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1 Introduction

There are numerous motivations to search for new particles or interactions at the CERN
LHC. The strong evidence for dark matter [1, 2] and dark energy [3] suggests the possibility
that the full list of nature’s constituents has not yet been discovered. Likewise, the observed
asymmetry between matter and antimatter in the universe implies an additional source of
CP violation [4]. Many explanations for the hierarchy between the Planck mass and the
electroweak scale set by the vacuum expectation value of the Higgs field also include new
particles [5-7]. Nonetheless, there is no guarantee that new particles exist in the mass
range directly accessible at the LHC. To extend the discovery reach of the LHC, it is



therefore important to consider not only direct searches for new particles, but also indirect
means of probing higher energy scales.

One flexible framework for undertaking such indirect probes is that of effective field
theory (EFT) [8-10]. An EFT is a low-energy approximation for a more fundamental
theory involving interactions at a mass scale A. Treating the standard model (SM) as a
low-energy approximation of a higher-energy theory, one can add additional higher-order
terms to the Lagrangian consistent with the symmetries and conservation laws that expand
the possibilities compatible with new physics at higher mass scales. The additional terms
are constructed from operators — products of fields and their derivatives — that involve
only SM fields. The EFT Lagrangian can then be written as

d
Ci
Lepr = Lom + Y qu, (1.1)
d,i

where Lqy is the SM Lagrangian, (’)Zd are the EFT operators of dimension d, and cfl
are dimensionless parameters known as Wilson coefficients (WCs) that characterize the
strength of the interactions at dimension d. The contribution of an operator of dimension
d to the Lagrangian is suppressed by a factor of 1 /Ad_4 implying that the focus should
be placed on operators of the lowest possible dimension. However, all operators of odd
dimension violate baryon or lepton number [11], so dimension-five operators are neglected,
and dimension-six operators provide the leading contribution from new physics [9]. The first
sub-leading contributions that conserve baryon and lepton number arise from dimension-
eight operators and are not considered in this analysis.

While the impact of EFT operators can in principle be detected in a large variety
of experimental observables, it is particularly interesting to consider their impact on the
production of one or more top quarks in association with additional leptons. In the SM, the
leading contribution to this signature arises from the production of top quarks in association
with a W, Z, or Higgs boson (H) [4]. It has long been speculated that the large mass of the
top quark [12, 13], and hence its large coupling to the Higgs boson, might be an indication
of a special relationship between the top quark and the physics of electroweak symmetry
breaking. If so, the production of top quarks along with electroweak or Higgs bosons may
shed some light on possible new dynamics. Only recently have experimental measurements
started to test directly the coupling of the top quark to H [14, 15] and Z [16-18] bosons.
The current and future LHC data therefore provide intriguing opportunities to study these
processes in more detail. Furthermore, because of the new terms added within the EFT
expansion, it is possible to consider the production of top quarks with additional leptons
directly through four-fermion operators that do not contain H, W, or Z bosons. Such
contributions are also probed as part of this analysis.

Collisions producing one or more top quarks and additional leptons generate a variety
of signatures involving multiple leptons and jets, including jets that are initiated from
the hadronization of bottom quarks, referred to as b jets. Top quarks decay with almost
100% branching fraction to a bottom quark and a W boson [4], which can decay either
leptonically, to a charged lepton and a neutrino, or hadronically, to two jets. If H, W, or Z



bosons are produced in association with the top quarks, they may also decay in various ways
involving quarks (including b quarks, especially in the case of the Higgs boson) or leptons.
Ultimately, the final-state signatures are primarily determined by the decay modes of the
bosons, either hadronic or leptonic. Final states in which multiple bosons decay leptonically
present a number of experimental advantages. Multiple leptons provide an efficient trigger
strategy, which remains viable even at large instantaneous luminosities. Furthermore, for
final states involving either a same-charge dilepton pair or more than two leptons with
additional jets (including b jets), the contributions from background processes are small
compared to the size of the signals. These final states are the focus of this analysis and are
denoted multilepton final states hereafter.

Focusing on multilepton final states leads to unique challenges that have not been
encountered by previous LHC analyses employing EFT methods to search for new physics
associated with top quark production [16, 18-27]. First, multilepton final states receive
contributions from multiple processes, and it is not possible to isolate high-purity samples
from each contribution. For example, both ttZ and electroweak tZq events contribute to
the three-lepton final state where two of the leptons form a same-flavor, oppositely charged
pair with an invariant mass near the Z boson mass peak. Likewise, same-charge dilepton
and trilepton final states outside the Z peak originate with comparable probability from SM
ttW and ttH production. Since the multiple processes cannot be reliably disentangled,
this analysis cannot be constructed as a reinterpretation of either a set of inclusive or
differential cross section measurements. Second, there are numerous EFT operators capable
of impacting one or more of the processes contributing to multilepton final states; a priori,
there is no reason to assume that new physics would manifest only through the contribution
of a single operator. It is therefore important to analyze the effects of these operators
simultaneously across all components of the data set.

A new approach is implemented to address these challenges. Designed to target EFT
effects directly, this approach does not aim to isolate specific physical processes and extract
high-level observables; rather, it relies on detector-level observables, namely the number
of events observed in a set of distinct categories defined by the multiplicities of final-state
objects. For each category, a different admixture of physics processes will contribute to the
observed event yield. Sensitivity to the EFT operators is obtained by parameterizing the
predicted yields in terms of the WCs of all relevant operators simultaneously. To procure
these predicted yields, we use simulated events with weights parameterized to represent the
effects of the EFT operators. These weighted, simulated events are then analyzed to obtain
the necessary predictions of the observed event yields, as functions of the EFT parame-
ters. Parameterizing the event weights in terms of the WCs represents the key enabling
concept of this approach, as it allows all relevant interference effects — both interference
between new physics and the SM and interference among new physics operators — to be
incorporated into the prediction. The effects of multiple EFT operators on multiple phys-
ical processes contributing to a single final-state signature are therefore accounted for in
a straightforward and rigorous manner. EFT operators can also impact the kinematical
properties of the events, so this approach allows the full effect on the detector acceptance
and efficiency to be appropriately described. Correlations among statistical and systematic



uncertainties can also be accounted for, and, where possible, fully leveraged. For example,
this approach should provide enhanced sensitivity when EFT operators impact the con-
tribution of multiple relevant physics processes, since the observables used are sensitive to
the sum of the effects. The main drawback of this approach is that, because it relies on
detector-level observation and fully simulated events, theoretical updates cannot be incor-
porated without repeating the analysis. This is the first time such an approach has been
applied to LHC data; ultimately, the technique can be applied to differential kinematical
distributions, but for this initial analysis, we take a more inclusive approach.

The detailed strategy employed in this analysis is as follows. Multilepton events are
divided into categories based on the number and the sign of the charge sum of the recon-
structed leptons; the lepton categories are then subdivided according to the number of b
jets. Within each lepton and b jet category, the event yields are characterized as a func-
tion of the number of jets. For oppositely charged, same-flavor lepton pairs in three-lepton
events, the data are divided based on whether the invariant mass of the lepton pair falls
in a window around the Z boson mass (my). This strategy results in 35 nonoverlapping
categories. These event yields define the observables for the analysis and are compared
against predictions that incorporate the effects of EFT operators. Contributions involving
primarily prompt leptons — including signal processes — are modeled using simulated
events. Where relevant, the predicted yields for processes sensitive to EFT operators are
parameterized in terms of the WCs for those operators. Predictions for backgrounds in-
volving primarily nonprompt leptons (e.g., leptons from bottom or charmed hadron decays
or misidentified leptons) are based on extrapolations from control regions in data. The
WCs are varied to determine the best fit of the predictions to data, as well as to establish
the range over which the predicted yields are consistent with the observation.

The sections of the paper are organized in the following order. A brief overview of the
CMS detector and triggering system is outlined in section 2. Section 3 describes the sim-
ulation of signal and background processes, including a discussion of the parameterization
of the predicted yields in terms of the WCs. The event reconstruction and event selec-
tion are covered in sections 4 and 5, respectively, while section 6 discusses the background
estimation. In section 7, the signal extraction is explained. Sources of systematic uncer-
tainties affecting this analysis are described in section 8. Section 9 presents the results,
and section 10 provides a summary of the analysis.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the
barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid. A more detailed description of the CMS



detector and its performance, together with a definition of the coordinate system and the
kinematic variables used in the analysis, can be found in ref. [28].

Events of interest are selected using a two-tiered trigger system [29]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a fixed time interval of about
4 pus. The second level, known as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to around 1kHz before data storage.

3 Data samples and simulation

The data used in this analysis comprise proton-proton (pp) collisions at /s = 13 TeV
collected with the CMS detector in 2017, corresponding to a total integrated luminosity of
4156 [30]. The events have been recorded using a combination of single-, double-, and
triple-lepton triggers.

Simulations are used to estimate the event yields of the signal processes and some
sources of background. The signal samples incorporate EFT effects and are generated
at leading order (LO), while all background samples are generated at next-to-leading or-
der (NLO) and do not include EFT effects. The simulated samples used to estimate the
backgrounds include tty, diboson, and triboson production. Used for validation purposes,
additional samples are also generated to simulate SM background processes that are esti-
mated from data; these include Z+jets, W+jets, tt+jets, and single top quark processes
(s channel, ¢ channel, and tW). The background samples are generated using matrix el-
ements (MEs) implemented either in the MADGRAPH5 aMC@NLO [31-33] (version 2.4.2)
or the POWHEG v2 [34-40] programs. The simulation of the signal processes is described
in section 3.1

Parton showering and hadronization for all of the samples is done by PYTHIA [41]
(version 8.226 was used for the signal samples), and the Lund fragmentation model is em-
ployed [42]. The parameters for the underlying event description correspond to the CP5
tune [43] and the proton structure is described by the NNPDF3.1 [44] set of parton distri-
bution functions (PDFs). Minimum bias pp interactions occurring in the same or nearby
bunch crossings (pileup) are generated with PYTHIA and overlaid on all simulated events,
according to the luminosity profile of the analyzed data. Finally, all generated events are
passed through a detailed simulation of the CMS apparatus, based on GEANT4 [45], and
are reconstructed using the same event reconstruction software as used for data.

3.1 Simulation of the signal processes

The signal events are generated at LO with MADGRAPH5__aMC@NLO (version 2.6.0). The
signal processes include those in which one or more top quarks are produced along with
multiple charged leptons: ttll, tllq, and ttlv (where 1 indicates a charged lepton and v
indicates a neutrino). We also include ttH and tHq, as these processes can produce signal
events when the Higgs boson decays into one or more leptons. The decays of the Higgs
bosons are handled by PYTHIA since it would be computationally expensive to produce
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Figure 1. Example diagrams for the five signal processes considered in this analysis: ttH, ttl1l,
ttlv, tllq, and tHq.

MADGRAPHS__aMC@NLO samples for each decay mode and difficult to separate them from
the other signal processes. An example diagram for each signal process is shown in figure 1.
We note that the signal processes include contributions from lepton pairs produced from
on-shell W and Z bosons, as well as those from nonresonant processes; this is important
so that effects from EFT four-fermion operators can also be included in these samples.
Furthermore, we note that the ttll sample includes the production of top quark pairs in
association with virtual photons.

Sixteen operators are considered in this analysis. Chosen because they are expected
to have a relatively large impact on the signal processes but not on the tt background
process, the operators can be classified into two categories: operators that involve two
quarks and one or more bosons, and operators that involve two quarks and two leptons.
Table 1 lists the 16 operators and corresponding WCs; all couplings are assumed to involve
only quarks of the third generation. The operators that require a Hermitian conjugate
term in the Lagrangian (marked with a double dagger in table 1) can have complex WCs;
however, the imaginary coefficients lead to CP violation, and, as outlined in ref. [47], are
generally already constrained. Consequently, only the real components are considered in
this analysis. More details about the operators listed in table 1 can be found in ref. [47].
For the purpose of illustrating which processes are most strongly affected by the operators
considered, table 1 lists the leading signal processes affected by each operator. To determine



Figure 2. Example diagrams showing two of the vertices associated with the O, operator. This
operator, whose definition can be found in table 1, gives rise to vertices involving top quarks, gluons,
and the Higgs boson; as illustrated here, these interactions can contribute to the ttH process.

whether a process is to be listed in this column, we check whether the cross section of the
process is scaled by more than five times the SM cross section when the WC associated
with the operator is set to 167> or —167" [11]. For the operators that are associated with
multiple WCs, if any of the WCs causes the process to be scaled by more than five times the
SM cross section, the process is considered to be affected by that operator. The choice to
use a factor of five as the criterion for this determination is arbitrary; if it were changed, the
list of processes listed in the column would potentially change as well. However, changing
these criteria would have no influence on the analysis, as the effects of all operators on all
process are fully considered. The diagrams in figure 2 illustrate two examples of interactions
that arise from one of the operators we consider; these interactions can affect the signal
process ttH.

The signal events are generated using an approach similar to the one described in
ref. [47]. Like the framework presented there, the model used in this analysis adopts the
Warsaw basis of gauge-invariant dimension-six operators [9], focuses on operators that
give rise to interactions involving at least one top quark, and only allows for tree-level
generation. To allow MADGRAPH5_aMC@NLO to properly handle the emission of gluons
from O,q vertices, an extra factor of the strong coupling is applied to the coefficients
arising from the O, operator, as indicated in table 1. Since only tree-level generation is
possible with this model, the ttH, tt1v, and ttll signal samples are generated with an extra
parton in the final state, improving accuracy and allowing some operators to contribute
more significantly to processes upon which they would otherwise have a weaker effect.

For the samples generated with an additional parton, a matching procedure is applied
to account for the overlap in phase space between the ME and parton shower (PS) contri-
butions; in this analysis, we use the MLM scheme [33]. Since EFT effects are included in
the ME contribution but not in the PS contribution, the validity of the matching procedure
must be examined for operators that give rise to vertices involving a gluon. The only such
operator considered by this analysis is O, g, and contributions from this operator to the
soft and collinear regime are suppressed; therefore, the phase space overlap with the SM
contribution from the PS is small, and the effects of this potential issue are mitigated [46].
The tllq and tHq signal samples are not generated with an extra final state parton since,
when using the MLM scheme with LO MADGRAPH5 aMCQ@NLO, jet matching cannot be
correctly performed between the ME and the PS for single top quark processes in the
t channel.



Operators involving two quarks and one or more bosons

Operator  Definition WC Lead processes affected
iol(li;) q;u;p (‘PTSO) Crp + iCtISO ttH, tHq

0L (@%ﬁ”@)(qﬂ#%) oo+ o tTH, ttlv, ttl1l, tHq, tllq
Oig;j) (@Tzﬁi@)(qﬂ“#qj) Ao ttH, ttlv, ttll, tHq, tliq
o (spfgﬁ“@)(ﬁﬂuuj) Cot ttH, ttlv, ttll, tllq
iOSizi (@TiDHsO)(ﬁﬂ“dj) Coth T icitb ttH, tllq, tHq

toli) (@™ ') GWE, Cow + ichw ttH, ttlv, ttll, tHq, tliq
Holi) (qiauuTIdj) @wa cow +ickw ttH, tt1l, tHq, tliq
iol(lié‘) (qu'LWUj) #B,, (ewerw — ¢z)/sw + ttH, ttlv, tt1l, tHq, tllq

. I 7
Z(CWCtW - CtZ)/SW

toi) (@™ T ) $G2, g.(era +icla) tTH, ttlv, tf11, tHq, tllq

Operators involving two quarks and two leptons

Operator  Definition WC Lead processes affected
Ol}éijkl) Ly ;)@ ap) cg)f’ + C%(f) ttlv, ttll, tllq

O%ijkl) (Zi’Y/LTIEj)(akW/LTIqe) CSQ(f) ttlv, ttll, tllq

Oéijkl) (Zﬁufj)(ﬁwuue) CE? tt1l

Oiigjkl) (e7"e;) (@) Cgi tt11, tllq

O&Ekl) (éﬂ“ej)(ﬁk’wuz) CE? tt1l

IOt}eEf;Jfl) (ziej) e (qpuy) Cf(e) + inI(Z) ttll, tllq

FORIR (ot e,) e (@owny) ol el ttlv, t71, tliq

Table 1. List of operators that have effects on ttH, tt11, ttlv, tllq, and tHq processes at order 1/ A?
that are considered in this analysis. The couplings are assumed to involve only third-generation
quarks. The quantity T = %)\A denotes the eight Gell-Mann matrices, and 71 are the Pauli
matrices. The field ¢ is the Higgs boson doublet, and ¢ = cp", where ¢ = ir2. The ¢ and q
represent the left-handed lepton and quark doublets, respectively, while e represents the right-
handed lepton, and u and d represent the right-handed quark singlets. Furthermore, (<pTi<5>#<p) =
<pT(iD#g0) — (iD#goT)cp and (wTi%}ngo) = @TTI(iD#go) — (’L'DNQOT)TIQO. The W boson field strength
is wa = 8MW£ — 6I,Wi + gaUKWl{Wf, and G;‘V = 8MGZ‘ — 8,,Gﬁ + gszBCGfGS is the gluon
field strength. The abbreviations sy and cyy denote the sine and cosine of the weak mixing angle
(in the unitary gauge), respectively. The leading processes affected by the operators are also listed
(the details of the criteria used for this determination are described in the text).



3.2 Parameterization of the yields in terms of the WCs

In order to discern the effects of new physics on the observed yields, the predicted yields
must be parameterized in terms of the WCs. First, the ME can be written as the sum of
SM and new physics components:

M = MSM + Z Mza (31)

where Mgy is the SM ME, M are the MEs corresponding to the new physics components,
and ¢; are the WCs. Any cross section — inclusive or differential — is proportional to the
square of the ME. The SM contribution to the cross section is necessarily independent of
the WC values, while the new EFT operators have contributions that depend linearly on
the coefficients arising from the interference with the SM and contributions quadratic in the
coefficients from pure EFT terms. The latter can originate from the effects of an individual
operator or interference between the EFT operators. Since this analysis considers 16 WCs,
the expected cross section could therefore be parameterized as a 16-dimensional (16D)
quadratic function of the WCs.

In principle, the 16D quadratic terms could be fully determined by evaluating the
cross section at multiple points in WC space and solving for the coefficients; it would be
impractical, however, to produce the large number of simulated samples required. Instead,
we use the MADGRAPH5_aMC@NLO event generator’s ability to assign weights to the
generated events in order to effectively account for the variation of the differential cross
section in an infinitesimal part of phase space occupied by an individual event. Each
event weight, just like the inclusive or differential cross section, can be parameterized
by a polynomial of second order in the WCs. In order to determine the coefficients of
each event’s 16D quadratic weight function, the weight is calculated at multiple randomly
selected points in the 16D WC phase space. Once enough weights have been calculated
to constrain the 16D quadratic function, we can solve for the coefficients and therefore
obtain the parameterization for the weight function of each event in terms of the WCs.
The weight functions w; for a given event ¢ can then be written as follows:

C; Cr
+Z‘921]7]4 +Z BijAijgpv (32)

where ¢ represents the set of WCs, the sum over j and k corresponds to the sum over
the WCs, and the values sy, s1, sy, and s3 represent the coefficients in the quadratic
parameterization of the weight from the SM, interference between EFT and SM, pure
EFT, and interference between two EFT contributions, respectively.

The weighted events can then be used to calculate predicted yields for an arbitrary set
of WC values; the yield for a given event selection category (as discussed in section 5) is
found by summing the weight functions for events that meet the selection requirements of



the given category. Thus, summing eq. (3.2) over i, we find the predicted yield N:

* () =2 ()

.
-5 (s T+ S+ S % )

(5w rx(5e) (e R (S

=Sy + ZSUAQ + ZSQJA4 + ]E;Sg]kAQAQ.
The predicted yield has therefore been expressed as a quadratic function of the WCs,
where the quadratic coefficients of the yield parameterization were found by summing the
quadratic coefficients of the weights, e.g., S1; = >, s1;;. Since the parameterized yields
should be consistent with the SM when all WCs are set to zero, we normalize the yields to
the NLO predictions [48].

4 Event reconstruction

The CMS global (also called particle-flow (PF) [49]) event reconstruction aims to recon-
struct and identify each individual particle in an event, with an optimized combination
of all subdetector information. In this process, the identification (ID) of the particle type
(photon, electron, muon, charged or neutral hadron) plays an important role in the de-
termination of the particle direction and energy. Photons are identified as ECAL energy
clusters not linked to the extrapolation of any charged particle trajectory to the ECAL.
Electrons are identified as a primary charged particle track and potentially many ECAL
energy clusters corresponding to this track extrapolation to the ECAL and to possible
bremsstrahlung photons emitted along the way through the tracker material. Muons are
identified as tracks in the central tracker consistent with either a track or several hits in
the muon system, and associated with calorimeter deposits compatible with the muon hy-
pothesis. Charged hadrons are identified as charged-particle tracks neither identified as
electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters
not linked to any charged hadron trajectory, or as a combined ECAL and HCAL energy
excess with respect to the expected charged hadron energy deposit.

The energy of photons is obtained from the ECAL measurement. The energy of elec-
trons is determined from a combination of the charged track momentum at the main
interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all
bremsstrahlung photons attached to the track. The energy of muons is obtained from
the corresponding track momentum. The energy of charged hadrons is determined from
a combination of the track momentum and the corresponding ECAL and HCAL ener-
gies, corrected for the response function of the calorimeters to hadronic showers. Finally,
the energy of neutral hadrons is obtained from the corresponding corrected ECAL and
HCAL energies.

~10 -



The missing transverse momentum vector (pp ) is computed as the negative vector

sum of the transverse momenta of all the PF candidates in an event, and its magnitude is
denoted as p ™= [50]. The vector 7 is modified to account for corrections to the energy
scale of the reconstructed jets in the event.

The candidate vertex with the largest value of the sum of squared physics-object trans-
verse momentum (py) is taken to be the primary pp interaction vertex. The physics
objects are the jets, clustered using the anti-kr jet finding algorithm [51, 52] with the

tracks assigned to the vertex as inputs, and the associated pry' iss

. More details are given
in section 9.4.1 of ref. [53]. Lepton candidates, which are subsequently reconstructed, are
required to be compatible with originating from the selected primary vertex.

Electrons are reconstructed by matching tracks in the silicon tracker to the energy
deposit in the ECAL, without any significant energy deposit in the HCAL [54]. Genuine
electrons are distinguished from hadrons mimicking an electron signature by a multivariate
algorithm using the quality of the electron track, the shape of the electron cluster, and the
matching between the track momentum and direction with the sum and position of energy
deposits in the ECAL. Furthermore, to reject electrons produced in photon conversions,
candidates with missing hits in the innermost tracking layers or matched to a conversion
secondary vertex are discarded.

Muon candidates are reconstructed by combining information from the silicon tracker
and the outer muon spectrometer of CMS in a global fit [55]. The quality of the geometrical
matching between the individual measurements in the tracker and the muon system is used
to improve the ID of genuine prompt muons by substantially reducing misidentification due
to hadrons punching through the calorimeters or from muons produced through in-flight
decays of kaons and pions.

The electron and muon selection criteria described above define the “loose” lepton
selection. Additional selection criteria are applied to discriminate leptons produced in the
decays of W and Z bosons and T leptons from leptons produced in the decays of b or light
hadrons, or from misidentified jets. We will refer to the former as “prompt” leptons and
to the latter as “nonprompt” leptons. Isolation criteria are also applied to all leptons.

A multivariate analysis (MVA) approach based on boosted decision trees (BDTs),
referred to as the prompt lepton MVA, is used for this selection. Each BDT takes as
inputs the lepton kinematic, ID, and impact parameter information, as well as kinematic
and b tagging information about the nearest jet to the lepton. Two versions of the lepton
MVA are trained, one for electrons and one for muons, which differ based on the inclusion of
one additional observable for each of the two versions. For electrons, the extra input is the
multivariate discriminant developed via dedicated analysis for electron ID [54]. For muons,
the extra input is a similar discriminant that classifies the compatibility of track segments
in the muon system with the pattern expected from a muon ionization [56]. The BDT
inputs have been checked in control regions in data to ensure that they are well modeled
by the simulation. A more detailed description of the lepton MVA can be found in [57].

In the signal region, lepton candidates are required to exceed a given discriminant
threshold, referred to as the “tight” lepton selection. A looser selection, referred to as the
“relaxed” selection, is defined by relaxing the above lepton MVA discriminant requirement
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for the purpose of estimating background processes, as discussed in section 6. The efficiency
of the triggers based on the presence of one, two, or three electrons or muons is measured
in data in Z/y* — ee and Z/y" — up events, respectively. These events are also used to
measure the efficiency for electrons or muons to pass the lepton reconstruction, ID, and
isolation criteria [54, 55].

For each event, hadronic jets are clustered from PF candidates using the anti-kp al-
gorithm with a distance parameter of 0.4. Jet momentum is determined as the vectorial
sum of all particle momenta in the jet, and is found from simulation to be, on average,
within 5 to 10% of the true momentum over the whole pp spectrum and detector accep-
tance. Pileup can contribute additional tracks and calorimetric energy depositions to the
jet momentum. To mitigate this effect, charged particles originating from pileup vertices
are discarded and an offset correction is applied to account for the remaining contributions.
Jet energy corrections are derived from simulation to bring measured response of jets to
that of particle level jets on an average. In situ measurements of the momentum balance
in dijet, photon+jet, Z+jets, and multijet events are used to account for any residual dif-
ferences in jet energy scale in data and simulation [58]. The jet energy resolution amounts
typically to 15-20% at 30 GeV, 10% at 100 GeV, and 5% at 1TeV [58]. Jets are rejected if
the distance in 77—¢ space (where the ¢ is azimuthal angle in radians) between the jet and
the closest lepton is less than 0.4.

Jets originating from the hadronization of b quarks are identified by two “combined
secondary vertex” algorithms [59, 60], namely CSVv2 and DeepCSV, which exploit observ-
ables related to the long lifetime of b hadrons and to the higher particle multiplicity and
mass of b jets compared to light-quark and gluon jets. DeepCSV is used for b jet selection,
while CSVv2 is used to aid lepton ID as an input to the prompt lepton MVA. The analysis
uses two levels of selection based on DeepCSV, with a loose and a medium working point.
The medium (loose) working point has approximately 70 (85)% efficiency for tagging jets
from b quarks, with a misidentification probability of 1.0(10)% for light quark and gluon
jets [60].

5 Event selection

The goal of the event selection is to retain ttH, ttlv, ttll, tllq, and tHq events while
excluding as many contributions from background processes as possible. The analysis is
split into categories with two same-sign leptons (2¢ss), three leptons (3¢), and four leptons
(4¢), where ¢ refers to either a e or pu. Events must also have a minimum number of
jets, as well as b jets, with additional requirements that depend on the lepton flavor and
multiplicity. Single- and double-lepton triggers are used to collect events containing two
leptons. For events with three or more leptons, a combination of single-, double-, and
triple-lepton triggers are used.

All events are required to have at least two leptons passing the tight selection. Events
where a pair of tight leptons with an invariant mass less than 12 GeV is found are rejected,
to avoid backgrounds from light resonances. In addition, events must have at least two jets
with pr > 30 GeV to be reconstructed in the pseudorapidity (n) region, |n| < 2.4. One or
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more of the jets also need to pass the medium working point of the DeepCSV b tagging
algorithm, as at least one top quark whose decay produces a bottom quark jet is present
in all signal events. No explicit identification requirements are placed on T leptons, which
are allowed to enter the event selection via their decay products.

5.1 2¢ss category

The 2/ss category primarily targets ttH and ttlv signal events in which the tt system de-
cays semileptonically, with an additional, identically charged lepton coming from the decay
of a W boson produced in association with a top quark pair (in the case of tt1v), or coming
from the decay of a W boson or a T lepton produced in the decay of the Higgs boson (in the
case of ttH). In addition, the t1l process may contribute with events in which there is at
least one lepton that is not reconstructed or does not pass the selection. Selected events are
required to contain exactly two same-sign leptons passing the tight criteria, with the lep-
ton of higher (lower) pr required to have pp > 25 (15) GeV. Residual tt+jets background
contributions are suppressed by requiring that the charge of all electrons and muons, which
pass the relaxed object selection criteria, is well measured. Electrons are required to pass
two conditions which test the consistency between the independent measurements of the
electron charge obtained from the position of the ECAL cluster and from its track, while
muons must satisfy the condition that the estimated uncertainty on the pp of the muon
track is below 20%. The events are required to contain at least four jets with pp > 30 GeV
and |n| < 2.4. At least two of these jets must be b jets, one of which must satisfy the
medium working point of the DeepCSV b tagging algorithm, while the second is allowed
to pass the loose working point. Events containing more than two tight leptons are vetoed
to avoid overlap with the 3¢ and 4¢ categories.

5.2 3¢ category

The 3¢ category selects ttlv events in which all three W bosons decay leptonically; tt1l
events in which the tt system decays semileptonically and the Z boson decays to two
charged leptons; tllq events in which the top quark decays leptonically and the Z decays
to two charged leptons; and ttH events in which the H decays to W, Z or T particles, at
least one of which then decays leptonically (with one or more charged leptons also coming
from the decay of the tt system). Selected events are required to contain exactly three
charged leptons passing the tight object selection criteria. The three charged leptons are
required to have pp > 25, 15, and 10 GeV. In the case that the third lepton is an electron,
the requirement on it is instead pp > 15 GeV in order to stay above the trigger thresholds
and keep the contributions from nonprompt electrons under control. Two or more jets with
pr > 30GeV and |n| < 2.4 are required, at least one of which must satisfy the medium
working point of the DeepCSV b tag algorithm. Two subcategories are defined according
to whether a second jet passing the medium b tag is present. This avoids incorrectly
promoting tllq events into the subcategory requiring two b jets, due to misidentification.
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Selection 20ss 3¢ >40

Leptons Exactly 2 leptons Exactly 3 leptons >4 leptons

Charge requirements > ,¢ <0, ,¢>0 >,¢<0,>,¢>0 — —

Jet multiplicity 4,5, 6, >7 jets 2,3, 4, >5 jets 2,3, 4, >5 jets 2, 3, >4 jets
Number of b jets >2 b jets 1, >2 b jets 1, >2 b jets >2 b jets
Dilepton mass — |mge —my| > 10GeV  |my, — my| < 10GeV —

Table 2. Requirements for the different event categories. Requirements separated by commas
indicate a division into subcategories. The b jet requirement on individual jets varies based on the
lepton category, as described in the text.

5.3 4¢ category

The 4/ category targets ttll events in which all the W and Z bosons decay leptonically,
and ttH events in which the H decays into a pair of W bosons, where all W bosons decay
leptonically; Z bosons, where at least one Z decays leptonically; or leptonically decaying
T leptons. Events selected in this category are required to contain four or more leptons
passing the tight object selection criteria and passing pp thresholds of p > 25, 15, 10, and
10 GeV for the lepton of highest, second, third, and fourth highest pr, respectively. In the
case of electrons, the requirement on the third or fourth lepton is instead pp > 15 GeV for
the same reasons as in the 3¢ category. Two or more jets with pp > 30GeV and |n| < 2.4
are required. As in the 2/¢ss category, at least two of these jets must be b jets, one of which
must satisfy the medium working point of the DeepCSV b tagging algorithm, while the
second is allowed to pass the loose working point.

5.4 Separation into subcategories

Events in the 2/ss, 3¢, and 4/ categories are further separated based on a number of criteria,
as summarized in table 2. In the 2/¢ss category, events are further separated based on lepton
charge. This allows us to take advantage of the fact that the ttW™ cross section is roughly
a factor of 2 larger than that of the tt W™ cross section, so it is enhanced in 2/ss events
where both leptons are positively charged. In the 3¢ category, we consider separately
events which contain a same-flavor, oppositely charged pair of leptons with an invariant
mass that falls within 10 GeV of the my, which primarily serves to create a region where
the contribution from (on-shell) ttZ is enhanced. For 3¢ events that do not fall within this
region, a classification based on the sum of lepton charges is used, considering events where
the charge sum is positive separately from those where it is negative. This again exploits the
difference in cross section between tt W™ and ttW . In all 3¢ events, a classification is done
based on whether the event contains exactly one jet passing the medium DeepCSV working
point, or two or more jets passing the medium DeepCSV working point; the contribution
from tllq is enhanced in the former case. For the 4/ category, events are not split based
on the invariant dilepton mass due to a small population of events in those bins.

Events in all categories are then separated into jet-multiplicity bins, which are used to
fit to data and place limits on EFT parameters, as described in section 7. The 2¢ss and
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3¢ categories are split into four jet multiplicity bins, resulting in 8 and 24 subcategories
respectively. The 4/¢ category is split into three jet bins, bringing the total to 35 distinct
signal region subcategories.

6 Background estimation

Contributions to the selected event yields arise from a variety of background processes,
which can be categorized as reducible or irreducible and are either estimated from data
control regions or modeled using simulation. A background is considered as reducible in
case one or more of the reconstructed electrons or muons passing the tight object selection
are not due to genuine prompt leptons, as defined in section 4.

In the 2/ss categories, a reducible background arises from events containing lepton pairs
of opposite charge, mostly from tt-jets production, in which the charge of one lepton is
mismeasured. Both background contributions are determined from data using the same
methods as in ref. [57]. A summary of these procedures is given in sections 6.1 and 6.2.

The dominant irreducible background processes are diboson production and (to a lesser
extent) triboson production and are estimated using simulations. In the 3¢ and 4/ cate-
gories in particular, diboson production is the dominant overall background (among both
reducible and irreducible sources).

The production of a top quark pair in association with a photon represents an addi-
tional, minor source of background. It is typically due to an asymmetric photon conversion
into an electron-positron pair, where one of the produced particles carries most of the
photon energy while the other one is not reconstructed. Even though this is a reducible
background source, its contribution is estimated using simulation, since the isolated leptons
arising from asymmetric conversion are well described in simulation.

6.1 Background from misidentified leptons

The background from nonprompt leptons is estimated from control samples in data, ap-
plying the measured rate at which nonprompt leptons pass the lepton selection criteria.
This rate, referred to as the fake rate, is measured from a multijet sample dominated by
nonprompt leptons. The data analyzed in this region are collected with single lepton trig-
gers, except at low muon pp, where the presence of an additional jet with pp > 40 GeV
is required in the trigger. The misidentification rate is defined as the probability for a
lepton candidate that passes a relaxed lepton cut to pass the tight lepton selection. The
misidentification rate is extracted separately for electrons and muons and is measured as
a function of the pp and 7 of the nonprompt lepton. Contamination from prompt leptons
in the multijet sample is subtracted based on expectations from simulation.

Once the misidentification rates have been determined, they are applied to a selection
called the application region (AR), which is identical to the signal region except that one
or more of the leptons are required to fail the tight selection but pass the relaxed lepton
selection instead. An estimate of the misidentified-lepton background in the SR is obtained
by applying appropriately chosen weights to the events selected in the AR. Further details
on the nonprompt-lepton background estimation technique can be found in ref. [57].
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6.2 Background from lepton charge mismeasurement

The lepton charge mismeasurement background in the 2/ss categories is dominated by tt
events with two prompt leptons in which the sign of either prompt lepton is mismeasured.
This background contribution is estimated from data, following a strategy similar to the
one used for the estimation of the nonprompt background. It is found to be relevant only
for electrons. The electron charge is defined using the majority method, which takes the
charge to be the one shared by at least two of the three charge estimate methods [54]. An
AR is defined for the 2/ss categories, requiring that the two selected leptons are of opposite
charge. The events in the AR are then weighted using the probability to mismeasure the
electron charge, derived in a Z/y" — ee sample and parameterized as a function of the
electron pp and 7. The probability for mismeasuring the sign of electrons ranges from
0.02% for electrons in the barrel to 0.2% for electrons in the endcaps, after all the object
selection criteria. The sum of the charge mismeasurement probabilities of the two lepton
candidates is used to determine the overall background.

7 Signal extraction

As stated in section 5.4, the analysis is split into 35 statistically independent categories,
based on the sum of lepton charges, number of b tagged jets, and jet multiplicity. A
likelihood function is built based on independent bins following Poisson statistics. The
event yields are a function of the WCs and a set of nuisance parameters (NPs) which
contain the effects of systematic uncertainties (see section 8). The WCs are parameterized
by the quadratic form for the cross section as explained in section 3. In order to fit
this parameterization to the data, we scan over all WCs. The boundaries of the scans
roughly correspond to values of the chosen operator that result in a five-fold increase
in the SM cross section for at least one signal process. At each point in the scan, the
negative log profiled-likelihood is computed, and the best fit is evaluated as the WC which
minimizes the negative log likelihood. Confidence intervals of 1 and 2 standard deviations
(o) are calculated by finding where twice the negative log likelihood curve crosses the
value of one and four respectively. In principle, this scan can be performed in the 16D WC
space. However, fitting this hypersurface is time-consuming, and the results are difficult to
interpret. Instead, we perform the fit for a single WC in two scenarios: when the other 15
WCs are treated as unconstrained NPs (profiled); and when the other 15 WCs are fixed to
their SM value of zero.

8 Systematic uncertainties

There are two types of systematic effects considered: those that affect only the rates of
signal or background processes, and those that affect both the rate and the shape which
refers to changes in the relative expected yield of the jet and/or b jet bins. In the latter
case, the rate and shape effects are treated simultaneously so that they are considered fully
correlated. Each systematic uncertainty is correlated across all analysis bins by using a
single NP per physical process. The sources of systematic uncertainties considered are: the
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integrated luminosity; the jet energy scale (JES); b jet tagging scale factors; the theoretical
cross section; the PDF shape variations; the renormalization (ug) and factorization (up)
scales; the PS; the parton matching; the additional radiation; the muon and electron ID,
isolation, trigger efficiency; the pileup; the misidentified-lepton rate estimate; and the
charge misreconstruction estimate.

All variations listed are applied equally to the signal and background samples, and
are treated as 100% correlated across all samples. Unless otherwise stated, all systematic
uncertainties are considered independent and thus uncorrelated with each other.

o Integrated luminosity. The measured uncertainty on the LHC integrated luminosity
estimate is 2.3% [30].

o Jet energy scale. The JES is adjusted via scale factors to account for pileup, nonuni-
form detector response, and any residual differences between the data and simulation.
The resulting effect of the JES uncertainty on the yields is determined by shifting
the jet energy correction up and down by lo , and propagating the changes through
the object ID and event selection.

e b jet tagging scale factors. In order to use the DeepCSV tagger for identifying b jets,
scale factors are applied to the simulated samples to bring them in agreement with
data [60]. There are three types of systematic uncertainties associated with the use
of these scale factors: the JES, the purity of the control samples used to derive the
scale factors, and the size of all the samples used to derive the scale factors. The JES
dependence is calculated simultaneously with the JES systematic uncertainty. The
purity component is treated by assigning NPs for the yields from both the light (g, u,
d, s) and heavy (c, b) flavors. The ¢ jet tagging uncertainty is used to remove c jets
potentially mistagged as b jets. Finally, the statistical uncertainty of the samples used
to derive the scale factors is taken into account with four NPs: two for the light-flavor
(LF) case and two for the heavy-flavor (HF) case. The two NPs for each case are: an
NP for the overall tilt that would be consistent with the statistical uncertainties on
the SFs, while the second NP controls distortions of a more complicated nature, where
the upper and lower ends of the distribution change relative to the center. These NPs
account for discrepancies in the shape of the tagging discriminant distributions, which
are consistent with the uncertainty of the scale factors.

o Theoretical cross section. The expected yields for signal and background are derived
from theoretical predictions of at least NLO accuracy. There are associated uncer-
tainties on the ur and pp scales of the process and the PDF. Table 3 summarizes
these uncertainties. For signal processes, this uncertainty is considered on the whole
process (SM+EFT). These uncertainties do not vary with the WCs, so the uncertain-
ties are of the same magnitude as when fixing the model to the SM component alone.

e PDF shape variations. The shape variation of the final fitting variable distribu-
tions due to the uncertainty on the PDF is estimated by reweighting the spectra
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Process ur and pp scales PDF
ttH —-9.2% +5.8% £3.6%
tllq +1% +4%
ttlv -12% +13%  +2%
ttll —12% +10%  £3%
tHq —8% +6% £3.7%
Diboson +2% +2%
Triboson +2.6% +4.2%
tty +jets +10% +5%

Table 3. Cross section (rate) uncertainties used for the fit. Each column in the table is an inde-
pendent source of uncertainty. Uncertainties in the same column for different processes (different
rows) are fully correlated.

according to 100 replica sets. The total uncertainty is measured using the standard
PDF4LHC [61] recommendation.

e Renormalization and factorization scales. Uncertainties due to the ug and pp scales
in the tt ME generator are modeled by varying the scales independently by a factor of
1/2 or 2 and propagating the changes to the final fitting variable distribution in the fit.
An uncertainty envelope is then calculated from these two systematic uncertainties.
This is accommodated via weights obtained directly from the generator information.
Since the normalization uncertainties of the ME generators are covered by the cross
section uncertainties (listed in table 3), only the impact on the kinematic shape of the
process in question are considered. These shape effects primarily enter as changes
in the acceptance and efficiency for events to fall into a particular event selection
category. The bounds of the envelope are determined by taking the maximum of the
ug uncertainties, the ug uncertainties, and their sum. The pur and pp effects on the
WCs range between 1 and 5% depending on the bin.

e Parton shower. The uncertainty in the PS simulation is estimated by varying the
ug for initial- and final-state radiation (ISR/FSR) up and down in PYTHIA by mul-
tiplying /dividing the scale by a factor of 2 for ISR and /2 for FSR. A dedicated SM
sample (produced without EFT effects) is used to determine this systematic variation;
the values obtained through this study are then applied to the full analysis samples.

e Parton matching. This uncertainty only applies to ttH, ttW, and ttZ processes,
since matching is only performed for processes that include an extra parton. Deter-
mined by varying the matching scale value between the extra partons generated in
MADGRAPHS__aMC@NLO and jets produced in PYTHIA, this uncertainty is computed
bin-by-bin. A dedicated SM sample (produced without any EFT effects) was used
to perform this study. The nominal scale is 19 GeV, and is shifted up to 25 GeV and
down to 15 GeV.
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o Additional radiation. Since an extra final-state parton was not included in the LO
single top quark processes (tllq and tHq), they are not expected to be as sensitive
to varying the WCs as the LO ttH, tt W, and ttZ samples. A comparison of the LO
tllq sample to the NLO tZq sample, reveals a discrepancy in the event yield, which
is not covered by the existing systematic uncertainties. We therefore introduced a
new systematic uncertainty specifically for the t11q sample to cover this disagreement.
The same systematic uncertainty is applied to tHq, since the uncertainty accounts for
the fact that MADGRAPH5__aMC@QNLO cannot handle the matching for these extra
partons for any ¢-channel process. These uncertainties are typically around 20%, but
can reach as high as 80% for the high jet multiplicity bins with few events.

e Muon and electron ID and isolation. Scale factors are used to correct the tracking
efficiency, electron and muon ID efficiency, and isolation in the simulation to match
that in data, which are derived with a “tag-and-probe” method [54, 55, 62]. The
impacts of these quantities are estimated by varying the scale factors within their
uncertainties. The resulting systematic uncertainties are typically of the order of
1-2% per lepton.

o Trigger efficiency. The impact due to the trigger efficiency [55] is estimated by
varying the trigger scale factors within their uncertainties, which are in the range
of 2-5%.

e Pileup. Effects due to the uncertainty in the distribution of the number of pileup
interactions are evaluated by varying the total inelastic pp cross section used to
predict the number of pileup interactions in the simulation by 4.6% from its nominal
value, which corresponds to a 1o variation [63]. This effect typically ranges from less
than 1-3%.

o Misidentified-lepton rate estimate. Several sources of systematic uncertainty are con-
sidered. The measurement of the misidentified-lepton weights is affected by the small
population in the measurement region, subtraction of prompt lepton contamination
in this region, as well as the uncertainty in the background jet composition in this
region (dominated by multijet background) and the AR (dominated by tt-jets back-
ground). The effect on the misidentified lepton rate due to the overall uncertainty of
the misidentified leptons is taken into account by varying the entire map of misidenti-
fied lepton weights up or down by 1o. This is the largest source of uncertainty on the
misidentified lepton rate, and amounts to approximately 25-30%, depending on the
jet multiplicity bin. In addition, the limited population in the AR of the misidentified
lepton method have a significant effect on the estimate of the misidentified lepton
rate and must be considered as a separate source of uncertainty. This again varies
with jet multiplicity bin, and amounts to approximately 10-30%.

e Charge misidentification probability. The yield of the misreconstructed background
in the 2¢ss categories is known with an uncertainty of 30%, and is included as a
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rate systematic uncertainty. The uncertainty due to the limited population in the
corresponding AR is negligible and is not considered.

Table 4 summarizes the systematic uncertainties assessed in the signal and back-
grounds, and how each systematic uncertainty is treated in the fit used to extract the
amount of signal present in the data sample. We note that it is possible for the statistical
and systematic uncertainties to depend on the choice of the initial WC values (used to
evaluate the quadratic fit parameters). To examine this, simulations are generated at the
boundaries of the measured 20 confidence interval, and the SM point (i.e., all WCs set to
zero), and no difference is observed within the current level of precision. A summary of the
percentage effect (change in WC divided by the symmetrized confidence interval) for ¢ vy,

Cops céy), and CE?

is provided in the last four columns of table 4 to illustrate the range of
values we observe for each systematic variation. This table is related to the change in the
WCs do to a single NP — correlations among NPs are not taken into account — and is

therefore a conservative estimate.

9 Results

The number of events selected in different categories is compared to the expected contri-
butions of the signal processes and of the different background processes before (prefit)
and after simultaneously fitting all 16 WCs, and the NPs, to minimize the negative log-
likelihood (postfit) in figure 3. The prefit scenario corresponds to the SM where the values
of the WCs are all assumed to be zero. The simultaneous fit is equivalent to the 16 best fit
points from the profiled fits: the profiled fit will always find the global minimum for each
of the 15 profiled WCs. The hatched region in the stack plot and the shaded region in the
ratio plot show the sum of all systematic uncertainties. The large increase in the tHq event
yields is a consequence of the low sensitivity to this particular process coupled with the fact
that tHq receives relatively large enhancements from the EFT operators considered. The
fit finds a combination of WCs that is able to enhance tHq, which helps improve agreement
in the 2¢ss and 3¢ (non-Z) categories, without spoiling the agreement elsewhere. Despite
the large increase, tHq is still a smaller contribution than ttH and ttlv in these categories.
There is also a large increase in the tllq event yields, which we are also insensitive to.
Table 5 shows the 20 confidence intervals for each WC. Intervals are given for two
scenarios. These results are displayed graphically in figure 4, along with their 1o confidence
intervals (thicker lines). The confidence intervals for a single WC (solid bars) are calculated
while the other 15 WCs are profiled. An alternative determination of the confidence interval
for a single WC is performed by fixing the other 15 WCs to their SM values of zero (dashed
bars). For the profiled scenario, the confidence interval for all WCs includes the SM.
Occasionally, when fixing the other 15 WCs to zero the SM point falls just outside the 2¢
confidence interval (e.g., ¢iw). This is not surprising because in the cases where all WCs
but one are fixed to zero, that single WC must account entirely for any deviation between
observed data and expectation. In contrast, in the profiled case, all 16 WCs can work
together to accommodate any deviations, resulting in a best fit point that is closer to the
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Source Type Cow Crp  Cou Cig
Integrated luminosity rate 6% 2% 1% <1%
JES rate4-shape 6% 2% 1%  <1%
b jet tag 1% 5% 8% <1%
b jet tag HF fraction rate+shape

b jet tag HF stats (linear) rate+shape

b jet tag HF stats (quadratic) rate+shape

b jet tag LF fraction rate+shape

b jet tag LF stats (linear) rate+shape

b jet tag LF stats (quadratic) rate+shape

c jet mistag <1% 12% 8% 2%
b jet tag charm (linear) rate+shape

b jet tag charm (quadratic) rate+shape

PDF (gg) rate 1% <1% <1% <1%
PDF (gg,tn) rate <1% 1% <1% <1%
PDF (qq) rate 1% <1% <1% <1%
PDF (qg;y,) rate <1% <1% <1% <1%
pr.p scale (¢tH) rate 2% 5% <1% <1%
prF scale (tty) rate 1% 1% <1% <1%
pr F scale (ttV) rate 15% 4% 1% <1%
pr r scale (tHq) rate 1% 1% <1% <1%
pr,r scale (V) rate <1% <1% <1% <1%
pr.F scale (VV) rate <1% <1% <1% <1%
prF scale (VVV) rate <1% <1% <1% <1%
PDF shape 2% 1% <1% <1%
pr F scales shape <1% 6% 1% <1%
FSR rate+shape 1%  11% 7% 2%
ISR rate+shape <1% 8% 3% <1%
Parton matching rate+shape 1% 10% 5% 1%
Additional radiation ratedshape 11% 3% 1% <1%
Lepton ident. /isol. rate+shape 4% 2% <1% <1%
Trigger efficiency rate+shape 2% 1% <1% 1%
Pileup rate-+shape 1% 1% <1% <1%
Lepton misident. rate+shape 2% 0%  29% <1%
Lepton misident. (stat) rate+shape

Charge misident. rate 3% 2% <1% <1%

Table 4. Summary for the systematic uncertainties. Here “shape” means that the systematic
uncertainty causes a change in the relative expected yield of the jet and/or b jet bins. Except
where noted, each row in this table will be treated as a single, independent NP. Impacts of various
systematic variations on a subset of WCs are also quoted. Percentages represent the change in a
WC divided by the symmetrized 20 confidence interval. A value of 100% indicates the particular
systematic variation adds an uncertainty equal to the WC interval. The percentages for the b and

c jet tags are the sum of all their respective subcategories.
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Figure 3. Expected yields prefit (left) and postfit (right). The postfit values of the WCs are
obtained from performing the fit over all WCs simultaneously. “Conv.” refers to the photon conver-
sion background, “Charge misid.” is the lepton charge mismeasurement background, and “Misid.
leptons” is the background from misidentified leptons. The jet multiplicity bins have been combined
here, however, the fit is performed using all 35 event categories outlined in section 5.4. The lower
panel is the ratio of the observation over the prediction.

SM, leading to the SM point falling inside the 20 confidence interval. It is also sometimes
possible for the profiled case to produce a more narrow 20 confidence interval, as can be
seen for cf (z), cﬁ?, cé?, cg()e, and céy). It is important to note that these five parameters
each have disjoint nonzero 1o confidence interval when the other 15 parameters are frozen.
This will inherently broaden the profiled likelihood curve, resulting in a larger interval.
Note that as mentioned in section 3.1, the definition of O, here includes an explicit factor
of the strong coupling constant, which should be accounted for when comparing to results

extracted based on other conventions.

Additional validation of the results was done with simultaneous scans in two WCs.
These are illustrated in figures 5—10. This subset of figures are the only ones which show
clear signs of correlations between pairs of WCs. The diamond marker corresponds to
the SM theoretical prediction. The contours correspond to the 1o (solid lines), 20 (thick
dashed lines), and 30 (dash-dotted lines) confidence intervals. Figure 5 indicates minimal
correlation between the WCs cég) and Cng This is a common case for many coefficient
pairs, especially when the other %é)are profiled. The left panel of figure 6 shows a more

4

rectangular contour for ¢ j, and cor' - This indicates that these two WCs are not correlated,

and the rectangular shape comes from a double minima in cSQ(?. Comparing the left and

right panels of figure 6 shows cg(f) has little preference over profiling the other 14 WCs
versus fixing them to zero, while the ¢, range is cut almost in half when fixing the other
14 coefficients to zero. Figure 7 shows a similar behavior for ciQ and cpw. The horizontal
scales on the right panels of figures 8 and 9 were modified to facilitate the display of the 1o
confidence interval contour. The right panel of figure 10 shows a preference in ¢,y and ciy

for nonzero values when the other 14 WCs are fixed to zero. When the other 14 WCs are
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Figure 4. Observed WC 1o (thick line) and 20 (thin line) confidence intervals (CIs). Solid lines
correspond to the other WCs profiled, while dashed lines correspond to the other WCs fixed to the
SM value of zero. In order to make the figure more readable, the ¢, interval is scaled by 1/2, the
¢y interval is scaled by 2, the c, interval is scaled by 1/2, and the c;,, interval is scaled by 1/5.
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WC/A*[TeV™?] 20 interval (others profiled) 2¢ interval (others fixed to SM)
Cow [—3.08, 2.87] [—2.15, —0.29]U[0.21, 1.96]
ez [—3.32, 3.15] [—2.14, 2.19]

Cop [—16.98, 44.26] [~14.12, —1.46)U[32.30, 44.48]
o0 [—7.59, 21.65] [—3.45, 3.33]

o [—1.38, 1.18] [—1.26, —0.69]U[0.08, 0.79]
Cow [—4.95, 4.95] [—4.12, 4.09]

o [—7.37, 3.48] [-7.21, 2.25]

Coth [—12.72, 12.63] [—9.87, 9.67]

Cor [—18.62, 12.31] [~20.91, —14.10)U[—6.52, 4.24]
ey [—9.67, 8.97] [—9.91, 9.50]

el [—4.02, 4.99] [—4.76, 5.83]

o) [—4.38, 4.59] [—5.20, 5.36]

L [—4.29, 4.82] [—5.15, 5.51]

o [—4.24, 4.86] [—4.97, 5.80]

S [—6.52, 6.52] [—7.70, 7.70]

Lo [—0.84, 0.84] [—1.01, 1.01]

Table 5. The 20 confidence intervals on the WCs. The intervals are found by scanning over a
single WC while either treating the other 15 profiled, or fixing the other 15 to the SM value of zero.

profiled (figure 10 left), the preference vanishes. This is indicative of the complex interplay
between all 16 WCs. Exploring the 16D hypersurface provides a unique handle on the
WCs, which was not previously utilized in single parameter analyses such as [16, 19-27].
As a result, any differences compared to other analyses should not be surprising, and may
indicate our robust technique more accurately captures the nuances of the EFT.

Figure 11 shows the fractional variation in expected yields for a given process and
category after the fit and relative to the SM expectation. The nominal points correspond
to the best fit values obtained from the simultaneous fit of all WCs and are therefore the
same in each plot. The vertical bars represent the maximum variation in the expected
yield within the corresponding 20 confidence interval for the given WC. The variations are
found by profiling all other WCs and NPs, that is by re-running the simultaneous fit for
the other WCs and NPs, at each point in the scan for the WC of interest. As the quadratic
parameterization for a given WC need not be the same for each process or for each bin
of a given process, the extrema of the vertical bars do not necessarily correspond to the
same WC values; furthermore, the edges of the vertical bars need not correspond to the
20 limits of the WC in question. The value for tllq in the 4/ category is shown off-scale to
preserve the legibility for the rest of the plot. Despite the large ratio, the expected yield
in this category is still exceptionally small after the fit and has a negligible contribution to
the 20 confidence intervals.
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Figure 5. The observed 1o, 20, and 30 confidence contours of a 2D scan for céy) and cgl with
the other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for
the SM prediction.
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Figure 6. The observed 1o, 20, and 30 confidence contours of a 2D scan for c;, and c%(f) with

the other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for
the SM prediction.
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Figure 7. The observed lo, 20, and 30 confidence contours of a 2D scan for ciQ and c,w with
the other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for
the SM prediction.
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Figure 8. The observed 1o, 20, and 30 confidence contours of a 2D scan for ¢y and c,q with the
other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for the
SM prediction. The range on the right plot is modified to emphasize the 1o contour.
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Figure 9. The observed 1o, 20, and 30 confidence contours of a 2D scan for ¢, and ¢, with the
other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for the
SM prediction. The range on the right plot is modified to emphasize the 1o contour.
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Figure 10. The observed 1o, 20, and 30 confidence contours of a 2D scan for ¢,z and ¢,y with
the other WCs profiled (left), and fixed to their SM values (right). Diamond markers are shown for

the SM prediction.
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Figure 11. Plots showing the relative change in the expected yield for the signal processes in
each event category. The “AYield/prefit” is the difference in expected yield before fit (prefit)
and after fit (postfit), normalized to the prefit yield of the process in the corresponding category.
The vertical bars represent the maximum variation for a given WC within the corresponding 2o
confidence interval. The values in upper right of each plot are to indicate the variation for tllq in
the 44 category.

10 Summary

A search for new physics has been performed in the production of at least one top quark in
association with additional leptons, jets, and b jets, in the context of an effective field the-
ory. The events were produced in proton-proton collisions corresponding to an integrated
luminosity of 41.5 fb~!. The expected yield in each category was parameterized in terms
of 16 Wilson coefficients (WCs) associated with effective field theory operators relevant to
the dominant processes in the data.

A simultaneous fit was performed of the 16 WCs to the data. For each WC, an interval
over which the model predictions agree with the observed yields at the 2 standard deviation
level was extracted by either keeping the other WCs fixed to zero or treating the other WCs
as unconstrained nuisance parameters. Two-dimensional contours were produced for some
of the WCs, to illustrate correlations between various WCs. The results from fitting the
WCs in the dimension-six model to the data were consistent with the standard model at
the level of 2 standard deviations.
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