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Lattice QCD calculations of form factors for rare Standard Model processes such as B → K`+`−

use tensor currents that require renormalisation. These renormalisation factors, ZT , have typically
been calculated within perturbation theory and the estimated uncertainties from missing higher
order terms are significant. Here we study tensor current renormalisation using lattice implemen-
tations of momentum-subtraction schemes. Such schemes are potentially more accurate but have
systematic errors from nonperturbative artefacts. To determine and remove these condensate con-
tributions we calculate the ground-state charmonium tensor decay constant, fTJ/ψ, which is also of

interest in beyond the Standard Model studies. We obtain fTJ/ψ(MS, 2 GeV) = 0.3927(27) GeV,
with ratio to the vector decay constant of 0.9569(52), significantly below 1. We also give ZT factors,
converted to the MS scheme, corrected for condensate contamination. This contamination reaches
1.5% at a renormalisation scale of 2 GeV (in the preferred RI-SMOM scheme) and so must be
removed for accurate results.

I. INTRODUCTION

Rare Standard Model processes, for example those that
first appear at 1-loop order through so-called “penguin”
diagrams, are of great interest in searches for new physics.
The very low rate for the process in the Standard Model
means that beyond the Standard Model searches have
small backgrounds. The signal rate will also be small,
however, so it is important to have firm theoretical under-
standing of the Standard Model contribution. This starts
with the effective weak Hamiltonian, Heff , after integrat-
ing out the weak bosons. Heff contains flavour-changing
neutral- current operators that can induce, for example,
rare b → s processes [1]. Sandwiched between hadronic
states these operators yield matrix elements that can be
converted into form factors for differential decay rates
for comparison to experiment. The best way to calculate
the matrix elements is by using lattice QCD. The matrix
elements required are those of operators in a continuum
scheme for QCD, however, ideally in the same scheme
in which the Wilson coefficients for the operators in Heff

were determined (the MS scheme). This means that the
lattice operators must be matched accurately to the con-
tinuum scheme. For such b → s processes tensor opera-
tors in Heff , e.g. sLσ

µνbR, cause a particular problem for
lattice to continuum renormalisation, because they can-
not be connected to conserved currents. We show how to
solve that problem here.

An example of a rare b → s process being studied ex-
perimentally is B → K`+`− decay. A first unquenched
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lattice QCD calculation of this decay was performed in
[2] by members of the HPQCD collaboration and an-
other in [3] by the Fermilab lattice and MILC collab-
orations. The former used Highly Improved Staggered
Quark (HISQ) [4] light and strange quarks and NRQCD
b quarks and the latter used asqtad light and strange
quarks and Fermilab b quarks. In the HPQCD calcula-
tion the tensor current was renormalised using one-loop
lattice QCD perturbation theory for the NRQCD-HISQ
current. A 4% systematic uncertainty on the tensor form
factor was then taken to account for missing higher order
terms in αs. The Fermilab/MILC calculation also used
one-loop lattice QCD perturbation theory for the Fer-
milab clover-asqtad current renormalisation. The O(α2

s)
uncertainty on the tensor form factor was taken as 2%.

The HPQCD collaboration has recently performed a
series of b physics calculations using the HISQ formal-
ism for all quarks, working upwards in mass from that
of the c quark and mapping out the dependence on the
heavy-quark mass [5–8]. The success of this methodol-
ogy indicates the possibility of improvement on previous
B → K calculations for which it would be important also
to reduce the uncertainty arising from the tensor current
renormalisation.

Here we use a partially nonperturbative procedure
for the renormalisation using momentum-subtraction
schemes implemented on the lattice as an intermediate
scheme [9]. This produces tensor current renormalisa-
tion factors with better accuracy than those used in the
calculations mentioned above because the perturbative
part of the calculation, the matching from momentum-
subtraction to the MS scheme, can be done through α3

s

in the continuum. Renormalisation factors calculated on
the lattice in momentum-subtraction schemes suffer from
nonperturbative artefacts in general. Because these sur-
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vive the continuum limit they need to be removed or
otherwise accounted for. The artefacts are suppressed
by powers of the renormalisation scale µ and can there-
fore be studied by performing calculations at multiple
µ values, as we did for the quark mass renormalisation
in [10]. We show here how to remove such systematic
effects in the tensor renormalisation factor by calculat-
ing a simple matrix element of the tensor operator that
we can determine accurately in the continuum limit. For
this purpose we use the J/ψ tensor decay constant fTJ/ψ.

The vector J/ψ decay constant fVJ/ψ, calculated from

the vector charmonium correlator, is related to the lep-
tonic decay rate of the J/ψ meson. For a recent very
accurate determination of this decay constant see [11].
In contrast there is no simple decay rate that can be re-
lated to the J/ψ tensor decay constant. 2-flavour lattice
QCD and QCD sum rules calculations of fTJ/ψ and the ra-

tio fTJ/ψ/f
V
J/ψ were presented in [12], and we will compare

to those results here. fTJ/ψ is required for the calculation

of bounds on beyond the Standard Model charged lepton
flavour violating J/ψ decay rates [13] and a similar cal-
culation for other vector mesons would extend this. The
B∗s tensor decay constant appears in parameterisations of
its Standard Model decay rates B∗s → `+`− [14]. Calcu-
lation of this decay constant is underway using the tensor
current renormalisation factors we have determined here.

In the next Section we discuss the definition of the
tensor current renormalisation factor in the RI-SMOM
and RI′-MOM momentum-subtraction schemes. In Sec-
tion III we give details of our lattice calculation of the
tensor renormalisation factor. This is followed by our lat-
tice calculation of the J/ψ tensor decay constant in Sec-
tion IV. Our results for fTJ/ψ are discussed in Section V

followed by discussion of our ZT results in Section VI.
Finally, we give our conclusions in Section VII.

II. ZT IN THE RI-SMOM AND RI′-MOM
SCHEMES

Momentum-subtraction schemes provide useful inter-
mediate schemes in matching lattice QCD to the con-
tinuum MS scheme because they provide a way to im-
plement the same scheme both on the lattice and in the
continuum [9]. Then the continuum limit of the lattice
results will be in the continuum momentum-subtraction
scheme (and independent of the lattice action used) and
can be matched to the MS in continuum QCD.

In both of the momentum-subtraction schemes that
we consider here the wavefunction renormalisation Zq is
defined in terms of the inverse of the momentum space
quark propagator S(p) according to [9, 15–17]

Zq = − 1

12p2
Tr[S−1(p)/p]. (1)

As the propagator is gauge-dependent it is necessary to
work in a fixed gauge. Landau gauge is used throughout.

TABLE I: Matching factors and tensor current running fac-
tors required to match our lattice results to the MS scheme
at a scale of 2 GeV. The second column gives the conversion
factor between the RI-SMOM and MS schemes for the various
µ values in the first column. The RI′-MOM to MS matching
factors are given in the third column. The factor that ac-
counts for MS running to a scale of 2 GeV for different values
of µ is given in the fourth column. This used the three-loop
tensor anomalous dimension from [20]. All of these values are
correlated through their use of a common determination of
αs, taken from [21].

µ [GeV] Z
MS/SMOM
T (µ) Z

MS/MOM
T (µ) RT (2 GeV, µ)

2 0.9676(13) 0.9686(13) -
3 0.97773(68) 0.97934(71) 1.03974(94)
4 0.98212(47) 0.98390(48) 1.0636(14)

Working in a fixed gauge raises the possibility of effects
from Gribov copies. Here we do not address this issue
and assume that such effects are negligible following gen-
eral expectations and the findings of [18], which saw no
observable effects at a precision below 1%.

The tensor current renormalisation is defined in terms
of Zq and the tensor vertex function GT :

GT (p1, p2) =∫
d4xd4y1d

4y2e
iqxe−ip1y1eip2y2〈Tµν(x)ψ(y1)ψ(y2)〉.

(2)

Here Tµν(x) is the tensor current ψ(x)σµνψ(x). We take
the bilinears in the renormalisation procedure to be non-
diagonal in flavour. The renormalisation of flavour sin-
glet and non-singlet tensor bilinears are the same on the
lattice through at least two-loop level and we may there-
fore safely use the ZT calculated here for any flavour
structure of the tensor current [19].

The wavefunction renormalisation may be calculated
using either the incoming (p1) or outgoing (p2) quark
propagators. In the RI-SMOM scheme [17] the momenta
appearing in Eq. (2) satisfy the symmetric conditions p1−
p2 = q and p2

1 = p2
2 = q2 ≡ µ2.

The amputated tensor vertex function ΛT is calculated
by dividing GT on either side by the quark propagators:
ΛT = S−1(p2)GTS

−1(p1). The tensor current renormal-
isation factor, ZT , that converts the lattice current into
one in the momentum-subtraction scheme may then be
defined as

Zq
ZT

=
1

144
Tr(ΛµνT σµν). (3)

Renormalisation factors taking the lattice to the RI-
SMOM scheme, ZSMOM

T , can be converted to the more

conventional choice of the MS scheme through a calcula-
tion in continuum perturbative QCD of the SMOM-to-
MS matching. For the tensor renormalisation this has
now been performed to three loop order [24, 25]. The
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TABLE II: Parameters of the MILC nf = 2 + 1 + 1 HISQ gluon field ensembles we use. Tensor current renormalisation factors
in the RI′-MOM and RI-SMOM schemes are calculated on a subset of these ensembles: sets 1, 3, 5, 7 and 8 indicated by a ∗.
Labels for these configurations are given in the second column. The third colum gives β: the bare QCD coupling for a wider
range of ensembles. The J/ψ tensor decay constant is calculated on all of these ensembles. Two values of the lattice spacing
are given, both in units of the Wilson flow parameter, w0 [22]. The physical value of w0 is 0.1715(9) fm, fixed from fπ [23].
Those denoted a are calculated on each ensemble, and are the values used for the tensor decay constant. Those denoted ã are
determined in the limit of physical sea masses at each value of β [11, 21]. This is the definition used in our calculation of the
renormalisation factor, ZT . Both determinations of the lattice spacing agree at the physical point.

Set Label β w0/a w0/ã Ls Lt amsea
l amsea

s amsea
c amval

c

1∗ very-coarse (vc) 5.80 1.1272(7) 1.1265(31) 24 48 0.0064 0.064 0.828 0.873
2 - 6.00 1.3826(11) 1.4055(33) 24 64 0.0102 0.0509 0.635 0.664
3∗ coarse (c) 6.00 1.4029(9) 1.4055(33) 32 64 0.00507 0.0507 0.628 0.650
4 - 6.00 1.4116(9) 1.4055(33) 48 64 0.001907 0.05252 0.6382 0.643
5∗ fine (f) 6.30 1.9330(20) 1.9484(33) 48 96 0.00363 0.0363 0.430 0.439
6 - 6.30 1.9518(7) 1.9484(33) 64 96 0.00120 0.0363 0.432 0.433
7∗ superfine (sf) 6.72 2.8960(60) 3.0130(56) 48 144 0.0048 0.024 0.286 0.274
8∗ ultrafine (uf) 7.00 3.892(12) 3.972(19) 64 192 0.00316 0.0158 0.188 0.194

TABLE III: ZSMOM
T values on the ensembles in Table II at different µ values along with the correlation matrices for these

different µ values on a given set. ZSMOM
T converts the lattice tensor current into the SMOM scheme.

Set µ = 2 GeV µ = 3 GeV µ = 4 GeV correlation
very-coarse (vc) 1.07293(18) - - -

coarse (c) 1.10035(28) 1.036117(92) -

(
1 0.824
0.824 1

)
fine (f) 1.13250(14) 1.064991(56) 1.030967(30)

 1 0.560 0.375
0.560 1 0.861
0.375 0.861 1


superfine (sf) 1.16641(40) 1.09808(12) 1.061844(57)

 1 0.828 0.866
0.828 1 0.896
0.866 0.896 1


ultrafine (uf) 1.1791(17) 1.11629(64) -

(
1 0.925
0.925 1

)

RI-SMOM to MS matching factor is:

Z
MS/SMOM
T (µ, nf ) = 1− 0.21517295

αMS(µ)

4π

− (43.38395− 4.103279nf )

(
αMS(µ)

4π

)2

− (1950.76(11)− 309.8285(28)nf

+ 7.063585(58)n2
f )

(
αMS(µ)

4π

)3

.

(4)

Evaluating this expression for nf = 4 gives:

Z
MS/SMOM
T (µ) = 1− 0.0171229αMS(µ) (5)

− 0.170795α2
MS

(µ)− 0.415470(55)α3
MS

(µ).

We also compare to results in the RI′-MOM scheme
which has a simpler kinematic setup than the RI-SMOM
scheme. No momentum is inserted at the vertex and
therefore there is only one quark momentum, i.e. p1 = p2,
q = 0. RI′-MOM uses the same definitions of Zq and ZT
in Eq. (1) and Eq. (3). The RI′-MOM to MS conver-
sion is also known through O(α3

s) for the tensor current

renormalisation factor [26]. For nf = 4 the expression is:

Z
MS/MOM
T (µ) = 1− 0.1976305α2

MS
(µ)

− 0.4768793α3
MS

(µ).
(6)

This is very similar to the RI-SMOM to MS matching in
Eq. (5) although with no O(αs) term in Landau gauge.
The situation is then very different from the case for the
mass renormalisation factor where the RI-SMOM match-
ing is considerably more convergent than the correspond-
ing RI′-MOM matching [17, 24, 26–29].

We tabulate the values of Z
MS/SMOM
T and Z

MS/MOM
T in

columns 2 and 3 of Table I for different µ values. We also
give the values required to run the tensor renormalisation
factors in the MS scheme to a reference scale of 2 GeV,
denoted RT (2 GeV, µ). These numbers are calculated
using the three-loop tensor anomalous dimension [20].

The work of [30] compares RI′-MOM and RI-SMOM
renormalisation for various currents. In the discussion
of the tensor current presented there, uncertainties as-
sociated with missing terms in the matching to the MS
scheme were added to the renormalisation factors. As
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TABLE IV: RI′-MOM equivalents (ZMOM
T ) of the RI-SMOM values in Table III.

Set µ = 2 GeV µ = 3 GeV µ = 4 GeV correlation
very-coarse 1.08435(42) - - -

coarse 1.10970(58) 1.04631(16) -

(
1 0.637
0.637 1

)
fine 1.13949(47) 1.06979(13) 1.037388(39)

 1 0.384 0.393
0.384 1 0.609
0.393 0.609 1


superfine 1.17449(71) 1.10045(25) 1.063735(93)

 1 0.103 0.155
0.103 1 0.337
0.155 0.337 1


ultrafine 1.1845(29) 1.1181(14) -

(
1 0.234
0.234 1

)

[30] predates the results of [25] a larger uncertainty was
included on the RI-SMOM tensor renormalisation result
of [30] than on the RI′-MOM result. As both MS conver-
sion factors are now known to the same order in pertur-
bation theory this issue has been removed for the com-
parison between the scheme. In Section IV we address
the issue of remaining uncertainty from unknown higher
order terms in the conversion factors through our fits.

III. LATTICE CALCULATION OF ZSMOM
T AND

ZMOM
T

We use the Highly Improved Staggered Quark (HISQ)
action for both valence and sea quarks. The use of
staggered quarks with momentum-subtraction schemes
requires some consideration as explained in [31]. As
discussed there, we take physical momenta to lie in
the reduced Brillouin zone −π/2 ≤ p′µ ≤ π/2 and
use momentum-space staggered quark fields at momenta
p′ + πA where A is a hypercubic vector of 1s and 0s.
This multiplicity in momentum-space fields for a given
physical momentum contains the staggered quark taste
information. For each of these momenta we numeri-
cally solve the Dirac equation with a ‘momentum’ source:
MS = eip·x where M is the Dirac matrix. This yields
a quark propagator that we denote S(p, x). The gauge
fields used in the construction of the Dirac matrix are
numerically fixed to Landau gauge by maximising the
colour trace of the average link.

With the staggered quark fields χ the local tensor

((γµγν ⊗ ξµξν) in spin-taste notation) vertex function is〈
χ(p′1 + πA)(∑
x

χ(x)(−1)(xµ+xν)χ(x)ei(p
′
1−p′2)x

)

χ(p′2 + πB)

〉
=

1

ncfg

∑
x,cfg

S(p′1 + πA, x)ei(p
′
1−p′2)x×

(−1)x0+x1+x2+x3−xµ−xνS†(p′2 + πB̃, x),

(7)

making use of the γ5-hermiticity of S in the last line. The
elements of B̃ are permuted compared to those of B via
B̃ = B +2 (1, 1, 1, 1) where +2 denotes addition modulo
2.

We use the following kinematic setup, which obeys the
symmetric conditions of the RI-SMOM scheme:

ap′1 =
2π

Ls

(
x+

θ

2
, 0, x+

θ

2
, 0

)
,

ap′2 =
2π

Ls

(
x+

θ

2
,−x− θ

2
, 0, 0

)
,

aq′ =
2π

Ls

(
0, x+

θ

2
, x+

θ

2
, 0

)
.

(8)

x is an integer and θ is the momentum-twist applied with
phased boundary conditions that we use to access arbi-
trary momenta [32]. For the single momentum in the
RI′-MOM scheme we use ap′1.

Our calculations are done on HISQ nf = 2 + 1 + 1
gluon field ensembles generated by the MILC collabo-
ration [33, 34], the details of which are given in Ta-
ble II. On each ensemble we use 20 configurations ex-
cept for ultrafine where only 6 configurations with strin-
gent gauge fixing were available. We have checked, using
other sets, that this small number of configurations is
sufficient to achieve high precision given our use of mo-
mentum sources. In order to compensate for a potential
underestimation of the uncertainty from the low statis-
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tics, however, we double the uncertainty on the ZT values
on set 8.

Table II gives two values for the lattice spacing, reflect-
ing the different approach to the physical quark mass
limit that we take in the two parts of our calculation.
Both approaches arrive at the same physical point, so
this is simply a convenient choice away from the physical
point. We label the two lattice spacing values a and ã.
a is determined from a calculaton of w0/a [22] on each
ensemble and varies as the sea quark masses are changed
at fixed bare gauge coupling, β. ã is the value of the
lattice spacing for physical sea quark masses at a given
value of β [11, 21]. The latter definition is used for the
calculation of ZT while the former is used to compute the
J/ψ tensor decay constant.

We use different definitions of the lattice spacing to
reduce the effects of sea quark mass mistuning in the
calculation. If we instead used a single definition of the
lattice spacing we would have a steeper approach to the
tuned sea quark mass point either in the renormalisation
factors or in the hadronic matrix elements. Hadronic
matrix elements are sensitive to low energy scales and
it is convenient to keep the value of w0 fixed as the sea
quark masses are varied, leading to values of w0/a that
are dependent on the sea quark masses. As discussed in
Appendix A of [21] the variation of hadronic quantities
with the sea quark masses is similar to that of w0 and
so they do not vary much if w0 is held fixed. Sea quark
mass dependence in the hadronic quantity in lattice units
is cancelled by the variation of w0/a. However, ultravi-
olet quantities such as renormalisation factors have very
weak sea quark mass dependence. Using w0/a values that
vary with the sea masses therefore introduces unwanted
dependence and so we choose to use w0/ã defined in the
physical sea quark mass limit. The sea quark mass depen-
dence of RI-SMOM renormalisation factors was studied
in [10] using w0/ã and indeed found to be tiny. We will
see from the plots of our results in the next Section that
our strategy of using a and ã does indeed lead to very lit-
tle difference between results for physical and unphysical
sea quark masses for the decay constant.

We define the RI-SMOM and RI′-MOM schemes at
zero valence quark mass to remove mass-dependent non-
perturbative contributions. In order to obtain values at
zero valence mass we calculate ZT at three different quark
masses and extrapolate to 0 using a polynomial fit in
amval:

ZT (amval, µ) = ZT (µ) + d1(µ)
amval

ams
d1(µ)

(
amval

ams

)2

.

(9)
The three valence masses that we use are
{amsea

l , 2amsea
l , 3amsea

l }. This is the same proce-
dure as was used in [10] and [35]. Fig. 1 shows an
example of the mass dependence of ZT for both the
lattice-to-SMOM matching factor, ZSMOM

T , and the
lattice-to-′MOM factor, ZMOM

T . The mass dependence
reflects non-perturbative artefacts (condensates) appear-

0.000 0.005 0.010 0.015
amval

1.16550

1.16575

1.16600

1.16625

1.16650

Z
S

M
O

M
T

0.000 0.005 0.010 0.015
amval

1.1730

1.1735

1.1740

1.1745

Z
M

O
M

T

FIG. 1: Valence mass dependence of tensor current renor-
malisation factors in the RI-SMOM (upper) and RI′-MOM
(lower) schemes. The values shown are for µ = 2 GeV on
Set 7. Both show reasonably mild dependence on the valence
mass but the dependence is smaller for RI-SMOM.

ing in ZT with mass-dependent coefficients. We see that
the dependence is very small for the SMOM case and
less so, but still relatively benign, in the MOM case.

We collect our ZSMOM
T results, extrapolated to zero

valence mass, for various values of µ in Table III. The
correlation matrix for these different µ values on each
ensemble is also given. Our ZMOM

T results are similarly
collected in Table IV.

IV. J/ψ TENSOR DECAY CONSTANT

The J/ψ tensor decay constant, fTJ/ψ, is defined in an

analogous way to the J/ψ vector decay constant fVJ/ψ.

fTJ/ψ parameterises the vacuum to meson matrix element

of a tensor current in the following way:

〈0|ψσαβψ|J/ψ〉 = ifTJ/ψ(µ)(εαpβ − εβpα). (10)

ε is the polarisation vector of the J/ψ, p is the J/ψ 4-
momentum and µ is the renormalisation scale for the
tensor decay constant. Note that the tensor decay con-
stant is µ-dependent, reflecting the anomalous dimension
of the continuum tensor current and unlike the vector
decay constant. It is also scheme-dependent and we will
give results in the MS scheme.
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If one of the indices of the tensor current is in the time
direction, we can extract fTJ/ψ from the 2-point tensor-

tensor correlation function projected onto zero spatial
momentum. We construct this as

CT (t) =
1

4

∑
x

〈(−1)ηT (x)Tr(S(x, 0)S†(x, 0))〉. (11)

Here ηT (x) is a position-dependent phase remnant of σαβ
resulting from the use of staggered quarks. This is the
same phase as that appearing in Eq. (7), since we use
the same local tensor current. We take β to be in the
temporal direction and average α over spatial directions.

We compute the correlation function of Eq. (11) on
the full set of ensembles with parameters summarised in
Table II. The valence c quark masses are chosen to be
close to those giving the experimental value of the J/ψ
mass [11]. We will allow for mistuning of the valence c
quark mass in our fits to extrapolate to the continuum
limit. The decay constant is determined from the ground-
state parameters extracted from a multi-exponential fit
to the averaged 2-point correlator:

〈CT (t)〉 =
∑
i

(
ATi f(ETi , t)− (−1)tAT,oi f(ET,oi , t)

)
,

f(E, t) = e−Et + e−E(Lt−t). (12)

The temporal oscillation term appears because of our use
of staggered quarks. We perform the fit using standard
Bayesian fitting techniques [36] with broad priors on the
parameters, as in [11].

The J/ψ tensor decay constant is then calculated from
the ground-state amplitude and energy according to

fTJ/ψ = ZT

√
2AT0
ET0

. (13)

Here the ground state energy, ET0 , is the mass of the J/ψ
as we implement Eq. (10) for a J/ψ at rest.

As we have used the local tensor current with taste
ξαξt, E

T
0 is the mass of the J/ψ of that taste. Because

of taste splitting effects this is expected to differ from
the local J/ψ with taste ξα. The values of the local J/ψ
mass on the ensembles used here were given in [11] and
we collect the values for the taste ξαξt in Table V. As
taste-breaking effects are a discretisation effect we should
see the difference between the two masses (∆(MJ/ψ)) de-
crease as the lattice spacing is decreased. This is shown
in Fig. 2. Note that even on the coarsest ensemble the
difference is only 6 MeV, about 0.2% of the J/ψ mass.
A fit to the mass difference of the form

∆(MJ/ψ)(a) = c1αs(1/a)(amc)
2 + c2(amc)

4, (14)

is included in the figure. This is the expected form for
taste effects as the HISQ action is improved to remove
tree-level (amc)

2 errors [4]. The fit works well, with a
χ2/dof of 0.4.

0.0 0.2 0.4 0.6 0.8
(amc)

2

0.000

0.002

0.004

0.006

∆
(M

J
/
ψ
)

[G
eV

]

FIG. 2: The taste splitting of the J/ψ masses of tastes ξµξt
and ξµ as a function of (amc)

2. Clearly this difference de-
creases with the lattice spacing. The fit line shown has the
form of Eq. (14).

TABLE V: Results for the J/ψ tensor decay constant on each
of the ensembles in Table II in lattice units before multipli-
cation by the tensor renormalisation factor. We also give the
ratio of the tensor and vector J/ψ decay constants (again,
before renormalisation) in column 3. We give the J/ψ mass
extracted from our 2-point correlator fits in column 4. This
is the mass for a J/ψ of taste ξαξt.

Set afTJ/ψ/ZT (ZV f
T
J/ψ)/(ZT f

V
J/ψ) aMJ/ψ

1 0.3741(12) 0.8837(30) 2.39769(18)
2 0.25754(15) 0.87548(81) 1.944312(92)
3 0.25212(35) 0.8743(13) 1.91530(23)
4 0.24977(36) 0.8747(13) 1.901880(40)
5 0.165404(96) 0.86433(62) 1.391514(65)
6 0.16396(13) 0.86386(78) 1.378232(73)
7 0.105293(93) 0.8535(10) 0.929972(57)
8 0.07685(19) 0.8410(22) 0.691999(97)

The values of afTJ/ψ/ZT extracted from our 2-point

correlator fits on the ensembles in Table II are given in
Table V.

An important goal of this analysis is to investigate
the size of systematic effects arising from nonpertur-
bative contamination of ZT and show how to remove
them. Doing this requires analysis of a physical quan-
tity sensitive to the tensor current renormalisation, for
which we use the J/ψ tensor decay constant in the MS
scheme at a reference scale of 2 GeV. This is obtained
by taking the product of several quantities: the unrenor-
malised J/ψ tensor decay constant afTJ/ψ/ZT from Ta-

ble V; the renormalisation factor that converts this to
a momentum-subtraction scheme at scale µ from Ta-
ble III or Table IV (although for convenience here we
use SMOM notation); the perturbative matching from
the momentum-subtraction scheme to MS (discussed in
Section II) and the running from µ to 2 GeV in the MS
scheme. These last two factors are given in Table I. This
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gives us the results that we will fit:

fTJ/ψ(MS, 2 GeV, µ, a) = RT (2 GeV, µ)Z
MS/SMOM
T (µ)

× ZSMOM
T (µ, a)(afTJ/ψ/ZT )/a.

(15)

Note that the first three factors above, combined, consti-

tute ZMS
T (2 GeV, a) i.e. the renormalisation factor that

takes the decay constant from the lattice scheme to the
MS scheme at a renormalisation scale of 2 GeV, up to dis-
cretisation effects and nonperturbative artefacts present
in ZSMOM

T .
We fit the results from Eq. 15 as a function of lattice

spacing and µ values in order to obtain a physical value
for fTJ/ψ(MS, 2 GeV) in the continuum limit. The fit form

used is:

fTJ/ψ(MS, µref , µ, a) = fTJ/ψ(MS, µref)×[
1 +

∑
n

c(n)
amc(amc)

2n + hsea
`

δsea
m`

mphys
s

+ hsea
c

δsea
mc

mphys
c

+ hval
c

MJ/ψ −M expt
J/ψ

M expt
J/ψ

]
×[

1 +
∑
i

c(i)aµ(ãµ/π)2i + α4
MS

(µ) (cα1 + cα2 log(µ/µref))

+
∑
j

c
(j)
condαMS(µ)

(1 GeV)2j

µ2j

]
.

(16)

This is designed to capture the lattice spacing and µ de-
pendence of ZT as well as the discretisation and quark
mass effects in afTJ/ψ/ZT . We take µref to be 2 GeV

and include results from µ values of 2, 3 and 4 GeV and
multiple values of a.

The first square brackets of Eq. (16) allow for discreti-
sation effects in the raw lattice values for afTJ/ψ through

an even polynomial in powers of the c quark mass in lat-
tice units, amc, as appropriate for a charmonium quan-
tity. The next terms in that bracket then account for
mistuning of the sea quark masses away from their phys-
ical values and mistuning of the valence c quark mass,
respectively. This part of the fit is the same form as that
used for the J/ψ vector decay constant in [11].

The second set of square brackets in Eq. (16) al-
lows for effects from the lattice calculation of ZT in
the momentum-subtraction scheme at scale µ. We ex-
pect discretisation effects in this case to appear as even
powers of ãµ/π. The missing α4

s term in the matching
from momentum-subtraction to MS schemes is allowed
for with coefficient cα1 and a similar effect for the run-
ning, with coefficient cα2. The terms on the final line
allow for the condensate contamination of ZT coming
from its nonperturbative calculation on the lattice. The
condensate contamination is visible in an Operator Prod-
uct Expansion of, for example, the quark propagator [28]

0.0 0.2 0.4 0.6 0.8
(amc)

2

0.40

0.45

0.50

f
T J
/
ψ
(M

S
,

2
G

eV
)

[G
eV

]

FIG. 3: Continuum extrapolation of the J/ψ tensor decay
constant in the MS scheme at a scale of 2 GeV using lattice
tensor current renormalisation in the RI-SMOM scheme at
multiple µ values. Three different values of the renormalisa-
tion scale µ are used in the lattice calculation of ZSMOM

T to
allow nonperturbative µ dependence to be fitted. These three
different µ values are shown as different coloured lines. The
blue line is 2 GeV, the orange, 3 GeV and the purple, 4 GeV.
The black hexagon is the physical result for fTJ/ψ(2 GeV) ob-
tained from the fit of Eq. (16) (with the condensate pieces
removed).

where it appears in terms suppressed by powers of the
renormalisation scale µ. For the gauge-fixed quantities
that we calculate here to determine ZT these terms ap-
pear first at O(1/µ2) multiplied by the Landau gauge
gluon condensate 〈A2〉 [10]. We also allow for higher or-
der condensates with larger inverse powers of µ, up to
and including 1/µ6.

We take priors on all the coefficients of the fit in
Eq. (16) of 0 ± 1, except for three terms. We take a
prior of 0 ± 0.1 for hsea

c based on [11], and 0 ± 0.5 for
cα1 and 0± 0.4 for cα2 based on the lower order terms in
Eqs. (5) and (6) and in [20]. We also take 0.4± 0.1 GeV
for the prior for the physical value of fTJ/ψ(MS, 2 GeV)

based on the expectation that it should be close in value
to fVJ/ψ. We include 5 terms in each of the sums over dis-

cretisation effects and 3 terms in the sum over condensate
contributions.

Our results using the RI-SMOM ZT from Section III
with the fit of Eq. (16) are shown in Fig. 3. The χ2/dof
is 0.19 giving a continuum value with condensate contri-
butions from ZT removed of:

fTJ/ψ(MS, 2 GeV) = 0.3889(33) GeV (int.SMOM). (17)

The phrase ‘int. SMOM’ here indicates that the result
uses the intermediate RI-SMOM scheme. Note that the
χ2/dof increases significantly, to 2.5, if the µ-dependent
terms that survive the continuum limit, that is conden-
sate terms and α4

s terms, are removed from the fit.
The black hexagon in Figure 3 shows this result (the

fTJ/ψ(MS, 2 GeV) fit parameter in Eq. (16)). This is the

physical value of the tensor decay constant, with dis-
cretisation and quark mass-mistuning effects extrapo-
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TABLE VI: Values, with uncertainties, and correlation matrix
for the correction CSMOM(µ) to be applied to renormalisation
factors for the tensor current when using the RI-SMOM in-
termediate scheme.

µ (GeV) CSMOM(µ) correlation matrix
2 0.0153(36) 1.0 0.9889 0.9249
3 0.0074(24) 0.9889 1.0 0.9708
4 0.0041(16) 0.9249 0.9708 1.0

lated away and condensate contributions and α4
s errors

removed. Note that this value is lower than the value
obtained from simply taking the continuum limit of the
2 GeV results (blue line), mainly because of condensate
contamination at µ = 2 GeV. This underlines the neces-
sity of performing the calculation at multiple values of
µ in the RI-SMOM scheme before running all of the re-
sults to a reference scale, in this case 2 GeV, in order to
determine and remove systematic µ-dependent errors.

The difference between the black hexagon and the con-
tinuum limit of the lines for the different µ values can be
thought of as a correction that needs to be applied to
the ZT values that connect the lattice results and the

MS value at 2 GeV (i.e. ZMS
T (2 GeV, a) that combines

the first three factors on the righthand side of Eq. (15))
so that they are independent of µ. This will give a cor-

rected ZMS
T that can then be used in future calculations.

The correction depends on the intermediate momentum-
subtraction scheme used and the condensate contamina-
tion that it has as well as α4

s errors in the matching to
MS.

We define a µ-dependent subtraction, CSMOM(µ), to
apply to the values of ZMS

T from the combination of the

c
(j)
cond terms in Eq. (16) along with the cα1 and cα2 terms.

It is difficult for the fit to completely separate these dif-
ferent µ-dependent contributions and as a result the indi-
vidual coefficients are not as well determined as the total
correction (because the fit parameters are correlated).
The full correction is shown in Fig. 4 plotted against
µ2, and significantly non-zero values are seen across the
µ2 range, with the correction at the ∼ 1.5% level for
µ = 2 GeV. These values, and their correlation matrix,
are given in Table VI. If we extract the condensate con-
tributions to the correction separately, values with the
same central values are obtained but with uncertainties
that are about 40% larger at µ = 2 GeV. If the cor-

rected ZT value is denoted ZMS,c
T and the uncorrected

value ZMS,u
T ,

ZMS,c
T (2 GeV, a) = ZMS,u

T (2 GeV, a)− CSMOM(µ). (18)

A corrected value for ZMS
T is then readily derived using

the results in Tables III, I and VI.
We also examine fTJ/ψ using a tensor current renormal-

isation obtained in the RI′-MOM scheme on the lattice.
In this case we use the conversion to MS in Eq. (6) and
calculate the RI′-MOM equivalent of Eq. (15). The re-

4 6 8 10 12 14 16

µ2 [GeV2]

0.00

0.01

0.02

0.03

0.04

C
S

M
O

M
(µ

)

FIG. 4: The correction, CSMOM(µ), to the tensor current

renormalisation factor, ZMS
T (2 GeV), required to account for

nonperturbative effects arising from condensate contributions
to the lattice calculation of ZSMOM

T (µ) and missing α4
s terms

in the matching to MS. The correction is defined in terms of
a subset of the fit posteriors of the fit shown in Fig. 3 (see
text).

sults and the fit to Eq. (16) are shown in Fig. 5. We
see that the final continuum result with condensate con-
tributions and α4

s errors removed agrees with that given
by intermediate RI-SMOM renormalisation factors. The
χ2/dof of this fit is 0.4 giving a final result of

fTJ/ψ(MS, 2 GeV) = 0.3847(37) GeV (int.MOM). (19)

Dropping both condensate and α4
s terms from the fit in-

creases the χ2/dof here to 8.2.
There is more difference between the 2 GeV and the 3

and 4 GeV values in the RI′-MOM case than in the RI-
SMOM case. This is reflected in the larger coefficient for
the 1/µ4 condensate term in the fit of -1.19(49). The size
of the correction, CMOM(µ), needed for ZT when the RI′-
MOM scheme is used is shown in Fig. 6. It can be seen
that the correction is larger than for the RI-SMOM case,
because of larger condensate effects. It is not surprising
that condensate effects are larger in the RI′-MOM scheme
than in RI-SMOM since this has been shown to be true in
several other renormalisation factors in the past [16, 35]
and is also consistent with the mass dependence seen in
Fig. 1.

Since the discretisation effects in fTJ/ψ are similar to

those in fVJ/ψ on the same set of gluon field ensembles we

expect to be able to extract the ratio of the two decay
constants to a higher precision than can be obtained from
the individual quantities. We may also be able to see a
clearer indication of the size of nonperturbative effects in
the ratio.

We show the ratio of fT /fV in Fig. 7 using ZT and ZV
determined in the RI-SMOM scheme. We neglect any
correlations between the raw values of the decay con-
stants on each lattice ensemble because the statistical
uncertainties are so small. We fit the values of the ratio
to Eq. (16) and obtain a result for the ratio in the con-
tinuum limit with nonperturbative contamination effects
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FIG. 5: Continuum extrapolation of the J/ψ tensor decay
constant in the MS scheme at a scale of 2 GeV using an
intermediate nonperturbative renormalisation of the tensor
current in the RI′-MOM scheme on the lattice. Multiple val-
ues of the renormalisation scale µ have been used so that µ
dependent nonperturbative effects can be removed in the fit.
The blue points and line are for µ = 2 GeV, orange for 3
GeV and purple for 4 GeV. The value obtained in the con-
tinuum limit with the condensate terms removed is shown as
a black hexagon. The result is in agreement with that using
RI-SMOM renormalisation (Figure 3) which is shown as the
green square.
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µ2 [GeV2]

0.00

0.01
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0.04
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(µ
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FIG. 6: The same as Fig. 4 but for a correction term,
CMOM(µ), needed for the tensor current renormalisation fac-
tor when using the intermediate RI′-MOM scheme.

removed of:

fTJ/ψ(MS, 2 GeV)

fVJ/ψ
= 0.9569(52) (int.SMOM). (20)

The fit has a χ2/dof of 0.2.
As discussed in [35] the RI-SMOM ZV contains no non-

perturbative contamination because of the protection of
the Ward-Takahashi identity and likewise no perturba-
tive matching of SMOM to MS is needed. Therefore the
condensate and α4

s terms returned by the fit to the ra-
tio of the tensor and vector J/ψ decay constants should
agree with those from the fit to just the tensor decay con-
stant. We find that this is the case for each coefficient
individually and for the ZT correction factor obtained

0.0 0.2 0.4 0.6 0.8
(amc)

2

0.90

0.92

0.94

0.96

0.98

1.00

f
T J
/
ψ
(M

S
,

2
G

eV
)/
f
V J
/
ψ

FIG. 7: Continuum extrapolation of the ratio of the tensor
and vector J/ψ decay constants using intermediate lattice
renormalisation factors in the RI-SMOM scheme. Blue points
and lines show µ = 2 GeV results and fit lines, orange are 3
GeV and purple 4 GeV. The bold dashed lines are continuum
extrapolations at each µ value with the condensate and α4

s

terms left in. The black hexagon is the continuum extrapola-
tion with condensates and α4

s errors removed.
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FIG. 8: Correction CSMOM(µ) for the tensor current renor-
malisation factor, ZT , determined from a fit to the ratio of
the J/ψ tensor and vector decay constants using intermediate
renormalisation factors in the RI-SMOM scheme. This agrees
with the results shown in Fig. 4, as expected because the lat-
tice RI-SMOM vector current renormalisation factor has no
condensate contamination [35].

from their combination which we show for the ratio fit in
Fig. 8.

Because the RI′-MOM determination of ZV has con-
densate contamination (since it is not protected by a
Ward-Takahashi identity [35]) and perturbative match-
ing is needed to reach MS we cannot perform the same
analysis for that case.

We give an error budget for our result for the decay
constant ratio fTJ/ψ/f

V
J/ψ in Table VII. We can lever-

age this ratio and the vector decay constant determined
in [11] to get a slightly more precise value of the tensor
decay constant:

fTJ/ψ(MS, 2 GeV) = 0.3927(27) GeV (int.SMOM). (21)
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TABLE VII: Error budget for the ratio of the J/ψ vector
and tensor decay constants. ‘Statistics’, the dominant un-
certainty, refers to statistical errors in the amplitudes needed
for the decay constants. The uncertainties coming from the
renormalisation factors, ZT and ZV , are much smaller and are
dominated by the contribution from the (doubled) statistical
uncertainties on the low statistics ultrafine lattices, set 8. The
‘Missing α4

s’ and ‘Condensates’ error contributions come from
the terms in the fit from which the ZT correction (discussed
in the text) is constructed.

fTJ/ψ/f
V
J/ψ

(amc)
2 → 0 0.11

(ãµ)2 → 0 0.27
ZT 0.12
ZV 0.14
Missing α4

s term 0.06
Statistics 0.41
Sea mistuning 0.04
Condensates 0.07
Total 0.54

0.36 0.38 0.40 0.42 0.44

fTJ/ψ(MS, 2 GeV) [GeV]

[hep-ph:0701234] light cone
wavefunctions

[1312.2858] sum rules

[1312.2858] twisted-mass nf = 2

This work RI′-MOM

This work RI-SMOM

FIG. 9: A comparison plot of results for the tensor J/ψ decay
constant in the MS scheme at a scale of 2 GeV. The top two
results are from this work (using both RI-SMOM (Eq. (21))
and RI′-MOM (Eq. (19)) intermediate schemes) and then we
include results from [12] and [37].

The vector decay constant result of [35] includes QED
effects from the non-zero electric charge of the valence
charm quarks. We have not included any electromag-
netic effects here. However, the QED effect on the vector
decay constant was at the 0.2% level and we expect some
cancellation of these effects in the decay constant ratio,
so we neglect these effects here.

V. DISCUSSION: fTJ/ψ

As discussed in Section I there is no experimental ob-
servable available to which we can compare our tensor
current decay constant value. Theoretical results using
light-cone wavefunctions were presented in [37] and us-
ing QCD sum rules in [12]. A lattice QCD result using
twisted-mass quarks on gluon field ensembles with only

0.96 0.98 1.00

fTJ/ψ(MS, 2 GeV)/fVJ/ψ

[1312.2858] sum rules

[1312.2858] twisted-mass nf = 2

This work RI-SMOM

FIG. 10: A comparison plot of results for the ratio of tensor
and vector J/ψ decay constants. The upper result is from
this work (Eq. (20)) using the RI-SMOM intermediate scheme
and gives a value significantly below 1 (marked with the black
dashed line) for this ratio. The lower two results are from [12].

u/d quarks in the sea (nf = 2) was also given in [12].
The RI′-MOM scheme was used to renormalise the lattice
tensor and vector currents in that case, without studying
or removing nonperturbative condensate contamination.
We compare our results to these in Fig. 9 where the re-
duction in uncertainty that we have achieved here can
clearly be seen.

A comparison plot of values of the decay constant ra-
tio fTJ/ψ(2 GeV)/fVJ/ψ is shown in Fig. 10. This ratio is

expected to be below 1 [12] but we see that earlier re-
sults were not able to demonstrate this conclusively. Our
value for the ratio is 8σ below 1. The value that we ob-
tain for the ratio is just over 1σ lower than the sum rules
determination of [12] and is over 2σ lower than the lat-
tice QCD result of that work (using their σ values). In
the lattice QCD calculation both the tensor and vector
current were renormalised in the RI′-MOM scheme with-
out accounting for nonperturbative contamination. Our
results indicate that this could lead to a discrepancy with
our results of the size seen.

VI. DISCUSSION: ZT

In the discussion presented above in Section IV we ran
all of our results, after converting to MS, to a common
scale of 2 GeV and then determined and subtracted a
correction that depends on µ. This correction needs to
be applied to our ZT values for future use. The scale
of 2 GeV allows us to compare directly to the results of
[12] in Section V. However, another scale is useful when
computing form factors for semileptonic B decay pro-
cesses. Then differential rates are calculated as functions
of products of the form factors and appropriate Wilson
coefficients of the weak Hamiltonian. These Wilson coef-
ficients are scale dependent and are typically calculated
at a scale equal to the b pole mass, 4.8 GeV, see for ex-
ample [38]. We therefore present our ZT values run to
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this scale. If the b quark running mass of 4.2 GeV were
used instead of the pole mass then the values would be
approximately 1% larger.

In Table VIII we give the corrected results for ZT
in the MS scheme at a scale equal to the b quark pole
mass calculated from intermediate values of ZT in the
RI-SMOM scheme at 2 and 3 GeV. We use a notation
ZT (µSMOM | µMS) where µSMOM is the scale at which
the RI-SMOM calculation was performed and µMS is the

final scale at which the MS result is presented. It can be
seen that the addition of the correction results in ZT val-
ues that agree for different intermediate scales once run
to the same final scale (this would not be true for un-
corrected values). We also give the correlations between
these numbers in Table IX.

VII. CONCLUSIONS

We have shown here that it is possible to renormalise
lattice tensor currents to give accurate results for con-
tinuum matrix elements in the MS scheme using non-
perturbative determination of intermediate renormalisa-
tion factors in momentum-subtraction schemes. A key
requirement is that the nonperturbative renormalisation
factors should be obtained at multiple values of the renor-
malisation scale, µ, so that µ-dependent nonperturbative
(condensate) contamination of ZT can be fitted and re-
moved. This contamination would otherwise give a sys-
tematic error of 1.5% using the RI-SMOM scheme and
3% using the RI′-MOM scheme in our calculation.

In order to do this we have determined the J/ψ tensor
decay constant, fTJ/ψ so that we can study the continuum

limit of a tensor current matrix element. Using nf = 2 +
1+1 HISQ lattices and the local tensor current, we obtain
a 0.7%-accurate value for fTJ/ψ of (repeating Eq. (21))

fTJ/ψ(MS, 2 GeV) = 0.3927(27) GeV (int.SMOM). (22)

This uses our preferred intermediate RI-SMOM scheme

TABLE VIII: ZT values converting lattice results involving
the tensor current to the MS scheme, run to a renormalisa-
tion scale of the b quark pole mass. The notation ZT (µ1|µ2)
indicates that the intermediate ZSMOM

T has been calculated
in the RI-SMOM scheme at a scale of µ1 and then converted
to the MS scheme and run to a scale of µ2. The superscript
denotes that these renormalisation constants have been cor-
rected for nonperturbative artefacts and α4

s errors in ZSMOM
T

as described in the text. The results with intermediate scales
of 2 GeV and 3 GeV then agree well with each other and
either can be used.

Set ZcT (2 GeV | mb) Z
c
T (3 GeV | mb)

vc 0.9493(42) -
c 0.9740(43) 0.9707(25)
f 1.0029(43) 0.9980(25)
sf 1.0342(43) 1.0298(25)
uf 1.0476(42) 1.0456(25)

and makes use of the determination of the ratio of tensor
to vector decay constants and the fact that the vector cur-
rent renormalisation is protected by the Ward-Takahashi
identity in this scheme [35]. We also obtain a 0.5%-
accurate value for the ratio itself (repeating Eq. (20)),

fTJ/ψ(MS, 2 GeV)

fVJ/ψ
= 0.9569(52) (int.SMOM). (23)

This shows unequivocally that the ratio is less than 1.

Finally, in Tables VIII and IX, we give ZT renormal-
isation factors that can be used, for example, in a fu-
ture determination (underway) of the tensor form fac-
tor for the rare flavour-changing neutral current process
B → K`+`− using HISQ quarks. These ZT values take
results determined with the local HISQ lattice tensor cur-
rent and convert them into values in the MS scheme at
the scale of mb, to be multiplied by Wilson coefficients
from the effective weak Hamiltonian determined at this
scale. We have corrected these ZT values so that they are
free of the systematic error from condensate contamina-
tion of the intermediate momentum-subtraction scheme.

Acknowledgements

We are grateful to the MILC collaboration for the
use of their configurations and code. Computing was
done on the Cambridge service for Data Driven Discov-
ery (CSD3), part of which is operated by the Univer-
sity of Cambridge Research Computing on behalf of the
DIRAC HPC Facility of the Science and Technology Fa-
cilities Council (STFC). The DIRAC component of CSD3
was funded by BEIS capital funding via STFC capital
grants ST/P002307/1 and ST/R002452/1 and STFC op-
erations grant ST/R00689X/1. DiRAC is part of the
national e-infrastructure. We are grateful to the CSD3
support staff for assistance. Funding for this work came
from the UK Science and Technology Facilities Council
grants ST/L000466/1 and ST/P000746/1 and from the
National Science Foundation.



12

TABLE IX: Correlation matrix of the corrected ZT values from Table VIII. These correlations are large because the matching,
running and correction terms are all correlated.

(vc,2) (c,2) (f,2) (sf,2) (uf,2) (c,3) (f,3) (sf,3) (uf,3)
(vc,2) 1.0 0.99750 0.99854 0.99475 0.93231 0.98398 0.98611 0.98713 0.96383
(c,2) 0.99750 1.0 0.99777 0.99430 0.93294 0.98314 0.98371 0.98487 0.96243
(f,2) 0.99854 0.99777 1.0 0.99605 0.93562 0.98045 0.98323 0.98423 0.96263
(sf,2) 0.99475 0.99430 0.99605 1.0 0.93197 0.97361 0.97632 0.98097 0.95627
(uf,2) 0.93231 0.93294 0.93562 0.93197 1.0 0.90439 0.90777 0.90941 0.96855
(c,3) 0.98398 0.98314 0.98045 0.97361 0.90439 1.0 0.99909 0.99807 0.96824
(f,3) 0.98611 0.98371 0.98323 0.97632 0.90777 0.99909 1.0 0.99868 0.96951
(sf,3) 0.98713 0.98487 0.98423 0.98097 0.90941 0.99807 0.99868 1.0 0.96909
(uf,3) 0.96383 0.96243 0.96263 0.95627 0.96855 0.96824 0.96951 0.96909 1.0
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