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ABSTRACT: Dynamic control of engineered microbes using light
via optogenetics has been demonstrated as an effective strategy for
improving the yield of biofuels, chemicals, and other products. An
advantage of using light to manipulate microbial metabolism is the
relative simplicity of interfacing biological and computer systems,
thereby enabling in silico control of the microbe. Using this strategy
for control and optimization of product yield requires an
understanding of how the microbe responds in real-time to the
light inputs. Toward this end, we present mechanistic models of a
set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and
how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These
models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient
levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for
improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.

■ INTRODUCTION

Effective dynamical models that describe how systems respond
in time to manipulated inputs and perturbations are required
for developing the optimization and control algorithms that are
ubiquitous in modern engineered systems. In particular,
sophisticated control algorithms have enabled the success of
the modern petrochemical industry by delivering consistent
product quality at high yield.1 Partly inspired by this success,
there has been increasing interest in developing and deploying
such mathematical techniques to living systems for biotechno-
logical applications, leading to the growth of a research area
termed “cybergenetics.”2−6 A potential application of these
ideas is to optimize production of biofuels, chemicals, or
pharmaceuticals by engineered microbes.7

Deploying optimization and control techniques to a specific
problem requires effective tools to manipulate the system in
real-time. Toward this end, synthetic biology provides an
extensive toolkit for dynamic control of cell cultures, and
dynamic control strategies have already been demonstrated as
effective for increasing product yield in microbial fermenta-
tions.8,9 Common strategies to control cellular metabolism
include induction of metabolic pathways using chemicals (e.g.,
IPTG10 or doxycycline11), alternative carbon sources (e.g.,
galactose,12 arabinose,13 or ethanol14), or nutrient deprivation
(e.g., methionine15) that can be added to the batch.
Alternatively, our group has developed optogenetic circuits
that induce or repress metabolic pathways using light.7,16 Light
has several advantages compared to chemical induction,

including that it can be added or removed instantly from a
cell culture, it does not rely on changes in media composition,
it is relatively inexpensive, it is easily tunable by either intensity
or duty cycle, and different wavelengths could be used to
orthogonally control different sets of genes. The use of light in
controlling the production levels of useful products such as
biofuels, chemicals, and recombinant proteins has already been
demonstrated.7,16,17 We envision that these and similar
methods will find widespread use in biotechnology.
A key advantage of using light to manipulate metabolism is

the ease with which it can interface with computer control
systems. Several research groups have used optogenetics for
real-time control of gene expression, using feedback control
techniques such as model predictive control to track the set
point of fluorescent reporter proteins or cell growth rates.18−20

Additional challenges, however, are introduced when the
optogenetic circuit does not drive the expression of a
fluorescent reporter that is directly measured, but rather
controls enzyme expression, thereby acting as a metabolic
valve.21 Therefore, understanding the dynamics of optogenetic
circuits is valuable for predicting how the circuits will perform
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in different contexts and selecting a circuit for a specific
application.
We recently presented a set of rapid optogenetic circuits for

controlling yeast metabolism that were used to improve yields
of biofuels and chemicals,16 as well as a data-driven
methodology for learning the nonlinear optogenetic circuit
dynamics.22 In this Letter, we develop mechanistic dynamical
models of these circuits and show that they accurately predict
transient and long-time gene expression under various light
conditions. We then analyze the models to reveal how the
circuits respond to complex light patterns and demonstrate
their amenability to modern control algorithms. Our purpose is
to use mechanistic understanding combined with mathematical
models to reveal how choices made in circuit design result in
both qualitative and quantitative differences intransient and
steady levels of the protein under control of these circuits. The
results we present inform circuit design, help with pairing
existing circuits with particular tasks, and may be useful in
developing real-time control of microbial chemical production
using optogenetics.

■ RESULTS AND DISCUSSION

We developed mechanistic models of five optogenetic circuits
for Saccharomyces cerevisiae described in our previous work:7,16

OptoEXP, OptoINVRT1, OptoINVRT2, OptoINVRT3, and
OptoINVRT7. OptoEXP is designed to induce transcription in
blue light via VP16-EL222, an engineered blue light-activated
transcription factor derived from Erythrobacter litoralis.23

OptoINVRT circuits are designed to invert the transcriptional
response to light by repurposing the galactose regulon native to
S. cerevisiae. Specifically, the desired protein is expressed under
a promoter activated by Gal4p, which itself is natively
regulated by the repressor Gal80p. Gal80p is then controlled
by the light-dependent activity of VP16-EL222. OptoINVRT1
and OptoINVRT2 express the transcriptional activator Gal4p
using different constitutive promoters, ADH1 and PGK1,
respectively. OptoINVRT3 and OptoINVRT7 are further
engineered by adding a light-activated degron tag to the
transcriptional activator Gal4p. However, Gal80p in Opto-
INVRT1, OptoINVRT2, and OptoINVRT3 is highly persis-
tent, which slows the circuit dynamics. This was remedied in
OptoINVRT7 by adding a constitutive degron tag to Gal80p.
Degron tags are small peptide sequences that target a protein
for degradation.24,25 Such tags can be appended to protein

Figure 1.Model design and parameter fitting. (A) Schematic of the OptoINVRT7 model; simpler circuits can be obtained by removing connections
as appropriate. Solid lines indicate biochemical transformations (including degradations) and dashed lines indicate activation or repression. (B)
Dose−response of OptoEXP circuit: model (curve) and experimental data (points) show GFP expression in yeast using an 80 s duty cycle with
varying light dose. (C) Dose−response of OptoINVRT circuits: model (curve) and experimental data (points) show GFP expression in yeast using
an 80 s duty cycle with a varying blue light dose. (D) Model (curve) and experimental data (points) showing change in GFP expression versus time
when blue light is switched from on (minimal expression) to off (maximum expression) for OptoINVRT1 (blue) and OptoINVRT7 (purple)
circuits. In all experiments, data are first normalized by average GFP expression under the TEF1 promoter, and then normalized by the maximum
observed expression level for that particular circuit. Data are from our other publications;7,16 error bars represent the s.d. of four biologically
independent 1 mL sample replicates exposed to the same conditions. All experiments were repeated at least three times. The dose−response curves
computed from the models show time-averaged GFP expression of 80 s limit cycles.
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sequences to artificially reduce their half-lives.26,27 Protein
degradation can be made inducible by placing constraints on
proteolytic activation; for example, by only expressing the
protease gene in the presence of galactose.28 Light-activated
degron tags work by fusing the core degradation tag sequence
with a photosensitive domain that undergoes a conformational
shift when exposed to certain wavelengths of light, thereby
hiding or exposing the degradation tag for protease recognition
based on light conditions.29 Further details of the optogenetic
circuits studied in this work are available in our previous
publications.7,16

To study these circuits, we used ordinary differential
equation models, which have proven valuable in analyzing
gene networks of low to moderate complexity in several
different systems,30−33 including some optogenetic cir-
cuits.2,34−36 A schematic of the OptoINVRT circuit design is
shown in Figure 1A. The models exclude some mechanistic
details (e.g., binding of Gal80p to Gal4p) to simplify the
analysis and avoid overfitting and unidentifiable parameters
(see Methods). The OptoINVRT models are composed of
four ordinary differential equations, representing species
balance equations for the fraction of light-activated VP16-
EL222 (i.e., VP16-EL222 in the dimer state, bound to DNA,
and activating transcription), denoted EL222* in the model,
and the normalized protein concentrations of Gal80p (the
repressor), Gal4p (the activator), and Ptarget (the protein being
control by the circuit). These models describe the average
protein levels over the entire population of cells. The model
units are fraction of maximum value, which implies that all
variables range from 0 to 1 and that Ptarget in each circuit is
normalized by the maximum value of expression level for that
specific circuit. Further details on model development and
assumptions are available in the Methods. For the
OptoINVRT circuits, the model equations are

t
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Here, EL222*, Gal80p, Gal4p, and Ptarget are the state variables,
t is time, and u(t) is the binary input variable indicating that
the blue light is on (u = 1) or off (u = 0). Ha (C|K,n) = Cn/(Cn

+ Kn) and Hr (C|K,n) = Kn/(Cn + Kn) are Hill functions for
transcriptional activation and repression, respectively. The time
constants, τ, are empirical and can be considered reciprocals of
first order rate constants. OptoINVRT1 and OptoINVRT2
circuits are the simplest designs; they assume τDD = ∞ and

τLAD = ∞, implying that 0
t

dGal4p
d

= . OptoINVRT1 and

OptoINVRT2 differ from each other only in the use of
different promoters for Gal4p, which is accounted for in the
models by using differing Hill parameters in the expression for

d

dP

t
target . OptoINVRT3 is similar to OptoINVRT2, except that

Gal4p has been modified with a light activated degradation tag
on Gal4p; therefore, it has nonzero

t
dGal4p

d
due to the term

containing finite τLAD. Finally, OptoINVRT7, with its modified
Gal80p, includes the term containing finite τDD leading to
lower steady state levels of Gal80p; we further allow a different
value of τLAD in OptoINVRT7 vs OptoINVRT3, as an
empiricism that may further correct for the large difference
in protein levels across circuits. All other parameter definitions
and their values are available in Supplementary Table 1. The
blue light input, u(t), can be periodic, so the system can be
periodically forced, and one may expect long-term solutions to
be oscillations characterized by the forcing frequency (what we
will refer to as “periodically forced limit cycles”). The
OptoEXP circuit model can be obtained by simplifying the
OptoINVRT models, where equations for Gal80p and Gal4p
are eliminated, and the equation for Ptarget is replaced by

P

t

H K nd

d

( (EL222 , ) P )atarget EL222 EL222 target

targetτ
=

*| −* *

The models predict both the long-time and transient responses
of Ptarget expression under the OptoEXP and OptoINVRT
circuits. Transient responses are calculated by integrating the
state equations in time. The “long-time” Ptarget expression is
found for a given periodic light schedule by calculating the
average Ptarget expression over a stable periodically forced limit
cycle solution37 (see Methods for details). Because the
dynamics of Ptarget are much slower than the light-active
species in the model, the Ptarget expression is essentially
constant during short and intermediate forcing period cycles
(Supplementary Figure 1). Therefore, the periodically forced
limit cycle calculations can be used to calculate a dose−
response curve for each optogenetic circuit (Figure 1b,c),
where the dose is the fraction of time that light is on, and the
response is the normalized Ptarget expression. The dose
response curve also depends on the forcing period (the duration
of time until the cycle is repeated). If the forcing period is 80 s
(Figure 1B,C, and Supplementary Figure 1A,B), then a 10%
dose means that blue light is continuously ON for 8 s and then
continuously OFF for 72 s.
Physiologically relevant parameters are necessary to ensure

predictive accuracy of the model. We estimate model
parameters using data from our recent publications7,16 in
which GFP is expressed under each of the circuits (i.e., Ptarget =
GFP). Except for the activation time of VP16-EL222 (which
was previously reported38), model parameters were estimated
from experimental data of GFP expression from OptoEXP and
each OptoINVRT circuit after 8 h, under different light
conditions (Figure 1B,C), and from circuit activation experi-
ments (Figure 1D), and can be found in Supplementary Table
1. Our parameter estimation strategy (available in the
Methods) allows our model to predict gene expression when
light input variations occur in short time scales, such as with 80
s forcing periods, as well as in time scales of hours. The
parameter values discovered from the dose−response curve
(Figure 1B,C) and kinetics experiments (Figure 1D) are
consistent with our expectations, observations, and known
biology. For example, Gal80p has a very long estimated decay
constant (16 h), which makes this protein linger in the system
for a relatively long time, unless a degradation tag is added to
the protein (as in OptoINVRT7, which adds a second time
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constant, τDD = 5 h). On the basis of the standard errors of the
parameter estimates (see Methods), the estimates are mostly
robust and indicate the parameters are identifiable from the
data, with the important exception of τDD which is not
identifiable from the kinetics experiments. We note that due to
time scale separation, the time constants (τPtarget,τGal80p, τGal4p,
τDD) have almost no effect on the shapes of the dose−response
curves (Figure 1B,C), while the Hill parameters have almost no
effect on the activation kinetics (Figure 1D).
The shapes of the dose−response curves (Figure 1C) and

the activation kinetics (Figure 1D) for the OptoINVRT
circuits are consequences of the circuit designs that are
reflected in the mathematical models. We note that circuits
containing light activated degradation of the activator, Gal4p,
(OptoINVRT3 and OptoINVRT7) have “decay-like” dose
response curves, whereas those that do not (OptoINVRT1 and
OptoINVRT2) have “sigmoid-like” dose response curves. This
distinction is a result of the fast response of Gal4p to light
when it is engineered to include a light-activated degron
domain.

The dynamic nature of optogenetic circuits and their distinct
responses to different forcing periods may be exploited for
improved process design. With this goal in mind, we used the
mechanistic circuit models to explore how the shape of the
dose−response curve depends on the forcing period. We
calculated the dose−response curve of each optogenetic circuit
model to various forcing periods from 10 s to 10 minwe call
these plots “expression surfaces” (Figure 2A,B and Supple-
mentary Figure 2). We limited the forcing periods to 10 min
because this is approximately 10 times faster than the response
time of GFP (Supplementary Table 1), which ensures that the
target protein remains constant over a forcing period
(Supplementary Figure 1C,D) assuming the target protein
has a similar response time as GFP. For OptoINVRT1
(Supplementary Figure 2A), OptoINVRT2 (Figure 2A), and
OptoEXP (Supplementary Figure 2C), the shapes of the
dose−response curves change substantially with the forcing
period, because the key regulator in the OptoINVRT systems
(Gal80p) and the target protein itself in OptoEXP are tethered
to the average activation of VP16-EL222, which due to its
rapid activation depends on the forcing period (Supplementary

Figure 2. Optogenetic circuit model predictions: Expression surface for OptoINVRT2 (A), and OptoINVRT7 (B), showing the circuit expression
response dependence on light dose and forcing period (see Supplementary Figure 2 for expression surfaces for OptoEXP, OptoINVRT1 and
OptoINVRT3). Stable limit cycle solution for OptoINVRT2 (C) and OptoINVRT7 (D) circuits, where each forcing period is 1 day. For the first
12 h, blue light is ON for 0.1 out of 1 h, and for the second 12 h, blue light is ON for the initial 1.2 h, and off the remaining time (the black line
demarcates the split between the regimes). The average light dose over the whole 24-h period is 10%. For OptoINVRT2 (C), neither forcing
regime supplies light for sufficient time to deactivate the circuit. However, for OptoINVRT7 (D), significantly different behaviors in protein levels
are observed: for the first 12 h where Gal4p does not have sufficient time to fully regenerate between light doses, Ptarget levels consistently drop;
however, during the second 12 h, Gal4p is given enough time to regenerate in the dark, allowing the accumulation of Ptarget at higher levels. (Note
that Ptarget is shown as a dashed line in panel C to prevent it from obscuring the line for Gal4p).
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Figure 1). Conversely, OptoINVRT3 (Supplementary Figure
2B) and OptoINVRT7 (Figure 2B) show a sharper decay-like
behavior with light dose, which is a consequence of the light-
activated degradation of Gal4p, rendering these circuits more
light-sensitive and thus virtually unaffected by the forcing
period at short time scales. The expression surfaces reflect the
response dynamics of optogenetic circuits and are useful in
determining the light dose and short time scale forcing periods
required to obtain a desired constant gene expression outcome.
Additionally, we speculate that this type of analysis could be
used to develop single-input, multi-output controls systems.
We imagine a single binary manipulated input variable (light
ON or OFF), where there are two degrees of freedom for
control (dose and forcing period). For example, if a single
organism expressed two optogenetic circuits with orthogonal
chemistries, then it may be possible to keep one circuit active
while deactivating the other by changing only the forcing
period, without everchanging the overall light dose.
The mechanistic models presented here reveal qualitatively

different behaviors for the optogenetic circuits that are based
on different architectures, which result from differences in the
time scale of the response of the important proteins that
regulate the expression (Gal80p and Gal4). When we apply
longer forcing periods and more complex forcing functions, the
target protein can no longer be assumed constant over a
periodically forced limit cycle, but we can still calculate the full,
time-varying solution for the target protein expression. For
example, OptoINVRT2 (Figure 2C) and OptoINVRT7
(Figure 2D) respond quite differently to an irregular forcing
function over a 24 h period, with the relatively fast response of
OptoINVRT7 enabling comparatively rapid changes in the
target protein expression. For OptoINVRT7, 6 min pulses each
hour over the first 12 h are sufficient to partially degrade

Gal4p, resulting in a reduction of protein expression;
subsequently, the absence of light during the final 10.8 h
(after a 1.2-h incubation in light) leads to the regeneration of
Gal4p, and in turn, gradual recovery of expression, aided also
in part by the more rapid constitutive degradation of Gal80p in
this circuit. In contrast, OptoINVRT2 does not respond fast
enough to exhibit any changes in expression using this light
schedule, keeping expression constantly high. This shows that
when light inputs induce significant fluctuations in the target
expression, for example during the limit cycle for Opto-
INVRT7 (Figure 2D), where simple dose−response relation-
ships no longer apply, our models can still make predictions
about time varying expression under such complex forcing
periods.
The models and the trajectories of expression levels that we

compute reveal how the dynamics of the regulators in the
optogenetic circuit (in our case, VP16-EL222, Gal4p, and
Gal80) affect both the transient and steady level of the protein
under the circuit’s control and offer suggestions for process
design. For example, if tunability of protein levels is more
important than rapid response or maximum expression levels,
slowly varying regulators (as in OptoINVRT1 and Opto-
INVRT2) with longer forcing periods may be desired.
Conversely, if rapid response and high expression levels are
needed, then fast decaying regulators (such as OptoINVRT7)
are preferable.
Mathematical modeling of optogenetic systems such as

VP16-EL222 provides more accurate predictions of response
times for light-controlled transcriptional activation and protein
degradation. Such models may be the most effective way to
optimize performance of the system in bioreactors, given the
infinite number of possible time schedules that could be
applied during a fermentation. Model predictive control

Figure 3. Simulation of model predictive control. In silico demonstration of model predictive control of GFP expression (green curves) using the
OptoINVRT7 circuit and several reference trajectories (green dashed curves). The manipulated variable is the light dose (blue curves) which
indicates the fraction of time that blue light is on out of an 80 s duty cycle.
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(MPC), which is widely used in industrial practice,1,39−41 can
utilize these models to enable robust closed-loop feedback
control of complex biological systems when supplemented with
real-time data, and has previously been used with some
optogenetic circuit applications.2,18,42 We anticipate that by
combining system models with live fermentation output
tracking, in silico controllers can be designed and used to
generate well-timed light pulse inputs that optimize chemical
production.
Toward this end, we developed an MPC system to track set

point changes in GFP expression under the OptoINVRT7
circuit using our mechanistic models. We use a nonlinear MPC
algorithm (see Methods) that relies on feedback from a
fluorescent reporter protein to estimate the internal state of the
optogenetic circuit (i.e., the current levels of Gal4p, Gal80p,
and VP16-EL222 activation). The MPC system effectively
tracks a variety of reference trajectories (i.e., desired time-
varying GFP expression profiles), including ramps, holds,
oscillations, and steps (Figure 3). For every case, the MPC
controller effectively drives the simulated system along the
reference trajectory, even if we consider the effects of imperfect
modeling, limited only by the kinetics of the circuits. These
results support the possibility of online, model-based control of
gene expression for the optogenetic circuits developed in this
work.
The models developed here predict the levels of protein

controlled by the optogenetic circuit as functions of light input.
Future development could extend these models to include
important quantities such as the production of metabolites or
products synthesized using the proteins under control of the
circuit, as well as account for the effects of the circuit dynamics
on cell growth/biomass production. One possible way to
incorporate these effects would be to include phenomeno-
logical expressions, such as Michaelis Menten rate laws for
metabolite production or Monod expressions for growth rate
that are coupled to the predicted Ptarget levels. Alternatively,
these dynamic models could be coupled with genome-scale
flux balance analyses, especially more recent versions that
explicitly include constraints from enzyme levels.43 With such a
model in place, it would be straightforward to design state
estimators to provide real-time estimates of protein or
metabolite levels; the state estimator could use real-time data
from fluorescent biosensors44 or infrequent measurements
from off-line assays for feedback.
In conclusion, we built computer models to predict the

behaviors of optogenetics circuits at different time scales and
light doses. These biophysical models are consistent with
expected biology and closely fit experimental data from short
(Figure 1B,C) and long (Figure 1D) time scales. Because they
have a biophysical foundation, we anticipate these models to
generalize better than empiricisms and help choose the best
optogenetic circuit for a particular task. They enable prediction
of expression for any conceivable light schedule and are
amenable to modern control systems such as MPC. Ultimately,
we envision modeling approaches such as the ones described
here will be important for deploying computer-assisted
dynamic control and optimization of microbial chemical
production.

■ METHODS
Model Development and Assumptions. The mathe-

matical model is composed of dynamic species balance
equations on the four species of interest: activated (i.e.,

dimerized) VP16-EL222, Gal80p, Gal4p, and Ptarget (the gene
being expressed). We assume that steady-state expression of
Gal80p and Ptarget are described by Hill equations, and that the
relationship between Ptarget and Gal4p is in the linear regime of
the Hill equation (we tested using the full Hill equation, with
no improvement in model fidelity). We also assume the total
quantity of VP16-EL222 is constant, and some fraction of
VP16-EL222 is activated; VP16-EL222 activation kinetics are
first order; Gal80p, Gal4p, and Ptarget are produced and
degraded with first order kinetics. This implies that tran-
scription or translation are not explicitly modeled but their
rates are accounted for by the parameter estimates. We also
assume the light activated degron domain on Gal4p induces a
first order degradation mode when light is on; the degron
domain on Gal80p induces a first order degradation mode at
all times. Finally, we assume light penetration does not need to
be explicitly modeled and that all cells receive effectively the
same light dose (justified by our previous observations7).
We assume that the expression of VP16-EL222 is constant in

time and constant across each of the different circuit designs.
We also assume that the kinetics of the different protein
species are constant across different circuits. However, we do
not assume that maximum protein levels (other than VP16-
EL222) are constant across different circuits. The expression of
GFP in each circuit was normalized by its maximum expression
specific to the circuit (to more easily compare qualitative
differences in the circuit responses), and by its expression
under a TEF (constitutive) promoter (to place measurements
from the dose response curves and kinetics experiments on a
common scale). We allowed variable Hill parameters (which
are phenomenological rather than mechanistic) across some
circuits, as well as included the term τDD for optoINVRT7, to
account for different maximum expression levels across circuits.
We also note that it may not be trivial to extend this model to
situations when the light intensity, rather than the duty cycle, is
variable. Under these circumstances, it is likely that the process
gains are nonlinear, which would need to be modeled
explicitly.

Limit Cycle Calculation. In our mathematical model, we
obtain periodically forced stable limit cycles of our ordinary
differential equation model by (1) finding a single point on the
limit cycle solution, and (2) integrating the solution from time
0 to T (T = forcing period). Because the dynamics of Ptarget
production and degradation are much slower than the forcing
period, Ptarget is essentially constant during this limit cycle;
therefore, we can average Ptarget expression in time and
consider this value the “steady” Ptarget expression. To find such
stable limit cycles (1:1 resonant oscillations), we examine the
discrete dynamical system defined by the change in state
variables after one forcing period, which is called the
stroboscopic map. Fixed points on the stroboscopic map
provide initial conditions for the limit cycle solution. To find
such fixed points, we employ a Newton−Raphson algorithm
based on a shooting formulation in which we integrate the
state equations and variational equations for one period per
iteration; integrating the variational equations supplies the
Jacobian for Newton−Raphson iterations (c.f., Kevrekidis et
al.37). We use the VODE algorithm45 through the SciPy
interface46 to integrate the equations. An illustration of VP16-
EL222* changing limit cycles due to a change in forcing period
is shown in Supplementary Figure 3.

Parameter Estimation. Parameters are estimated by
minimizing an ordinary (unweighted) least-squares objective
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function. For the dose−response curves (Figure 1B,C), Ptarget
expression is calculated as described in the Limit Cycle
Calculation; for the kinetics curves (Figures 1D), GFP (Ptarget)
expression is calculated by integrating the state equations in
time. In both cases, the objective function is minimized using
the BFGS algorithm47,48 (Jacobian from finite differences)
implemented in SciPy. Supplementary Table 1 shows the
parameter values and experiments used to obtain them.
We used the progression of the optogenetic circuits from

simple (OptoEXP) to complex (OptoINVRT7) and the time-
scale separation between the fast changing variables (EL222*
and Gal4p) and slow changing variables (Ptarget and Gal80p) to
fit parameters in a stepwise fashion. First, we inserted
arbitrarily large time constants for Ptarget, Gal80p, and Gal4p
to estimate the Hill parameters for EL222* and Gal80p from
the dose response curves for OptoEXP and OptoINVRT1/2.
Next, we used data from the OptoINVRT3 dose response
curve to estimate the time constant for Gal4p light-activated
degradation. We repeated this procedure with OptoINVRT7.
Then, we estimated the protein time constants using the data
from kinetics experiments. Finally, we confirmed our
assumption that the time constants for the proteins do not
affect the dose−response curves.
We estimated standard errors of the parameters by using a

finite difference approximation of the Hessian of the objective
function. The standard errors can then be estimated using

SE H( ) diag( )1β σ= ̂̂ − , with
f

N M
objσ ̂ =
−

, where fobj is the sum

of squared errors, N is the number of data points, and M is the
number of parameters. Supplementary Table 1 shows the
value, standard error, and the procedure for estimating each of
the model parameters for each of the optogenetic circuits. We
note that one parameter, τDD is unidentifiable from our data
(i.e, the objective function gradient is numerically zero over a
large range of values, resulting in a singular Hessian matrix).
Model Predictive Control. The general idea in model

predictive control (MPC) is to use a dynamical system model
to predict the system output over a finite prediction horizon
and optimize input variables over this prediction horizon to
best match a desired output trajectory called the reference
trajectory. Then, only the first step of the optimized input
trajectory is applied, and the process is repeated at each control
interval.
For this system, we developed a full nonlinear implementa-

tion of MPC where duty cycle is the manipulated variable. We
use discrete-time (stroboscopic) MPC with a control interval
(period) of 800 s. The forcing period (which, for simplicity,
should be an integer divisor of the MPC period) was chosen to
be 80 s to correspond with our experiments. The time horizon
was chosen to be 6 control intervals (∼1.3 h). Choosing the
time horizon requires balancing controller performance
(improved with longer time horizons) and computational
intensity (improved with shorter time horizons). Unmeasured
states (Gal80p, Gal4p, EL222*) were obtained from GFP
measurements online using a deterministic observer with an
innovation function gain of 0.1 chosen for stability49 where
estimates were constrained to lie between 0 and 1. The state
estimator reliably converged in the first several iterations
(Supplementary Figure 4). Our objective function is the
ordinary least-squares difference between the predicted GFP
trajectory and the reference GFP trajectory during the time
horizon, and has a box constraint on the inputs (0 < light dose
< 1). At each control interval, we use a sequential least-squares

quadratic programming (SLSQP) algorithm50 to obtain the
best light dose at each of the next 6 control intervals. The
Jacobian for optimization was estimated through finite
differences. The light dose from the optimized trajectory is
implemented for the next control interval and the process is
repeated. To test the control system, we used a “perturbed”
model where a Gaussian random variable (μ = 0, σ = 0.05*θi)
was added to each parameter to simulate plant−model
mismatch. This model is called the “Simulated Trajectory” in
Figure 3.

Numerical Continuation. To efficiently investigate the
effect of varying the input waveform and forcing period, we
used numerical continuation to calculate GFP expression with
light dose ranging from 0% to 100% and forcing period ranging
from 10 s to 10 min. The numerical computation package
AUTO51 was used for calculations. The “maps” function was
used in AUTO to perform continuation of the stroboscopic
map using the VODE integrator to numerically construct the
map. The state Jacobian was obtained from the variational
equations and the sensitivity matrix (or Jacobian with respect
to dose and forcing period parameters) from finite differences.
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and Hersen, P. (2017) Balancing a genetic toggle switch by real-time
feedback control and periodic forcing. Nat. Commun. 8, 1−7.
(6) Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F.,
Bottani, S., Batt, G., and Hersen, P. (2012) Long-term model
predictive control of gene expression at the population and single-cell
levels. Proc. Natl. Acad. Sci. U. S. A. 109, 14271−6.
(7) Zhao, E. M., Zhang, Y., Mehl, J., Park, H., Lalwani, M. A.,
Toettcher, J. E., and Avalos, J. L. (2018) Optogenetic regulation of
engineered cellular metabolism for microbial chemical production.
Nature 555, 683.
(8) Tan, S. Z., and Prather, K. L. J. (2017) Dynamic pathway
regulation: recent advances and methods of construction. Curr. Opin.
Chem. Biol. 41, 28−35.

(9) Lalwani, M. A., Zhao, E. M., and Avalos, J. L. (2018) Current
and future modalities of dynamic control in metabolic engineering.
Curr. Opin. Biotechnol. 52, 56−65.
(10) Donovan, R. S., Robinson, C. W., and Glick, B. R. (1996)
Review: optimizing inducer and culture conditions for expression of
foreign proteins under the control of the lac promoter. J. Ind.
Microbiol. 16, 145−154.
(11) Tan, S. Z., Manchester, S., and Prather, K. L. J. (2016)
Controlling Central Carbon Metabolism for Improved Pathway Yields
in Saccharomyces cerevisiae. ACS Synth. Biol. 5, 116−124.
(12) Xie, W., Ye, L., Lv, X., Xu, H., and Yu, H. (2015) Sequential
control of biosynthetic pathways for balanced utilization of metabolic
intermediates in Saccharomyces cerevisiae. Metab. Eng. 28, 8−18.
(13) Rodrigues, A. L., Becker, J., de Souza Lima, A. O., Porto, L. M.,
and Wittmann, C. (2014) Systems metabolic engineering of
Escherichia coli for gram scale production of the antitumor drug
deoxyviolacein from glycerol. Biotechnol. Bioeng. 111, 2280−2289.
(14) Peng, B., Williams, T. C., Henry, M., Nielsen, L. K., and
Vickers, C. E. (2015) Controlling heterologous gene expression in
yeast cell factories on different carbon substrates and across the
diauxic shift: a comparison of yeast promoter activities. Microb. Cell
Fact. 14, 91.
(15) Paradise, E. M., Kirby, J., Chan, R., and Keasling, J. D. (2008)
Redirection of flux through the FPP branch-point in Saccharomyces
cerevisiae by down-regulating squalene synthase. Biotechnol. Bioeng.
100, 371−378.
(16) Zhao, E. M., Lalwani, M. A., Lovelett, R. J., García-Echaurí, S.
A., Hoffman, S. M., Gonzalez, C. G., Toettcher, J. E., Kevrekidis, I. G.,
and Avalos, J. L. (2020) Design and characterization of rapid
optogenetic circuits for dynamic control in yeast metabolic engineer-
ing. ACS Synth. Biol. 9, 3254−3266.
(17) Lalwani, M. A., Ip, S. S., Carrasco-Lo  pez, C., Day, C., Zhao, E.
M., Kawabe, H., and Avalos, J. L. (2021) Optogenetic control of the
lac operon for bacterial chemical and protein production. Nat. Chem.
Biol. 17, 71.
(18) Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P., and
Khammash, M. (2016) Automated optogenetic feedback control for
precise and robust regulation of gene expression and cell growth. Nat.
Commun. 7, 12546.
(19) Melendez, J., Patel, M., Oakes, B. L., Xu, P., Morton, P., and
McClean, M. N. (2014) Real-time optogenetic control of intracellular
protein concentration in microbial cell cultures. Integr. Biol. 6, 366−
372.
(20) Harrigan, P., Madhani, H. D., and El-Samad, H. (2018) Real-
Time Genetic Compensation Defines the Dynamic Demands of
Feedback Control. Cell 175, 877−886.
(21) Moser, F., Espah Borujeni, A., Ghodasara, A. N., Cameron, E.,
Park, Y., and Voigt, C. A. (2018) Dynamic control of endogenous
metabolism with combinatorial logic circuits.Mol. Syst. Biol. 14, 1−18.
(22) Lovelett, R. J., Avalos, J. L., and Kevrekidis, I. G. (2020) Partial
Observations and Conservation Laws: Gray-Box Modeling in
Biotechnology and Optogenetics. Ind. Eng. Chem. Res. 59, 2611−2620.
(23) Motta-Mena, L. B., Reade, A., Mallory, M. J., Glantz, S., Weiner,
O. D., Lynch, K. W., and Gardner, K. H. (2014) An optogenetic gene
expression system with rapid activation and deactivation kinetics. Nat.
Chem. Biol. 10, 196−202.
(24) Gottesman, S., Roche, E., Zhou, Y., and Sauer, R. T. (1998)
The ClpXP and ClpAP proteases degrade proteins with carboxy-
terminal peptide tails added by the SsrA-tagging system. Genes Dev.
12, 1338−1347.
(25) Zhang, M., MacDonald, A. I., Hoyt, M. A., and Coffino, P.
(2004) Proteasomes Begin Ornithine Decarboxylase Digestion at the
C Terminus. J. Biol. Chem. 279, 20959−20965.
(26) Hoyt, M. A., Zhang, M., and Coffino, P. (2003) Ubiquitin-
independent mechanisms of mouse ornithine decarboxylase degrada-
tion are conserved between mammalian and fungal cells. J. Biol. Chem.
278, 12135−12143.
(27) Matsuzawa, S., Cuddy, M., Fukushima, T., and Reed, J. C.
(2005) Method for targeting protein destruction by using a ubiquitin-

ACS Synthetic Biology pubs.acs.org/synthbio Letter

https://dx.doi.org/10.1021/acssynbio.0c00372
ACS Synth. Biol. 2021, 10, 219−227

226

http://orcid.org/0000-0003-2220-3522
http://orcid.org/0000-0003-2220-3522
https://pubs.acs.org/doi/10.1021/acssynbio.0c00372?ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.0c00372/suppl_file/sb0c00372_si_001.pdf
http://www.bitbucket.org/rlovelett/optoCircuits
http://www.bitbucket.org/rlovelett/optoCircuits
https://dx.doi.org/10.1016/S0967-0661(02)00186-7
https://dx.doi.org/10.1016/S0967-0661(02)00186-7
https://dx.doi.org/10.1038/nbt.2018
https://dx.doi.org/10.1038/nbt.2018
https://dx.doi.org/10.1016/j.molcel.2018.04.012
https://dx.doi.org/10.1016/j.molcel.2018.04.012
https://dx.doi.org/10.1021/acssynbio.5b00135
https://dx.doi.org/10.1021/acssynbio.5b00135
https://dx.doi.org/10.1038/s41467-017-01498-0
https://dx.doi.org/10.1038/s41467-017-01498-0
https://dx.doi.org/10.1073/pnas.1206810109
https://dx.doi.org/10.1073/pnas.1206810109
https://dx.doi.org/10.1073/pnas.1206810109
https://dx.doi.org/10.1038/nature26141
https://dx.doi.org/10.1038/nature26141
https://dx.doi.org/10.1016/j.cbpa.2017.10.004
https://dx.doi.org/10.1016/j.cbpa.2017.10.004
https://dx.doi.org/10.1016/j.copbio.2018.02.007
https://dx.doi.org/10.1016/j.copbio.2018.02.007
https://dx.doi.org/10.1007/BF01569997
https://dx.doi.org/10.1007/BF01569997
https://dx.doi.org/10.1021/acssynbio.5b00164
https://dx.doi.org/10.1021/acssynbio.5b00164
https://dx.doi.org/10.1016/j.ymben.2014.11.007
https://dx.doi.org/10.1016/j.ymben.2014.11.007
https://dx.doi.org/10.1016/j.ymben.2014.11.007
https://dx.doi.org/10.1002/bit.25297
https://dx.doi.org/10.1002/bit.25297
https://dx.doi.org/10.1002/bit.25297
https://dx.doi.org/10.1186/s12934-015-0278-5
https://dx.doi.org/10.1186/s12934-015-0278-5
https://dx.doi.org/10.1186/s12934-015-0278-5
https://dx.doi.org/10.1002/bit.21766
https://dx.doi.org/10.1002/bit.21766
https://dx.doi.org/10.1021/acssynbio.0c00305
https://dx.doi.org/10.1021/acssynbio.0c00305
https://dx.doi.org/10.1021/acssynbio.0c00305
https://dx.doi.org/10.1038/s41589-020-0639-1
https://dx.doi.org/10.1038/s41589-020-0639-1
https://dx.doi.org/10.1038/ncomms12546
https://dx.doi.org/10.1038/ncomms12546
https://dx.doi.org/10.1039/c3ib40102b
https://dx.doi.org/10.1039/c3ib40102b
https://dx.doi.org/10.1016/j.cell.2018.09.044
https://dx.doi.org/10.1016/j.cell.2018.09.044
https://dx.doi.org/10.1016/j.cell.2018.09.044
https://dx.doi.org/10.15252/msb.20188605
https://dx.doi.org/10.15252/msb.20188605
https://dx.doi.org/10.1021/acs.iecr.9b04507
https://dx.doi.org/10.1021/acs.iecr.9b04507
https://dx.doi.org/10.1021/acs.iecr.9b04507
https://dx.doi.org/10.1038/nchembio.1430
https://dx.doi.org/10.1038/nchembio.1430
https://dx.doi.org/10.1101/gad.12.9.1338
https://dx.doi.org/10.1101/gad.12.9.1338
https://dx.doi.org/10.1074/jbc.M314043200
https://dx.doi.org/10.1074/jbc.M314043200
https://dx.doi.org/10.1074/jbc.M211802200
https://dx.doi.org/10.1074/jbc.M211802200
https://dx.doi.org/10.1074/jbc.M211802200
https://dx.doi.org/10.1073/pnas.0507512102
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00372?ref=pdf


independent, proteasome-mediated degradation pathway. Proc. Natl.
Acad. Sci. U. S. A. 102, 14982−14987.
(28) Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009)
Efficient protein depletion by genetically controlled deprotection of a
dormant N-degron. Mol. Syst. Biol. 5, 267.
(29) Renicke, C., Schuster, D., Usherenko, S., Essen, L.-O., and
Taxis, C. (2013) A LOV2 Domain-Based Optogenetic Tool to
Control Protein Degradation and Cellular Function. Chem. Biol. 20,
619−626.
(30) Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak,
B., and Tyson, J. J. (2004) Integrative analysis of cell cycle control in
budding yeast. Mol. Biol. Cell 15, 3841−3862.
(31) Brandman, O., Ferrel, J. E., Jr., Li, R., and Meyer, T. (2005)
Interlinked Fast and Slow Positive Feedback Loops Drive Reliable
Cell Decisions. Science 310, 496−498.
(32) Karlebach, G., and Shamir, R. (2008) Modelling and analysis of
gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770−780.
(33) Venturelli, O. S., El-Samad, H., and Murray, R. M. (2012)
Synergistic dual positive feedback loops established by molecular
sequestration generate robust bimodal response. Proc. Natl. Acad. Sci.
U. S. A. 109, E3324−E3333.
(34) Olson, E. J., Tzouanas, C. N., and Tabor, J. J. (2017) A
photoconversion model for full spectral programming and multi-
plexing of optogenetic systems. Mol. Syst. Biol. 13, 926.
(35) Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R., and
Tabor, J. J. (2014) Characterizing bacterial gene circuit dynamics with
optically programmed gene expression signals. Nat. Methods 11, 449−
455.
(36) Toettcher, J. E., Voigt, C. A., Weiner, O. D., and Lim, W. A.
(2011) The promise of optogenetics in cell biology: interrogating
molecular circuits in space and time. Nat. Methods 8, 35−38.
(37) Kevrekidis, I. G., Schmidt, L. D., and Aris, R. (1986) Some
common features of periodically forced reacting systems. Chem. Eng.
Sci. 41, 1263−1276.
(38) Zoltowski, B. D., Motta-Mena, L. B., and Gardner, K. H.
(2013) Blue light-induced dimerization of a bacterial LOV-HTH
DNA-binding protein. Biochemistry 52, 6653−6661.
(39) García, C. E., Prett, D. M., and Morari, M. (1989) Model
predictive control: Theory and practice-A survey. Automatica 25,
335−348.
(40) Meadows, E. S., and Rawlings, J. B. (1996) Model Predictive
Control, in Nonlinear Process Control (Seborg, D. E., and Henson, M.
A., Eds.), pp 233−310. Prentice Hall, Englewood Cliffs, NJ.
(41) Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Po (2000)
Constrained model predictive control: Stability and optimality.
Automatica- 36, 789−814.
(42) Milias-Argeitis, A., and Khammash, M. (2015) Adaptive model
predictive control of an optogenetic system. Conf. Decis. Control,
1265−1270.
(43) Sa  nchez, B. J., Zhang, C., Nilsson, A., Lahtvee, P.-J., Kerkhoven,
E. J., and Nielsen, J. (2017) Improving the phenotype predictions of a
yeast genome-scale metabolic model by incorporating enzymatic
constraints. Mol. Syst. Biol. 13, 935.
(44) Carrasco-Lo  pez, C., García-Echauri, S. A., Kichuk, T., and
Avalos, J. L. (2020) Optogenetics and biosensors set the stage for
metabolic cybergenetics. Curr. Opin. Biotechnol. 65, 296−309.
(45) Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. (1989)
VODE: A Variable-Coefficient ODE Solver. SIAM J. Sci. Stat. Comput.
10, 1038−1051.
(46) Jones, E., Oliphant, T., and Peterson, P. SciPy: Open source
scientific tools for python, version 1.4.1, SciPy Developers.
(47) Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997) Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale bound-con-
strained optimization. ACM Trans. Math. Softw. 23, 550−560.
(48) Nocedal, J., and Wright, S. J. (2006) Numerical Optimization,
Springer, New York.
(49) Muske, K. R., and Edgar, T. F. (1996) Nonlinear State
Estimation, in Nonlinear Process Control (Seborg, D. E., and Henson,
M. A., Eds.) pp 311−370, Prentice Hall.

(50) Kraft, D. (1988) A Software Package for Sequential Quadratic
Programming, Institut fur dynamik der Flugsysterne Oberpfaffenhofen,
Cologne, Germany.
(51) Doedel, E. J. (1981) AUTO: A program for the automatic
bifurcation analysis of autonomous systems. Congr. Numer. 30, 265.

ACS Synthetic Biology pubs.acs.org/synthbio Letter

https://dx.doi.org/10.1021/acssynbio.0c00372
ACS Synth. Biol. 2021, 10, 219−227

227

https://dx.doi.org/10.1073/pnas.0507512102
https://dx.doi.org/10.1038/msb.2009.25
https://dx.doi.org/10.1038/msb.2009.25
https://dx.doi.org/10.1016/j.chembiol.2013.03.005
https://dx.doi.org/10.1016/j.chembiol.2013.03.005
https://dx.doi.org/10.1091/mbc.e03-11-0794
https://dx.doi.org/10.1091/mbc.e03-11-0794
https://dx.doi.org/10.1126/science.1113834
https://dx.doi.org/10.1126/science.1113834
https://dx.doi.org/10.1038/nrm2503
https://dx.doi.org/10.1038/nrm2503
https://dx.doi.org/10.1073/pnas.1211902109
https://dx.doi.org/10.1073/pnas.1211902109
https://dx.doi.org/10.15252/msb.20167456
https://dx.doi.org/10.15252/msb.20167456
https://dx.doi.org/10.15252/msb.20167456
https://dx.doi.org/10.1038/nmeth.2884
https://dx.doi.org/10.1038/nmeth.2884
https://dx.doi.org/10.1038/nmeth.f.326
https://dx.doi.org/10.1038/nmeth.f.326
https://dx.doi.org/10.1016/0009-2509(86)87099-3
https://dx.doi.org/10.1016/0009-2509(86)87099-3
https://dx.doi.org/10.1021/bi401040m
https://dx.doi.org/10.1021/bi401040m
https://dx.doi.org/10.1016/0005-1098(89)90002-2
https://dx.doi.org/10.1016/0005-1098(89)90002-2
https://dx.doi.org/10.1016/S0005-1098(99)00214-9
https://dx.doi.org/10.1109/CDC.2015.7402385
https://dx.doi.org/10.1109/CDC.2015.7402385
https://dx.doi.org/10.15252/msb.20167411
https://dx.doi.org/10.15252/msb.20167411
https://dx.doi.org/10.15252/msb.20167411
https://dx.doi.org/10.1016/j.copbio.2020.07.012
https://dx.doi.org/10.1016/j.copbio.2020.07.012
https://dx.doi.org/10.1137/0910062
https://dx.doi.org/10.1145/279232.279236
https://dx.doi.org/10.1145/279232.279236
https://dx.doi.org/10.1145/279232.279236
pubs.acs.org/synthbio?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00372?ref=pdf

