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ABSTRACT: Dynamic control of engineered microbes using light o] i %

via optogenetics has been demonstrated as an effective strategy for I l < N\ 8

improving the )Tield'of biofuels,.chemical's, an(.i other pro'duct.s. An @ S__ - -8 “‘/,' LA

advantage of using light to manipulate microbial metabolism is the © o ] Gal8op GFP 2]/ \( |/ \
EL222* ' - / /

relative simplicity of interfacing biological and computer systems,
thereby enabling in silico control of the microbe. Using this strategy o —F - - .
for control and optimization of product yield requires an cau Time
understanding of how the microbe responds in real-time to the a
light inputs. Toward this end, we present mechanistic models of a
set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and
how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These
models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient
levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for
improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.

B INTRODUCTION including that it can be added or removed instantly from a
cell culture, it does not rely on changes in media composition,
it is relatively inexpensive, it is easily tunable by either intensity
or duty cycle, and different wavelengths could be used to
orthogonally control different sets of genes. The use of light in
controlling the production levels of useful products such as
biofuels, chemicals, and recombinant proteins has already been
demonstrated.”'®'” We envision that these and similar
methods will find widespread use in biotechnology.

A key advantage of using light to manipulate metabolism is
the ease with which it can interface with computer control
systems. Several research groups have used optogenetics for
real-time control of gene expression, using feedback control
techniques such as model predictive control to track the set
point of fluorescent reporter proteins or cell growth rates."* >
Additional challenges, however, are introduced when the
optogenetic circuit does not drive the expression of a
fluorescent reporter that is directly measured, but rather
controls enzyme expression, thereby acting as a metabolic
valve.”! Therefore, understanding the dynamics of optogenetic
circuits is valuable for predicting how the circuits will perform

Effective dynamical models that describe how systems respond
in time to manipulated inputs and perturbations are required
for developing the optimization and control algorithms that are
ubiquitous in modern engineered systems. In particular,
sophisticated control algorithms have enabled the success of
the modern petrochemical industry by delivering consistent
product quality at high yield." Partly inspired by this success,
there has been increasing interest in developing and deploying
such mathematical techniques to living systems for biotechno-
logical applications, leading to the growth of a research area
termed “cybergenetics.”>"® A potential application of these
ideas is to optimize production of biofuels, chemicals, or
pharmaceuticals by engineered microbes.”

Deploying optimization and control techniques to a specific
problem requires effective tools to manipulate the system in
real-time. Toward this end, synthetic biology provides an
extensive toolkit for dynamic control of cell cultures, and
dynamic control strategies have already been demonstrated as
effective for increasing product yield in microbial fermenta-
tions.”” Common strategies to control cellular metabolism

include induction of metabolic pathways using chemicals (e.g.,

IPTG' or doxycycline''), alternative carbon sources (e.g, Received: July 14, 2020 Sy(”\the“c‘&g»@gy
galactose,12 arabinose,"® or ethanolH), or nutrient deprivation Published: January 25, 2021 *" i”‘«:

(e.g, methionine'’) that can be added to the batch. v :"; ~
Alternatively, our group has developed optogenetic circuits 7 ‘?»\
that induce or repress metabolic pathways using light.”'® Light -

has several advantages compared to chemical induction,
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Figure 1. Model design and parameter fitting. (A) Schematic of the OptoINVRT7 model; simpler circuits can be obtained by removing connections
as appropriate. Solid lines indicate biochemical transformations (including degradations) and dashed lines indicate activation or repression. (B)
Dose—response of OptoEXP circuit: model (curve) and experimental data (points) show GFP expression in yeast using an 80 s duty cycle with
varying light dose. (C) Dose—response of OptoINVRT circuits: model (curve) and experimental data (points) show GFP expression in yeast using
an 80 s duty cycle with a varying blue light dose. (D) Model (curve) and experimental data (points) showing change in GFP expression versus time
when blue light is switched from on (minimal expression) to off (maximum expression) for OptoINVRT1 (blue) and OptoINVRT7 (purple)
circuits. In all experiments, data are first normalized by average GFP expression under the TEFI promoter, and then normalized by the maximum
observed expression level for that particular circuit. Data are from our other publications;”'® error bars represent the s.d. of four biologically
independent 1 mL sample replicates exposed to the same conditions. All experiments were repeated at least three times. The dose—response curves
computed from the models show time-averaged GFP expression of 80 s limit cycles.

in different contexts and selecting a circuit for a specific B RESULTS AND DISCUSSION

application. We developed mechanistic models of five optogenetic circuits

We recently presented a set of rapid optogenetic circuits for for Saccharomyces cerevisiae described in our previous work:”'®
controlling yeast metabolism that were used to improve yields OptoEXP, OptoINVRT1, OptoINVRT2, OptoINVRT3, and
OptoINVRT?7. OptoEXP is designed to induce transcription in
blue light via VP16-EL222, an engineered blue light-activated
transcription factor derived from Erythrobacter litoralis.”
OptoINVRT circuits are designed to invert the transcriptional

of biofuels and chemicals,'® as well as a data-driven
methodology for learning the nonlinear optogenetic circuit
dynamics.”” In this Letter, we develop mechanistic dynamical

models of these circuits and show that they accurately predict response to light by repurposing the galactose regulon native to
transient and long-time gene expression under various light S. cerevisiae. Specifically, the desired protein is expressed under
conditions. We then analyze the models to reveal how the a promoter activated by Gal4p, which itself is natively

regulated by the repressor Gal80p. Gal80p is then controlled
by the light-dependent activity of VP16-EL222. OptoINVRT1
and OptoINVRT?2 express the transcriptional activator Gal4p

circuits respond to complex light patterns and demonstrate

their amenability to modern control algorithms. Our purpose is

to use mechanistic understanding combined with mathematical using different constitutive promoters, ADH1 and PGKI,
models to reveal how choices made in circuit design result in respectively. OptoINVRT3 and OptoINVRT7 are further
both qualitative and quantitative differences intransient and engineered by adding a light-activated degron tag to the

transcriptional activator Gal4p. However, Gal80p in Opto-
INVRT1, OptoINVRT2, and OptoINVRT3 is highly persis-
tent, which slows the circuit dynamics. This was remedied in

steady levels of the protein under control of these circuits. The

results we present inform circuit design, help with pairing

existing circuits with particular tasks, and may be useful in OptoINVRT?7 by adding a constitutive degron tag to Gal80p.

developing real-time control of microbial chemical production Degron tags are small peptide sequences that target a protein
. . . 2425 .

using optogenetics. for degradation. Such tags can be appended to protein
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sequences to artificially reduce their halflives.”>*” Protein

degradation can be made inducible by placing constraints on
proteolytic activation; for example, by only expressing the
protease gene in the presence of galactose.” Light-activated
degron tags work by fusing the core degradation tag sequence
with a photosensitive domain that undergoes a conformational
shift when exposed to certain wavelengths of light, thereby
hiding or exposing the degradation tag for protease recognition
based on light conditions.”” Further details of the optogenetic
circuits studied in this work are available in our previous
publications.”'

To study these circuits, we used ordinary differential
equation models, which have proven valuable in analyzing
gene networks of low to moderate complexity in several
different systems,”*”>’ including some optogenetic cir-
cuits.”**7** A schematic of the OptoINVRT circuit design is
shown in Figure 1A. The models exclude some mechanistic
details (e.g., binding of Gal80p to Gal4p) to simplify the
analysis and avoid overfitting and unidentifiable parameters
(see Methods). The OptoINVRT models are composed of
four ordinary differential equations, representing species
balance equations for the fraction of light-activated VP16-
EL222 (i.e, VP16-EL222 in the dimer state, bound to DNA,
and activating transcription), denoted EL222* in the model,
and the normalized protein concentrations of Gal80p (the
repressor), Galdp (the activator), and P, (the protein being
control by the circuit). These models describe the average
protein levels over the entire population of cells. The model
units are fraction of maximum value, which implies that all
variables range from O to 1 and that Py, in each circuit is
normalized by the maximum value of expression level for that
specific circuit. Further details on model development and
assumptions are available in the Methods. For the
OptoINVRT circuits, the model equations are

dEL222*  u(t) — EL222*
dt - TEL222%
dGal8op  (H,(EL222*IKg; 55y figpy55+) — Gal80p)
e TGalsop
Gal80p
S
dGaldp _ 1 — GaMp  u(t)Galdp
dt TGaldp TLAD
dPger  (H(Gal80pIK g0 MGaisop) GAl4P — Propger)
dt

Ttarget

Here, EL222%, Gal80p, Galdp, and Py, are the state variables,
t is time, and u(t) is the binary input variable indicating that
the blue light is on (u = 1) or off (u = 0). H, (CIK,n) = C"/(C"
+ K") and H, (CIK,n) = K*/(C" + K") are Hill functions for
transcriptional activation and repression, respectively. The time
constants, 7, are empirical and can be considered reciprocals of
first order rate constants. OptoINVRT1 and OptoINVRT2
circuits are the simplest designs; they assume 7p, = oo and

S = 0. OptoINVRT1 and
OptoINVRT2 differ from each other only in the use of
different promoters for Gal4p, which is accounted for in the

models by using differing Hill parameters in the expression for

Tiap = ©0, implying that

221

d
P;:get_ OptoINVRTS3 is similar to OptoINVRT2, except that

Gal4p has been modified with a light activated degradation tag

dGal4p

on Gal4p; therefore, it has nonzero due to the term

containing finite 7 4. Finally, OptoINVRT?7, with its modified
Gal80p, includes the term containing finite 7pp leading to
lower steady state levels of Gal80p; we further allow a different
value of 7 ,p in OptoINVRT7 vs OptoINVRT3, as an
empiricism that may further correct for the large difference
in protein levels across circuits. All other parameter definitions
and their values are available in Supplementary Table 1. The
blue light input, u(t), can be periodic, so the system can be
periodically forced, and one may expect long-term solutions to
be oscillations characterized by the forcing frequency (what we
will refer to as “periodically forced limit cycles”). The
OptoEXP circuit model can be obtained by simplifying the
OptoINVRT models, where equations for Gal80p and Gal4p
are eliminated, and the equation for Py, is replaced by

dp,

target

dt

_ (H,(EL222*|K1 55, fpr20p+) — Ptarget)

Ttarget

The models predict both the long-time and transient responses
of Py expression under the OptoEXP and OptoINVRT
circuits. Transient responses are calculated by integrating the
state equations in time. The “long-time” Py, expression is
found for a given periodic light schedule by calculating the
average Py, expression over a stable periodically forced limit
cycle solution®” (see Methods for details). Because the
dynamics of Py are much slower than the light-active
species in the model, the P expression is essentially
constant during short and intermediate forcing period cycles
(Supplementary Figure 1). Therefore, the periodically forced
limit cycle calculations can be used to calculate a dose—
response curve for each optogenetic circuit (Figure 1b,c),
where the dose is the fraction of time that light is on, and the
response is the normalized Py, expression. The dose
response curve also depends on the forcing period (the duration
of time until the cycle is repeated). If the forcing period is 80 s
(Figure 1B,C, and Supplementary Figure 1A,B), then a 10%
dose means that blue light is continuously ON for 8 s and then
continuously OFF for 72 s.

Physiologically relevant parameters are necessary to ensure
predictive accuracy of the model. We estimate model
parameters using data from our recent publications”'® in
which GFP is expressed under each of the circuits (i.e., Piyrger =
GFP). Except for the activation time of VP16-EL222 (which
was previously reported®®), model parameters were estimated
from experimental data of GFP expression from OptoEXP and
each OptoINVRT circuit after 8 h, under different light
conditions (Figure 1B,C), and from circuit activation experi-
ments (Figure 1D), and can be found in Supplementary Table
1. Our parameter estimation strategy (available in the
Methods) allows our model to predict gene expression when
light input variations occur in short time scales, such as with 80
s forcing periods, as well as in time scales of hours. The
parameter values discovered from the dose—response curve
(Figure 1B,C) and kinetics experiments (Figure 1D) are
consistent with our expectations, observations, and known
biology. For example, Gal80p has a very long estimated decay
constant (16 h), which makes this protein linger in the system
for a relatively long time, unless a degradation tag is added to
the protein (as in OptoINVRT7, which adds a second time

https://dx.doi.org/10.1021/acssynbio.0c00372
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Figure 2. Optogenetic circuit model predictions: Expression surface for OptoINVRT2 (A), and OptoINVRT?7 (B), showing the circuit expression
response dependence on light dose and forcing period (see Supplementary Figure 2 for expression surfaces for OptoEXP, OptoINVRT1 and
OptoINVRT3). Stable limit cycle solution for OptoINVRT2 (C) and OptoINVRT7 (D) circuits, where each forcing period is 1 day. For the first
12 h, blue light is ON for 0.1 out of 1 h, and for the second 12 h, blue light is ON for the initial 1.2 h, and off the remaining time (the black line
demarcates the split between the regimes). The average light dose over the whole 24-h period is 10%. For OptoINVRT?2 (C), neither forcing
regime supplies light for sufficient time to deactivate the circuit. However, for OptoINVRT7 (D), significantly different behaviors in protein levels
are observed: for the first 12 h where Galdp does not have sufficient time to fully regenerate between light doses, Py, levels consistently drop;
however, during the second 12 h, Gal4p is given enough time to regenerate in the dark, allowing the accumulation of Py, at higher levels. (Note
that Py, is shown as a dashed line in panel C to prevent it from obscuring the line for Galdp).

constant, Tpp = S h). On the basis of the standard errors of the The dynamic nature of optogenetic circuits and their distinct
parameter estimates (see Methods), the estimates are mostly responses to different forcing periods may be exploited for
robust and indicate the parameters are identifiable from the improved process design. With this goal in mind, we used the
data, with the important exception of 7pp which is not mechanistic circuit models to explore how the shape of the
identifiable from the kinetics experiments. We note that due to dose—response curve depends on the forcing period. We
time scale separation, the time constants (TngegTGaISOPI Taataps calculated the dose—response curve of each optogenetic circuit

model to various forcing periods from 10 s to 10 min—we call
these plots “expression surfaces” (Figure 2A,B and Supple-
mentary Figure 2). We limited the forcing periods to 10 min
because this is approximately 10 times faster than the response
time of GFP (Supplementary Table 1), which ensures that the
target protein remains constant over a forcing period
(Supplementary Figure 1C,D) assuming the target protein

7pp) have almost no effect on the shapes of the dose—response
curves (Figure 1B,C), while the Hill parameters have almost no
effect on the activation kinetics (Figure 1D).

The shapes of the dose—response curves (Figure 1C) and
the activation kinetics (Figure 1D) for the OptoINVRT
circuits are consequences of the circuit designs that are

reflected in the mathematical models. We note that circuits has a similar response time as GFP. For OptoINVRTI
containing light activated degradation of the activator, Gal4p, (Supplementary Figure 2A), OptoINVRT2 (Figure 2A), and
(OptoINVRT3 and OptoINVRT?7) have “decay-like” dose OptoEXP (Supplementary Figure 2C), the shapes of the
response curves, whereas those that do not (OptoINVRT1 and dose—response curves change substantially with the forcing
OptoINVRT2) have “sigmoid-like” dose response curves. This period, because the key regulator in the OptoINVRT systems
distinction is a result of the fast response of Gal4p to light (Gal80p) and the target protein itself in OptoEXP are tethered
when it is engineered to include a light-activated degron to the average activation of VP16-EL222, which due to its
domain. rapid activation depends on the forcing period (Supplementary
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Figure 3. Simulation of model predictive control. In silico demonstration of model predictive control of GFP expression (green curves) using the
OptoINVRT?7 circuit and several reference trajectories (green dashed curves). The manipulated variable is the light dose (blue curves) which
indicates the fraction of time that blue light is on out of an 80 s duty cycle.

Figure 1). Conversely, OptoINVRT3 (Supplementary Figure
2B) and OptoINVRT?7 (Figure 2B) show a sharper decay-like
behavior with light dose, which is a consequence of the light-
activated degradation of Gal4p, rendering these circuits more
light-sensitive and thus virtually unaffected by the forcing
period at short time scales. The expression surfaces reflect the
response dynamics of optogenetic circuits and are useful in
determining the light dose and short time scale forcing periods
required to obtain a desired constant gene expression outcome.
Additionally, we speculate that this type of analysis could be
used to develop single-input, multi-output controls systems.
We imagine a single binary manipulated input variable (light
ON or OFF), where there are two degrees of freedom for
control (dose and forcing period). For example, if a single
organism expressed two optogenetic circuits with orthogonal
chemistries, then it may be possible to keep one circuit active
while deactivating the other by changing only the forcing
period, without everchanging the overall light dose.

The mechanistic models presented here reveal qualitatively
different behaviors for the optogenetic circuits that are based
on different architectures, which result from differences in the
time scale of the response of the important proteins that
regulate the expression (Gal80p and Gal4). When we apply
longer forcing periods and more complex forcing functions, the
target protein can no longer be assumed constant over a
periodically forced limit cycle, but we can still calculate the full,
time-varying solution for the target protein expression. For
example, OptoINVRT2 (Figure 2C) and OptoINVRT7?
(Figure 2D) respond quite differently to an irregular forcing
function over a 24 h period, with the relatively fast response of
OptoINVRT?7 enabling comparatively rapid changes in the
target protein expression. For OptoINVRT7, 6 min pulses each
hour over the first 12 h are sufficient to partially degrade

223

Gal4p, resulting in a reduction of protein expression;
subsequently, the absence of light during the final 10.8 h
(after a 1.2-h incubation in light) leads to the regeneration of
Gal4p, and in turn, gradual recovery of expression, aided also
in part by the more rapid constitutive degradation of Gal80p in
this circuit. In contrast, OptoINVRT2 does not respond fast
enough to exhibit any changes in expression using this light
schedule, keeping expression constantly high. This shows that
when light inputs induce significant fluctuations in the target
expression, for example during the limit cycle for Opto-
INVRT?7 (Figure 2D), where simple dose—response relation-
ships no longer apply, our models can still make predictions
about time varying expression under such complex forcing
periods.

The models and the trajectories of expression levels that we
compute reveal how the dynamics of the regulators in the
optogenetic circuit (in our case, VP16-EL222, Gal4p, and
Gal80) affect both the transient and steady level of the protein
under the circuit’s control and offer suggestions for process
design. For example, if tunability of protein levels is more
important than rapid response or maximum expression levels,
slowly varying regulators (as in OptoINVRT1 and Opto-
INVRT2) with longer forcing periods may be desired.
Conversely, if rapid response and high expression levels are
needed, then fast decaying regulators (such as OptoINVRT?7)
are preferable.

Mathematical modeling of optogenetic systems such as
VP16-EL222 provides more accurate predictions of response
times for light-controlled transcriptional activation and protein
degradation. Such models may be the most effective way to
optimize performance of the system in bioreactors, given the
infinite number of possible time schedules that could be
applied during a fermentation. Model predictive control
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(MPC), which is widely used in industrial practice,*~*" can

utilize these models to enable robust closed-loop feedback
control of complex biological systems when supplemented with
real-time data, and has previously been used with some
optogenetic circuit applications.”'®*> We anticipate that by
combining system models with live fermentation output
tracking, in silico controllers can be designed and used to
generate well-timed light pulse inputs that optimize chemical
production.

Toward this end, we developed an MPC system to track set
point changes in GFP expression under the OptoINVRT?7
circuit using our mechanistic models. We use a nonlinear MPC
algorithm (see Methods) that relies on feedback from a
fluorescent reporter protein to estimate the internal state of the
optogenetic circuit (i.e., the current levels of Gal4p, Gal80p,
and VP16-EL222 activation). The MPC system effectively
tracks a variety of reference trajectories (i.e., desired time-
varying GFP expression profiles), including ramps, holds,
oscillations, and steps (Figure 3). For every case, the MPC
controller effectively drives the simulated system along the
reference trajectory, even if we consider the effects of imperfect
modeling, limited only by the kinetics of the circuits. These
results support the possibility of online, model-based control of
gene expression for the optogenetic circuits developed in this
work.

The models developed here predict the levels of protein
controlled by the optogenetic circuit as functions of light input.
Future development could extend these models to include
important quantities such as the production of metabolites or
products synthesized using the proteins under control of the
circuit, as well as account for the effects of the circuit dynamics
on cell growth/biomass production. One possible way to
incorporate these effects would be to include phenomeno-
logical expressions, such as Michaelis Menten rate laws for
metabolite production or Monod expressions for growth rate
that are coupled to the predicted Py levels. Alternatively,
these dynamic models could be coupled with genome-scale
flux balance analyses, especially more recent versions that
explicitly include constraints from enzyme levels.*’ With such a
model in place, it would be straightforward to design state
estimators to provide real-time estimates of protein or
metabolite levels; the state estimator could use real-time data
from fluorescent biosensors** or infrequent measurements
from off-line assays for feedback.

In conclusion, we built computer models to predict the
behaviors of optogenetics circuits at different time scales and
light doses. These biophysical models are consistent with
expected biology and closely fit experimental data from short
(Figure 1B,C) and long (Figure 1D) time scales. Because they
have a biophysical foundation, we anticipate these models to
generalize better than empiricisms and help choose the best
optogenetic circuit for a particular task. They enable prediction
of expression for any conceivable light schedule and are
amenable to modern control systems such as MPC. Ultimately,
we envision modeling approaches such as the ones described
here will be important for deploying computer-assisted
dynamic control and optimization of microbial chemical
production.

B METHODS

Model Development and Assumptions. The mathe-
matical model is composed of dynamic species balance
equations on the four species of interest: activated (i.e.,
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dimerized) VP16-EL222, Gal80p, Galdp, and Py (the gene
being expressed). We assume that steady-state expression of
Gal80p and Py, are described by Hill equations, and that the
relationship between Py, and Galdp is in the linear regime of
the Hill equation (we tested using the full Hill equation, with
no improvement in model fidelity). We also assume the total
quantity of VP16-EL222 is constant, and some fraction of
VP16-EL222 is activated; VP16-EL222 activation kinetics are
first order; Gal80p, Galdp, and Py are produced and
degraded with first order kinetics. This implies that tran-
scription or translation are not explicitly modeled but their
rates are accounted for by the parameter estimates. We also
assume the light activated degron domain on Gal4p induces a
first order degradation mode when light is on; the degron
domain on Gal80p induces a first order degradation mode at
all times. Finally, we assume light penetration does not need to
be explicitly modeled and that all cells receive effectively the
same light dose (justified by our previous observations’).

We assume that the expression of VP16-EL222 is constant in
time and constant across each of the different circuit designs.
We also assume that the kinetics of the different protein
species are constant across different circuits. However, we do
not assume that maximum protein levels (other than VP16-
EL222) are constant across different circuits. The expression of
GFP in each circuit was normalized by its maximum expression
specific to the circuit (to more easily compare qualitative
differences in the circuit responses), and by its expression
under a TEF (constitutive) promoter (to place measurements
from the dose response curves and kinetics experiments on a
common scale). We allowed variable Hill parameters (which
are phenomenological rather than mechanistic) across some
circuits, as well as included the term 7 for optoINVRT7, to
account for different maximum expression levels across circuits.
We also note that it may not be trivial to extend this model to
situations when the light intensity, rather than the duty cycle, is
variable. Under these circumstances, it is likely that the process
gains are nonlinear, which would need to be modeled
explicitly.

Limit Cycle Calculation. In our mathematical model, we
obtain periodically forced stable limit cycles of our ordinary
differential equation model by (1) finding a single point on the
limit cycle solution, and (2) integrating the solution from time
0 to T (T = forcing period). Because the dynamics of Parget
production and degradation are much slower than the forcing
period, Py is essentially constant during this limit cycle;
therefore, we can average P.. expression in time and
consider this value the “steady” Py, expression. To find such
stable limit cycles (1:1 resonant oscillations), we examine the
discrete dynamical system defined by the change in state
variables after one forcing period, which is called the
stroboscopic map. Fixed points on the stroboscopic map
provide initial conditions for the limit cycle solution. To find
such fixed points, we employ a Newton—Raphson algorithm
based on a shooting formulation in which we integrate the
state equations and variational equations for one period per
iteration; integrating the variational equations supplies the
Jacobian for Newton—Raphson iterations (c.f, Kevrekidis et
al.’”). We use the VODE algorithm® through the SciPy
interface*® to integrate the equations. An illustration of VP16-
EL222* changing limit cycles due to a change in forcing period
is shown in Supplementary Figure 3.

Parameter Estimation. Parameters are estimated by
minimizing an ordinary (unweighted) least-squares objective
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function. For the dose—response curves (Figure 1B,C), Pyger
expression is calculated as described in the Limit Cycle
Calculation; for the kinetics curves (Figures 1D), GFP (Pyyge;)
expression is calculated by integrating the state equations in
time. In both cases, the objective function is minimized using
the BFGS algorithm®”*® (Jacobian from finite differences)
implemented in SciPy. Supplementary Table 1 shows the
parameter values and experiments used to obtain them.

We used the progression of the optogenetic circuits from
simple (OptoEXP) to complex (OptoINVRT?7) and the time-
scale separation between the fast changing variables (EL222*
and Galdp) and slow changing variables (Ptarget and Gal80p) to
fit parameters in a stepwise fashion. First, we inserted
arbitrarily large time constants for Py, Gal80p, and Galdp
to estimate the Hill parameters for EL222* and Gal80p from
the dose response curves for OptoEXP and OptoINVRT1/2.
Next, we used data from the OptoINVRT3 dose response
curve to estimate the time constant for Gal4p light-activated
degradation. We repeated this procedure with OptoINVRT?7.
Then, we estimated the protein time constants using the data
from kinetics experiments. Finally, we confirmed our
assumption that the time constants for the proteins do not
affect the dose—response curves.

We estimated standard errors of the parameters by using a
finite difference approximation of the Hessian of the objective
function. The standard errors can then be estimated using

SE(f) = 6 diag(H™"), with 6 = , Nf°—"’M, where f,; is the sum
of squared errors, N is the number of data points, and M is the
number of parameters. Supplementary Table 1 shows the
value, standard error, and the procedure for estimating each of
the model parameters for each of the optogenetic circuits. We
note that one parameter, 7pp is unidentifiable from our data
(i.e, the objective function gradient is numerically zero over a
large range of values, resulting in a singular Hessian matrix).

Model Predictive Control. The general idea in model
predictive control (MPC) is to use a dynamical system model
to predict the system output over a finite prediction horizon
and optimize input variables over this prediction horizon to
best match a desired output trajectory called the reference
trajectory. Then, only the first step of the optimized input
trajectory is applied, and the process is repeated at each control
interval.

For this system, we developed a full nonlinear implementa-
tion of MPC where duty cycle is the manipulated variable. We
use discrete-time (stroboscopic) MPC with a control interval
(period) of 800 s. The forcing period (which, for simplicity,
should be an integer divisor of the MPC period) was chosen to
be 80 s to correspond with our experiments. The time horizon
was chosen to be 6 control intervals (~1.3 h). Choosing the
time horizon requires balancing controller performance
(improved with longer time horizons) and computational
intensity (improved with shorter time horizons). Unmeasured
states (Gal80p, Gal4p, EL222*) were obtained from GFP
measurements online using a deterministic observer with an
innovation function gain of 0.1 chosen for stability* where
estimates were constrained to lie between 0 and 1. The state
estimator reliably converged in the first several iterations
(Supplementary Figure 4). Our objective function is the
ordinary least-squares difference between the predicted GFP
trajectory and the reference GFP trajectory during the time
horizon, and has a box constraint on the inputs (0 < light dose
< 1). At each control interval, we use a sequential least-squares
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quadratic programming (SLSQP) algorithm® to obtain the
best light dose at each of the next 6 control intervals. The
Jacobian for optimization was estimated through finite
differences. The light dose from the optimized trajectory is
implemented for the next control interval and the process is
repeated. To test the control system, we used a “perturbed”
model where a Gaussian random variable (4 = 0, 6 = 0.05%6,)
was added to each parameter to simulate plant—model
mismatch. This model is called the “Simulated Trajectory” in
Figure 3.

Numerical Continuation. To efficiently investigate the
effect of varying the input waveform and forcing period, we
used numerical continuation to calculate GFP expression with
light dose ranging from 0% to 100% and forcing period ranging
from 10 s to 10 min. The numerical computation package
AUTO’" was used for calculations. The “maps” function was
used in AUTO to perform continuation of the stroboscopic
map using the VODE integrator to numerically construct the
map. The state Jacobian was obtained from the variational
equations and the sensitivity matrix (or Jacobian with respect
to dose and forcing period parameters) from finite differences.
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