overcome the fundamental limit
of repeaterless communication [29]. At the same time, new
architectures and protocols, which promise to yield higher-
fidelity states and quicker end-to-end entanglement gener-
ation rates, have been proposed – e.g., the quantum router
proposal in [19] achieves both of these objectives. Such
advances further emphasize the importance of analysis and
theoretical studies to help guide hardware specifications and
protocol design for quantum communication architectures.

In [30], the authors use Markovian models to compute the
expected waiting time in quantum repeaters with probabilis-
tic entanglement swapping. Specifically, they consider entan-
glement distribution over a distance subdivided by repeater
segments, and while they propose a method of computing the
average waiting time for an arbitrary number of links, explicit
expressions are provided for only up to four segments. In
contrast, we consider a single quantum repeater-like device,
but one that services an arbitrary number of links.

In [31], we analyze the capacity region of a quantum en-
tanglement switch that serves users in a star topology and is
constrained to store one or two qubits per link. The problem
setup is similar to that of this work, with the exception that
the switch has the ability to serve bipartite and tripartite end-
to-end entanglement. There, we examine a set of randomized
switching policies and find policies that perform better than
time-division multiplexing between bipartite and tripartite
entanglement switching. Note that while in [31], we allow the
switch to choose between two types of entanglement to serve
at every time step, in this work we fix n = 2 and analyze it in
more detail: for instance, in [31] all links are assumed to be
identical, while in this work links may be heterogeneous and
buffer sizes can be larger than one or two per link.

In [32], we study a quantum switch serving n-partite end-
to-end entangled states to k ≥ n users and for n ≥ 2. The
setup is identical to that of this work, but limited to the case of
a homogeneous-link, infinite-buffer system with no quantum
state decoherence. For the case of n = 2, the results are
consistent with those of this paper, and we build on them to
explore more complex bipartite switching systems. As new
quantum architectures and technologies emerge, we expect
quantum networks to become more prevalent and suitable
for practical use. With link-level and especially end-to-end
entanglement being a valuable commodity in these networks,
proper resource management will be imperative for reliable
and efficient operation, which further motivates our study.

III. MODEL AND OBJECTIVES
Consider first a fairly general setting of the proposed prob-
lem: k users are attached to a quantum entanglement dis-
tribution switch via k dedicated links. At any given time
step, any set of n users (with n ≤ k) may wish to share
an end-to-end entangled state. The creation of an end-to-

end entanglement involves two steps. First, users generate
pairwise entanglements with the switch, which we call link-
level entanglements. Each of these results in a two-qubit
entangled (Bell) state, with one qubit stored at the switch
and the other stored at a user. Once there are n link-level
Bell pairs available to fulfill a request between n users,
the process enters step two: the creation of an end-to-end
entanglement. The switch chooses the set of n locally-held
qubits (that are entangled with n qubits held by the n distinct
users) corresponding to the request and performs an entan-
gling measurement. If such a measurement is successful,
the result is an n-qubit maximally-entangled state between
the corresponding n users. If after this step more link-level
entanglements are available and can be used to fulfill another
request, the switch repeats the second step until either there
are fewer than n local qubits left or until no more requests
can be fulfilled.

In this work, our objective is to derive a tight upper bound
on the entanglement switching rate when n = 2, i.e., the
maximum possible rate at which the switch may serve bipar-
tite end-to-end entangled states – we call this quantity the
bipartite switching capacity of the system. Since this upper
bound should hold for any workload, it is necessary for us to
assume that any two users wish to share an entangled state;
in fact, removing this assumption would necessarily decrease
the rate at which the switch is allowed to serve end-to-end
entanglement. With this request policy, the switch has no re-
strictions on which measurements to perform whenever two
distinct link-level entanglements are available. Hence, in step
two of entanglement distribution, the switch simply chooses
a set of two qubits corresponding to Bell pairs on two distinct
links, and uses them in the entangling measurement. Step two
is repeated until at most one link has available Bell pairs. The
results of our analysis on the capacity of the switch can be
used as a comparison basis for other types of scenarios, in
which, for example, each pair of users may specify a desired
rate of communication with each other through the switch.
Another utility of this analysis is that by examining a switch
that operates at or near maximum capacity, one may gain
insight on the practical memory requirements of a switch.

Both link-level entanglement generation and entangling
measurements can be modeled as probabilistic phenomena
[33]. In this work, we model the former as a Poisson process:
each link attempts entanglement generation at rate λ, and for
link l ∈ {1, . . . , k}, each attempt succeeds with probability
pl ≈ e−βLl , whereLl is the length of the lth link (e.g., optical
fiber) and β its attenuation coefficient. Hence, link l generates
successful entanglements with rate µl := λpl. We refer to
the special case of µl = µm, ∀l,m ∈ {1, . . . , k} as a ho-
mogeneous system, and when they are not necessarily equal,
as a heterogeneous system. We assume that measurements
performed by the switch succeed with probability q1.

1With a linear optical circuit, four unentangled ancilla single photons and
photon number resolving detectors, with all the devices being lossless, q =
25/32 = 0.78 can be achieved for BSMs [34]. With other technologies q
close to 1 can be achieved [35].
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In [25], we modeled a quantum switch as a DTMC. The
basic setup there is the same as that of this work, but
several more simplifying assumptions are made: the links
are assumed to be identical, the buffer size infinite, and
decoherence is assumed to be negligible. Relaxing any of
these assumptions poses several difficulties and complicates
the analysis, in some cases making it intractable. In fact, even
with the simplifying assumptions of [25], we were only able
to obtain a closed-form expression for the switch capacity,
but not for E[Q]. To gain intuition on why the analyses
of the two models are so different, consider a switch with
k identical links and no decoherence, and consider a state
where a link l has j stored Bell pairs, j ≥ 1. In the CTMC,
a “backward” transition may occur, when another link (other
than l) successfully generates entanglement, and a “forward”
transition occurs when link l generates another entanglement.
This is illustrated in Figure 2. In the DTMC, there are several
other transitions that must be considered, since within a
given time slot, more than one link may generate a Bell pair
successfully, including link l, so that transitions may occur
between non-adjacent states. Further, all such combinatorial
sets of links must be considered, sometimes yielding rather
unwieldy expressions for the transition probabilities. Never-
theless, the DTMC is a logically more accurate way to model
such a system; we later numerically compare the differences
between the two models.

Next, we describe how the switch handles quantum state
decoherence and how we model it. In quantum networking
literature, there are several references to a “cut-off time”
for quantum state storage; see, e.g., [36]–[41]. The cut-off
time has slightly varying definitions in different contexts: in
some cases, it is viewed as a quantum memory lifetime (or
coherence time), and determines how long a qubit should
be held in memory, as the effects of decoherence on the
quantum state are considered too great beyond the cut-off
time. In other contexts, it is instead viewed as a configurable
parameter that may be determined by a routing or even an
application-level protocol in such a way as to ensure that the
final fidelity of the end-to-end states is above some required
threshold (for instance, some QKD protocols can tolerate
fidelities of no less than 0.81 [42]). In such scenarios, the
cut-off strategy is used to reduce the effect of decoherence on
stored quantum states or to increase the distance over which
a secret key can be generated, at the cost of a lower end-to-
end entanglement generation or secret-key rate. In summary,
the cut-off time is a constant quantity that either corresponds
to the platform-dependent quantum memory coherence time,
or to some possibly optimized parameter specified by a user
or an application, but regardless of the exact definition, it is
closely tied to the quantum memory coherence time. In prac-
tical implementation proposals of this strategy, an entangled
qubit is held in memory for some time t?, after which it is
deterministically discarded.

To model this decoherence-associated cut-off time for
qubit storage, we approximate this deterministic discard-
ing procedure by a probabilistic one: the switch discards

a qubit after an exponentially-distributed amount of time,
with mean 1/α. In other words, our cut-off time (or, as we
sometimes interchangeably use, the coherence time) is in
effect an exponential random random variable (r.v.), instead
of a constant quantity. We make this modeling choice be-
cause it seamlessly extends our decoherence-free model of
a quantum switch and also because modeling deterministic
components of system operation is a difficult task, and this
system is no exception. In summary, while the exponential
assumption on qubit discarding is not physically meaningful,
it makes the analysis tractable. In Section V-D we simulate
the probabilistic and deterministic qubit storage cut-off time
policies and compare both simulations to the results of our
analyses. While an exhaustive evaluation over all parameter
values (buffer size, decoherence/cut-off rate, entanglement
generation rate, etc.) is not possible, our limited results imply
that, at least for realistic and representative use cases, our
approximation of the deterministic cut-off policy using a
probabilistic one is reasonable.

Next, we discuss the specifics of qubit prioritization for
storage and measurements. If at any time there are fewer
than n = 2 link-level entanglements, the switch may choose
to store the available entangled qubits and wait until there
are enough new ones generated to create an end-to-end
entanglement. We assume that the switch can store B ≥ 1
qubits in its buffer, per link. If on the other hand, there are
more than n = 2 link-level entanglements, the switch must
decide which set(s) of them to use in measurement(s). Such
decisions can be made according to a pre-specified policy:
for example, a user or a set of users may be given higher
priority for being involved in an end-to-end entanglement.
Other scheduling policies may be adaptive, random, or any
number of hybrid policies. In this work, we assume that the
switch uses the Oldest Link Entanglement First (OLEF) rule,
wherein the oldest link-level entanglements have priority to
be used in entangling measurements. A practical reason for
this rule is that quantum states are subject to decoherence,
which is a function of time; hence, our goal is to make use
of link-level entanglements as soon as possible.2 When we
model systems with a finite number of quantum memories,
then there may occur scenarios in which a link has used up
all its available memories and must decide whether to discard
an older Bell pair in order to store a newly-generated one.
In such a case, the OLEF rule still applies, and we discard
the qubit associated with the oldest stored entanglement to
make space for the qubit from the newly-generated Bell pair.
Note that the OLEF switching policy we consider in this work
is one that optimizes the entanglement switching rate, but it
may not be the optimal policy for other figures of merit, such
as average end-to-end fidelity of entanglement. A fidelity-
optimal switching policy, especially one that incorporates a

2If the system is operating in discrete time as in [25], there may arise
instances in which two or more links are tied for having the oldest entangle-
ments. In such cases, as long as the switch follows the OLEF rule, sets of
link-level entanglements are chosen at random for measurements, provided
that each set consists of n entanglements belonging to n distinct links.
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purification protocol, is an open question and requires further
analysis.

The state space of the system we have described can be
represented by a vector Q(t) ∈ {0, 1, . . . , B}k, where the lth
element corresponds to the number of stored entanglements
at link l at time t. One consequence of the assumption that
any pair of users always wishes to share an entangled state is
that at most one user will store entanglement at any time.
Hence, throughout this work, up to one link may have a
stored Bell pair after step two of entanglement distribution.
Our goal is to derive expressions for system capacity C
(i.e., the number of end-to-end entanglements produced per
time unit) and the expected number of stored qubits E[Q].
Throughout the paper, we use the result that if the balance
equations of an irreducible CTMC have a unique and strictly
positive solution, then this solution represents the stationary
distribution of the chain.

IV. CONTINUOUS TIME MARKOV CHAIN FOR BIPARTITE
SWITCHING
In this section, we introduce and analyze a CTMC model of
a bipartite entanglement distribution switch serving k users.
We first assume that memories do not decohere and obtain
expressions for capacity and the expected number of qubits
stored at the switch. We then modify the model to incorporate
decoherence and qubit storage cut-off times and analyze it.
Last, we derive an upper bound for the capacity of the switch.

A. THE HETEROGENEOUS CASE
Assume µl depends on l, i.e., the links are heterogeneous. For
subsequent analysis, it is useful to define

γ :=

k∑
l=1

µl,

the aggregate entanglement generation rate over all links.
Also, let el be a size k vector with all zeros except for the
lth component, which is 1, and let 0 be a vector of size k
with all entries equal to 0.

We are interested in the stationary distribution and stability
conditions for a heterogeneous system with infinite and finite
buffers. As discussed in Section III, in bipartite entanglement
switching, only one link stores entanglements at a time, but
since links generate entanglements at different rates, we must
keep track of which link is associated with the stored entan-
glement(s). Let Q(t) = (Q1(t), . . . , Qk(t)) ∈ {0, 1, 2, . . . }k
represent the state of the system at time t, where Ql(t) is the
number of entanglements stored at link l, l ∈ {1, . . . , k}, at
time t. As a consequence of the scheduling policy described
in Section III, if Qi(t) > 0 for some i, then Qj(t) = 0,
j 6= i. In other words, Q(t) only takes on values 0 or jel,
l ∈ {1, . . . , k}, j ∈ {1, 2, . . . }. Here, 0 represents the state
where no entanglements are stored, and jel represents the
state where the lth link has j stored entanglements.

Define the following limits when they exist:

π0 = lim
t→∞

P (Q(t) = 0),

π
(j)
l = lim

t→∞
P (Q(t) = jel).

Once we obtain expressions for π0 and π(j)
l , we can derive

expressions for capacity and the expected number of stored
qubits E[Q].

1) Infinite Buffer
Figure 1 presents the CTMC for a switch with an infinite
buffer. Consider state 0 (no stored entanglements). From
there, a transition along one of the k “arms” of the CTMC
occurs with rate µl, when the lth link successfully generates
an entanglement. For a BSM to occur, any of the k − 1 other
links must successfully generate an entanglement: this occurs
with rate γ − µl. The balance equations are

π0µl = π
(1)
l (γ − µl), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl), l ∈ {1, . . . , k}, j ∈ {2, 3, . . . },

π0 +
k∑
l=1

∞∑
j=1

π
(j)
l = 1.

From above, we see that for j = 1, 2, . . . ,

π
(j)
l = ρjlπ0, where ρl ≡

µl
γ − µl

, ∀ l.

It remains to obtain π0; we can use the normalizing condition:

π0 + π0

k∑
l=1

∞∑
j=1

ρjl = π0

1 +

k∑
l=1

 ∞∑
j=0

ρjl − 1

 = 1.

Now, assume that for all l ∈ {1, . . . , k}, ρl < 1. This implies
that for all l, µl < γ/2. This is the stability condition for this
chain. Then,

π0 =

(
1 +

k∑
l=1

ρl
1− ρl

)−1
and the capacity is

C = q
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl) =

q
k∑
l=1

µl

1−ρl

1 +
k∑
l=1

ρl
1−ρl

=
qγ

2
. (1)

See Appendix VIII for a proof of the last equality. The
distribution of the number of stored entanglements is

P (Q = j) =


π0, if j = 0,
k∑
l=1

π
(j)
l = π0

k∑
l=1

ρjl , if j > 0.

The expected number of stored entanglements is

E[Q] =
∞∑
j=1

jP (Q = j) =
∞∑
j=1

jπ0

k∑
l=1

ρjl =

k∑
l=1

ρl
(1−ρl)2

1 +
k∑
l=1

ρl
1−ρl

,

(2)
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FIGURE 1: A CTMC for a k-user, infinite buffer, heterogeneous-link switch. µl is the entanglement generation rate of link l,
while γ is the aggregate entanglement generation rate of all links. el is a vector of all zeros except for the lth position, which is
equal to one.

where, in the last equality, we apply Tonelli’s Theorem.

2) Finite Buffer
In the case of heterogeneous links and a finite buffer of
size B, the CTMC has the same structure as in Figure
1, except that each “arm” of the chain terminates at Bel,
∀l ∈ {1, . . . , k}. The balance equations are

π0µl = π
(1)
l (γ − µl), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl), l ∈ {1, . . . , k}, j ∈ {2, . . . , B},

π0 +
k∑
l=1

B∑
j=1

π
(j)
l = 1

and have solution

π
(j)
l = ρjlπ0, l ∈ {1, . . . , k}, j ∈ {1, . . . , B},

where ρl is defined as in the infinite buffer case. Then,

π0

1 +
k∑
l=1

B∑
j=1

ρjl

 = 1, hence

π0 =

1 +
k∑
l=1

B∑
j=1

ρjl

−1,
and the capacity is

C = q
k∑
l=1

B∑
j=1

(γ − µl)π(j)
l =

q
k∑
l=1

µl(1−ρBl )
1−ρl

1 +
k∑
l=1

ρl(1−ρBl )

1−ρl

. (3)

The distribution of the number of stored qubits is given by

P (Q = j) =


π0, if j = 0,
k∑
l=1

π
(j)
l = π0

k∑
l=1

ρjl , if 0 < j ≤ B.

The expected number of stored qubits is

E[Q] =
B∑
j=1

jP (Q = j) =

k∑
l=1

ρl(BρB+1
l −(B+1)ρBl +1)

(1−ρl)2

1 +
k∑
l=1

ρl(1−ρBl )

1−ρl

.

The rate received by user l (connected to link l) is given by

Cl = q

(γ − µl)
B∑
j=1

π
(j)
l + µl

k∑
m=1,
m 6=l

B∑
j=1

π(j)
m

 , (4)

where the first term represents the production of entangle-
ments by link l (which get consumed by other links at rate
γ − µl) and the second term represents the consumption
by link l of stored entanglements at other links. Note then,
that if we were to sum all Cl, each end-to-end entanglement
would be double-counted. Hence,

∑
Cl = 2C. (Note: in the

infinite-buffer case, Cl = qµl, l ∈ {1, . . . , k}; see Appendix
VIII for a proof. Then,

∑
Cl = qγ = 2C, another proof of

the last equality in Eq. (1).) The expected number of stored
qubits at link l, E[Ql] can be obtained by taking the lth
component of the sum in the numerator of the expression for
E[Q]. In other words, when B =∞,

E[Ql] =

ρl
(1−ρl)2

1 +
k∑
l=1

ρl
1−ρl

.

For a homogeneous system, E[Ql] = E[Q]/k.

B. THE HOMOGENEOUS CASE
Suppose all links (or users) have the same entanglement
generation rates, i.e. µl = µ, ∀ l ∈ {1, . . . , k}. We can take
advantage of this homogeneity as follows: since only one link
can be associated with stored qubits at the switch at any given
time, and all links have equal rates, it is only necessary to
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FIGURE 2: A CTMC model with k users, infinite buffer, and
homogeneous links. µ is the entanglement generation rate.

keep track of the number of stored entanglements, and not
the identity of the link (or user). Hence, the state space of the
CTMC can be represented by a single variable taking values
in {0, 1, . . . , B} where B = ∞ corresponds to the infinite
buffer case, and B < ∞ the finite buffer case. We discuss
each of these in detail next.

1) Infinite Buffer
Figure 2 depicts the CTMC for k homogeneous links and
B = ∞. When no entangled qubits are stored (system is in
state 0), any of the k links can generate a new entanglement,
so the transition to state 1 occurs with rate kµ. Let S represent
the link associated with one or more stored entanglements.
From states 1 and above, transitioning “forward” (or gaining
another entanglement in storage) occurs whenever link S
generates a new entanglement. This event occurs with rate µ.
Finally, moving “backward” through the chain (correspond-
ing to consuming a stored entanglement, when the switch
performs a BSM) occurs whenever any of the k − 1 links
other than S successfully generate an entanglement; this
event occurs with rate (k − 1)µ. It is easy to show that
when there are two links, the system is not stable (and a
stationary distribution does not exist). Take, for instance, the
stability condition for a heterogeneous system with infinite
buffer from Section IV-A1:

µl <
γ

2
=

k∑
l=1

µl

2
.

Setting all µl’s equal yields the stability condition k > 2 for
the homogeneous system with infinite buffer. Henceforth, we
only consider k ≥ 3.

Note that the CTMC in Figure 2 is a birth-death process
whose stationary distribution can be obtained using standard
techniques found in literature (e.g., [43]). The steady-state
probability of being in state 0 is π0 = (k − 2)/(2(k − 1))
and of being in state j is πj = k(k − 2)/(2(k − 1)j+1). The
capacity is

C = q
∞∑
i=1

πi(k − 1)µ = q(k − 1)µ(1− π0) =
qµk

2
.

Note that this result is also obtained by setting all µl equal to
µ in Eq. (1). The expected number of stored entangled pairs
is given by

E[Q] =
∞∑
i=0

iπi = kπ0

∞∑
i=1

i

(
1

k − 1

)i
=

k

2(k − 2)
.

0 1 2

kμ μ μ

(k − 1)μ (k − 1)μ (k − 1)μ

μ

(k − 1)μ

B-1

μ

(k − 1)μ

B 

FIGURE 3: A CTMC model with k users, finite buffer of size
B, and homogeneous links. µ is the entanglement generation
rate.

Note that this result can be obtained by setting all µl equal to
µ in Eq. (2). An interesting outcome of setting all µl = µ
is that for E[Q], there is no longer a dependence on the
entanglement generation rate; this is in contrast to the het-
erogeneous system with infinite-size buffer. Further, when
the links are homogeneous, as their number grows, E[Q]
approaches 1/2, implying that in such a scenario, as long
as the switch operates at or near capacity (as it does under
our switching policy), little quantum storage is required –
one or two quantum memories per link would suffice, to
be precise. An interesting question left for future study is
to investigate how these storage requirements would change
under a different entanglement switching policy.

The more general case of multipartite entanglement
switching (i.e., n ≥ 2) for homogeneous-link systems with
infinite buffer and no quantum state decoherence is covered
in [32].

2) Finite Buffer
Figure 3 illustrates the CTMC for a system with k homoge-
neous links being served by a switch with finite buffer space
B. When there are B stored entanglements and a new one
is generated on link S, we assume that the switch drops the
oldest stored entanglement, adhering to the OLEF policy.
This CTMC is also a standard birth-death process whose
solution can be found in literature (e.g., [43]) and has

π0 =
(k − 2)(k − 1)B

2(k − 1)B+1 − k
.

Using the fact that
∑B
i=1 πi = 1− π0, the capacity is

C = q
B∑
i=1

µ(k − 1)πi =

qµk

(
1−

(
1

k−1

)B)
2− k

(
1

k−1

)B+1
.

Note that as B →∞, C for the finite buffer case approaches
C for the infinite buffer case. The expected number of stored
qubits is

E[Q] =
B∑
i=1

iπi =
k
(
B + (k − 1)B+1 − (B + 1)(k − 1)

)
(2(k − 1)B+1 − k)(k − 2)

.

As for the infinite-buffer case, for a homogeneous-link sys-
tem with a finite-size buffer, there is no dependence in
E[Q] on the entanglement generation rates (in contrast to a
heterogeneous-link system).
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C. DECOHERENCE
Assume now that quantum states in our system are subject
to decoherence with an associated cut-off policy for qubit
storage as described in Section III. Further, assume that all
states decohere at the same rate α, even in the case of het-
erogeneous links; see Section VI for a discussion on relaxing
this assumption for the case of link-dependent coherence or
cut-off times. Under the assumption that coherence time is
exponentially distributed with rate 1/α, incorporating de-
coherence does not change the structure of the CTMC; it
merely increases “backward” transition rates. Specifically, in
the homogeneous case, the transition from any state j ≥ 1
to state j − 1 now has rate (k − 1)µ + jα, where jα
represents the aggregate decoherence rate of all j stored
qubits. In the heterogeneous case, the transitions are modified
in a similar manner for any state jel, l ∈ {1, . . . , k},
j ≥ 1. The derivations of stationary distributions, capacities,
and expected number of qubits stored are very similar to
those for models without decoherence; we present the final
relevant expressions here and leave details to Appendix IX.
All expressions below can be computed numerically.
Heterogeneous Links: For finite buffer size B <∞,

π0 =

1 +
k∑
l=1

B∑
j=1

j∏
i=1

µl
γ − µl + iα

−1 ,
C = qπ0

k∑
l=1

B∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] = π0

B∑
j=1

j
k∑
l=1

j∏
i=1

µl
γ − µl + iα

.

For infinite-size buffer, let B → ∞ in all expressions
above.

Homogeneous Links: For finite buffer size B <∞,

π0 =

1 + k
B∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

−1 ,
C = q(k − 1)µ(1− π0),

E[Q] = π0k
B∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.

For infinite-size buffer, let B → ∞ in all expressions
above.

V. NUMERICAL OBSERVATIONS
In this section, we investigate the capacity and buffer require-
ments of a bipartite entanglement switch based on our model.
In particular, we are interested in how buffer capacity B and
number of users k affect capacity andE[Q]. We then examine
the effect of decoherence and qubit storage cut-off times
on homogeneous and heterogeneous switches with finite as
well as infinite buffer capacities. Next, via simulation we
look at some examples of a deterministic cut-off policy for

qubit storage and compare the results to our probabilistic one;
we also validate our analytical expressions for decoherence
using both types of simulations. Last, we compare the result
of our CTMC model to another, discrete-time Markov chain
(DTMC) model of the switch studied in [25].

Throughout this section, we denote the distance of user
l from the switch as Ll (measured in km). It is implicitly
assumed in our model of a quantum switch that in addition
to the B quantum memories used solely to store entangled
qubits, each link has available to it another set of memo-
ries which are used solely to assist with the entanglement
generation protocol. Specifically, for a link of length Ll and
speed of light cf in fiber, there would be an initial delay
of approximately T = 2Ll/cf for the switch to receive a
notification from the user of whether the first entanglement
generation attempt was successful. For subsequent entan-
glement generation attempts, however, the switch receives
a notification every τ seconds, which is the time between
entanglement attempts at a given link (see more discussion
on the repetition rate below). Thus, for the system to be at
all operational, the quantum memories that are assisting in
the entanglement generation protocol would need coherence
times of at least T , which we assume to be the case from now
on. Further, the number of these additional memories per link
is dT/τe, so that at the switch, the time between notification
arrivals is τ . In summary, T affects only the initial latency, the
number of additional memories needed at each link, and the
initial fidelity of entanglement immediately before the qubit
is moved to one of the B storage memories, but it does not
affect the successful entanglement generation rate of a link,
nor the capacity of the switch. Thus, T does not enter into our
steady-state analyses and we may disregard it henceforth.

We assume that each user is connected to the switch with
single mode optical fiber of loss coefficient β = 0.2 dB/km.
We also assume that the switch is equipped with a photonic
entanglement source with a raw (local) entanglement genera-
tion rate of 1 Mega-ebits3 per second. So, in every (1 µs long)
time slot, one photon of a Bell state is loaded into a memory
local to the switch, and the other photon is transmitted (over
a lossy optical fiber) to a user, who loads the received photon
into a memory (held by the user), which has a trigger which
lets the user know the time slots in which their memory
successfully loads a photon. We choose a 1 MHz clock rate
because is not far from near-term realizations; e.g., in [18] a
similar rate was achieved with silicon vacancy color centers
in diamond. Let us denote τ = 1 µs as the time duration
of one qubit of each entangled pair, and the entanglement
generation rate between the switch and the user l, µl = cηl/τ
ebits per second. Here, we take c = 0.1 to account for various
losses other than the transmission loss in fiber, for example
inefficiencies in loading the entangled photon pair in the two
memories (at the switch and at the user), and any inefficiency
in a detector in the memory at the user used for heralding

3An ebit is one unit of bipartite entanglement corresponding to the state
of two maximally entangled qubits, the so-called Bell or EPR state.
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the arrival of a photon (e.g., by doing a Bell measurement
over the received photon pulse and one photon of a locally-
generated two-photon entangled state produced by the user).
Here, ηl, the transmissivity of the optical fiber connecting
user l and the switch is given by ηl = 10−0.1βLl . Channel
loss to user l, measured in dB, is 10 log10(1/ηl). Unless
otherwise stated, all µl discussed in this section have units
of Kilo-ebits/sec.

A. EFFECT OF BUFFER SIZE: HOMOGENEOUS LINKS
In homogeneous-link systems, all users are equidistant from
the switch (i.e., Ll = Lm, ∀l,m ∈ {1, . . . , k}). In Figure 4,
we compare models with infinite and finite buffer sizes as
the number of links k is varied. Recall that when links are
homogeneous, qµ is simply a multiplicative factor in the
expressions for C, and does not factor into formulas for
E[Q]. Hence, we set qµ = 1 for Figure 4 (top), and with
µ = 1, the links are 100 km long. For the finite buffer
models, B is varied from one to five. Recall from Section
IV-B2 that asB →∞, the capacity of the finite-buffer model
approaches that of the infinite-buffer model, as expected,
and note that the same is true when k → ∞. Interestingly,
this convergence occurs rapidly, even for the smallest value
of k (3), and the maximum relative difference between the
two capacities is 0.25 (even as µ increases). From this, we
conclude that buffer does not play a major role in the capacity
of a homogeneous-link system under the switching policy
described in Section III and only a small quantum memory
is required.

Figure 4 (bottom) shows the behavior of E[Q] for infinite
and finite buffer sizes and different values of k. As with
capacity, the effect of buffer capacity on E[Q] diminishes as
k grows, and the largest relative difference occurs for k = 3
and B = 1, and equals 1.5 – less than two qubits. Note from
the expressions for E[Q] in Sections IV-B1 and IV-B2 that
as k → ∞, E[Q] → 1/2. Numerically, we observe that
convergence to this value occurs quickly: even for k = 25,
E[Q] is already 0.54 for both the infinite and finite buffer
models.

In Figure 4, we also observe that C increases, but E[Q]
decreases with k. The reason for the higher capacity is that in
a homogeneous system, as the number of links grows, so does
the rate of successfully-generated link-level entanglement
(when viewed across all links), creating more opportunities
for the switch to perform a BSM. At the same time, these
extra BSM opportunities result in entangled qubits spending
less time in storage – hence the decrease in E[Q].

B. EFFECT OF BUFFER SIZE: HETEROGENEOUS LINKS
Figure 5 illustrates how buffer size and number of users affect
C and E[Q] for a set of heterogeneous systems. We vary
the number of links from three to nine. For each value of
k, the links are split into two classes: links in the first class
successfully generate entanglement at rate µ1 and those in
the second class at rate µ2. We set µ1 = 1.9µ2 and µ2 = 1.
This setting corresponds to links in class one having lengths
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FIGURE 4: The effect of buffer size on capacity (top) and
on the expected number of stored qubits (bottom) in systems
with homogeneous links. Capacity is in Kilo-ebits/sec.

86 km and links in class two having lengths 100 km. Values
of µ1 and µ2 are chosen in a manner that satisfies the stability
condition for heterogeneous systems: recall from Section
IV-A1 that for all l ∈ {1, . . . , k}, µl must be strictly less
than half the aggregate entanglement generation rate. For all
experiments, q = 1 since it only scales capacity.

For each value of k, the ratio of class 1 to class 2 links
is 1:2 (so k = 3, 6, 9 have one, two, and three class 1
links, respectively). As with the homogeneous-link systems,
we observe that the slowest convergence of the finite-buffer
metrics C and E[Q] to corresponding infinite-buffer metrics
is for smaller values of k and the largest relative difference
is for smaller values of B. However, the rate of convergence
speeds up quickly as k increases from 3 to 6: with the latter,
convergence is already observed for B < 10. Meanwhile,
when k = 9, there is little benefit in having storage for
more than two qubits. Another interesting observation is that
quantum memory usage is large when k = 3 but not for
larger values of k. This is due to the system operating closer
to the stability constraints for k = 3 than for larger values
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FIGURE 5: Capacity (Kilo-ebits/sec) and expected number
of qubits in memory E[Q] for heterogeneous systems with
varied number of links and buffer sizes. Links are divided
into two classes: one class generates entanglement approxi-
mately twice as quickly as the other class.

of k. In the next section, we will see another example of a
system that operates near the boundary of its stability region.
In such cases, C and E[Q] can be affected significantly as B
is varied.

C. EFFECT OF DECOHERENCE
In this section, we study the effect of decoherence and asso-
ciated qubit storage cut-off times on capacity and expected
number of stored qubits E[Q]. We set q = 1 for all experi-
ments since it only scales capacity. Figure 6 presents C and
E[Q] for a homogeneous system with µ = 1 (corresponding
to 100 km long links), B = ∞ and different values of k, as
decoherence rate α varies from 0 (the equivalent of previous
models that did not incorporate decoherence) to 1, which is
equal to µ. Note that in practice, α is expected to be much
smaller than µ. We observe that even as α approaches µ
decoherence does not cause major degradation in capacity
for homogeneous systems, and likewise does not introduce
drastic variations in E[Q].

Figure 7 presents the effect of α on the performance of a
heterogeneous system with infinite-size buffer. In these ex-
periments, entanglement generation rates are set in a similar
manner to that of Section V-B, with two classes of links
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FIGURE 6: Effect of decoherence on capacity (Kilo-
ebits/sec) and expected number of stored qubits E[Q], for
varying number of users k. For all experiments, B = ∞ and
the entanglement generation rate is µ = 1 for all links.

configured so that the first class generates entanglements
almost twice as fast as the second class (here, µ1 = 0.99 and
µ2 = 0.5, corresponding to 100.2 km and 115 km long links
for class one and two, respectively), and the number of links
in class one to those in class two is 1:2. In these experiments,
for each value of k, capacity behaves much as it would in a
homogeneous system with µ set as the average of the µl from
the heterogeneous system. Note that for k = 3, E[Q] is very
large when α = 0; similar to the experiment in Figure 5 (see
panel with k = 3) this is because the system is operating near
the boundary of its stability region. In all other cases, E[Q]
is close to 0.

In Figure 8(a), we focus on a heterogeneous system that
operates near the boundary of its stability region and observe
the effects of both decoherence and buffer size on C and
E[Q]. There are five links, with entanglement generation
rates (35 15 15 3 3) Kilo-ebits/sec, corresponding to link
lengths of 22.8, 41.2, 41.2, 76, and 76 km, respectively. For
this system, γ/2 = 35.5, so the fastest link is just below the
constraint when α = 0. The average of the µl is 14.2, so α is
varied from 0 to this value.B is varied from 1 to 100, with the
latter being close enough to mimic infinite buffer behavior
for C and E[Q]. Figure 8(b) presents the performance of
a homogeneous system with k = 5 and µ = 14.2 for
a comparison. We observe that the homogeneous system
achieves higher capacity for all values of B, even though the
average entanglement generation rate is the same for both
systems. Further, the homogeneous system is more robust
to changes in buffer size than the heterogeneous system:
for the former, B = 5, 10 are equivalent to B = 100.
Further, note that for B = 100 and α = 0 the heterogeneous
system performs almost as well as the homogeneous system
in terms of capacity, but the memory usage is much higher
for the former. Finally, for this buffer size, as α increases,
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FIGURE 7: Effect of decoherence and associated storage cut-
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of stored qubits E[Q], for varying number of users k. In all
experiments, the links are heterogeneous and the buffer size
is infinite. The inset in the bottom figure zooms into the area
near the origin.

the homogeneous system is more robust to the effects of
decoherence: capacity degrades by 7.35 Kilo-ebits/sec for the
heterogeneous system between α = 0 and α = 14, while it
degrades by 4.54 Kilo-ebits/sec for the homogeneous system.

D. DETERMINISTIC VS PROBABILISTIC CUT-OFF
POLICY FOR QUBIT STORAGE
Recall from Section III, that we approximate deterministic
storage cut-off times for entangled qubits using a proba-
bilistic model, where the cut-off (or coherence) times are
exponentially-distributed with mean 1/α. In this section,
we simulate both cut-off time implementations. For the de-
terministic cut-off policy, we keep all entangled qubits in
storage for an equal amount of time 1/α. For additional
validation, we compare both simulations with our analytical
expressions. For all experiments in this section, each data-
point that is obtained via simulation is an average of five
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FIGURE 8: Effect of decoherence and associated storage cut-
off times on capacity (Kilo-ebits/sec) and expected number of
stored qubits E[Q] for k = 5 links and varying buffer sizes
B. The inset in the first E[Q] plot zooms into the area near
the origin. In (a), µl are (35 15 15 3 3), and in (b), µ is the
average of µl, l = 1, . . . , 5, i.e., 14.2. For all plots above,
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FIGURE 9: Comparisons of the deterministic and probabilis-
tic qubit storage cut-off time policies (simulations), against
analytical results. For the homogeneous-link system, µ = 1
and B = 5. For the heterogeneous-link system, µl are
(35 15 15 3 3) and B = 2.

simulation runs.
Figure 9(a) presents a comparison for a homogeneous-link

system with B = 5 and entanglement generation rates of 1
Kilo-ebits/sec for all links. The maximum relative error for
the capacity, defined as

maxRelErrC = max
α

|Cdet(α) − Cprob(α)|
Cdet(α)

, (5)

is 11% and the maximum relative error for E[Q] is 17%.
Note, however, that the maximum of the errors occurs for
α = 1, a decoherence rate that may be considered exceed-
ingly high for a real implementation. For more realistic val-
ues of α (an order of magnitude smaller than µ), the relative
errors appear acceptable, as they would yield a difference
of less than 0.3 Kilo-ebits/sec in capacity predictions and a
difference of well under one qubit in E[Q] predictions.

Figure 9(b) presents a comparison for a heterogeneous-
link system withB = 2 and entanglement generation rates of
(35 15 15 3 3). Decoherence/cut-off rate is varied from α = 0
to α = 14, the latter approximately the average of the entan-
glement generation rates. The maximum relative errors for
for C and E[Q] are 10.5% and 19.6%, respectively. As with
the homogeneous-link experiment, these maxima correspond
to the highest value of α (14). The average relative errors for
C and E[Q], taken over all values of α ∈ {0, 1, . . . , 14},
are 5.8% and 11.7%, respectively. Overall, the predictions
in C differ by 3 Kilo-ebits/sec in the worst case, and the
predictions in E[Q] differ by far less than a qubit even in

the worst case. Thus, the approximation appears reasonable
for this heterogeneous-link example as well.

E. COMPARISON OF DTMC MODEL WITH CTMC
MODELS
Until now, we have only employed CTMCs to model and
analyze variants of the system described in Section III. A
more accurate way to model such a system is to instead
construct a DTMC on the appropriate state space, as done
in [25]. To do so, we assume that at each time step of length
τ seconds, all k users attempt to generate link-level entan-
glements. Link l succeeds in generating an entanglement
with probability pl. In [25], we show that unfortunately, this
method is not the most scalable (in terms of k or n) and
is not the easiest to analyze even in the simple setting of
homogeneous links and infinite switch buffer size. Further
obstacles arise when one considers, for example, accounting
for decoherence in a DTMC model. When using a CTMC,
we approximate the operation of the switch by viewing link-
level entanglements as exponential random variables with
generation rate equal to µl = pl/τ for link l, instead of
viewing them as Bernoulli trials. The analysis is significantly
less challenging with CTMCs.

We will now compare the results of the DTMC and
CTMC for a homogeneous system with infinite buffer and
no decoherence, as this is the only result we were able to
obtain for the former in [25]. Note that in the discrete model,
the amount of time it takes to successfully generate a link
entanglement is given by τ/p. In the continuous model, the
rate of successful entanglement generation is µ, so the time
to generate an entanglement is 1/µ. Hence, τ/p = 1/µ or
equivalently, µ = p/τ . The DTMC capacity of qkp/2 that
we derived in [25] is the capacity per time slot of length τ
seconds. Therefore, in order to make a comparison against
the CTMC capacity, we must perform a unit conversion:
divide the discrete capacity by τ in order to obtain the number
of entanglement pairs per second, as opposed to per time slot.
This yields

CDTMC =
qkp

2τ
=
qkµ

2
= CCTMC.

We conclude that the capacities produced by the DTMC and
CTMC models match exactly.

Next, we compare the expected number of qubits in mem-
ory at the switch, E[Q] as predicted by the DTMC and
the CTMC models. Figure 10 compares numerically the
discrete and continuous E[Q]’s as the number of users k and
probability p vary. For each value of p and k, we numerically
solve for the discrete E[Q], since we do not have a closed-
form expression for it due to being unable to analytically
solve for the stationary distribution of the DTMC. For each
value of k, we report the maximum relative error, defined as

maxRelErr(k) = max
p∈(0,1)

|E[Q]DTMC(k, p)− E[Q]CTMC(k)|
E[Q]DTMC(k, p)

,

where E[Q]DTMC and E[Q]CTMC are the discrete and contin-
uous functions for E[Q], respectively. We observe that the
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FIGURE 10: Comparison of the expected number of qubits
in memory E[Q] for the DTMC and CTMC models, as the
number of links is varied ∈ {3, 10, 20, 50} and for entan-
glement generation probabilities p ∈ (0, 1). maxRelErr is
the maximum relative error between discrete and continuous
values for E[Q].

error is largest when p is close to 1. In [25], we argue that
as k →∞, E[Q]DTMC and E[Q]CTMC both approach 1/2. We
conclude that as k → ∞, maxRelErr → 0, which can be
observed in Figure 10. Also, the largest maxRelErr occurs
for the lowest value of k = 3, when p → 1. But even in
this (worst case), although the error is maxRelErr(3) = 2,
it corresponds to discrete and continuous versions of E[Q]
differing by a prediction of only a single qubit. From these
analytic and numerical observations, we conclude that the
CTMC model is sufficiently accurate so as to be used to
explore issues such as decoherence, link heterogeneity, and
switch buffer constraints.

VI. RELAXING MODELING ASSUMPTIONS
In this work, we only study the effects that our decoherence
model and storage cut-off time policy have on the capacity of
the switch, but not the effects on the quality of entanglement.
Thus, our model is applicable in rather general settings,
where the initial entanglement fidelities at the link level may
differ from link to link and are given by Fl, l = 1, . . . , k.
In our model of decoherence in Section IV-C, the cut-off
time is configured such that the entangled qubits are held
in memory for an amount of time 1/α on average. We note
that the model may be easily extended to include a link-
dependent cut-off time t?l ≡ 1/αl, to enable configurable
cut-off times for each link’s quantum memory storage, in
scenarios where an application requests a minimum fidelity
of Fthresh for each link (or alternatively, a minimum final end-
to-end fidelity F ′thresh < Fthresh; without loss of generality, we

focus here on Fthresh, the fidelity at the link level, to simplify
the discussion). To make this change, one would simply
compute the time t?l that it would take for the initial fidelity
of entanglement at link l, Fl, to degrade to Fthresh, under
a suitable decoherence model for a given platform. Then,
within the model, set αl := 1/t?l and modify each transition
in the CTMC accordingly: the aggregate decoherence rate
from state jel is now jαl. Intuitively, the less time that is
needed for the entangled link’s fidelity to degrade to Fthresh
(meaning, either Fl is close to Fthresh or t?l is small for a given
noise model), the faster the decoherence rate αl.

It is also possible to extend our model to account for a
simple entanglement purification scheme. Suppose that the
switch imposes a minimum fidelity Fthresh requirement on
each link-level entanglement involved in a BSM. This means
that any link with an initial entanglement fidelity Fl < Fthresh
must first run a purification protocol. We may assume without
loss of generality that Fl is sufficiently high so as to allow for
a purification protocol that is implementable on the physical
architecture of the switch to boost Fl to Fthresh with a non-
zero probability. If no such purification protocol exists, then
link l’s qubits may never participate in a BSM, and therefore
we may trivially ignore the link in all calculations. To incor-
porate the purification scheme into our model, it suffices to
compute or estimate the rate of entanglement generation at
the link level, of entanglement fidelity Fthresh; note that such
rates may be link-dependent in the case of heterogeneous-
link systems. Call this rate µ′l. The final step is to substitute
each parameter value µl with µ′l; no further changes are
required to the model.

VII. CONCLUSION
In this work, we examined variants of a system with k users
who are being served bipartite entangled states by a quantum
entanglement distribution switch in a star topology. Each user
is connected to the switch via a dedicated link; we considered
both the case of homogeneous and heterogeneous links. We
also analyzed cases in which the switch has finite or infinite
buffer space for storing entangled qubits. We obtained simple
and intuitive expressions for switch capacity, as well as for
the expected number of qubits in memory when the switch
operates at or near capacity.

We made numerical comparisons of these two metrics
while varying the number of users k and buffer sizes B.
We observed that in most cases, little memory is required to
achieve the performance of an infinite-memory system. We
also made numerical observations for models that incorporate
decoherence and associated qubit storage cut-off times, and
concluded that in homogeneous systems these phenomena
have little effect on performance metrics, while they can have
more significant consequences in heterogeneous systems that
operate near the boundaries of their stability regions.
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APPENDIX
VIII. CAPACITY FOR HETEROGENEOUS SYSTEMS
WITH B = ∞
Throughout this appendix, assume that the stability condi-
tions for the CTMC are met; i.e., that for all l, µl < γ/2.

Proof of the last equality in Eq. (1)
From the first part of this equation, we have

C = q
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl)

= q
k∑
l=1

∞∑
j=1

π0ρ
j
l (γ − µl)

= qπ0

k∑
l=1

(γ − µl)ρl
1− ρl

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+
(γ
2
− µl

) ρl
1− ρl

)

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+

(
γ − 2µl

2

)
µl(γ − µl)

(γ − µl)(γ − 2µl)

)

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+
µl
2

)

= qπ0
γ

2

(
k∑
l=1

ρl
1− ρl

+ 1

)
=
qγ

2
.

Proof that Cl = qµl

Letting B →∞ in Eq. (4),

Cl = qπ0

(γ − µl)
ρl

1− ρl
+ µl

k∑
m=1,
m 6=l

ρm
1− ρm



= qπ0µl

 1

1− ρl
+

k∑
m=1,
m 6=l

ρm
1− ρm

+
ρl

1− ρl
− ρl

1− ρl


= qπ0µl

(
1 +

k∑
m=1

ρm
1− ρm

)
= qµl.

IX. DECOHERENCE
Throughout this appendix, for systems with infinite buffer,
assume that the corresponding stability conditions are satis-
fied, i.e., k > 2 in homogeneous-link systems and µl < γ/2,
for all l, in heterogeneous-link systems.

Homogeneous, Infinite Buffer

For this system, the balance equations are as follows:

π0kµ = π1(α+ (k − 1)µ),

πi−1µ = πi(iα+ (k − 1)µ), i = 2, 3, . . . ,
∞∑
i=0

πi = 1.

Solving for the stationary distribution, we have:

π1 =
kµ

(k − 1)µ+ α
π0,

π2 =
µπ1

(k − 1)µ+ 2α
=

kµ2π0
((k − 1)µ+ 2α)((k − 1)µ+ α)

,

and so on. In general, for i = 1, 2, . . . we can write

πi =
π0kµ

i

i∏
j=1

((k − 1)µ+ jα)

= π0k
i∏

j=1

µ

((k − 1)µ+ jα)
.

Using the normalizing condition, we have

π0 + kπ0

∞∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)
= 1, so that

π0 =

1 + k
∞∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

−1 .
The capacity and E[Q] can be computed numerically using
the following formulas:

C =
∞∑
i=1

πi(k − 1)µ = (k − 1)µ(1− π0),

E[Q] =
∞∑
i=1

iπi = π0k
∞∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.

Homogeneous, Finite Buffer

The derivations are very similar to the previous case, with the
only difference being that the balance equations are truncated
at state i = B. The resulting expressions are almost identical
to those above, with the exception of i being in {1, . . . , B}
instead of {1, 2, . . . }:

π0 =

1 + k
B∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

−1 ,
C =

B∑
i=1

πi(k − 1)µ = (k − 1)µ(1− π0),

E[Q] =
B∑
i=1

iπi = π0k
B∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.
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Heterogeneous, Infinite Buffer
The balance equations are:

π0µl = π
(1)
l (γ − µl + α), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl + jα), l ∈ {1, . . . , k}, j ∈ {2, 3, . . . },

π0 +
k∑
l=1

∞∑
j=1

π
(j)
l = 1.

For j = 1, 2, . . . , we can write

π
(j)
l = π0

j∏
i=1

µl
γ − µl + iα

.

Using the normalizing condition, we obtain

π0 =

1 +
k∑
l=1

∞∑
j=1

j∏
i=1

µl
γ − µl + iα

−1 .
The capacity and E[Q] can be computed numerically using

C =
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl)

= π0

k∑
l=1

∞∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] =

∞∑
j=1

jP (Q = j) =

∞∑
j=1

j

k∑
l=1

π
(j)
l

= π0

∞∑
j=1

j
k∑
l=1

j∏
i=1

µl
γ − µl + iα

.

Heterogeneous, Finite Buffer
The derivations are similar to the previous case, with the only
difference being that j is now in {1, . . . , B} instead of in
{1, 2, . . . }. The resulting relevant expressions are:

π0 =

1 +
k∑
l=1

B∑
j=1

j∏
i=1

µl
γ − µl + iα

−1 ,
C = π0

k∑
l=1

B∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] = π0

B∑
j=1

j
k∑
l=1

j∏
i=1

µl
γ − µl + iα

.
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