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ABSTRACT

Objective-driven adaptive sampling is a widely used tool

for the optimization of deterministic black-box functions. How-

ever, the optimization of stochastic simulation models as found

in the engineering, biological, and social sciences is still an elu-

sive task. In this work, we propose a scalable adaptive batch

sampling scheme for the optimization of stochastic simulation

models with input-dependent noise. The developed algorithm

has two primary advantages: (i) by recommending sampling

batches, the designer can benefit from parallel computing capa-

bilities, and (ii) by replicating of previously observed sampling

locations the method can be scaled to higher-dimensional and

more noisy functions. Replication improves numerical tractabil-

ity as the computational cost of Bayesian optimization methods

is known to grow cubicly with the number of unique sampling lo-

cations. Deciding when to replicate and when to explore depends

on what alternative minimizes the posterior prediction accuracy

at and around the spatial locations expected to contain the global

optimum. The algorithm explores a new sampling location to re-

duce the interpolation uncertainty and replicates to improve the

accuracy of the mean prediction at a single sampling location.

Through the application of the proposed sampling scheme to two

numerical test functions and one real engineering problem, we

show that we can reliably and efficiently find the global optimum

of stochastic simulation models with input-dependent noise.

1 INTRODUCTION

The use of sampling for the analysis of computer simulations

is a well-studied subject with applications in the engineering, bi-

ological [1] and material sciences [2]. These research efforts

have driven the optimization of increasingly sophisticated design

objects and provided insights into complex physical phenomena.

Many experimental design methods are tailored for determinis-

tic simulation models, whereas the use of stochastic simulation

models is becoming increasingly more commonplace in the en-

gineering, biological, and social sciences. We are specifically

motivated by the use of molecular dynamics (MD) simulations in

the context of engineering design as they are known for having

dramatically changing signal-to-noise ratios across experiments

(sampling locations). An example of an MD simulation for the

performance prediction of an organic photovoltaic cell (OPVC)

is presented in Fig. 1. The left section of the figure shows the

molecular structure used as an input to the MD simulation, while

the right section shows the response surface approximation ob-

tained from simulating many such structures at nine unique sam-

pling locations. Observe from the purple bars that the noise of

the simulation model differs for each of the nine sampling loca-

tions. In this work we propose a Gaussian process (GP)-based

objective-driven adaptive sampling scheme for the optimization

of stochastic functions with spatially varying noise.

When simulation models are computationally expensive,
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FIGURE 1: Example of an MD simulation for the efficiency pre-

diction of an OPVC with spatially varying noise

training a response surface model to a data set obtained from an

experimental design provides the designer with a surrogate that

can predict the simulation response at an unobserved input loca-

tion. For a general introduction into surrogate models and the

validation of their fidelity, we refer the reader to [3]. One notable

type of surrogate models are GPs, which have seen prolific use

among many scientific communities [4]. The advantage of GP

models over many other types of surrogate models is that they

provide a predictive distribution of the response at unobserved

sampling locations. GP models enable a designer to improve the

predictive capabilities of their surrogate model by running ad-

ditional computer experiments in regions where the uncertainty

is the largest. Such efforts are known as adaptive sampling for

global surrogate modeling [5]. Alternatively, we are interested in

the allocation of simulation resources to only minimize the pre-

diction uncertainty at and around sampling locations expected

to contain the global optimum. This type of effort is known as

adaptive sampling for global optimization and involves a deli-

cate balance between exploring regions of the design space with

large uncertainty and exploiting regions with a good mean re-

sponse [6, 7]. The use of surrogate models has been extended to

the optimization of multi-fidelity simulations [8, 9], non-myopic

sampling [10–12], optimization of non-stationary functions [13],

and robust design [14].

Despite the attention that objective-driven adaptive sampling

has received, the challenge of finding the globally optimal mean

of stochastic functions is still an elusive task. A simple version

of the problem is the case where the noise intrinsic to the simu-

lation model is constant over the design space (i.e., the noise is

homoscedastic), and has been addressed in [15]. However, when

the intrinsic noise varies over the design space (i.e., the noise is

heteroscedastic) the problem becomes more complex. In the case

of MD simulations, the intrinsic noise comes from random ini-

tial conditions (i.e., the momentum and coordinates of each par-

ticle) that can only be simulated for a finite length and time scale.

GP-based surrogate models have been developed to approximate

stochastic functions, some popular examples of which are the

variational heteroscedastic Gaussian process (VHGP) [16], prac-

tical Kriging (PK) [17, 18], and stochastic Kriging (SK) [19].

The VHGP model has been extended for application in global

optimization in [20], but quickly becomes intractable because the

covariance matrix of this model grows linearly with the number

of samples. The SK and the PK models do not share this lim-

itation as they allow samples to be replicated (i.e., resample at

previously observed sampling locations). Replicating samples

provides insight into the pure variance of the simulation at a sin-

gle sampling location. However, PK has many parameters that

are challenging to tune during the training process. For this rea-

son, SK provides a promising framework for the optimization

of stochastic simulations. Preliminary efforts in this direction

have been proposed in [21]. However, this work propose a rigid

sampling scheme that requires the designer to define the ratio of

replication to exploration a priori and greatly influences the effi-

ciency and stability of the sampling process.

An additional challenge for adaptive sampling methods is

the identification of sampling batches to facilitate parallel com-

puting and subsequently improve computational efficiency. Ex-

amples of batch-based adaptive sampling methods for global sur-

rogate modeling and optimization are given in [22, 23] and [24],

respectively. Moreover, the desire for batch sampling is par-

ticularly prevalent in the MD community where it has become

common practice to use supercomputers to run great numbers of

simulations in parallel. Regardless of the application, batch sam-

pling is a desirable feature in optimizing stochastic functions as

an increased number of evaluations are required to distinguish

the mean response from the intrinsic noise, as acknowledged

in [21, 25].

In this paper, we propose a tractable, objective-driven adap-

tive batch sampling approach for the optimization of stochastic

simulation models with heteroscedastic noise. The main chal-

lenge of this work centers around an acquisition function that

decides whether to explore a new sampling location or replicate

a previously observed sample in an effort to improve the predic-

tion accuracy only in the regions of interest. We show that by

analyzing the surrogate models’ posterior predictive variance we

can separate the intrinsic model uncertainty from the surrogate

model’s interpolation uncertainty. Using this quantification, the

algorithm decides whether to replicate (reduce intrinsic uncer-

tainty) or explore (reduce interpolation uncertainty) by choosing

the alternative that minimizes the posterior variance at the re-

gion expected to contain the global optimum. Finally, to benefit

from parallel computing capabilities, we propose a preposterior
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analysis that facilitates the allocation of batches of samples. The

performance of the proposed sampling scheme is demonstrated

on two test functions and one engineering problem that involves

the optimization of an organic photovoltaic cell (as presented

in Fig. 1). The results exemplify that the developed sampling

scheme provides a reliable and efficient approach for the op-

timization of stochastic functions with high-dimensional inputs

and/or high signal-to-noise ratios.

2 BACKGROUND

In this section we provide an overview of surrogate model-

ing for stochastic functions, and the concept of adaptive sampling

for global optimization. More importantly, this delineation pro-

vides justification for why replicating samples is critical when

optimizing high-dimensional stochastic functions.

2.1 Surrogate Modeling of Stochastic Functions

Given a data set of noisy outputs Y = {H1, . . . , H# }) ob-

served at a set of 3-dimensional sampling locations ^ =

{x1, . . . ,x# }) we want to train a surrogate on the scalar-valued

function 5 : IR3 → IR. Under the assumption that the response

at a set of inputs are jointly normally distributed, we can place

a GP prior on the unknown function 5 so that it can be char-

acterized by a mean trend and a covariance or kernel function

: : IR3 × IR3 → IR. Normalizing the observed response to have

zero mean centers the surrogate modeling effort around the co-

variance/kernel structure (e.g., power exponential, or Matérn

[4]). In this work we consider the common case of a station-

ary kernel : (x,x′) = f22(x− x′ |8), where f2 is known as the

prior variance and 8 are the hyperparameters that characterize

the correlation function 2(·).
Using a GP we can model the observations as a function

of their spatial location H8 = 5 (x8) + Y8 , where Y8 ∼ N (0, A (x8))
accounts for the intrinsic model uncertainty. If the intrinsic un-

certainty in the observations is constant (i.e., A (x) = W), then we

are dealing with a model that has homoscedastic noise; however,

in many cases the noise varies as a function of the design vari-

ables, in which case we are dealing with a model that exhibits

heteroscedastic noise. In both scenarios we can model the train-

ing data set as

Y ∼ N# (0,K# +�# ) , (1)

where K# is an # × # covariance matrix with the (8, 9)Cℎ el-

ement being : (x8 ,x 9 ), and the intrinsic simulation uncertainty

is captured by �# = diag (A (x1), . . . , A (x# )). Note that under

this formulation the Y8’s are independently and identically dis-

tributed.

Conditioning the GP prior on a set of observations provides

a posterior predictive distribution at an unobserved sampling lo-

cation as . (x) |Y ∼ N
(
`# (x),f2

#
(x)

)
, where

`# (x) = k)
# (x) (K# +�# )−1 Y, (2)

f2
# (x) = : (x,x) + A (x) −k)

# (x) (K# +�# )−1 k# (x), (3)

and k# (x) = {: (x,x1), . . . , : (x,x# )}) . Prediction of the poste-

rior response requires the identification of the hyper-parameters

8 that characterize the kernel function. By reformulating the

covariance structure of our GP predictor using the correlation

function as K# +�# = f2 (C# +�# ), we obtain the maximum

likelihood estimation of the hyperparameters as

8̂ = argmax
8∈Ω

(
−# log f̂2 − log |C# +�# |

)
, (4)

where we have removed all the constant terms, Ω ⊂ IR3 is the

admissible design space of the hyperparameters, and we use the

first-order optimality conditions to identify f̂2
= #−1Y) (C# +

�# )−1Y [22, 26]. Note that both terms in Eqn. 4 depend on the

roughness parameters 8 through the correlation function.

One function evaluation during the optimization of Eqn. 4

requires the inversion and determinant computation of C# +�#

that come at a cubic computational expense O(#3). This is ad-

missible for most deterministic (i.e., A (x) = 0) or homoscedas-

tic cases (i.e., A (x) = W) [27]; however, in the heteroscedas-

tic case it is reasonable to expect that more simulation model

evaluations are necessary. The computational cost can be ad-

dressed by allowing replication at previously observed sampling

locations. Consider that we have = unique sampling locations

x̄8 (8 = 1, . . . , =), where at the 8Cℎ sampling location we have

observed 08 replicates H
( 9)
8

, ( 9 = 1, . . . 08), (i.e.,
∑=

8=1 08 = #).
Ȳ = {H̄1, . . . , H̄=}) taken to be the sampling average over repli-

cates (i.e., H̄8 =
1
08

∑08
9=1

H
( 9)
8

), then the posterior mean and vari-

ance are obtained as

`= (x) = k)
= (x)

(
K= +A−1

�=

)−1

Ȳ, (5)

f2
= (x) = : (x,x) + A (x) −k)

= (x)
(
K= +A−1

�=

)−1

k= (x), (6)

where K= =
[
: (x̄8 , x̄ 9 )

]
1≤8, 9≤=, A = diag (01, . . . , 0=), and the

computational complexity has been reduced to O(=3).
The formulation given in Eqn. 5 and Eqn. 6 is known as SK

and holds two challenges. The first challenge is that �= requires

the designer to known the intrinsic noise at each sampled loca-

tion A (x̄8) (8 = 1, . . . , =); however, in many practical cases a de-

signer has no access to this information. As an alternative, [19]
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proposes an estimate for �̂= = diag (Â (x̄1), . . . , Â (x̄=)) by taking

Â (x̄8) =
1

08 −1

08∑
9=1

(
H
( 9)
8

− H̄8

)2

. (7)

Using the sampling variance of Eqn. 7 results in an unbiased ap-

proximation of `= (x) when 08 ≫ 1 (it is recommended to have

08 ≥ V = 10). The second limitation is the formulation of the pos-

terior predictive variance f2
= for which the designer requires to

know the intrinsic noise over the entire design space A (x). One

approach to address this issue is to omit A (x) and be satisfied with

a “denoised” predictive variance as f̃2
= (x) = f2

= (x) − A (x) [17].

An alternative approach is to place a separate GP prior on A as

proposed in [19].

2.2 Bayesian Optimization of Deterministic Functions

Throughout the literature a great number of acquisition func-

tions have been proposed for objective-driven sampling of de-

terministic functions (i.e., functions with �# = 0). Some pop-

ular acquisition functions include: statistical lower bound [28],

probability of improvement [6], expected improvement (EI) [29],

knowledge gradient [30], and entropy search [31]. Despite the at-

tention that objective-driven adaptive sampling methods have re-

ceived, none of them outperforms the others on all optimization

problems. Also, many of these functions have unique proper-

ties that make them suitable for specific types of problems, but

the designer will frequently not have access to this knowledge a

priori.

Objective-driven sampling balances the need for reducing

the posterior predictive variance by exploring new sampling lo-

cations, and exploitation by sampling near the predicted global

optimum. The EI for the minimization of an objective function

is given as

�� (x) = ((H<8= − `(x))Q (D) + (2 (x)i (D) , (8)

where H<8= is the current best function observation, Q(·) is the

standard normal cumulative distribution function, i(·) is the

standard normal probability density function, `(·) is the poste-

rior mean prediction of a deterministic GP model, ((·) is the pos-

terior variance of a deterministic GP model, and D =
H<8=−` (x)

f2 (x) .

A new sample is selected by maximizing the EI of the objective

function as

x=4F = argmax
x∈j

�� (x), (9)

where j ∈ IR3 is the admissible design space. The EI function

has appeared to be a versatile acquisition function that has good
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FIGURE 2: Flowchart for the proposed objective-driven adaptive

sampling of stochastic simulation models

convergence properties for a broad range of problems [28, 32];

however, its application to simulation models with intrinsic noise

has been hindered by its inability to replicate at previously ob-

served sampling locations.

3 BAYESIAN OPTIMIZATION OF STOCHASTIC FUNC-
TIONS

In this section we introduce an SK-based objective-driven

adaptive sampling algorithm that can balance the tradeoff be-

tween exploration and replication.

3.1 The Proposed Adaptive Sampling Scheme

The proposed adaptive sampling scheme as presented in

Fig. 2 starts with an initialization phase (Step 0) where the de-

signer has to evaluate the costly simulation model for a set of

samples randomly dispersed over the design space (e.g., through

a Latin hypercube design [33], or a Sobol sequence [34]). In ad-

dition, a designer has to determine the total number of unique

sampling locations and the number of replications, a typical

number of initial sampling locations for the purpose of adaptive

sampling is 23 − 53 [5], and the minimum number of recom-

mended replications is V ≥ 10 as suggested in [19]. In addition,

the designer has to provide a preferred batch size � that will de-

termine how many new samples will be recommended by the

acquisition function during each sampling stage.

The subsequent two steps are similar to most adaptive sam-

pling schemes, where in Step 1 of Fig. 2 we train our SK sur-

rogate model to get a preliminary approximation of the mean

response 5 (x). Next, in Step 2 in Fig. 2, we determine if the

stopping criterion is met, and if so, use the predicted optimal

mean response from the current surrogate model. Two typical

stopping criteria are: (i) the designer has exhausted all simula-

tion resources, and (ii) the “denoised” posterior variance f̃2
= (x)

at the predicted optimal design is below a specific threshold W.

4 Copyright c© 2020 by ASME



The third step in the proposed sampling scheme is the identi-

fication of a batch of samples for which to evaluate the simulation

model. This is where the proposed adaptive sampling scheme

differs from other sampling methods. As shown in Fig. 2, Step

3 is iterated � times until a batch containing � samples is filled.

In each iteration, Step 3a starts by identifying a candidate sam-

pling location x
(1)
4G? for exploration by maximizing a modified EI

function as

��Y (x) = (( H̄<8= − `= (x))Q (D̄) + (2
= (x)i (D̄) , (10)

where H̄<8= is the lowest predicted mean response at any of

the previously observed sampling locations, (2
= (x) = : (x,x) −

k)
= (x)K−1

= k= (x) is the posterior variance if all unique sampling

locations were to be sampled an infinite number of times (i.e.,

A−1
= 3806(0, . . . ,0) in Eqn. 6) and D =

H̄<8=−`= (x)
(2 (x) . The intu-

ition behind using (= (x) as the posterior variance in the EI func-

tion is that exploring a new sampling location will provide no

information on the intrinsic noise of the objective function and

is therefore not considered when deciding where to explore (a

similar argument is presented in [21]). Note that, x
(1)
4G? is only a

candidate sample for exploration, rather we first need to find the

best candidate sample for replication (Step 3b) before deciding

whether to replicate or explore (Step 3c).

The best candidate sample for replication (x̄(1)
8∗ ) is found in

Step 3b by choosing among all previously observed sampling lo-

cations x̄8 (8 = 1, . . . , =) the sample that provides the most infor-

mation of the response H(·) at x
(1)
4G? . The purpose of replicating

previous observed samples is to reduce the computational cost

from O(#3) to O(=3) (see Section 2.1). We propose a heuristic

that approximates the contribution of each previously observed

sampling location to the variance of the predictive distribution

.̂ (x(1)
4G?) |Y. The assumption behind this approach is that we as-

sume to learn the most about the simulation response at x
(1)
4G? by

choosing to replicate the sampling location that minimizes the

posterior predictive variance at that spatial location.

In Step 3c a decision is made to sample the costly simulation

model either at x
(1)
4G? or at x̄

(1)
8∗ . Adopting a similar consideration

as for Step 3b, we want to choose the sample that minimizes

the posterior variance at x
(1)
4G? the most. For this purpose the

proposed sampling scheme selects the best sample x
(1)
=4F from

the set
{
x
(1)
4G? , x̄

(1)
8∗

}
to improve the surrogate model accuracy at

the spatial location of interest.

It should be noted that going through Step 3a - Step 3c will

only provide one sample, but prior to evaluating the costly sim-

ulation model (Step 4) we would like a batch containing � sam-

ples. Consequently, the algorithm will go through a preposterior

analysis in Step 3e so that it can return to Step 3a and find a new

sample x
(2)
=4F . This process is repeated until a sampling batch

X=4F =

{
x
(1)
=4F , . . . ,x

(�)
=4F

}
containing � samples has been identi-

fied. Next, we evaluate the new batch of samples with the simu-

lation model in Step 4 and return to Step 1 to repeat the process

until the stopping criterion in Step 2 is met.

The proposed sampling scheme pivots around the analysis

of the posterior variance (Step 3a - Step 3c) and the preposterior

analysis (Step 3e) that will be further discussed in Section 3.2

and Section 3.3, respectively.

3.2 Analysis of Posterior Predictive Variance

The objective behind the decision to replicate or explore

(Step 3a - Step 3c in Fig. 2) is the minimization of the poste-

rior variance at the location that is likely to contain the global

optimum (i.e., x
( 9)
4G?). This raises the question: What source of

uncertainty has the largest contribution to the variance of the pos-

terior predictive distribution . (x( 9)
4G?) |Y?

The first observation that needs to be made is the identi-

fication of two sources of uncertainty, (i) the interpolation un-

certainty for not having explored the design space at x4G? , and

(ii) the uncertainty in the mean predictions of H̄8 , (8 = 1, . . . , =).
Next, consider the contribution of the 8Cℎ sampling location to

the variance of the posterior predictive distribution . (x( 9)
4G?) |Y,

the hypothetical maximum that can be learned from this loca-

tion is to sample it an infinite number of times. By defining a

matrix A−1
8 = diag

(
0−1

1
, . . . , 0−1

8−1
,0, 0−1

8+1
, . . . , 0−1

=

)
we can approx-

imate the posterior “denoised” variance after replicating at the

8Cℎ location an infinite number of times as

f̃2
8,= (x) = : (x,x) −k)

= (x)
(
K= +A−1

8 �=

)−1

k= (x). (11)

The maximum reduction in the posterior variance at x
( 9)
4G? that

can be achieved by replicating x̄8 is then given as

B8 (x4G?) ≈ f̃2
= (x

( 9)
4G?) − f̃2

8,= (x
( 9)
4G?). (12)

Using these approximations we find that the best sample for

replication is x̄
( 9)
8∗ where 8∗ = argmax8 [B8]1≤8≤=,8∈IN+ (i.e., Step

3b in Fig. 2).

Similarly, we decide whether to replicate x̄
( 9)
8∗ or explore

x
( 9)
4G? as

x
( 9)
=4F =

{
x
( 9)
4G? if (= (x( 9)

4G?) > B8∗

x̄
( 9)
8∗ otherwise

, (13)

The intuition behind Eqn. 13 is that (= (x( 9)
4G?) considers the inter-

polation uncertainty that will be reduced to zero once a sample is

5 Copyright c© 2020 by ASME



(a) Example of a one-dimensional function with

heteroscedastic intrinsic noise.

(b) SK approximation of a one-dimensional

function with three unique sampling locations

with five replications each.

Candidate sample for

exploration G
(1)
4G?

Candidate sample for

replication Ḡ
(1)
8∗

(c) Analysis of posterior variance and the deci-

sion to explore or to replicate.

FIGURE 3: Visual example of approximating a one-dimensional stochastic function and the decision of whether to sample for exploration

or for replication.

observed at that new spatial location x
( 9)
4G? , while replicating the

(8∗)Cℎ sample can only minimize the intrinsic modeling uncer-

tainty that enter the surrogate model through the mean prediction

at each associated spatial location.

For the purpose of visualizing the analysis of the poste-

rior prediction variance, consider the one-dimensional simula-

tion model with intrinsic noise presented in Fig. 3a. Moreover,

assume that an initial batch of samples containing three unique

sampling locations {0.2,0.5,0.8} with five replications each has

been simulated as given in Fig. 3b. Note that five replications are

too few to have an unbiased predictor, but this number is used

for illustration purposes. Next, assume that a candidate sample

for exploration has been found at G
(1)
4G? = 0.04 as presented by

the red dot in Fig. 3b, it would then make sense that the corre-

sponding candidate for replication is the nearest sample as given

by Ḡ
(1)
8∗ = 0.2. The sampling locations for exploration and repli-

cation are also presented in Fig. 3c by the two vertical lines, the

approximation of the interpolation uncertainty has been plotted

by the black line (= (G), and the approximation of the reduction

in the posterior variance for replicating the three sampling lo-

cations have been plotted by the dashed colored lines (i.e., the

green line B1 (G) captures the intrinsic uncertainty that enters the

surrogate model through sampling location G = 0.2, the red line

B2 (G) is for G = 0.5, and the blue line B3 (G) is for G = 0.8). What is

more, from this figure we can observe that the uncertainty at the

candidate sample for exploration is mostly driven by the inter-

polation uncertainty (i.e., (= (0.04) > B8 (0.04), for 8 = 1,2,3),

and thus the proposed method will decide to explore the new

sampling location. However, if for example the candidate for

exploration was found at G = 0.45, we observe that B2 (0.45) >
(= (0.45) > B1 (0.45) > B3 (0.45) and thus the algorithm would

choose to replicate G = 0.45.

3.3 Batch Sampling Through a Preposterior Analysis

Concerning the preposterior analysis (Step 3e Fig. 2) [35],

this is a sampling method used to facilitate parallel computing

by the allocation of batches of samples [36], and is also known

as the “Kriging believer” method. For the deterministic case,

the initial GP model . (x) |Y is used to identify a new sampling

location x=4F . The new sampling location is then used to ob-

tain the posterior mean prediction `(x=4F ) and is considered to

be the true response value. Subsequently, the new observation

{x=4F , `(x=4F )} is added to the training data set and is used for

updating the new GP model (i.e., we do not need to retrain the

GP model).

Using the preposterior analysis for an SK surrogate model

differs from the GP model in that the posterior prediction de-

pends not only on {x=4F , `(x=4F )}, but also requires the intrin-

sic noise of the simulation model A (x=4F ) and the number of

replicates at x=4F . This is relatively straightforward when the

algorithm decides to replicate the 8Cℎ (8 = 1, . . . , =) sampling lo-

cation as we can incrementally increase the number of replicates

08 by one. However, when exploring a new sampling location,

the designer needs an approximation for the intrinsic modeling

uncertainty A (x). One approximation is to train an individual GP

model to log(Â (x)). Nevertheless, as we are expecting that in the

final experimental design sufficient sampling locations and repli-

cations will be allocated around the global optimum of the design

space, we propose to use a zeroth-order interpolation. This im-

plies that the 8Cℎ sampling locations where 08 < V will be assigned

the sampling variance of its highest correlated neighbour that

does have enough replicates. The advantage of using a zeroth-

order interpolation over GP interpolation for the approximation

of the intrinsic noise is twofold; i) the algorithm is less likely

to run into numerical issues when multiple samples in proxim-

ity of each other have different sampling variances, and ii) when

multiple samples are in proximity of each other the GP interpo-
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5 (G) ± I0.95f̃
2
= 5 (G) 5̂ (G) Observed samples Recommended new samples

(a) Stage 1: recommended samples exploring

one new sampling location

(b) Stage 2: recommended samples exploring

four new sampling locations

(c) Stage 3: recommended samples exploring

two new sampling locations

(d) Stage 4: recommended samples exploring

two new sampling locations

(e) Stage 5: recommended samples exploring

no new sampling locations

(f) Final surrogate model approximation after

observing a total of 100 simulations

FIGURE 4: Surrogate model approximations and recommended sampling batches for five stages of a one-dimensional test function

lation approximation can overestimate the intrinsic uncertainty

at an unobserved sampling location, potentially resulting in an

unnecessary large number of replicates.

4 RESULTS
In this section we present the results of the proposed sam-

pling scheme tested on three examples: (i) a one-dimensional

expository test function to visualize the proposed method’s

sampling characteristics, (ii) a six-dimensional test function to

demonstrate the proposed method’s performance on a higher di-

mensional problem, and (iii) a real two-dimensional engineering

example for the performance optimization of an OPVC.

4.1 One-Dimensional Test Function
We modify the one dimensional test function used in [32,37]

to exhibit heteroscedastic intrinsic noise as

H(G) =(3G−2)2 sin(12G−4) + Y(G), 0 ≤ G ≤ 1, (14)

Y(G) ∼N
(
0,

1+ exp(1.2−3G)2

√
6

)
. (15)

The optimization is started by defining an initial set of samples

containing five unique locations allocated through a Latin hyper-

cube design each with ten replicates (i.e., A = diag(10, . . . ,10)

for a total of 50 samples). In addition, we want the sampling

scheme to allocate batches containing ten samples, so we set the

batch size � = 10. Next, we evaluate these samples with Eqn. 14

and train an SK surrogate model as visualized in Fig. 4a.

During the first call of the sampling scheme as presented in

Fig. 4a the SK model predicts that the underlying mean function

is relatively linear. Consequently, the sampling scheme decides

to explore one new sampling location G = 0 and suggests nine

replications at the current best observed sampling location as pre-

sented by the red dots. In the next stage Fig. 4b, we find that the

underlying mean function is more nonlinear than expected, and

therefore all new samples are allocated to explore four new sam-

pling locations, with more replicates allocated to the samples that

are expected to contain the global optimum. As the algorithm

progresses through three additional sampling stages as given by

Fig. 4c through Fig. 4e, we observe that fewer samples are used

to explore new sampling locations, and more samples are used to

reduce the “denoised” posterior variance around the global opti-

mum as presented by the gray shaded regions. After observing

50 new samples, most of which have been allocated in the region

[0.1,0.3] as can be seen from Fig. 4f, we successfully identified

the global optimum at G∗ = 1.76.
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4.2 Six-Dimensional Test Function

To show that the proposed sampling scheme can deal with

relatively high-dimensional optimization problems, we use it to

minimize a modified version of the six-dimensional Hartmann

function presented in [38] and given as

H(x) =5−
4∑
8=1

U8 exp
©­«
−

6∑
9=1

&8 9 (G 9 −%8 9 )2ª®¬
+ Y(G), (16)

Y(G) ∼N (0,0.1H(x)) , x ∈ [0,1]6, (17)

where " = {1,1.2,3,3.2} , and

Q =




10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



,

P =




1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381



.

We initiate the sampling problem with twenty unique sampling

locations using a Latin hypercube design with twenty replica-

tions each. We then go through twenty stages, during each of

which a batch containing 50 samples is identified (i.e., � = 50).

Moreover, this process is repeated ten times, and the resulting

convergence history for these simulations is presented by the

black line in Fig. 5. From this figure we observe that the pro-

posed sampling scheme quickly narrows in on the region con-

taining the global optimum of the simulation model. Once the

optimal region has been identified, samples are added to reduce

the variance of the posterior distribution at this location. How-

ever, because it is a relatively high-dimensional problem, many

replications need to be added to a multitude of sampling loca-

tions to accurately identify the global optimum of the function.

Despite this apparent limitation, with a reasonable number of

samples the proposed adaptive sampling scheme can reliably and

prudently find a design that is close to the global optimum.

In addition to the proposed sampling scheme, we also con-

sider an alternative sampling scheme where the EI algorithm of

Eqn. 8 is used to identify a new sampling location to which a

fixed number of replicates is added. The result for this approach

considering 5, 25 and 50 replicates for each of these new sam-

pling locations is presented by the green line with square mark-

ers, blue line with pentagram markers and red line with circle

markers, respectively. Note that neither of these methods out-

performs the proposed sampling scheme, this is because some

spatial locations only require a small number of samples for the

FIGURE 5: Convergence history of the proposed adaptive sam-

pling scheme for the optimization of the six-dimensional Hart-

mann function, adding 50 samples per stage.

algorithm to be confident that it does not contain the global opti-

mum, while spatial locations with a better mean response closer

to the global optimum require more replicates.

4.3 Optimization of an Organic Photovoltaic Cell

In this section we use the proposed adaptive sampling

scheme for the optimization of an OPVC [39, 40]. The preferred

choice of architecture for an OPVC is bulk heterojunction [41]

and the “best seller” donor/acceptor combination is phenyl-C61-

Butyric-Acid-Methyl Ester (PCBM) interspersed with poly(3-

hexylthiophene-2,5-diyl) (P3HT). The efficiency of a solar cell

is measured by the incident photon-to-converted electron (IPCE)

ratio and broadly depends on four physical phenomena: (i) light

absorption, (ii) exciton creation, (iii) charge separation, and (iv)

charge diffusion and collection. All the four processes are di-

rectly affected by the microstructure of the OPVC, which in turn

is a product of its processing conditions.

The production process used for the fabrication of these thin

film OPVCs is known as spin coating, where a small amount of

coating material is deposited onto a substrate and rotated. The

centrifugal forces spread the coating evenly over the substrate,

and rotation is continued until the desired film thickness has been

achieved. Not only are these experiments expensive, but also the

thickness of the samples is hard to control. As an alternative,

coarse-grained molecular dynamic (CGMD) simulations were

carried out to replace the physical experiments. Though there

are other important processing conditions, only the two predom-

inant ones were considered: ratio of PCBM:P3HT, and annealing

temperature. In a previous work [42], we developed a structure-

performance simulation incorporating the four aforementioned

physical phenomena to predict the IPCE value for any digital

OPVC microstructure. The same simulation, with slight modifi-
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(a) Stage 1: recommended samples exploring

eighteen new sampling locations

(b) Stage 2: recommended samples exploring

ten new sampling locations

(c) Stage 3: recommended samples exploring

four new sampling locations

(d) Stage 4: recommended samples exploring

eight new sampling locations

(e) Final surrogate model after observing 305

simulations

FIGURE 6: Surrogate model approximation and recommended sampling batches for five stages of a one dimensional test function

cations, is employed in this work to evaluate the IPCE value for

all the data points. The total simulation time for the processing-

structure-performance linkage is about 36-38 hours.

Because CGMD simulations can only be evaluated at a fi-

nite length and time scale, and have random initial conditions,

we find that the prediction of the IPCE exhibits spatially varying

intrinsic noise (see purple bars in Fig. 1). We start the optimiza-

tion scheme with an optimal Latin hypercube design containing

nine unique sampling locations, 25 replications at each sampling

location, and batch size set as � = 20. Next, we run 225 CGMD

simulations and train an SK model on the obtained data set. The

mean prediction of the surrogate model has been presented in

Fig. 6a, where the red dots indicate the observed sampling loca-

tions, the green diamonds are the recommended next sampling

locations, and the numbers next to each sampling location indi-

cate the number of replicates. During the first stage we observe

that most recommended samples are used to explore the two sam-

pling locations predicted to contain the global optimum.

After evaluating the twenty samples as recommended by the

proposed sampling scheme, we observe from Fig. 6b that the re-

gion around x = {0.3,160} is expected to contain the global op-

timum. Consequently, half of the samples of the new batch are

placed in this region, while the other half are used to explore

the remainder of the design space. From allocating the sam-

ples for exploration, a more promising region is found around

x= {0.25,100} as shown in Fig. 6c. However, after exploring this

new region with the next batch of samples (shown in Fig. 6d), we

find that this was an overly optimistic prediction and now observe

that the global optimum is found at x∗ = {0.2704,113.7}. How-

ever, an additional batch of samples is required, because the spa-

tial location of the global optimum has shifted significantly and

the posterior predictive distributing has a relative large standard

deviation (0.025). The new sampling batch adds function evalu-

ations in the regions with a good mean response and we now pre-

dict the global optimum response as Ĥ(x∗) =N(0.3299,0.0067)
at x∗ = {0.2769,110.89} as shown by the yellow star in Fig. 6e.

After this stage the sampling procedure is stopped as no signif-

icant change in the spatial location of the optimal response is

observed, and the posterior predictive variance is satisfactorily

low.

The optimal volume fraction of PCBM in literature is around

0.4 [43], but the experiment samples are larger in thickness (gen-

erally more than a 100 nm) compared to our simulations (20=<).

At this simulation length scale, it is expected that the most promi-
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nent physical phenomenon, from the four mentioned earlier, is

the exciton creation, that is a function of the material’s absorp-

tion coefficient. PCBM has a lower absorption coefficient than

P3HT [44], and thus more P3HT is favored than PCBM. This

leads to a general trend of high performance with low PCBM

fraction. However, even with this small thickness, a prominent

feature is observed at ≈ 0.45 PCBM fraction. The capture of this

feature is intriguing as it substantiates that charge diffusion and

collection, charge separation, and light absorption are valuable

physics to include in our CGMD model.

4.4 Discussion on the Proposed Sampling Scheme

The proposed adaptive sampling scheme holds several as-

sumptions that warrant additional discussion.

1. Though the proposed scheme adds samples in a prudent

manner, it still places a stringent demand on computational

resources. This is because learning the true mean response

of the samples around the global optimum requires many

replications. In fact, the intrinsic uncertainty introduced

through a single unique sampling location will only reduce

to zero once it has been sampled an infinite number of times.

However, we have shown that a reasonably accurate approx-

imation of the global optimum can be obtained by suffi-

ciently replicating at sampling locations around the global

optimum. The number of required replications depends on

the signal-to-noise ratio of the simulation model, but the pro-

posed method has shown that in many cases, 20 to 100 repli-

cations at carefully selected sampling locations will suffice.

2. In the introduced adaptive sampling scheme we have pro-

posed an approximation for the individual contribution of

each unique sampling location to the posterior predictive

variance. This approach has two limitations, (i) it is only

an approximation and might therefore lead to incorrect sam-

pling decisions, and (ii) it uses considerable computational

resources to invert K= +A−1
�= a total of = times. This im-

plies that the proposed sampling scheme is at least = times

more costly than conventional optimization schemes (i.e.,

i.e., objective-driven batch sampling for deterministic sim-

ulation models). Future work will include an investigation

into the use of the Sherman-Morisson formulation as pre-

sented in [45] to provide fast and accurate prediction of

B8 (·) (8 = 1, . . . , =).
3. The proposed sampling scheme has to make an approxi-

mation of the sampling variance at sampling locations with

fewer than V replicates. We proposed a zeroth-order interpo-

lation for this purpose, but the validity of such an approach

has not yet been tested. The intrinsic noise of the presented

test problems varies only gradually; however, the assump-

tion of a zeroth-order interpolation might become more con-

sequential when the intrinsic simulation noise varies more

wildly over the design space. Future work will include a de-

tailed study to validate the efficacy of using a zeroth-order

interpolation for the approximation of the heteroscedastic in-

trinsic simulation noise.

4. The computational cost of the proposed sampling scheme

depends predominantly on Step 3a and Step 3b as presented

in Fig. 2. More specifically, in Step 3a the algorithm has to

invert the covariance matrix one time, While in Step 3b the

covariance matrix has to be inverted ? times. Where ? is the

number of previously observed sampling location for which

to evaluate Eqn. 12 (i.e., 1 ≤ ? ≤ =). By evaluating Eqn. 12

for the previously observed sampling location in the order of

their highest correlation to x4G? we typically find that after

? ≪ = no better sample for replication exists. Consequently,

we can proceed to Step 3c without evaluating Eqn. 12 for

all = previously observed sampling locations. The computa-

tional cost for allocating a new sample equals O((? +1)=3)
and should be taken into consideration when deciding to use

the proposed adaptive sampling scheme.

5 Concluding Remarks

We propose a batch-based objective-driven adaptive sam-

pling scheme for the optimization of simulation models with in-

trinsic heteroscedastic noise. Simulation models in various engi-

neering domains increasingly exhibit such “noisy” behaviour and

are typically associated with considerable computational cost.

The advantage of the proposed sampling scheme is twofold, (i)

the computational cost of running simulation models is mini-

mized by the recommendation of sampling batches (i.e., simu-

lations can be run in parallel), and (ii) it can be scaled to higher-

dimensional and noisier simulation models than available meth-

ods by reducing the size of the covariance matrix through repli-

cation at previously simulated sampling locations. The func-

tionality behind the proposed method comes from analyzing the

variance of the posterior prediction distribution and approximat-

ing the contribution of the interpolation uncertainty and the in-

trinsic modeling noise associated with each previously simulated

sampling location. Consequently, the proposed sampling scheme

recommends batches of samples to minimize the variance of the

posterior distribution at and around the spatial locations expected

to contain the globally optimal mean.

The proposed adaptive sampling scheme has been tested on

three design problems to illustrate its sampling characteristics,

its ability to deal with relatively high-dimensional problems, and

its effectiveness in finding the optimal processing settings using

coarse-grained molecular dynamic simulations for the fabrica-

tion of an organic photovoltaic cell. The investigation into the

functionality of the proposed method shows promising results

and opens the door for future research. One avenue of future

work includes the derivation and implementation of a closed-

form solution for the contribution of the intrinsic uncertainty of

each previously observed sampling location to the posterior vari-
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ance at a new sampling location. A second avenue of future work

includes the investigation into the influence of selected batch size

on the efficiency of the sampling scheme. Such a study would not

just benefit the optimization of simulation models with spatially

varying noise, but all batch-based adaptive sampling schemes. In

conclusion, we proposed a potent sampling scheme for the opti-

mization of costly stochastic functions, which are becoming in-

creasingly more commonplace in a multitude of scientific fields.
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[12] González, J., Osborne, M., and Lawrence, N. D., 2016.

“Glasses: Relieving the myopia of bayesian optimisation”.

In International Conference on Artificial Intelligence and

Statistics, Vol. 19, pp. 790–799.

[13] Assael, J.-A. M., Wang, Z., Shahriari, B., and de Freitas, N.,

2015. Heteroscedastic treed bayesian optimisation. arXiv,

March. URL arxiv.org /pdf /1410.7172.pdf.

[14] Arendt, P. D., Apley, D. W., and Chen, W., 2013.

“Objective-oriented sequential sampling for simulation

based robust design considering multiple sources of un-

certainty”. Journal of Mechanical Design, 135(5), May,

pp. 1–10.

[15] Huang, D., Allen, T. T., Notz, W. I., and Zeng, N., 2006.

“Global optimization of stochastic black-box systems via

sequential kriging meta-models”. Journal of Global Opti-

mization, 34(3), March, pp. 441–466.
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