Environmental Modelling and Software 135 (2021) 104888

ELSEVIER

Contents lists available at ScienceDirect
Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

Toward open and reproducible environmental modeling by integrating

Check for
updates

online data repositories, computational environments, and model

Application Programming Interfaces

Young-Don Choi?, Jonathan L. Goodall ™, Jeffrey M. Sadler®, Anthony M. Castronova ",

b

Andrew Bennett ¢, Zhiyu Li ¢, Bart Nijssen ¢, Shaowen Wang ¢, Martyn P. Clark ¢, Daniel P. Ames f
Jeffery S. Horsburgh ¢, Hong Yi " Christina Bandaragoda , Martin Seul b Richard Hooper ,

David G. Tarboton

@ Department of Engineering Systems & Environment, University of Virginia, Charlottesville, VA, USA

Y Consortium of Universities for the Advancement of Hydrological Science, Inc, Cambridge, MA, USA

¢ Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

d Department of Geography & Geographic Information Science, University of Illinois at Urbana-Champaign, Illinois, USA
€ Centre for Hydrology and Coldwater Laboratory, University of Saskatchewan, Canmore, Alberta, Canada

f Department of Civil and Environmental Engineering, Brigham Young University, Provo, UT, USA

8 Department of Civil and Environmental Engineering, Utah State University, Logan, UT, USA

" Renaissance Computing Institute, University of North Carolina at Chapel Hill, North Carolina, USA

! Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA

ARTICLE INFO ABSTRACT

Keywords:

Open hydrology
Reproducibility
Modeling frameworks
JupyterHub
Containers

Cyberinfrastructure needs to be advanced to enable open and reproducible environmental modeling research.
Recent efforts toward this goal have focused on advancing online repositories for data and model sharing, online
computational environments along with containerization technology and notebooks for capturing reproducible
computational studies, and Application Programming Interfaces (APIs) for simulation models to foster intuitive
programmatic control. The objective of this research is to show how these efforts can be integrated to support

reproducible environmental modeling. We present first the high-level concept and general approach for inte-
grating these three components. We then present one possible implementation that integrates HydroShare (an
online repository), CUAHSI JupyterHub and CyberGIS-Jupyter for Water (computational environments), and
pySUMMA (a model API) to support open and reproducible hydrologic modeling. We apply the example
implementation for a hydrologic modeling use case to demonstrate how the approach can advance reproducible
environmental modeling through the seamless integration of cyberinfrastructure services.

1. Introduction

There is a growing acknowledgment and awareness of the repro-
ducibility challenge facing computational environmental modeling
fields (Hutton et al., 2016; Stagge et al., 2019) as well as in other
computational modeling disciplines (Baker, 2016; McNutt, 2014; Na-
tional Academies of Sciences, 2019). According to a survey of 1576 re-
searchers, about 70% had tried but failed to reproduce published
research and 90% agreed that the problem of reproducibility is a critical

problem for scientific advancement (Baker, 2016). Within the hydrology
and water resources fields, Stagge et al. (2019) analyzed 360 articles in
six leading journals to understand if their data were available online and
if the study results were reproducible. Their analysis showed that only
5.6% of the articles had data and model code available online along with
directions for use, and only 1.1% were fully reproducible while 0.6%
were partially reproducible. There are many possible reasons for this
outcome; however, we argue along with others that advances in the
cyberinfrastructure that enable modern computational science is critical

* Corresponding author. University of Virginia, Department of Engineering System and Environment, University of Virginia, 151 Engineers Way, P.O. Box 400747,

Charlottesville, VA, 22904, USA.
E-mail address: goodall@virginia.edu (J.L. Goodall).

https://doi.org/10.1016/j.envsoft.2020.104888
Accepted 29 September 2020
Available online 6 October 2020
1364-8152/© 2020 The Authors.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

mailto:goodall@virginia.edu
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2020.104888
https://doi.org/10.1016/j.envsoft.2020.104888
https://doi.org/10.1016/j.envsoft.2020.104888
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2020.104888&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y.-D. Choi et al.

to achieving reproducible research (Hut et al., 2017; Hutton et al.,
2016).

Reviewing recent research toward this goal of improving the un-
derlying cyberinfrastructure necessary to support reproducible compu-
tational studies, we see three distinct thrusts: 1) open sharing of data and
models online, 2) encapsulating computational environments through
containers and self-documented computational notebooks, and 3)
creating Application Programming Interfaces (APIs) for programmatic
control of complex computational models. A major effort to improve the
open sharing of data and models is the FAIR (Findable, Accessible,
Interoperable, Reusable) guiding principles for scientific data manage-
ment and stewardship (Wilkinson et al., 2016). However, FAIR princi-
ples speak primarily to openness, which is essential but insufficient on
its own for addressing reproducibility of computational software and
computational environments (Bast, 2019). Ince et al. (2012) argued
that, even with well-developed data and software sharing capabilities, it
remains challenging to reproduce published results due to difficulties in
documenting computational environments needed to repeat past
studies. Moreover, they found this especially true for operating system
environments and software dependencies that can cause unpredictable
differences with even slight changes in model source code or
configuration.

To address this need, a second thrust in recent research is aimed at
overcoming the difficulties with sharing complete computational soft-
ware environments. Research that has focused on improving the sharing
of well documented data and software workflows for computational
studies includes Stodden and Miguez (2013), for example, who proposed
sharing data, algorithms, and workflows to utilize and verify published
results. Similarly, Gil et al. (2016) suggested the best practices of sharing
data, software, and documents in an open and transparent way using a
high-level roadmap of approaches to strengthen reproducibility in the
geosciences. In the meantime, the broader information technology
community has introduced the concept of containers as a means for
encapsulating computational environments (Kurtzer et al., 2017; Mer-
kel, 2014). The result of this work has benefited computational
modeling fields and led to efforts to improve the preservation of oper-
ating system and software dependencies, strengthening reproducibility
in computational research (Boettiger, 2015; Brinckman et al., 2019).
Containerization technologies such as Docker (Merkel, 2014) have been
used to reproduce computational modeling environments without
requiring users to install additional dependencies (Boettiger, 2015;
Signell and Pothina, 2019). Software tools like Sciunit (Essawy et al.,
2018; Yuan et al., 2018) ease the process of containerizing, sharing, and
tracking scientific applications, lowering the barrier to entry for re-
searchers to use containerization tools.

Containerization has also led to the ability to create new modeling
environments and deploy them through interactive, online analysis en-
vironments such as JupyterHub (Kluyver et al., 2016). Jupyter note-
books are quickly growing in use and popularity in computational fields
as a means to document studies as a mix of formatted text, mathematical
equations, and executable code with in-line visualizations resulting from
the code (Kluyver et al., 2016). JupyterHub is a cloud-based software
that utilizes containerization to support the execution of multiple
Jupyter notebooks simultaneously. Recent advances leveraging Jupyter
for environmental modeling include work by Castronova et al. (2018)
who created the CUAHSI JupyterHub to support online hydrologic
modeling and analysis, Yin et al. (2017) who created a TauDEM (Tar-
boton, 1997) modeling environment with JupyterHub, Eynard-Bon-
temps et al. (2019) who created the PANGEO project that supports big
data studies in the geosciences and heavily leverages JupyterHub, and
Bandaragoda et al. (2019) who used JupyterHub within a larger
knowledge infrastructure to support earth system modeling. Recent
work has also begun to explore combining external computational en-
vironments including high performance computing (HPC) and high
throughput computing (HTC) cyberinfrastructure for model execution
directly through Jupyter notebooks (Lyu et al., 2019). That work also

Environmental Modelling and Software 135 (2021) 104888

takes advantage of containerization concepts to easily port preconfig-
ured model execution environments to available computational
resources.

The third thrust we observe in recent research is efforts to create APIs
for computational environmental models. While many models have
Graphical User Interfaces (GUIs) for improving the usability of the
models, APIs are different in that they facilitate programmatically
interacting with a simulation model to configure input files, execute
models, and analyze model outputs. Python (https://www.python.org)
and R (https://www.r-project.org) are common programming languages
used for creating model APIs. Python has examples including model APIs
for the Stormwater Management Model (PySWMM, McDonnell, 2017),
MODFLOW (FloPy, Bakker et al., 2016), Hydrologic Simulation Program
in Fortran (PyHSPF, Lampert and Wu, 2015), and Precipitation Runoff
Modeling System (PRMS-Python, Volk and Turner, 2019). R has exam-
ples including model APIs for TOPMODEL (topmodel, Buytaert, 2011),
SWAT (SWATmodel, Fuka et al., 2014), and TUW model (TUWmodel,
Viglione and Parajka, 2020). These model APIs help by abstracting
low-level programmatic details of input file manipulation and model
execution operations from end users. In this way, they are particularly
useful when combined with computational notebooks for creating
self-documented modeling studies that can be more easily understood
and reproduced by both modelers and non-modelers alike.

While work along each of these thrusts — online data repositories,
computational environments leveraging containerization and compu-
tational notebooks, and model APIs — is important individually, inte-
grating these three thrusts offers a powerful approach for reproducible
computational modeling. Recent research has started to explore this
integration includes 1) the GI-RHESSys (Green Infrastructure-Regional
Hydro-Ecological Simulation System) Jupyter environment created for
Green Infrastructure (GI) landscape designs and modeling output using
JupyterHub (Leonard et al., 2019), 2) the Landlab model (Hobley et al.,
2017) with recent work to implement Landlab within JupyterHub as a
knowledge infrastructure (Bandaragoda et al.,, 2019), and 3) the
HydroTerre system (Leonard and Duffy, 2016) that links an online data
repository with the Penn State Integrated Hydrologic Model (PIHM).
While these examples focused on supporting individual modeling use
cases, they reveal general patterns of infrastructure components neces-
sary to implement their systems. Our aim is to build on this past work by
first presenting this general pattern as a general approach that can be
followed for building new modeling systems. Second, we provide an
example implementation of the general approach that can be easily
expanded to support any computational environmental model that is
containerized and has an accompanying model API.

The objective of this research is, therefore, to put forward a general
approach or framework for integrating online data repositories,
computational environments, and model APIs to enable more open and
reproducible environmental modeling. In the Methodology section, we
first present a high-level design of the approach describing each of the
three components in more detail while also discussing different options
available for online repositories, notebook-based and containerized
modeling environments, and model APIs. We then present an example
implementation that makes use of HydroShare as an online repository,
CUAHSI JupyterHub and CyberGIS-Jupyter for Water as computational
environments, and pySUMMA as an example model API. In the Results
and Discussion section, we present the results of applying the example
implementation to reproduce a prior hydrologic modeling study (Clark
et al., 2015b) and discuss the difficulty and nuance in claiming to ach-
ieve reproducibility. We also present limitations of the work that could
be a focus of future research. Finally, we conclude by summarizing the
findings and emphasizing their contribution to the larger goal of making
past and future studies simpler to reproduce through advances in
cyberinfrastructure.

https://www.python.org
https://www.r-project.org

Y.-D. Choi et al.
2. Methodology

In this section, we describe the general approach being put forward
for open and reproducible environmental modeling (Section 2.1) and
then present an example implementation of this general approach for
hydrologic modeling (Section 2.2).

2.1. Overview of general approach and description of system components

The general modeling system approach considered in this research
consists of three primary components (Fig. 1). Component 1 is the online
repository where data, models, and notebooks can be openly shared with
the community. Component 2 is the JupyterHub computational envi-
ronment where containerized models can be executed using notebooks.
Component 3 consists of a collection of model APIs, one for each model
supported within the system, that allow for programmatic configuration,
execution, and visualization through computational notebooks. The
three components are integrated through seamless data transfers to
create a powerful framework for open and reproducible modeling ana-
lyses. In practice, we anticipate that this general approach or framework
may have many different physical implementations, where different
technologies may serve the needs of specific subcommunities within the
broader environmental modeling field. We demonstrate one such
implementation in Section 2.2 for the hydrology community. In the
following subsections, we describe each of these components in more
detail while also providing examples of each that are available for
integration.

2.1.1. Online repository

Online repositories allow for storing, sharing, and publishing data,
metadata, and other resources required to reproduce computational
research findings. These online repositories often support a rich set of
user-friendly features such as metadata capture, persistent digital object
identifiers (DOIs), and extensive APIs for programmatically creating,
updating, and deleting resources. They also often support various data
types such as documents, figures, code, audio, and video with metadata
tailored to each data type. Some examples of online repositories used by
researchers include DataOne member nodes (https://www.dataone.

Online
Repository

Seamless

Seamless ’

’ AN data
data NP
transfers / \ transfers
/ \

/ \

v \{

Evioment | Model
® Cantaiueﬂza»liou API S

-
Y’

e - -
Seamless
data transfers

Fig. 1. A general modeling approach consisting of three primary components
with seamless data transfers for open and reproducible environ-
mental modeling.

Environmental Modelling and Software 135 (2021) 104888

org), FigShare (https://figshare.com), Harvard Dataverse (https://data
verse.harvard.edu), and HydroShare (https://www.hydroshare.org).

Many online repositories serve broad scientific communities and,
therefore, maintain only general and widely applicable capabilities.
Others are more targeted to specific communities and, as a result, can
offer more specific functionality. Environmental modeling, for example,
is not a common use case for many repositories that focus on more
general data sharing needs (e.g., FigShare). Environmental models,
however, have their own characteristics that consist of software, input
and output files, and data processing workflows. Morsy et al. (2017)
described these unique needs of models being stored in data repositories
and presented a data model design including metadata descriptions for
key modeling objects to support flexible and applicable model sharing
framework. This design is implemented within the HydroShare data
repository, allowing for describing and sharing more specific model
resource types.

2.1.2. Computational environment

A computational environment serves as a gateway for model
configuration, execution, and post-processing. In the case of model
execution, environmental modeling often includes complex simulation
models along with data pre- and post-processing software, all with
software dependencies that range from the operating system, to modules
used within a model engine, to libraries used by data processing and
analysis software (e.g., Python libraries). Without the ability to replicate
a computational environment, slight inconsistencies in software de-
pendencies can result in well-documented model studies failing when
ported to a new machine. Without the use of recent innovations like
containers, documenting the exact computational environment used in
an analysis is difficult, time consuming, and error prone. To overcome
these challenges, Docker (Merkel, 2014) and Singularity (Kurtzer et al.,
2017) have emerged as containerization techniques used to encapsulate
a computational modeling environment, as described further in the
implementation (see Section 2.2).

Along with containers, computational gateway interfaces are also
critical to lowering the barrier to entry and supporting more open and
reproducible modeling in online computational environments. With the
emergence of JupyterHub as a gateway innovation, there has been an
increased interest in cloud-based modeling environments for creating,
editing, and running computational notebooks. Markham (2019)
reviewed five popular cloud services that support computational note-
books (Table 1). We reviewed two additional cloud services, 1) CUAHSI
JupyterHub (hereafter CUAHSI JH) and 2) CyberGIS-Jupyter for Water
(hereafter CyberGIS JW), and included them in Table 1 as well. The
environments range from scientific services (e.g., the CUAHSI JH and
CyberGIS JW that are used in this work) to more general services such as
Binder (Jupyter Project et al., 2018). Large technology companies
including Google and Microsoft have provided notebook execution en-
vironments such as Google Colab and Microsoft Azure Notebooks,
demonstrating the popularity and growing interest in a variety of fields.
Many cloud services have adopted the default Jupyter interface avail-
able from the Jupyter project without modification, while others have
modified this interface to customize it for their own purposes (Markham,
2019). Furthermore, many cloud services support Python, R and other
languages as well. Interface similarity in Table 1 considers available
menus, buttons, and other visual elements that make up the user inter-
face, and how different they are from a default Jupyter interface. All
services listed in Table 1 are candidates for integration into an imple-
mentation of the modeling system described in this paper.

2.1.3. Model APIs

An API defines a set of protocols or tools to communicate with an
operating system, database, network, and other lower-level aspects of a
software system (Reddy, 2011). The abstraction provided by an API has
benefits (Brooks, 2013) including: 1) flexibility and efficiency for data
access, 2) personalization to customize the functionality that users

https://www.dataone.org
https://www.dataone.org
https://figshare.com
https://dataverse.harvard.edu
https://dataverse.harvard.edu
https://www.hydroshare.org

Y.-D. Choi et al.

Environmental Modelling and Software 135 (2021) 104888

Table 1
Comparison of interface similarity and supported languages of cloud services for executing computational notebooks (expanded from Markham, 2019).
Cloud Services CUAHSI CyberGIS Binder Kaggle Kernels Google Collaboratory Microsoft Azure CoCalc
JH JW Notebooks (free plan) (free plan)
Interface similarity to Jupyter 100% 100% 100% 70% 60% 100% 95%
Supported Python 3, Python 3, Python 3, Python 3, Python 3, Python 3, Python 3,
Languages R R R, Julia, R Swift R, F# R, Julia,

Many others

Many others

access the most, and 3) reusability of code to work more productively.
Examples of widely used APIs include the Google Maps API for map
services and the Twitter API for social networking services. Services also
widely exist for scientific systems relevant to environmental modeling
including the HydroShare REST (Representational State Transfer) API
for sharing and publishing water data as well as APIs for a growing
number of environmental models.

In this study, we focused on Python-based model APIs and reviewed
a series of model APIs including PRMS-Python (Volk and Turner, 2019)
and PyHSPF (Lampert and Wu, 2015) to better understand how they are
designed and structured. Doing this can help to inform the design and
structure of future APIs created to support specific environmental
models. We observed that model API functionalities fell into three cat-
egories: model input, model execution, and model output (Table 2). For
PRMS-Python, as an example, input files often have corresponding Py-
thon modules that can be used for data manipulation. For PyHSPF, as an
example, the Python modules do not have a one-to-one correspondence
with the core model files and modules. Instead, the API designs include a
higher-level abstraction to consider core classes needed for interacting
with the model.

From this review, we suggest that communities of modelers (e.g.,
researchers or groups of researchers) who are considering building a
model API for a specific environmental model begin with answering the
following questions: 1) What configuration and input files should be
exposed through the API to allow for programmatic changes and what
are the logical classes for organizing these model input configuration
attributes? 2) What methods and attributes should the API expose for
executing the model and refining the model through, for example,
calibration or sensitivity analysis? 3) What are common visualizations of
the model output that many users would wish to produce? Creating a
model API with this functionality in a well thought through design will
serve as a solid foundation for future extensions to the software.
Furthermore, the extent to which environmental model APIs can adopt
conventions for the organization of their design and structure will allow
users to more easily learn new model APIs by having some consistency
across model APIs.

2.2. Example implementation

In this section, we present one possible physical implementation of

approach described in the prior section. This example implementation
uses HydroShare as the online repository, CUAHSI JH and CyberGIS JW
the computational environments, and pySUMMA as one of potentially
many model APIs within the system. While this example implementation
targets the needs of the hydrologic modeling community, we anticipate
that multiple other permutations of the technologies described in the
prior section could be assembled to meet the needs of other environ-
mental modeling communities.

2.2.1. HydroShare as the online repository

We used HydroShare as the data repository in our example imple-
mentation due to both its flexibility and tailored functionality for sup-
porting environmental modeling use cases. HydroShare is an online
repository tailored for the needs of the hydrologic community, but
general enough to satisfy other environmental modeling needs (Tarbo-
ton et al., 2014). HydroShare defines a “Resource” as “the fundamental
unit of digital content in HydroShare that contains data and/or model
files and their corresponding metadata” (Horsburgh et al., 2016).
HydroShare supports various data content types such as geographic
raster (GeoTIFF), multidimensional arrays (NetCDF), geographic fea-
tures (Shapefile), and time series as aggregations within a single
HydroShare resource. HydroShare also supports collections as a
resource type that holds a list of related HydroShare resources that can
be referenced with a single unique identifier. Furthermore, realizing that
data associated with models have their own characteristics, HydroShare
defines specific resource types for a model program (the software) and a
model instance (the input and output files for a specific model run)
(Morsy et al., 2017). Resources with these two resource types are related
through the “ExecutedBy” attribute of a model instance, which points to
the specific model program resource used to execute that model
instance. This design allows for a one-to-many link between a model
program that is used to execute many different model instances built for
different geographic locations or to address different research questions.

The methodology for sharing computational modeling resources is
shown in Fig. 2. First, the user creates a model program resource for each
version of a model program software used in the analysis. This resource
can include the source code, executable, and container for the model
program itself, or a link to one or more of these resources shared in a
system external to HydroShare (e.g., in GitHub, BinderHub or Dock-
erHub). Second, the model instance resources are created to store and

(b) Model Execution

(c) Model Output

Executing and refining models

Visualizing and analyzing model output

-shell script

-text file

-simulation.py
-scenario.py
-optimization.py

-optimizer.py
-utils.py

-shell script

-text file

Table 2
General categories for a model API mapped to examples from PRMS-Python and PyHSPF.
General API Objective PRMS PRMS-Python HSPF PyHSPF
Categories
(a) Model Input Generating and manipulating model input -control file -prms_config.txt -control file - wdmutil.py
-data file -data.py -watershed data - watershed.py
-parameters file -parameters.py -management file - hspfmodel.py

- forecaster.py
- extract.py
- calibratormodel.py

- gisplots.py
- forecastplots.py
- autocalibrator.py

Y.-D. Choi et al. Environmental Modelling and Software 135 (2021) 104888

Collection Resources @HYDRUSHARE
Model Instance Resources
Model Program Resources
Model Instance 1
~e——- s ExecutedBy V3.0
Input Output| 777" == =mee Ty
Data Data [¢ | TTemeelll
)) Tlizzse > Model Source
PPt EXE file Code
Model Instance 2 E L
— — e = R
Input Output| 777 . ,/'
Data Data Sy 3
— — R Composite Resources
Model Instance 3 // I:'I
— — e /
Input Output| 7~ b Jupyter Notebooks
Data Data ,',
S—— S— ,l
Model Instance ... ,/’
e— —> e Other Documents
Input Output| 7 (Documentation, etc.)
Data Data
— S—

Fig. 2. A methodology for sharing resources used for a modeling analysis through HydroShare.

describe the input data required to execute the model and can optionally notebooks that describe the overall analysis workflow. Finally, a
store the output after the model is executed. Then the model instance is collection resource is used to combine and conveniently share all of the
linked to a specific model program resource using the “ExecutedBy” resources used to complete the study.

metadata term. A separate composite resource is used to store Jupyter

HHYDROSHARE ~<=<-- WebApp ____ ! * CUAHSI CyberGIS
6 ~ T e e e Optional JupyterHub Jupyter for water
% B
v Seo, 0 T el
1 o T
| User Layer Y h s h iiiii h
’) User 1 . User 2 ORORONCO) ' User n-1 . Usern
‘ Browser ‘ Browser LRGN { ‘ Browser ‘ Browser
Cloud Computing | ______e--=mmTTTTT RS
Resource * . * Y A
Golfliléi‘ll‘:lud JetStream Virtual Roger
iy v g
_______________ E _‘_——‘_______,
______ b et
---------------- e ol = = e e e e e e e e e —m——————
== Application Layer | L\ /3 i ;;c Resources
xterna é °
Authentication i - B Ju pytAerh ub @' i XSEDE C (HPC)
* ; a[zs pEEE s OAuth - - =~ _11---- : OIEE
t.u)vnnnsmmf ________ S aonlaces : @
* GitHub Cian T :
N _-= User Job
-___—_—_’____,o: S Pt ser Jo
e P Tmag 4
- P e . vy 1
» % . \/ N o v _L--- UserJob é#
° @ ° ° (] ° P
1
Jupyter Jupyter Jupyter Jupyter !
Docker Hub notebook notebook notebook notebook ! o
: I R N
! . ® - ® r User Job Q
SUMMA Model | ./ User Instance User Instance User Instance ~ User Instance -~~~ i
Dockerfile ik L etk L) et T ' Q
L--1---P User Job

Fig. 3. The CUAHSI JH and CyberGIS JW environments with model execution environments configured as Docker images to support concurrent model execution
through Jupyter notebooks.

Y.-D. Choi et al.

2.2.2. JupyterHub as the computational environment

We integrated both the CUAHSI JH and CyberGIS JW as computa-
tional environments in our example implementation. We chose these
environments because both are publicly available and aimed at scientific
modeling in the water and environmental communities. Moreover, both
systems allow for seamless data transfer with HydroShare as a data re-
pository supporting the necessary interoperability between these two
components of the general framework. This data transfer is enabled
through the HydroShare REST API and the standardization of Hydro-
Share resource data structures.

The CUAHSI JH is a cloud computing environment on the Google
Cloud Platform specifically designed to support research and education
in the water sciences (Fig. 3). To support a variety of applications, it
leverages environment profiles that allow users to choose the ideal
computing configuration for their work. Each of these profiles is a
separate containerized environment that has been built with a specific
set of software to support various water science use cases. Currently, the
CUAHSI JH consists of seven profiles that range from scientific Python
and R to HydroLearn (https://www.hydrolearn.org), educational mod-
ules and hydrologic modeling. In addition, the CUAHSI JH supports
persistent data, meaning user-created content is stored between sessions
and shared between profile environments. Moreover, this environment
enables users to install custom software using conda virtual environ-
ments. For this study, we created a “Python 3.7 SUMMA Modeling”
profile to support SUMMA 3.0 modeling environment using a Dockerfile
in CUAHSI JH.

Another model execution environment interoperable with Hydro-
Share, CyberGIS JW, is a well-tailored CyberGISX (https://cybergisxhu
b.cigi.illinois.edu) instance to serve the fast-emerging needs for data-
intensive and reproducible research in the environmental modeling
community (Fig. 3). Overall, CyberGIS JW is similar to CUAHSI JH, but
CyberGIS JW also includes interoperability with advanced cyberinfras-
tructure resources such as Virtual ROGER (a cyberGIS supercomputer
hosted by the CyberGIS Center for Advanced Digital and Spatial Studies
at the University of Illinois) and XSEDE Comet (an HPC resource on the
Extreme Science and Engineering Discovery Environment) for model
execution support. Lyu et al. (2019) describe how to use HTC through a
Jupyter notebook using SUMMA as an example case in
CyberGIS-Jupyter (beta), which is the previous version of CyberGIS JW.
Currently CyberGIS JW is supporting Landlab (Hobley et al., 2017) and
RHESSys (Tague et al., 2004) modeling environments. For this study, we
created a SUMMA modeling environment using a Dockerfile. Users can
use this SUMMA modeling environment via a SUMMA kernel. For use of
HPC resources, CyberGIS JW requires a Singularity image to support a
computational modeling environment in XSEDE because CyberGIS JW
and XSEDE are separately placed. Also, CyberGIS JW needs a particular
library to connect to computational resources for submitting jobs and
data exchange in XSEDE.

2.2.3. pySUMMA as the model API

The model API pySUMMA was created through this research as an
example model API. pySUMMA wraps the hydrologic model Structure
for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al.,
2015a). SUMMA was selected for this study because it is a general hy-
drologic modeling environment offering the ability to conduct model
experiments with controlled and systematic evaluation of multiple
model representations of hydrologic processes and scaling behavior. The
SUMMA model simulates both the thermodynamics, the storage and flux
of energy such as the heat balance of the vegetation canopy, snow, and
soil affected by the radiative fluxes, as well as the hydrology, the storage
and transmission of water (for example, vertical and lateral transmission
of water through vegetation canopy, snow, soil, aquifer and river within
a catchment system). The flexible hierarchical spatial structure of
SUMMA supports different spatial configurations including the size and
shape of model elements with Grouped Response Units (GRUSs) (Kouwen
et al.,, 1993) and Hydrologic Response Units (HRUs). In addition, the

Environmental Modelling and Software 135 (2021) 104888

flexible structure enables researchers to consider the lateral flux of water
across the model domain and complex topographical properties like
hillslopes and riparian areas. This flexibility within SUMMA enables
hydrologists to find solutions for the application of scaling behavior in
relation to different physical processes.

SUMMA also enables hydrologists to select the appropriate physical
process methods and model complexity. This process implements a
modular structure that is supported by the conservation equations to
calculate each process in a controlled and systematic way. This unified
process helps users to concentrate important physical parameterizations
with higher complexity and, conversely, to simplify specific processes to
minimize uncertainty according to the purpose and characteristics of
biophysics and hydrology. Moreover, the structure of SUMMA, which
consists of a core (solver) and outer branches, enables the output of a
numerical solution from SUMMA so that the user can evaluate the ac-
curacy and efficiency of the model. Therefore, SUMMA supports flexi-
bility to simulate different options of physical processes and numerical
solutions.

We designed and implemented pySUMMA as a model API for
SUMMA using the questions proposed in Section 2.1.3 for guiding the
design of a new model API (Table 3). For the model input category, there
are six configuration files to manipulate SUMMA input: 1) File Manager,
2) Decisions, 3) Forcing File List, 4) Model Output, 5) Param Trial, and 6)
Local Attribute files. To expose the first four configuration files through
the API, we created file manger.py, decisions.py, force file list.py, out-
put control.py and option.py. For the rest of the configuration files, we
created assign trial params and assign_attributes methods in Simulation.py.
In the model execution category, we created Simulation.py to use the
model execution command conveniently from the shell script format so
that users do not need to edit manually every time. We also created two
options to execute the SUMMA model, ‘local’ and ‘docker’, to satisfy
different user requirements. Finally, the output format of SUMMA is
NetCDF; therefore, we created plotting.py for visualization considering
the output variables and their output structure in NetCDF.

The classes of pySUMMA are shown in Fig. 4. A Simulation module
(Simulation.py) is used as the initial Python module to start a pySUMMA
API and combine most pySUMMA functionalities, such as manipulating
configuration files and executing SUMMA. After creating a pySUMMA
simulation object, users can manipulate six configuration files. A File
manager module (file manager.py) reads and manipulates a File Manager
file which controls the location of every configuration file for the
SUMMA model. For example, the File Manager file sets the directory and

Table 3
Implementation of a model API for SUMMA.
General Questions SUMMA pySUMMA
Categories
(a) Model (1) What - file manager - file_manager.py
Input configuration and - decision file - decisions.py
input files should - forcing file list - force_file_list.py
be exposed file - output_control.
through the APIto - model output py
allow for file - option.py
programmatic - param trial
changes? file
- local attribute
file
(b) Model (2) What methods and - shell script - simulation.py
Execution commands should - SUMMA - SUMMA
the API expose for compilation compilation
executing the (summa.exe) (summa.exe) or
model? or Docker Docker
(c) Model (3) What are common - output - plotting.py
Output visualizations of NetCDF

the model output
that many users
would wish to
produce?

https://www.hydrolearn.org
https://cybergisxhub.cigi.illinois.edu
https://cybergisxhub.cigi.illinois.edu

Y.-D. Choi et al.

Environmental Modelling and Software 135 (2021) 104888

pySUMMA

simulation.py

file_manager.py

class Simulation()

def __init_ (self, executable, filemanager)
def initialize(self)

def assign_attributes(self, name, data)
def assign_trial params(self, name, data, dim)
def _gen_summa_cmd(self, run_suffix)
def _run_local(self, run_suffix)

def _run_docker(self, run_suffix)

def start(self, run_option)

def run(self, run_option)

def monitor(self)

def _write_configuration(self)

def get_output_files(self)

@property

def output(self)

def __repr_ (self)

<>

class FileMangerOption(BaseOption)
class FileManager(OptionContainer)

decisions.py

class DecisionOption(BaseOption)
class Decisions(OptionContainer)

force_file list.py

class ForcingOption(BaseOption)
class ForcingList(OptionContainer)

output_control.py

class OutputControlOption(BaseOption)
class OutputControl(OptionContainer)

option.py

class BaseOption(Object)
class OptionContainer(Object)

plotting |

: plotting.py :

class Plotting
' | def ts_plot() .
def ts_plot_layer()

def heatmap_plot()

hydroshare utils.py

def get_hs_resource()

Fig. 4. pySUMMA library classes.

configuration files including the decision, forcing, parameter, and
attribute files. A Decisions module (decisions.py) reads and manipulates
a Decisions file which sets different physical process parameterizations.
Through the available_options object in decisions.py, users can determine
what options are available for model parameterizations and select model
parameterizations from a list of options for each physical process
(SUMMA Online Document, 2020). Four input configuration modules
(file manager.py, decisions.py, force_file list.py, and output control.py) have
the same pattern of classes. For example, a File manager module (fil-
e manager.py) is composed of FileManagerOption and FileManager classes
and a Decisions module (decisions.py) is composed of DecisionOption and
Decision classes. Each class is connected to an Option module (option.py)
to avoid repetition of functions such as comparing, setting and writing
each configuration file. After setting the SUMMA configuration, the
simulation module (Simulation.py) is used for model execution. The run
() method of the Simulation class is used to execute the SUMMA model.
This execution can be done in both “local” and “docker” computational
environments. The environments are set using the run_option parameter
for the run() method as discussed later in the Results and Discussion
section.

Once a SUMMA model run has been completed, the plotting module
(plotting.py) can be used to visualize the results. There are two different
data output structures for SUMMA: 1) time, HRU (or GRU) number, and
variable; 2) time, HRU (or GRU) number, soil (or snow) layer number,
and variable. To visualize each of these output structures, the Plotting
class consists of three methods: ts plot(), ts plot layer(), and heatmap_plot
(). We used the seaborn library (statistical data visualization library) to
create a 2D heat map with soil or snow layer and time as the axis for
displaying a selected variable. Lastly, the model output module (out-
put control.py) is used to manipulate the output variables of SUMMA and
the utilities module (hydroshare_utils.py) has functions to download test
cases of SUMMA (model instance resources) and execution files (model
program resources) from HydroShare.

3. Results and Discussion

In this section, we present a modeling case study application of the
example implementation system described in Section 2.2. Then, we
discuss how this approach addresses the challenge of achieving more
reproducible studies summarized in the Introduction section by evalu-
ating the approach against definitions, concepts, and metrics for

reproducibility proposed by others. Lastly, we discuss the limitations of
our approach that present opportunities for future research.

3.1. Case study description

Clark et al. (2015b) describe a set of thirteen modeling experiments
exploring various hydrologic modeling scenarios using SUMMA. The
study area for these modeling experiments is the Reynolds Mountain
East Area (A = 32.7 km?) in the Reynolds Creek Experimental Watershed
in Idaho, USA (Fig. 5). In this paper, we focus on these modeling ex-
periments as a case study with the goal of applying our approach so that
each Clark et al. (2015b) experiment can be reconstructed and shared
openly in a way that is easier to reproduce.

The first step toward this goal is the creation and organization of
HydroShare resources to share all models and data files required for the
analysis. The second step is to create Jupyter notebooks that describe the
modeling experiments. These notebooks include text and equations to
describe the modeling experiments while also including executable Py-
thon code using the pySUMMA API and inline visualizations that can be
repeated and extended by others. We created seven Jupyter notebooks,
each one documenting an experiment in the Clark et al. (2015b) study,
and published them through HydroShare as a collection resource (Choi
et al., 2020).

3.2. Model and data resources

Our first step in reproducing the Clark et al. (2015b) modeling ex-
periments was to publish the specific SUMMA model version used in the
analysis as a resource on HydroShare. To do this, we created a Hydro-
Share resource using the Model Program resource type and uploaded the
SUMMA 3.0.0 source code to the resource. We then published the
resource through HydroShare so that it is persistent and immutable with
a unique Digital Object Identifier (DOI) (Choi et al., 2020). Fig. 6 shows
the landing page for this resource on HydroShare that includes detailed
metadata describing: 1) the source code and compiled software engine,
2) metadata for the software, 3) a link showing the model was derived
from a particular branch of a GitHub repository for SUMMA, and 4) a
citation for referencing the resource. This same SUMMA 3.0.0 was also
installed on the CUAHSI JH allowing users to execute the SUMMA model
directly from CUAHSI JH.

We next created multiple resources in HydroShare to store the

Y.-D. Choi et al.

Environmental Modelling and Software 135 (2021) 104888

g P8

Chicago®

S

“Z UNITED
-/ STATES

w LosAngeles

National/Geographic! E L |
s, HEREUNEPWEMC[USESHITEARRE
\ESA METINRCANGEBCORNEYIS
= Gulfiof. N

i
Munr i iaina ®

. Seag,

IDAHO
- *Twin Falls

Legend

T
Tidn,, |

National Ge?')graphm. Esti, Garmin
/*HERE, UNEP-WCME, USGS/INASA
ESATMETI!INRCANSGEBCOANOAA

increment Pl Corp. 3

L

NEVADA

0

—— River
E Reynolds Creek Watershed
[:J Reynolds Moutain East

3

Mé*clgs'éreeki" ‘

7/ %))
~¥, Nghcy Guleh

/Lower Sheep Creek
N \ ‘0‘ NN

Dobson Cree
Upper Sheep Creek

Reynolds Mt. East

12
Kilometers

6

Fig. 5. Reynolds mountain east area in the Reynolds creek experimental watershed.

specific model inputs for each different SUMMA model experiment used
in the Clark et al. (2015b) paper. There were four synthetic and nine
field study test cases available as an online supplement to the Clark et al.
(2015b) paper. From these data, we created seven unique model
instance resources in HydroShare (Table 4) and grouped them into a
collection resource (Choi et al., 2020). Each model instance resource
includes: 1) input data for the SUMMA model, 2) a reference to the Clark
et al. (2015b) paper, 3) a composite resource link that points to the
Jupyter notebook used to execute the SUMMA model, and 4) a link to
the model program resource used to execute the model instance.

Once this step is complete, the model and data resources required to
reproduce the Clark et al. (2015b) experiments are publicly accessible in
HydroShare with metadata to describe each resource and a unique URL
to locate each resource. HydroShare also allows for publishing these
resources in which case the resources become immutable and are
assigned a Digital Object Identifier (DOI). This pattern can be adopted
by other environmental modeling studies whereby both the model and
data resources required to reproduce the study are uploaded into
HydroShare, given metadata to describe each resource (including re-
lationships between resources such as the “ExecutedBy” relationship
between model program and model instance resources), and published
with a DOL.

3.3. Demonstrating reproducibility

This section describes the steps that should be taken to reproduce one
of the experiments described in Clark et al. (2015b). As a preparation
step before starting a SUMMA simulation using Jupyter notebooks on
CUAHSI JupyterHub, we recommend creating a pySUMMA conda vir-
tual environment by running the steps described in the notebook “Cre-
ating_pySUMMA_conda_virtual_environment_in_ CUAHSI_JupyterHub.
ipynb” in the HydroShare composite resource for CUAHSI JH notebooks.
Once this preparation step is completed, the basic algorithm to run a
notebook is shown in Fig. 7. First, the pySUMMA hydroshare_utils module
is used to download the model instance that will be used in the notebook
directly from HydroShare. After downloading the SUMMA model
instance, it is possible to create a pySUMMA simulation object using the
Simulation class of pySUMMA and supplying SUMMA executable
(summa.exe) and the File Manager file path. After creating the
pySUMMA simulation object, the SUMMA model can be executed using
the run() method, which takes a run option argument as local. When
CUAHSI JH was created by using Docker, SUMMA was automatically
complied and the SUMMA executable was created in ‘/usr/lo-
cal/bin/summa.exe’. Therefore, after setting the executable variable to
the location of “summa.exe”, users can set a run_ option as local. By
changing the executable variable as "/usr/bin/summa.exe”, it is possible
to execute the same notebook on CyberGIS JW.

As an example, we present here the results from running two

Y.-D. Choi et al.

Environmental Modelling and Software 135 (2021) 104888

‘HYUROSHARE HOME MYRESOURCES DISCOVER COLLABORATE APPS HELP e
SUMMA 3.0.0
LAy @7 @
Authors: Young-Don Choi | Andrew Bennett | Bart Nijssen | Martyn Clark Sharing Status: Public
Jonathan Goodall Views: 43
Owners: Young-Don Choi Downloads: 4
Resource type: Model Program Resource +1 Votes: Be the first one to [E3J] this.
Storage: The size of this resource is 28.6 MB - No comments (yet)
Created: Jul 25, 2020 at 8:46 p.m.
Lastupdated: Aug 16, 2020 at 5:18 p.m. Young-Don Choi
Citation: See how 1o cite this resource
Content
= om sortby~ Q search current directory (x]
B2 % O & iR B Leanmore
£ contents
B summa300zip zip File Source code and software engine
Resource Specific
Content files Metadata describing the software
Computational Eng summa-3.0.0.zip
Software
Programming Language Fortran
Operating S lubuntu-20.04LDT
https://github.com/NCAR/summa/releases/tag/v3.0.0
Release Date 07/20/2020
Website https://github.com/NCAR/summa
References
Sources A link to the source code repository
Derived From: https:/github.com/NCAR/summa/releases/tag/v3.0.0 on GitHUb and documeﬂts
Related Resources
This resource is described by: https:/summa.readthedocs.io/en/latest/installation/SUMMA _installation/

This resource belongs to the following collections:

Title

ihlo Envi
E

Toward Open and Reprodu tal Modeling by Integrating Online Data Rep
and Model Application Programming Interfaces

Sharing My
Owners L
Status Permission
itories, Computational Envi it Young-Don Public & o
Choi Shareable

How to Cite

Choi, Y., A. Bennett, B. Nijssen, M. Clark, J. Goodall (2020). SUMMA 3.0.0, HydroShare, http://www.hydroshare org/resource/ce02e7ce903d48019bc73fb6a19ch558

The citation for this resource

B Copy

Fig. 6. The HydroShare landing page for a SUMMA model program resource used in the example analysis (Choi et al., 2020).

Y.-D. Choi et al.

Environmental Modelling and Software 135 (2021) 104888

Downloading the model instance required for the modeling scenario directly from HydroShare based on its unique Resource ID

from pysumma import hydroshare utils
import os
p resource_id = '13d6b84a9553410297a67fa366a56cb2"

instance = hydroshare_utils R get_hs_resource (resource_id, os.getcwd())

Creating the pySUMMA simulation instance
import pysumma as ps
: executable = "/usr/bin/summa.exe"
10 file_manager =
S = ps.Simulation(executable, file manager)

os.path.join(os.getcwd(), instance, 'settin

Executing the SUMMA example model in the CUAHSI JupyterHub

14 S.run("' ', run_suffix='_ =Re 1ce')

Fig. 7. The basic step for a SUMMA model run using Jupyter notebooks.

|
o
o>

/T; — Ball-Berry (a)
c ——Jarvis
— - Simple resistance
E Hi ® Observations
5 -0}
©
& —0.3F
<
2
o —0.2F
Q.
O
=4
® —0.1F
2
2 0.0 ,
3 6 9 121518 21
Time of day

Total evapotranspiration (mm/h)

-0.6
— Ball-Berry (b)
— Jarvis
-0.5 Simple resistance
@ Observations
[/
-0.4 ' S
-0.3
-0.2
-0.1
0.0

0 3 6 9 1215 18 21 24
Time of day (hr)

Fig. 8. Reproducibility of Fig. 7 from Clark et al. (2015b) showing the impact of the three different stomatal resistance parameterizations on total evapotranspiration

(a) published result, (b) reproduced result.

different experiments included in the Clark et al. (2015b) paper. The
first reproduces Fig. 7 from Clark et al. (2015b) and is published as a
HydroShare resource with the title “The impact of Stomatal Resistance
Parameterization on ET of SUMMA Model in Aspen stand at Reynolds
Mountain East (Choi et al., 2020).” The second reproduces Fig. 8 (left)
from Clark et al. (2015b) and is published as a HydroShare resource with
the title “The impact of Root Distributions Parameters on ET of SUMMA
Model in Aspen stand at Reynolds Mountain East.”

Fig. 8 gives the results from the first experiment that explores the
impact of three different stomatal resistance parameterizations on total
evapotranspiration: Ball-Berry (Ball et al., 1987), Jarvis (1976), and the
simple resistance method. Fig. 8a is the original result from the SUMMA
paper (Clark et al., 2015b) and Fig. 8b is a reproduced figure resulting
from applying this framework. These stomatal resistance parameteri-
zations have different physical characteristics: both the Jarvis and Ball
Berry methods consider photosynthesis, while the simple soil resistance
method mainly considers the soil water conditions. The results show that
the simple soil resistance method is higher than the other methods
during the night hours. Comparing the two plots shows the complexity
associated with reproducing past computational modeling studies.
While the results are consistent, they are not exact. The precise reason
for the differences in the model results is difficult to determine. We
suspect it is due in part to upgrades to SUMMA or SUMMA dependencies
between the versions of the SUMMA 2.0 used in the Clark et al. (2015b)
paper and the SUMMA 3.0 used to create the newer plot. More vexing is
that some of the observed data points appear to have shifted with no
good explanation for why. One possible explanation could be the fact
that different visualization tools were used to create each plot:

10

Interactive Data Language (IDL) for the plot on the left and matplotlib
for the plot on the right. We suspect differences like this would not be
uncommon when trying to reproduce any past computational study
given the difficulties in recreating the exact computational and analysis
environment including data preparation routines, computational
modeling software, and post-processing analysis and visualization tools.
This, in fact, speaks to the difficulty of the problem and the need for
innovation in cyberinfrastructure approaches that is at the heart of this
study. This said, it is also important to stress that the goal of repro-
ducibility may not be to obtain the exact same results, but rather
consistent results that would produce the same conclusion. This is an idea
expressed by high level reports on computational reproducibility (Na-
tional Academies of Sciences, 2019) that we will discuss further in
Section 3.4.

Fig. 9 shows the results from the second experiment from Clark et al.
(2015b), which explores the impact of the root distribution parameters
with different stomatal resistance parameterizations for total evapo-
transpiration. In this case, we reproduced the plot that shows the impact
of root distribution parameters (Fig. 9b) and compared it to the previous
result (Fig. 9a). Again, we see consistent (although not exact) results
between the two model runs. Given that the modeling experiment is now
implemented within the system, it is also possible to more easily extend
and repurpose it for other purposes. To this point, we demonstrate reuse
of past modeling studies by creating two additional plots for deter-
mining the effect of different root distribution (Fig. 9¢) and stomatal
resistance parameterizations (Fig. 9d) on total evapotranspiration.
These plots show how higher root distribution exponents in the soil
profile indicate that the roots are deeper in the soil, which makes it

Y.-D. Choi et al.

061 __ oot exp = 1 (a)
—Root exp = 0.5
-05F Root exp = 0.25

® Observations

|
o
N

|
o
w

|
o
N

Total evapotranspiration (mm h™)

—0.1
0.0
3 6 9 1215 18 21
Time of day
-0.6
— krvisiRoot Exp = 1.0} (c)
- farvis{Root Exp = 0.5)
—0.5 1 Brvis{Root Exp = 0.25)

® CObservations

Total evapotranspiration (mm/h)

0 3 6 9 12 15 18 21 24
Time of day (hr)

Environmental Modelling and Software 135 (2021) 104888

-0.6
— BallBerry(Root Exp = 1.0) (b)
- BallBerry(Root Exp = 0.5)

—0.5 1 BallBerry(Root Exp = 0.25)

® Cbservations

Total evapotranspiration (mm/h)

0 3 6 9 12 15 18 21 24
Time of day (hr)

-0.6
- - simResist{Root Exp = 1.0) (d)
< - simResist(Root Exp = 0.5)
£ —05 simResist(Root Exp = 0.25)
g ® CObservations
S —0.4- S
=)
e ‘ -
o L]
@ 0.3 1 o \
2 0.2 1 °
1]
> Q
- o
w —0.1 1
el ‘ o
I N\
oMt = A
0 3 6 9 12 15 18 21 24

Time of day (hr)

Fig. 9. Reproducibility and reusability of Fig. 8 (a) of Clark et al. (2015b) showing the impact of root distribution parameter with different stomatal resistance
parameterization on total evapotranspiration (a) published output, (b) reproduced output, (c) and (d) output from reusability application extending the prior study.

Table 4

Mapping between the modeling experiments of Clark et al. (2015b) and Model
Instance Resources on HydroShare used to store the input files for that model
experiment.

Figures from Clark et al. ~ Resource Name on HydroShare to Reproduce each Clark

(2015b) et al. (2015b) Figure

Fig. 1 (top) The impact of the canopy shortwave radiation
parameterizations of SUMMA Model in Aspen stand at
Reynolds Mountain East

Fig. 1 (bottom) The impact of LAI parameter on the below canopy

shortwave radiation of SUMMA Model in Aspen stand at
Reynolds Mountain East

Fig. 2 The impact of the canopy wind parameter for the
exponential wind profile of SUMMA Model in Aspen
stand at Reynolds Mountain East

Fig. 7 The impact of Stomatal Resistance Parameterization on
ET of SUMMA Model in Aspen stand at Reynolds
Mountain East

Fig. 8 (left) The impact of Root Distributions Parameters on ET of
SUMMA Model in Aspen stand at Reynolds Mountain East

Fig. 8 (right) The impact of Lateral Flow Parameterizations on ET of
SUMMA Model in Aspen stand at Reynolds Mountain East

Fig. 9 The impact of Lateral Flow Parameterizations on Runoff

of SUMMA Model in Aspen stand at Reynolds Mountain
East

11

easier for plants to extract soil water. As a result, during the higher
evapotranspiration periods (10:00-17:00), the Jarvis method more
closely matched the observation data. However, during the period when
evapotranspiration is decreasing (17:00-20:00), the Ball-Berry method
was more precise compared to the simple resistance method. Over the
complete time period, the analysis shows that the Jarvis method had the
best fit with observations.

3.4. Evaluating reproducibility

To evaluate if reproducibility was achieved, we considered defini-
tions and concepts for evaluating reproducibility being put forward by
others. For example, the National Academies of Science, Engineering,
and Medicine (National Academies of Sciences, 2019) define repro-
ducibility, focused on computational reproducibility, as “obtaining
consistent results using the same input data; computational steps,
methods, and code; and conditions of analysis.” To guarantee repro-
ducibility, the organization recommended delivering “clear, specific,
and complete information about any computational methods and data
products to repeat the previous study, and that information should
include the data, methods, and computational environment.” FAIR
principles (Wilkinson et al., 2016) include 15 metrics that should be met
as a minimum for reproducibility. These metrics are: a) Findable (4
metrics), b) Accessible (4 metrics), c) Interoperable (3 metrics), and d)
Reusable (4 metrics).

Y.-D. Choi et al.

In the hydrology and water resources fields, Hutton et al. (2016)
recommended reproducible studies have: 1) readable and reusable code,
2) an unambiguous workflow, 3) a repository to easily find data and
code with associated metadata, 4) use of unique persistent identifiers, 5)
new procedures to reproduce large-scale studies using HPC. Addition-
ally, Hut et al. (2017) suggested the use of containers and open in-
terfaces to guarantee stronger reproducibility as a response to Hutton
et al. (2016). Finally, Stagge et al. (2019) proposed a set of survey
questions to assess the reproducibility of a journal article. The survey
requires that eight elements be available for a study to be called
reproducible: 1) directions to run or reproduce the study, 2) code/mo-
del/software files, 3) input data, 4) hardware/software requirements, 5)
stated data persistence policy, 6) materials linked by unique and
persistent identifiers, 7) metadata to describe the code, and 8) common
file format and instructions to open these files.

With these criteria in mind, by simply using HydroShare as the data
repository for all data and software used for the study, we can support
many of the metrics associated with reproducibility. HydroShare sup-
ports FAIR principles (Tarboton et al., 2018) for each resource that in-
cludes model input, source code, metadata, and supplementary
documents. Using JupyterHub as described in the paper provides a
consistent computational environment and using Jupyter notebooks and
containerized model execution environments provides a clear and easy
workflow to assure users can reproduce a published study. Finally, using
a model API makes it easier for a user to follow the logic and steps used
to configure, run, and postprocess a modeling simulation, allowing for
not only reproducibility but also reuse and extension of prior work.
Therefore, if we compare these definitions and concepts for a validation
of reproducibility to our approach and its example application, we can
claim that it satisfies the criteria for reproducible computational
modeling. Still, while the framework allows for satisfying the criteria, it
is still up to the user to ensure care is taken with sharing and doc-
umenting resources with adequate metadata and instructions to achieve
reproducibility.

3.5. Approach limitations and opportunities for future research

This research focuses on examples that assume model input files had
already been processed and are available for use in the modeling anal-
ysis. The preprocessing steps required to generate model input files from
raw geospatial and time series observational data are a necessary
component of longer-term goals for creating so called “end-to-end”
reproducible analysis workflows. For example, Slater et al. (2019) pro-
vided an “end-to-end” reproducible hydrology workflow using R for
climate data retrieval, spatial analysis, modeling, statistical analysis,
visualization, and data publishing. As another example of automated
end-to-end workflows, HydroTerre (Leonard, 2015) includes: 1) data
workflows (Leonard and Duffy, 2013) to create watershed models using
Essential Terrestrial Variables (ETV), 2) data-model workflows to
transform watershed data into model inputs, 3) model workflows
(Leonard and Duffy, 2014) to execute models in HPC, especially The
Penn State Integrated Hydrologic Modeling System (PIHM), and 4)
visualization workflows to visualize the first three workflows to easily
create and share model results for analysis.

Currently, pySUMMA has developed the functionalities of manipu-
lating created model input, executing SUMMA, and plotting model
output. To complete “end-to-end” workflows, data preprocessing is
critical for improving reproducibility as the steps to create model input
files are often nontrivial and require a significant time investment. Prior
work to address this challenge includes the EcohydroLib Python library
developed as a software framework for managing spatial data acquisi-
tion and preparation workflows for ecohydrology modeling (Miles and
Band, 2015). EcohydroLib takes advantage of open source GRASS GIS
libraries to automate data gathering and preparation for environmental
models. It is a model agnostic approach for mapping a variety of data
sources into input files required by environmental models. Alternative

12

Environmental Modelling and Software 135 (2021) 104888

data processing workflows and pipelines such as HydroTerre (Leonard,
2015) could also be explored for bringing data preprocessing capabil-
ities for environmental models into the general approach described
through this work. However, just having new data processing pipelines
alone will be insufficient. We also need more detailed modeling pro-
tocols and procedures to replicate (or even reproduce) a study (Ceola
et al., 2015) because reproducibility is not just a technological problem,
it is equally an educational problem (Griining et al., 2018).

Post-processing for visualization and model analysis procedures is
also essential to creating a powerful modeling environment, saving time
when analyzing model output and strengthening reproducibility. To
grow use of model APIs, many analysis methods will be necessary such
as plotting, calibration, optimization, and uncertainty analysis. While
pySUMMA is still being developed toward these goals, other model APIs
discussed in this paper and that could be used within the example
modeling system do have more robust processing capabilities already.
One question that remains is the extent to which environmental model
APIs can reuse underlying software to support common model post-
processing routines. General libraries in Python, such as Pandas and
matplotlib, are universally applicable to environmental modeling post-
processing tasks. However, is a plotting or data analysis library more
tailored for environmental modeling but still sufficiently general to
serve many environmental models possible? If so, it could further reduce
the duplication of code across environmental model APIs and, ulti-
mately, encourage more environmental model APIs that are robust,
easier to maintain, and feature rich.

The ability to include data pre- and post-processing within the
framework would be an important step for moving from reproducibility
to replicability within the framework. Replicability is defined by the
National Academies of Science, Engineering, and Medicine (National
Academies of Sciences, 2019) as “obtaining consistent results across
studies aimed at answering the same scientific question, each of which
has obtained its own data.” Replication, therefore, can be thought of as a
next step beyond reproducibility where a study is repeated using new
data, potentially from a new site or different time period, but similar
methods. This work has focused on a general approach to support
reproducibility of computational models. The framework could be
extended for replication by extending a model API, like the pySUMMA
API described in this paper, to include not only functions for model
configuration (e.g., settings and parameter values assuming model input
files have already been generated), but also for model preprocessing
where input files for the model are generated from raw data sources.

4. Conclusion

Computational irreproducibility is an important problem in many
scientific fields. Recent research to improve computational reproduc-
ibility has focused on advancing the sharing of data used in studies,
using computational notebooks and containers for encapsulating com-
plete computational environments, and developing model APIs for
programmatically interacting with simulation models. A contribution of
this research is to present a general approach to integrate these three
areas of past work into a general approach for supporting more open and
reproducible environmental modeling. We present an example imple-
mentation of this approach by leveraging: 1) HydroShare as a data
sharing repository, 2) JupyterHub as a notebook-based, containerized,
and cloud-based computational environment, and 3) pySUMMA as an
example model API able to abstract lower-level details for model
configuration, execution, and visualization from end users.

Using the example implementation, we demonstrate how modeling
analyses can be completed in a more open and reproducible way.
Building from a prior study presenting a series of modeling experiments
applying SUMMA at the Reynolds Mountain East Area in the Reynolds
Creek Experimental Watershed in Idaho, USA (Clark et al., 2015b), we
first created and organized HydroShare resources to share data and
model files. Next, we created Jupyter notebooks that leveraged the

Y.-D. Choi et al. Environmental Modelling and Software 135 (2021) 104888

pySUMMA AP], introduced in this paper, to reproduce and extend fig- Harvard Dataverse: https://dataverse.harvard.edu

ures from the prior study. Each notebook a) pulled required data from HydroShare REST API: https://github.com/hydroshare/hydroshare/

HydroShare into the computational environment, b) provided a note- wiki/HydroShare-REST-API

book using text, equations, code, and inline visualizations for doc- NetCDF4 GitHub: https://github.com/Unidata/netcdf4-python

umenting the experiment, and c) allowed for online execution of the Numpy: https://www.numpy.org

notebook and sharing of modifications to the notebook through Pandas: https://pandas.pydata.org

HydroShare. Finally, we discussed how we evaluated that reproduc- Seaborn: https://seaborn.pydata.org

ibility was achieved and future steps that could be taken to further Singularity: https://sylabs.io

improve the proposed framework. SUMMA on the UCAR: https://ral.ucar.edu/projects/summa
From this research, we conclude that cyberinfrastructure is reaching xarray: http://xarray.pydata.org

a point where it is possible to build open and transparent environmental XSEDE: https://www.xsede.org

modeling systems. Online repositories are sufficiently mature where
they can be relied upon for storing key data and software resources for
studies. Computational environments able to execute containerized
environmental models can be interlinked with data repositories, and the
ability for these computational environments to serve as gateways to
High Performance Computing (HPC) resources is improving. More
models are being provided with APIs that allow for programmatic con-
trol of the model configuration, execution, and visualization. Jupyter
notebooks provide an important orchestration and documentation glue
across these components where users can leverage APIs to access and
publish data from online repositories, submit jobs to HPC resources, and
programmatically interact with state-of-the-art environmental models.
Linking these capabilities in a way that can be built upon and expanded
as new models become available, as demonstrated in this paper, will
move environmental modeling in a direction where open, transparent,
reproducible, reusable, and replicable studies become the rule rather

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported by the National Science Foundation under
collaborative grants OAC-1664061, OAC-1664018, OAC-1664119,
ICER-1928369, and ICER-1928315. We acknowledge the work of the
larger HydroShare team (https://help.hydroshare.org/about-hydrosh
are/team) that made this research possible.

than the exception. References

. ere Baker, M., 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454.
Software and data avallablhty https://doi.org/10.1038/533452a.

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N.,
All software and data used in this study were published with 2016. Scripting MODFLOW model dev_elopment using Python and FloPy.
. . . Groundwater 54, 733-739. https://doi.org/10.1111/gwat.12413.

persistent DOIs on HydrOShare' A collection resource in HydroShare Ball, J.T., Woodrow, LE., Berry, J.A., 1987. A model predicting stomatal conductance
(Choi et al., 2020) contains each of these resources. In addition to these and its contribution to the control of photosynthesis under different environmental
resources published through HydroShare, the pySUMMA source code conditions. In: Progress in Photosynthesis Research. Springer Netherlands,

Dordrecht, pp. 221-224. https://doi.org/10.1007/978-94-017-0519-6_48.
Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S.S.,

Phuong, J., Adams, J.M., Gasparini, N.M., Barnhart, K., Hutton, E.W.H., Hobley, D.E.
Product Title: pySUMMA v3.0.0 J., Lyons, N.J., Tucker, G.E., Tarboton, D.G., Idaszak, R., Wang, S., 2019. Enabling
collaborative numerical modeling in earth sciences using knowledge infrastructure.
Environ. Model. Software 120. https://doi.org/10.1016/j.envsoft.2019.03.020.

created though this study is available on GitHub as detailed below.

Lead Developers: Young-Don Choi and Andrew Bennett

Contact Email: ycSef@virginia.edu, andrbenn@uw.edu Bast, R., 2019. A FAIRer future. Nat. Phys. https://doi.org/10.1038/541567-019-0624-3.

Tested Platform: Boettiger, C., 2015. An introduction to Docker for reproducible research. ACM SIGOPS -
Oper. Syst. Rev. 49, 71-79. https://doi.org/10.1145/2723872.2723882.

. HydIOShare CUAHSI Jup yterHUb Brinckman,};\., Chard, K., Gaffney, N., Hategan, M., Jones, M.B., Kowalik, K.,

- CyberGIS-Jupyter for Water Kulasekaran, S., Luddscher, B., Mecum, B.D., Nabrzyski, J., Stodden, V., Taylor, LJ.,

Software Required: Python 3.5 or above Turk, M.J., Turner, K., 2019. Computing environments for reproducibility: capturing

the “whole tale. Future Generat. Comput. Syst. https://doi.org/10.1016/j.

Availability: The pySUMMA source code is publicly available e 5017 15 090,

through GitHub Brooks, G., 2013. Benefits of APIs [WWW document]. Digital.gov. https://digital.gov
- https://github.com/UW-Hydro/pysumma/releases/tag/3.0.0 /2013/03/12/benefits-of-apis/. accessed 1.14.20.
License: BSD 3-Clause License Jupyter Project, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T.,

Holdgraf, C., Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Perez, F.,

Ragan-Kelley, B., Willing, C., 2018. Binder 2.0 - reproducible, interactive, sharable
List of relevant URLs environments for science at scale. Proc. 17th Python Sci. Conf. https://doi.org/

10.25080/majora-4af1f417-011.

. e . Buytaert, W., 2011. topmodel: implementation of the hydrological model TOPMODEL in
CUAHSI JupyterHub: https://jupyterhub.cuahsi.org/ R. Global Change Biol. https://doi.org/10.1111/j.1365-2486.2006.01305.x.
CUAHSI JupyterHub Legacy Environment: https://jupyter.cuahsi. Castronova, A., Seul P.D, M., 2018. A general approach for cloud-based hydrologic
org modeling using jupyter notebooks [WWW document]. HydroShare. http://www.
hydroshare.org/resource/075664b0f0df4c58892cb4665e77e497.

CUAHSI JupyterHub GitHub: https:/ / glthub.com/ hydroshare/ hyd Ceola, S., Arheimer, B., Baratti, E., Bloschl, G., Capell, R., Castellarin, A., Freer, J.,
roshare—jupyterhub Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindstrom, G., Montanari, A.,
CyberGIS-Jupyter (beta): https://hsjupyter.cigi.illinois.edu:8000 i‘lilJ;Zink, R., Parajka, J., Toth, Ef Vigliﬁng, A., Wagener, T., 2015. ‘grﬁllal .

. . PR . aboratories: new opportunities for collaborative water science. Hydrol. Earth Syst.
CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupy Sci. https://doi.org/10.5194/hess-19-2101-2015.
ter-water Choi, Y., Goodall, J., Sadler, J., Castronova, A.M., Bennett, A., Li, Z., Nijssen, B.,
DataOne: https://www.dataone.org Wang, S., Clark, M., Tarboton, D., 2020. Toward open and reproducible

environmental modeling by integrating online data repositories, computational
environments, and model application programming interfaces [WWW document].
DockerHub: https://hub.docker.com HydroShare. https://www.hydroshare.org/resource/33cfb9622a354442b2b0a869
EcohydroLib: https://github.com/selimnairb/EcohydroLib b15ea6b0y/.
Facebook API: https://developers.facebook.com/docs/apis-and-sdks Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Wof’ds’ R.A., Freer, J.
. . E., Gutmann, E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., Gochis, D.J.,
FlgShare: https://figshare.com Rasmussen, R.M., 2015a. A unified approach for process-based hydrologic modeling:
Google API: https://developers.google.com/apis-explorer 1. Modeling concept. Water Resour. Res. https://doi.org/10.1002/2015WR017198.

Docker: https://www.docker.com

13

mailto:yc5ef@virginia.edu
mailto:andrbenn@uw.edu
https://github.com/UW-Hydro/pysumma/releases/tag/3.0.0
https://jupyterhub.cuahsi.org/
https://jupyter.cuahsi.org
https://jupyter.cuahsi.org
https://github.com/hydroshare/hydroshare-jupyterhub
https://github.com/hydroshare/hydroshare-jupyterhub
https://hsjupyter.cigi.illinois.edu:8000
https://go.illinois.edu//cybergis-jupyter-water
https://go.illinois.edu//cybergis-jupyter-water
https://www.dataone.org
https://www.docker.com
https://hub.docker.com
https://github.com/selimnairb/EcohydroLib
https://developers.facebook.com/docs/apis-and-sdks
https://figshare.com
https://developers.google.com/apis-explorer
https://dataverse.harvard.edu
https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API
https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API
https://github.com/Unidata/netcdf4-python
https://www.numpy.org
https://pandas.pydata.org
https://seaborn.pydata.org
https://sylabs.io
https://ral.ucar.edu/projects/summa
http://xarray.pydata.org
https://www.xsede.org
https://help.hydroshare.org/about-hydroshare/team
https://help.hydroshare.org/about-hydroshare/team
https://doi.org/10.1038/533452a
https://doi.org/10.1111/gwat.12413
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1016/j.envsoft.2019.03.020
https://doi.org/10.1038/s41567-019-0624-3
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1016/j.future.2017.12.029
https://digital.gov/2013/03/12/benefits-of-apis/
https://digital.gov/2013/03/12/benefits-of-apis/
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.1111/j.1365-2486.2006.01305.x
http://www.hydroshare.org/resource/075664b0f0df4c58892cb4665e77e497
http://www.hydroshare.org/resource/075664b0f0df4c58892cb4665e77e497
https://doi.org/10.5194/hess-19-2101-2015
https://www.hydroshare.org/resource/33cfb9622a354442b2b0a869b15ea6b0/
https://www.hydroshare.org/resource/33cfb9622a354442b2b0a869b15ea6b0/
https://doi.org/10.1002/2015WR017198

Y.-D. Choi et al.

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.
E., Gutmann, E.D., Wood, A.W., Gochis, D.J., Rasmussen, R.M., Tarboton, D.G.,
Mabhat, V., Flerchinger, G.N., Marks, D.G., 2015b. A unified approach for process-
based hydrologic modeling: 2. Model implementation and case studies. Water
Resour. Res. https://doi.org/10.1002/2015WR017200.

Essawy, B.T., Goodall, J.L., Zell, W., Voce, D., Morsy, M.M., Sadler, J., Yuan, Z.,
Malik, T., 2018. Integrating scientific cyberinfrastructures to improve
reproducibility in computational hydrology: example for HydroShare and GeoTrust.
Environ. Model. Software 105, 217-229. https://doi.org/10.1016/j.
envsoft.2018.03.025.

Eynard-Bontemps, G., Abernathey, R., Hamman, J., Ponte, A., Rath, W., 2019. The
PANGEO big data ecosystem and its use at CNES. In: Proc. Of the 2019 Conference
on Big Data from Space (BiDS?2019). EUR 29660 EN. ARRAY(0xc86ce6c),
Luxembourg, pp. 49-52. https://doi.org/10.2760/848593.

Fuka, D.R., Walter, M.T., Macalister, C., Steenhuis, T.S., Easton, Z.M., 2014.
SWATmodel: a multi-operating system, multi-platform SWAT model package in R1.
J. Am. Water Resour. Assoc. 50 https://doi.org/10.1111/jawr.12170.

Gil, Y., David, C.H., Demir, L., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L.,
Lee, H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R.,
Yu, X., 2016. Toward the Geoscience Paper of the Future: best practices for
documenting and sharing research from data to software to provenance. Earth Sp.
Sci. 3, 388-415. https://doi.org/10.1002/2015EA000136.

Griining, B., Chilton, J., Koster, J., Dale, R., Soranzo, N., van den Beek, M., Goecks, J.,
Backofen, R., Nekrutenko, A., Taylor, J., 2018. Practical computational
reproducibility in the life sciences. Cell Syst. https://doi.org/10.1016/j.
cels.2018.03.014.

Hobley, D.E.J., Adams, J.M., Siddhartha Nudurupati, S., Hutton, E.W.H., Gasparini, N.
M., Istanbulluoglu, E., Tucker, G.E., 2017. Creative computing with Landlab: an
open-source toolkit for building, coupling, and exploring two-dimensional numerical
models of Earth-surface dynamics. Earth Surf. Dyn. 5, 21-46. https://doi.org/
10.5194/esurf-5-21-2017.

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.
J., Tarboton, D.G., 2016. HydroShare: sharing diverse environmental data types and
models as social objects with application to the hydrology domain. J. Am. Water
Resour. Assoc. 52 https://doi.org/10.1111/1752-1688.12363.

Hut, R.W., van de Giesen, N.C., Drost, N., 2017. Comment on “Most computational
hydrology is not reproducible, so is it really science?” by Christopher Hutton et al.:
let hydrologists learn the latest computer science by working with Research Software
Engineers (RSEs) and not reinvent the waterwheel ourselves. Water Resour. Res.
https://doi.org/10.1002/2017WR020665.

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most
computational hydrology is not reproducible, so is it really science? Water Resour.
Res. 52, 7548-7555. https://doi.org/10.1002/2016 WR019285.

Ince, D.C., Hatton, L., Graham-Cumming, J., 2012. The case for open computer
programs. Nature 482, 485-488. https://doi.org/10.1038/nature10836.

Jarvis, P., 1976. The interpretation of the variations in leaf water potential and stomatal
conductance found in canopies in the field. Trans. R. Soc. B 273 (927), 593-610.
https://doi.org/10.1098/rstb.1976.0035.

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J.,
Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S.,
Willing, C., 2016. Jupyter Notebooks—a publishing format for reproducible
computational workflows. Position. Power Acad. Publ. https://doi.org/10.3233/
978-1-61499-649-1-87.

Kouwen, N., Soulis, E.D., Pietroniro, A., Donald, J., Harrington, R.A., 1993. Grouped
response units for distributed hydrologic modeling. J. Water Resour. Plann. Manag.
119, 289-305. https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(289).

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: scientific containers for
mobility of compute. PloS One 12, e0177459. https://doi.org/10.1371/journal.
pone.0177459.

Lampert, D.J., Wu, M., 2015. Development of an open-source software package for
watershed modeling with the Hydrological Simulation Program in Fortran. Environ.
Model. Software 68, 166-174. https://doi.org/10.1016/J.ENVSOFT.2015.02.018.

Leonard, L.N., 2015. HydroTerre: towards an expert system for scaling hydrological data
and models from hill-slopes to major-river basins. ProQuest Diss. Theses Glob.

Leonard, L., Duffy, C.J., 2013. Essential terrestrial variable data workflows for
distributed water resources modeling. Environ. Model. Software. https://doi.org/
10.1016/j.envsoft.2013.09.003.

Leonard, L., Duffy, C.J., 2014. Automating data-model workflows at a level 12 HUC
scale: watershed modeling in a distributed computing environment. Environ. Model.
Software. https://doi.org/10.1016/j.envsoft.2014.07.015.

Leonard, L., Duffy, C., 2016. Visualization workflows for level-12 HUC scales: towards an
expert system for watershed analysis in a distributed computing environment.
Environ. Model. Software. https://doi.org/10.1016/j.envsoft.2016.01.001.

Leonard, L., Miles, B., Heidari, B., Lin, L., Castronova, A.M., Minsker, B., Lee, J.,
Scaife, C., Band, L.E., 2019. Development of a participatory Green Infrastructure
design, visualization and evaluation system in a cloud supported jupyter notebook
computing environment. Environ. Model. Software. https://doi.org/10.1016/j.
envsoft.2018.10.003.

Lyu, F., Yin, D., Padmanabhan, A., Choi, Y., Goodall, J.L., Castronova, A., Tarboton, D.,
Wang, S., 2019. Reproducible hydrological modeling with CyberGIS-jupyter: a case

14

Environmental Modelling and Software 135 (2021) 104888

study on summa. In: Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning). PEARC *19. ACM, New
York, NY, USA. https://doi.org/10.1145/3332186.3333052, 21:1-21:6.

Markham, K., 2019. Six easy ways to run your Jupyter Notebook in the cloud Retrieved
from [WWW Document]. https://www.dataschool.io/cloud-services-for-jupyter-not
ebook/ accessed 12.10.19.

McDonnell, B.E., 2017. Pyswmm 0.4. 5: Python wrapper for SWMMS5 API. https://github.
com/OpenWaterAnalytics/pyswmm accessed 12.10.19.

McNutt, M., 2014. Reproducibility. Science (80-.). https://doi.org/10.1126/
science.1250475.

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and
deployment [WWW Document]. Linux J. https://www.linuxjournal.com/content/do
cker-lightweight-linux-containers-consistent-development-and-deployment accessed
1.21.20.

Miles, B., Band, L.E., 2015. Ecohydrology Models without Borders? https://doi.org/
10.1007/978-3-319-15994-2_31.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M.,
Rajib, M.A., Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework
for environmental models with an example hydrologic application in HydroShare.
Environ. Model. Software 93, 13-28. https://doi.org/10.1016/J.
ENVSOFT.2017.02.028.

National Academies of Sciences, 2019. Reproducibility and Replicability in Science.
https://doi.org/10.17226/25303.

Reddy, M., 2011. API Design for C++ https://doi.org/10.1016/C2010-0-65832-9.

Signell, R.P., Pothina, D., 2019. Analysis and visualization of coastal ocean model data in
the cloud. J. Mar. Sci. Eng. https://doi.org/10.3390/jmse7040110.

Slater, L.J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I.,
Vitolo, C., Smith, K., 2019. Using R in hydrology: a review of recent developments
and future directions. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-23-
2939-2019.

Stagge, J.H., Rosenberg, D.E., Abdallah, A.M., Akbar, H., Attallah, N.A., James, R., 2019.
Assessing data availability and research reproducibility in hydrology and water
resources. Sci. Data 6. https://doi.org/10.1038/sdata.2019.30.

Stodden, V., Miguez, S., 2013. Best practices for computational science: software
infrastructure and environments for reproducible and extensible research. SSRN
Electron. J. https://doi.org/10.2139/ssrn.2322276.

SUMMA Online Document, 2020. SUMMA online document. https://summa.readthe
docs.io/en/latest/ accessed 2.25.20.

Tague, C.L., Band, L.E., Tague, C.L., Band, L.E., 2004. RHESSys: regional hydro-ecologic
simulation system—an object-oriented approach to spatially distributed modeling of
carbon, water, and nutrient cycling. Earth Interact. 8, 1-42. https://doi.org/
10.1175/1087-3562(2004)8 <1:RRHSSO>2.0.CO;2.

Tarboton, D.G., 1997. A new method for the determination of flow directions and
upslope areas in grid digital elevation models. Water Resour. Res. 33, 309-319.
https://doi.org/10.1029/96 WR03137.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L.L.
E., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R.,
Goodball, J.L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D.,
Maidment, D.R., Goodall, J.L., Band, L.L.E., Merwade, V., Couch, A., Arrigo, J.,
Hooper, R., Valentine, D., Maidment, D.R., 2014. Hydro share: advancing
collaboration through hydrologic data and model sharing. In: Proc. - 7th Int. Congr.
Environ. Model. Softw. Bold Visions Environ. Model. iEMSs 2014, vol. 1, pp. 23-29.
https://doi.org/10.13140/2.1.4431.6801.

Tarboton, David, Idaszak, Ray, Horsburgh, J., 2018. HydroShare Tools and
Recommended Practices for Sharing and Publishing Data and Models in Support of
Collaborative Reproducible Research. AGU 2018 Fall Meet. https://doi.org/
10.1002/essoar.10500174.1.

Viglione, A., Parajka, J., 2020. TUWmodel. R Packag. Doc. https://doi.org/10.1002/
hyp.6253.

Volk, J.M., Turner, M.A., 2019. PRMS-Python: a Python framework for programmatic
PRMS modeling and access to its data structures. Environ. Model. Software. https://
doi.org/10.1016/j.envsoft.2019.01.006.

Wilkinson, M.D., Dumontier, M., Aalbersberg, IjJ., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J.,
Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T.,
Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe, J.S.,
Heringa, J., t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J.,
Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van
Schaik, R., Sansone, S.A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.
A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J., Waagmeester, A.,
Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B., 2016. Comment: the FAIR
Guiding Principles for scientific data management and stewardship. Sci. Data.
https://doi.org/10.1038/sdata.2016.18.

Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., Wang, S., 2017. A cybergis-
jupyter framework for geospatial analytics at scale. In: ACM International
Conference Proceeding Series. Association for Computing Machinery. https://doi.
org/10.1145/3093338.3093378.

Yuan, Z., Ton That, D.H., Kothari, S., Fils, G., Malik, T., 2018. Utilizing provenance in
reusable research objects. Informatics. https://doi.org/10.3390/
informatics5010014.

https://doi.org/10.1002/2015WR017200
https://doi.org/10.1016/j.envsoft.2018.03.025
https://doi.org/10.1016/j.envsoft.2018.03.025
https://doi.org/10.2760/848593
https://doi.org/10.1111/jawr.12170
https://doi.org/10.1002/2015EA000136
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.1111/1752-1688.12363
https://doi.org/10.1002/2017WR020665
https://doi.org/10.1002/2016WR019285
https://doi.org/10.1038/nature10836
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(289)
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/J.ENVSOFT.2015.02.018
http://refhub.elsevier.com/S1364-8152(20)30945-2/sref31
http://refhub.elsevier.com/S1364-8152(20)30945-2/sref31
https://doi.org/10.1016/j.envsoft.2013.09.003
https://doi.org/10.1016/j.envsoft.2013.09.003
https://doi.org/10.1016/j.envsoft.2014.07.015
https://doi.org/10.1016/j.envsoft.2016.01.001
https://doi.org/10.1016/j.envsoft.2018.10.003
https://doi.org/10.1016/j.envsoft.2018.10.003
https://doi.org/10.1145/3332186.3333052
https://www.dataschool.io/cloud-services-for-jupyter-notebook/
https://www.dataschool.io/cloud-services-for-jupyter-notebook/
https://github.com/OpenWaterAnalytics/pyswmm
https://github.com/OpenWaterAnalytics/pyswmm
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1250475
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://doi.org/10.1007/978-3-319-15994-2_31
https://doi.org/10.1007/978-3-319-15994-2_31
https://doi.org/10.1016/J.ENVSOFT.2017.02.028
https://doi.org/10.1016/J.ENVSOFT.2017.02.028
https://doi.org/10.17226/25303
https://doi.org/10.1016/C2010-0-65832-9
https://doi.org/10.3390/jmse7040110
https://doi.org/10.5194/hess-23-2939-2019
https://doi.org/10.5194/hess-23-2939-2019
https://doi.org/10.1038/sdata.2019.30
https://doi.org/10.2139/ssrn.2322276
https://summa.readthedocs.io/en/latest/
https://summa.readthedocs.io/en/latest/
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
https://doi.org/10.1029/96WR03137
https://doi.org/10.13140/2.1.4431.6801
https://doi.org/10.1002/essoar.10500174.1
https://doi.org/10.1002/essoar.10500174.1
https://doi.org/10.1002/hyp.6253
https://doi.org/10.1002/hyp.6253
https://doi.org/10.1016/j.envsoft.2019.01.006
https://doi.org/10.1016/j.envsoft.2019.01.006
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/3093338.3093378
https://doi.org/10.1145/3093338.3093378
https://doi.org/10.3390/informatics5010014
https://doi.org/10.3390/informatics5010014

	Toward open and reproducible environmental modeling by integrating online data repositories, computational environments, an ...
	1 Introduction
	2 Methodology
	2.1 Overview of general approach and description of system components
	2.1.1 Online repository
	2.1.2 Computational environment
	2.1.3 Model APIs

	2.2 Example implementation
	2.2.1 HydroShare as the online repository
	2.2.2 JupyterHub as the computational environment
	2.2.3 pySUMMA as the model API

	3 Results and Discussion
	3.1 Case study description
	3.2 Model and data resources
	3.3 Demonstrating reproducibility
	3.4 Evaluating reproducibility
	3.5 Approach limitations and opportunities for future research

	4 Conclusion
	Software and data availability
	List of relevant URLs
	Declaration of competing interest
	Acknowledgment
	References

