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Abstract. Autonomous assembly is a crucial capability for robots in
many applications. For this task, several problems such as obstacle avoid-
ance, motion planning, and actuator control have been extensively studied
in robotics. However, when it comes to task specification, the space of pos-
sibilities remains underexplored. Towards this end, we introduce a novel
problem, single-image-guided 3D part assembly, along with a learning-
based solution. We study this problem in the setting of furniture assembly
from a given complete set of parts and a single image depicting the entire
assembled object. Multiple challenges exist in this setting, including han-
dling ambiguity among parts (e.g ., slats in a chair back and leg stretchers)
and 3D pose prediction for parts and part subassemblies, whether vis-
ible or occluded. We address these issues by proposing a two-module
pipeline that leverages strong 2D-3D correspondences and assembly-
oriented graph message-passing to infer part relationships. In experiments
with a PartNet-based synthetic benchmark, we demonstrate the effective-
ness of our framework as compared with three baseline approaches (code
and data available at https://github.com/AntheaLi/3DPartAssembly).

Keywords: single-image 3D part assembly, vision for robotic assembly.

1 Introduction

The important and seemingly straightforward task of furniture assembly presents
serious difficulties for autonomous robots. A general robotic assembly task consists
of action sequences incorporating the following stages: (1) picking up a particular
part, (2) moving it to a desired 6D pose, (3) mating it precisely with the other
parts, (4) returning the manipulator to a pose appropriate for the next pick-
up movement. Solving such a complicated high-dimensional motion planning
problem [25,21] requires considerable time and engineering effort. Current robotic
assembly solutions first determine the desired 6D pose of parts [9] and then
hard-code the motion trajectories for each specific object [55]. Such limited
generalizability and painstaking process planning fail to meet demands for fast
and flexible industrial manufacturing and household assembly tasks [31].

To generate smooth and collision-free motion planning and control solutions,
it is required to accurately predict 6D poses of parts in 3D space [55,27]. We
propose a 3D part assembly task whose output can reduce the complexity of
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Fig. 1: Single-Image-Based 3D Part Assembly Task. Given as inputs an
image and a set of part point clouds depicted in (a), the task is to predict 6D
part poses in camera coordinates that assemble the parts to a 3D shape in the
given image as shown in (b).

the high-dimensional motion planning problem. We aim to learn generalizable
skills that allow robots to autonomously assemble unseen objects from parts [16].
Instead of hand-crafting a fixed set of rules to assemble one specific chair, for
example, we explore category-wise structural priors that helps robots to assemble
all kinds of chairs. The shared part relationships across instances in a category
not only suggest potential pose estimation solutions for unseen objects but also
lead to possible generalization ability for robotic control policies [65,54,43,61].

We introduce the task of single-image-guided 3D part assembly : inducing
6D poses of the parts in 3D space [30] from a set of 3D parts and an image
depicting the complete object. Robots can acquire geometry information for
each part using 3D sensing, but the only information provided for the entire
object shape is the instruction image. Different from many structure-aware shape
modeling works [40,72,17,63,71,32,53], we do not assume any specific granularity
or semantics of the input parts, since the given furniture parts may not belong to
any known part semantics and some of the parts may be provided pre-assembled
into bigger units. We also step away from instruction manuals illustrating the step-
by-step assembling process, as teaching machines to read sequential instructions
depicted with natural languages and figures is still a hard problem.

At the core of the task lie several challenges. First, some parts may have
similar geometry. For example, distinguishing the geometric subtlety of chair leg
bars, stretcher bars, and back bars is a difficult problem. Second, 3D geometric
reasoning is essential in finding a joint global solution, where every piece fits
perfectly in the puzzle. Parts follow a more rigid relationship graph which
determines a unique final solution that emerges from the interactions between the
geometries of the parts. Third, the image grounds and selects one single solution
from all possible part combinations that might all be valid for the generative task.
Thus, the problem is at heart a reconstruction task where the final assembly needs
to agree to the input image. Additionally, and different from object localization
tasks, the 3D Part Assembly Task must locate all input parts, not only posing
the parts visible in the image, but also hallucinating poses for the invisible ones
by leveraging learned data priors. One can think of having multiple images to
expose all parts to the robot, but this reduces the generalizability to real-world
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scenarios, and might not be easy to achieve. Thus, we focus on solving the task
of single-image and category-prior-guided pose prediction.

In this paper, we introduce a learning-based method to tackle the proposed
single-image-guided 3D part assembly problem. Given the input image and a set of
3D parts, we first focus on 2D structural guidance by predicting an part-instance
image segmentation to serve as a 2D-3D grounding for the downstream pose
prediction. To enforce reasoning involving fine geometric subtleties, we design
a context-aware 3D geometric feature to help the network reason about each
part pose, conditioned on the existence of other parts, which might be of similar
geometry. Building on the 2D structural guidance, we generate a pose proposal
for each visible part and leverage these predictions to help hallucinate poses for
invisible parts. We use a part graph network, using edges to encode different
relationships among parts, and design a two-phase message-passing mechanism
to take part relationship constraints into consideration in the assembly.

To best of our knowledge, we are the first to assemble unlabeled 3D parts
with a single image input. We set up a testbed of the problem on the recently
released PartNet [42] dataset. We compare our method with several baseline
methods to demonstrate the effectiveness of our approach. We evaluate all model
performances on the unseen test shapes. Extensive ablation experiments also
demonstrate the effectiveness and necessity of the proposed method.

In summary, our contributions are:

– we formulate the task of single-image-guided 3D part assembly ;
– we propose a two-module method, consisting of a part-instance image seg-

mentation network and an assembly-aware part graph convolution network;
– we compare with three baseline methods and conduct ablation studies demon-

strating the effectiveness of our proposed method.

2 Related Work

We review previous works on 3D pose estimation, single-image 3D reconstruction,
as well as part-based shape modeling, and discuss how they relate to our task.

3D Pose Estimation. Estimating the pose of objects or object parts is a long-
standing problem with a rich literature. Early in 2001, Langley et al . [76] at-
tempted to utilize visual sensors and neural networks to predict the pose for
robotic assembly tasks. Zeng et al . [78] built an robotic system taking multi-view
RGB-D images as the input and predicting 6D pose of objects for Amazon
Picking Challenge. Recently, Litvak et al . [37] proposed a two-stage pose esti-
mation procedure taking depth images as input. In the vision community, there
is also a line of works studying instance-level object pose estimation for known
instances [1,49,60,28,73,59,2] and category-level pose estimation [19,45,3,64,7]
that can possibly deal with unseen objects from known categories. There are
also works on object re-localization from scenes [77,23,62]. Different from these
works, our task takes as inputs unseen parts without any semantic labels at the
test time, and requires certain part relationships and constraints to be held in
order to assemble a plausible and physically stable 3D shape.
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Single-Image 3D Reconstruction. There are previous works of reconstructing 3D
shape from a single image with the representations of voxel grids [10,58,68,50],
point clouds [14,34,22], meshes [66,70], parametric surfaces [18], and implicit
functions [8,39,46,52,75]. While one can consider employing such 2D-to-3D lifting
techniques as a prior step in our assembly process so that the given parts can
be matched to the predicted 3D shape, it can misguide the assembly in multiple
ways. For instance, the 3D prediction can be inaccurate, and even some small
geometric differences can be crucial for part pose prediction. Also, the occluded
area can be hallucinated in different ways. In our case, the set of parts that
should compose the object is given, and thus the poses of occluded parts can be
more precisely specified.

Part-Based Shape Modeling. 3D shapes have compositional part structures.
Chaudhuri et al . [5], Kalogerakis et al . [26] and Jaiswal et al . [24] introduced
frameworks learning probabilistic graphical models that describe pairwise rela-
tionships of parts. Chaudhuri and Koltun [6], Sung et al . [57] and Sung et al . [56]
predict the compatibility between a part and a partial object for sequential shape
synthesis by parts. Dubrovina et al . [13], PAGENet [32] and CompoNet [53] take
the set of parts as the input and generates the shape of assembled parts. Different
from these works that usually assume known part semantics or a part database,
our task takes a set of unseen parts during the test time and we do not assume
any provided part semantic labels.

GRASS [33], Im2Struct [44] and StructureNet [40,41] learns to generate box-
abstracted shape hierarchical structures. SAGNet [72] and SDM-Net [17] learn
the pairwise relationship among parts that are subsequently integrated into a
latent representation of the global shape. G2LGAN [63] autoencodes the shape
of an entire object with per-point part labels, and a subsequent network in the
decoding refines the geometry of each part. PQ-Net [71] represents a shape as a
sequence of parts and generates each part at every step of the iterative decoding
process. All of these works are relevant but different from ours in that we obtain
the final geometry of the object not by directly decoding the latent code into part
geometry but by predicting the poses of the given parts and explicitly assembling
them. There are also works studying partial-to-full shape matching [35,36,12].
Unlike these works, we use a single image as the guidance, instead of a 3D model.

3 Problem Formulation

We define the task of single-image-guided 3D part assembly : given a single RGB
image I of size m ×m depicting a 3D object S and a set of N 3D part point
clouds P = {p1, p2, · · · , pN} (∀i, pi ∈ Rdpc×3), we predict a set of part poses{

(Ri, ti) | Ri ∈ R3×3, ti ∈ R3, i = 1, 2, · · · , N
}

in SE(3) space. After applying the
predicted rigid transformation to all the input parts pi’s, the union of them recon-
structs the 3D object S. We predict output part poses {(Ri, ti) | i = 1, 2, · · · , N}
in the camera space, following previous works [15,67]. In our paper, we use
Quaternion to represent rotation and use qi and Ri interchangeably.
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Fig. 2: Network Architecture. Our approach contains two network modules:
(a) the part-instance image segmentation module, in which we predict 2D instance-
level part masks on the image, and (b) the part pose prediction module, where
we combine 2D mask information and 3D geometry feature for each part, push
them through two phases of graph convolution, and finally predict 6D part poses.

We conduct a series of pose and scale normalization on the input part point
clouds to ensure synthetic-to-real generalizability. We normalize each part point
cloud pose pi ∈ P to have a zero-mean center and use a local part coordinate
system computed using PCA [47]. To normalize the global scale of all training
and testing data, we compute Axis-Aligned-Bounding-Boxes (AABB) for all the
parts and normalize them so that the longest box diagonal across all pi’s of a
shape has a unit length while preserving their relative scales. We cluster the
normalized part point clouds pi’s into sets of geometrically equivalent part classes
C = {C1, C2, · · · , CK}, where C1 = {pi}N1

i=1, C2 = {pi}N1+N2

i=N1+1, etc. For example,
four legs of a chair are clustered together if their geometry is identical. This
process of grouping indiscernible parts is essential to resolve the ambiguity among
them in our framework. C is a disjoint complete set such that Ck ∩ Cl = φ for
every Ck, Cl ∈ C, k 6= l and ∪Kk=1Ck = P. We denote the representative point
cloud pj for each class Cj ∈ C.

4 Method

We propose a method for the task of single-image-guided 3D part assembly, which
is composed of two network modules: 1) part-instance image segmentation and 2)
part pose prediction. Figure 2 illustrates the overall architecture. We first extract
a geometry feature of each part from the input point cloud pj ∈ C and generates
N instance-level 2D segmentation masks {Mi ∈ {0, 1}m×m|i = 1, 2, · · · , N} on
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the input image (m = 224). Conditioned on the predicted segmentation masks,
our model then leverages both the 2D mask features and the 3D geometry features
to propose 6D part poses {(qi, ti)|i = 1, 2, · · · , N}. Below, we explain the two
network module designs and refer to supplementary for implementation details.

4.1 Part-Instance Image Segmentation

To induce a faithful reconstruction of the object represented in the image, we
need to learn a structural layout of the input parts from the 2D input. We
predict a part instance mask Mi ∈ {0, 1}m×m for each part pi. All part masks

subject to the disjoint constraint, i.e., Mbg +
∑N

i=1Mi = 1, where Mbg denotes a
background mask. If a part is invisible, we simply predict an empty mask and let
the second network to halluciate a pose leveraging contextual information and
learned data priors. The task difficulties are two folds. First, the network needs
to distinguish between the geometric subtlety of the input part point clouds to
establish a valid 2D-3D correspondence. Second, for the identical parts within
each geometrically equivalent class, we need to identify separate 2D mask regions
to pinpoint their exact locations.

Context-Aware 3D Part Features. To enable the network to reason the delicate
differences between parts, we construct the context-aware 3D conditional feature
f3d ∈ R2F2 (F2 = 256), which is computed from three components: part geometry
feature fgeo ∈ RF2 , instance one-hot vector fins ∈ RPmax (Pmax = 20), and a
global part contextual feature fglobal ∈ RF2 . We use PointNet [48] to extract
a global geometry feature fgeo for each part point cloud pi. If a part pj has
multiple instances kj > 1 within a geometrically equivalent class Cj (e.g . four
chair legs), we introduce an additional instance one-hot vector fins to tell them
apart. For part which has only one instance, we use an one-hot vector with
the first element to be 1. For contextual awareness, we extract a global feature
fglobal over all the input part point clouds, to facilitate the network to distinguish
between similar but not equivalent part geometries (e.g . a short bar or a long bar).
Precisely, we first compute fgeo and fins for every part, then compute flocal =
SLP1([fgeo; fins]) ∈ RF2 to obtain per-part local feature, where SLP is short for
Single-Layer Perception. We aggregate over all part local features via a max-
pooling symmetric function to compute the global contextual feature fglobal =
SLP2 (MAXi=1,2,··· ,N (fi,local)). Finally, we define f3d = [flocal; fglobal] ∈ R2F2

to be the context-aware 3D per-part feature.

Conditional U-Net Segmentation. We use a conditional U-Net [51] for the part-
instance segmentation task. Preserving the standard U-Net CNN architecture,
our encoder takes an 3-channel RGB image as input and produce a bottleneck
feature map f2d ∈ RF1×7×7 (F1 = 512). Concatenating the image feature f2d
with our context-aware 3D part conditional feature f3d, we obtain f2d+3d =
[f2d, f3d] ∈ R(F1+2F2)×7×7, where we duplicate f3d along the spatial dimensions
for 7× 7 times. The decoder takes the conditional bottleneck feature f2d+3d and
decodes a part mask Mi for evert input part pi. We keep skip links as introduced
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in the original U-Net paper between encoder and decoder layers. To satisfy the
non-overlapping constraint, we add a SoftMax layer across all predicted masks,
augmented with a background mask Mbg ∈ {0, 1}(m×m).

4.2 Part Pose Prediction

With the 2D grounding masks produced by the part-instance image segmentation
module, we predict a 6D part pose (Ri, ti) for every input part pi ∈ P using
the part pose prediction module. We predict a unit Quaternion vector qi that
corresponds to a 3D rotation Ri and a translation vector ti denoting the part
center position in the camera space.

Different from object pose estimation, the task of part assembly requires a
joint prediction of all part poses. Part pose predictions should not be independent
with each other, as part poses follow a set of more rigid relationships, such as
symmetry and parallelism. For a valid assembly, parts must be in contact with
adjacent parts. The rich part relationships restrict the solution space for each part
pose. We leverage a two-phase graph convolutional neural network to address
the joint communication of part poses for the task of part assembly.

Mask-Conditioned Part Features. We consider three sources of features for each
part: 2D image feature fimg ∈ RF3 , 2D mask feature fmask ∈ RF3 (F3 = 512),
context-aware 3D part feature f3d ∈ R2F2 . We use a ResNet-18 [20] pretrained
on ImageNet [11] to extract 2D image feature fimg. We use a separate ResNet-18
that takes the 1-channel binary mask as input and extracts a 2D mask feature
fmask, where masks for invisible parts are predicted as empty. Then, finally, we
propagate the 3D context-aware part feature f3d introduced in the Sec. 4.1 that
encodes 3D part geometry information along with its global context.

Two-Phase Graph Convolution. We create a part graph G = (V,E), treating
every part as a node and propose a two-phase of graph convolution to predict
the pose of each part.

During the first phase, we draw pairwise edges among all parts pi in every
geometrically equivalent part classes Cj and perform graph convolution over
G1 = (V,E1), where

E1 = {(pi1 , pi2)|∀pi1 , pi2 ∈ Cj , i1 6= i2, ∀Cj ∈ C} . (1)

Edges in E1 allow message passing among geometrically identical parts that are
likely to have certain spatial relationships or constraints (e.g . four legs of a chair
have two orthogonal reflection planes). After the first-phase graph convolution,
each node pi has an updated node feature. The updated node feature is then
decoded as an 6D pose (Ri, ti) for each part. The predicted part poses produce
an initial assembled shape.

We leverage a second phase of graph convolution to refine the predicted
part poses. Besides the edges in E1, we draw a new set of edges E2 by finding
top-5 nearest neighbors for each part based upon the initial assembly and define
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G2 =
(
V,E1 ∪ E2

)
. The intuition is that once we have an initial part assembly,

we are able to connect the adjacent parts so that they learn to attach to each
other with certain joint constraints.

We implement the graph convolution as two iterations of message pass-
ing [74,69,40]. Given a part graph G = (V,E) with initial node features f0 and
edge features e0, each iteration of message passing starts from computing edge
features

et+1
(pi1

,pi2
) = SLPg

(
[f ti1 ; f ti2 ; et(pi1 ,pi2 )

]
)
, t ∈ {0, 1}. (2)

where we do not use e0 during the first phase of graph convolution, and define
e0(pi1

,pi2
) = 0 if (pi1 , pi2) ∈ E1 and e0(pi1

,pi2
) = 1 if (pi1 , pi2) ∈ E2 for the second

phase. Then, we perform average-pooling over all edge features that are connected
to a node and obtain the updated node feature

f t+1
i =

1

|{u | (pi, pu) ∈ E}|
∑

(pi,pu)∈E

et+1
(pi,pu)

, t ∈ {0, 1}. (3)

We define f t+1
i = f ti if there is no edge drawn from node i. We define the final

node features to be fi = [f0i ; f1i ; f2i ] for each phase of graph convolution.
Respectively, we denote the final node feature of first phase and second phase

graph convolution to be 1fi and 2fi for a part pi.

Part Pose Decoding. After gathering the node features after conducting the
two-phase graph convolution operations as 1fi and 2fi, i ∈ {1, 2, · · · , N}, we use
a Multiple-Layer Perception (MLP) to decode part poses at each phase.

sqi,
s ti = MLPPoseDec (sfi) , s ∈ {1, 2}, i ∈ {1, 2, · · · , N}. (4)

To ensure the output of unit Quaternion prediction, we normalize the output
vector length so that ‖sqi‖2 = 1.

4.3 Training and Losses

We first train the part-instance image segmentation module until convergence
and then train the part pose prediction module. Empirically, we find that having
a good mask prediction is necessary before training for the part poses.

Loss for Part-Instance Image Segmentation. We adapt the negative soft-iou loss
from [38] to supervise the training of the part-instance image segmentation module.
We perform Hungarian matching [29] within each geometrically equivalent class
to guarantee that the loss is invariant to the order of part poses in ground-truth
and prediction. The loss is defined as

Lmaski = −
∑

u,v∈[m,m] M̂
(u,v)
i ·M (u,v)

M(i)∑
u,v∈[m,m]

(
M̂

(u,v)
M(i) +M

(u,v)
i − M̂ (u,v)

M(i) ·M
(u,v)
i

) . (5)
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where Mi ∈ {0, 1}[m,m] and M̂M(i) ∈ [0, 1][m,m] denote the ground truth and the
matched predicted mask. M refers to the matching results that match ground-
truth part indices to the predicted ones. [m,m] includes all 2D index (u, v)’s on
a 224× 224 image plane.

Losses for Part Pose Prediction. For the pose prediction module, we design an
order-invariant loss by conducting Hungarian matching within each geometry-
equivalent classes Ci ∈ C. Additionally, we observe that separating supervision
loss for translation and rotation helps stabilize training. We use the following
training loss for the pose prediction module.

Lpose =
N∑
i=1

(λ1 × LT + λ2 × LC + λ3 × LE) + λ4 × LW (6)

We use the L2 Euclidean distance to measure the difference between the 3D
translation prediction and ground truth translation for each part. We denote M
as the matching results.

LTi
= ‖t̂M(i) − ti‖2, ∀i ∈ {1, 2, · · · , N}. (7)

where t̂M(i) and ti denote the matched predicted translation and the ground
truth 3D translation. We use weight parameter of λ1 = 1 in training.

We use two losses for rotation prediction: Chamfer distance [15] LC and
L2 distance LE . Because many parts have symmetric geometry (e.g . bars and
boards) which results in multiple rotation solutions, we use Chamfer distance
as the primary supervising loss to address such pose ambiguity. Given the point
cloud of part pi, the ground truth rotation Ri, and the matched predicted rotation
R̂M(i), the Chamfer distance loss is defined as

LCi =
1

dpc

∑
x∈R̂M(i)(pi)

min
y∈Ri(pi)

‖x− y‖22 +
1

dpc

∑
y∈Ri(pi)

min
x∈R̂M(i)(pi)

‖x− y‖22, (8)

where Ri(pi) and R̂M(i)(pi) denote the rotated part point clouds using Ri and

R̂M(i) respectively. We use λ2 = 20 for the Chamfer loss. Some parts may be
not perfectly symmetric (e.g . one bar that has small but noticeable different
geometry at two ends), using Chamfer distance by itself in this case would make
the network fall into local minima. We encourage the network to correct this
situation by penalizing the L2 distance between the matched predicted rotated
point cloud and the ground truth rotated point cloud in Euclidean distance.

LEi =
1

dpc

∥∥∥R̂M(i)(pi)−Ri(pi)
∥∥∥2
F
, (9)

where ‖·‖F denotes the Frobenius norm, dpc = 1000 is the number of points
per part. Note that LEi

on its own is not sufficient in cases when the parts are
completely symmetric. Thus, we add the LE loss as a regularizing term with a
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smaller weight of λ3 = 1. We conducted an ablation experiment demonstrating
the LE loss contributes to correcting rotation for some parts.

Finally, we compute a shape holistic Chamfer distance as the predicted
assembly should be close to the ground truth Chamfer distance.

LW =
1

N · dpc

∑
x∈Ŝ

min
y∈S
‖x− y‖22 +

1

N · dpc

∑
y∈S

min
x∈Ŝ
‖x− y‖22, (10)

where Ŝ = ∪Ni=1(R̂M(i)(pi) + t̂i) denotes the predicted assembled shape point
cloud and S = ∪Ni=1(Ri(pi) + ti) denotes the ground truth shape point cloud.
This loss encourages the holistic shape appearance and the part relationships to
be close to the ground-truth. We use λ4 = 1.

5 Experiments

In this section, we set up the testbed for the proposed single-image 3D part
assembly problem on the PartNet [42] dataset. To validate the proposed approach,
we compare against three baseline methods. Both qualitative and quantitative
results demonstrate the effectiveness of our method.

5.1 Dataset

Recently, Mo et. al. [42] proposed the PartNet dataset, which is the largest 3D
object dataset with fine-grained and hierarchical part annotation.In our work,
we use the three largest furniture categories that requires assembly: Chair, Table
and Cabinet. We follow the official PartNet train/val/test split (70% : 10% : 20%)
and filter out the shapes with more than 20 parts.

For each object category, we create two data modalities: Level-3 and Level-
mixed. The Level-3 corresponds to the most fine-grained PartNet segmentation.
Since an algorithm can implicitly learn the semantic priors dealing with the only
Level-3 data, which impedes generalization, as IKEA furnitures might not follow
the PartNet semantics, we created an additional category modality, Level-mixed,
which contains part segmentation at all levels in the hierarchy. Specifically, for
each shape, we traverse every path of the ground-truth part hierarchy and stop
randomly. We have 3736 chairs, 2431 tables, 704 cabinets in Level-3 and 4664
chairs, 5987 tables, 888 cabinets in Level-mixed.

For the input image, we render a set of 224× 224 images the PartNet models
with ShapeNet textures [4]. We randomize the viewpoints by azimuth [0◦, 360◦),
elevation [25◦, 30◦] and distance [0.6, 1.0]. We then compute the world-to-camera
matrix and obtain the 3D object position in the camera space used for supervising
segmentation module. For the input point cloud, we use Furthest Point Sampling
(FPS) to sample dpc = 1000 points over the each part mesh. We then normalize
them following the descriptions in Sec. 3. With normalized parts, we detect
geometrically equivalent parts by first filtering out parts comparing dimensions of
AABB under a threshold of 0.1. We further process the remaining parts computing
all possible pairwise part Chamfer distance normalized by their average diagonal
length under a hand-picked threshold of 0.02.
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Fig. 3: Qualitative Results We show six examples of each category in the two
modalities. The upper and lower rows are Level-3 and Level-mixed respectively.

5.2 Evaluation Metric

To evaluate the part assembly performance, we use two metrics: part accuracy
and shape Chamfer distance. The part accuracy metric that leverages Chamfer
distance between the part point clouds after applying the predicted part pose and
the ground truth pose to address such ambiguity. Following previously defined
notation in Section 4.3, we define the Part Accuracy Score (PA) as follows and
set a threshold of τ = 0.1.

PA =
1

N

N∑
i=1

1

(∥∥∥(R̂M(i)(pi) + t̂i)− (Ri(pi) + ti)
∥∥∥
chamfer

< τ

)
(11)

Borrowing the evaluation metric heavily used in the community of 3D object
reconstruction, we also measure the shape Chamfer distance from the predicted
assembled shape to the ground-truth assembly. Formally, we define the shape
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Chamfer distance metric SC borrowing notations defined in Section 4.3 as follows.

SC(S, Ŝ) =
1

N · dpc

∑
x∈Ŝ

min
y∈S
‖x− y‖2 +

1

N · dpc

∑
y∈S

min
x∈Ŝ
‖x− y‖2 (12)

5.3 Baseline Methods

We compare to three baseline methods. Since there is no direct comparison from
previous works that address the exactly same task, we try to adapt previous
works on part-based shape generative modeling [71,57,40,44] to our setting and
compare with them. Most of these works require known part semantics. However,
in our task, there is no assumption for part semantics or part priors, and thus all
methods must explicitly take the part input point clouds as is. We train all three
baselines with the same pose loss used in our method defined in Section 4.3.

Sequential Pose Proposal (B-GRU). The first baseline is a sequential model,
similar to the method proposed by [71,57], instead of sequentially generating
parts, we sequentially decode k candidate possible poses for a given part geometry,
conditioned on an image. For each input part, if there is n geometrically equivalent
parts , where n ≤ k, we take the first n pose proposal generated using GRU, and
conduct Hungarian matching to match with the n ground truth part poses.

Instance One-hot Pose Proposal (B-InsOneHot). The second baseline uses MLP
to directly infer pose for a given part from its geometry and the input image,
similar to previous works [40,44] that output box abstraction for shapes. Here,
instead of predicting a box for each part, we predict a 6D part pose (Rj , tj). We
use instance one-hot features to differentiate between the equivalent part point
clouds, and conduct Hungarian matching to match with the ground truth part
poses regardless of the onehot encoding.

Global Feature Model (B-Global). The third baseline is proposed by improving
upon the second baseline by adding our context-aware 3D part feature defined in
Section 4.1. Each part pose proposal not only considers the part-specific 3D feature
and the 2D image feature, but also a 3D global feature obtained by aggregating the

Table 1: Part Accuracy and Assembly Chamfer Distance(CD)

Modality Method
Part Accuracy ↑ Assembly CD ↓

Chair Table Cabinet Chair Table Cabinet

Level-3

B-GRU 0.310 0.574 0.334 0.107 0.057 0.062
B-InsOnehot 0.173 0.507 0.295 0.130 0.064 0.065
B-Global 0.170 0.530 0.339 0.125 0.061 0.065

Ours 0.454 0.716 0.402 0.067 0.037 0.050

Mixed

B-GRU 0.326 0.567 0.283 0.101 0.070 0.066
B-InsOnehot 0.286 0.572 0.320 0.108 0.067 0.061
B-Global 0.337 0.619 0.290 0.093 0.062 0.0677

Ours 0.491 0.778 0.483 0.065 0.037 0.043
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Table 2: Visible and Invisible Part Accuracies

Modality Method
Part Accuracy (Visible) ↑ Part Accuracy (Invisible) ↑

Chair Table Cabinet Chair Table Cabinet

Level-3

B-GRU 0.3182 0.598 0.353 0.206 0.481 0.304
B-InsOnehot 0.178 0.572 0.291 0.104 0.369 0.289
B-Global 0.174 0.563 0.354 0.120 0.427 0.269

Ours 0.471 0.753 0.455 0.270 0.557 0.358

Mixed

B-GRU 0.335 0.593 0.302 0.180 0.267 0.258
B-InsOnehot 0.295 0.592 0.346 0.133 0.275 0.279
B-Global 0.334 0.638 0.320 0.184 0.349 0.227

Ours 0.505 0.803 0.537 0.262 0.515 0.360

all 3D part feature then max-pool to a global 3D feature containing information of
all parts. This baseline shares similar ideas to PAGENet [32] and CompoNet [53]
that also compute global features to assemble each of the generated parts.

5.4 Results and Analysis

We compare with the three baselines and observe that our method outperforms the
baseline methods both qualitatively and quantitatively using the two evaluation
metrics, PA and SC. We show significant improvement for occluded part pose
hallucination as Table 2 demonstrates. Qualitatively, we observe that our method
can learn to infer part poses for invisible parts by (1) learning a category prior and
(2) leveraging visible parts of the same geometric equivalent class. Our network
can reason the stacked placement structure of cabinets as shown in the last row
in Fig 3. The input image does not reveal the inner structure of the cabinet and
our proposed approach learns to vertically distribute the geometrically equivalent
boards to fit inside the cabinet walls, similar to the ground truth shape instance.
The top row of Fig 3 demonstrates how our network learns to place the occluded
back bar along the visible ones. This could be contributed to our first stage of
graph convolution where we leverage visible parts to infer the pose for occluded
parts in the same geometrically equivalent class.

Our method demonstrates the most faithful part pose prediction for the
shape instance depicted by the input image. As shown in Fig 3 row (e), our
method equally spaces the board parts vertically, which is consistent with the
shape structure revealed by the input image. This is likely resulted from our
part-instance image segmentation module where we explicitly predict a 2D-3D
grounding, whereas the baseline methods lack such components.

However, our proposed method has its limitations in dealing with unusual
image views, exotic shape instance, and single-modal part geometry, which result
in noisy mask prediction. The 2D-3D grounding error cascades to later network
modules resulting in poor pose predictions. As shown in Fig 4 row (a), the image
view is not very informative of the shape structure, making it difficult to leverage
3D geometric cues to find 2D-3D grounding. Additionally, this chair instance
itself is foreign to Chair category. We avoided employing differentiable rendering
because it does not help address such failure cases. Fig 4 row (b) reflects a
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Our Assembly Ground 
Truth

Input Image Our MaskGT AssemblyGT MaskInput Point Cloud

(a)

(b)

Fig. 4: Failure Cases . We show two examples of failure cases. In (a), the input
image is not geometrically informative. In (b), the chair has only one type of
part geometry.

case where a shape instance is composed of a single modality of part geometry.
Geometric affinity of the board parts makes it difficult for the network to come to
a determinant answer for the segmentation prediction, resulting in a sub-optimal
part pose prediction. These obstacles arise from the task itself that all baselines
also suffer from the same difficulties.

Ablation Experiments. We conduct several ablation experiments on our proposed
method and losses trained on PartNet Chair Level-3. Table 1 in Appendix demon-
strates the effectiveness of each ablated component. The part-instance image
segmentation module plays the most important role in our pipeline. Removing it
results in the most significant performance decrease.

6 Conclusion and Future Works

We formulated a novel problem of single-image-guided 3D part assembly and
proposed a neural-net-based pipeline for the task that leverages information from
both 2D grounding and 3D geometric reasoning. We established a test bed on
the PartNet dataset. Quantitative evaluation demonstrates that the proposed
method achieves a significant improvement upon three baseline methods. For
the future works, one can study how to leverage multiple images or 3D partial
scans as inputs to achieve better results. We also do not explicitly consider the
connecting junctions between parts in our framework, which are strong constraints
for real-world robotic assembly.
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