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Abstract— This paper describes a multi-objective ESC strat-
egy that determines Pareto-optimal control parameters to
jointly optimize wind turbine loads and power capture. The
method uses two optimization objectives calculated in real time:
(a) the logarithm of the average power and (b) the logarithm
of the standard deviation of a measurable blade load, tower
load or the combination of these loads. These two objectives are
weighted in real-time to obtain a solution that is Pareto optimal
with respect to the power average and the standard deviation
of chosen load metric. The method is evaluated using NREL
FAST simulations of the 5-MW reference turbine. The results
are then evaluated using energy capture over the duration of
the simulation and damage equivalent loads (DEL) calculated
with MLife.

I. INTRODUCTION

When a wind turbine operates below its rated wind speed
(region 2) the power output is proportional to the power
available in the wind and the parameter of proportionality
is the so-called power coefficient Cp. For variable-speed
variable-pitch wind turbines, Cp is a unimodal function of
the blade pitch angle (β) and tip speed ratio (λ) [1], which
means that there is an optimal blade pitch angle and tip speed
ratio to achieve the maximum Cp and therefore, maximum
output power. The optimal value of tip-speed ratio and blade-
pitch angle may differ from turbine to turbine due to complex
aerodynamic site specific effects and other factors. Moreover,
these optimal values also change with time due to wear and
tear of blade surface, changes in ambient conditions, etc.

Extremum Seeking Control (ESC) has emerged as a useful,
model-free, real-time optimization strategy to optimize wind
turbine power output despite uncertainty and/or variations in
Cp. Creaby et al. [2] studied ESC-based region-2 control
with power feedback for rotor torque, blade pitch and yaw
input. Field test results of ESC-based region-2 controllers
on the NREL CART3 turbine were reported by Xiao et al.
in [3]. In spite of the demonstrated success of ESC studies,
a drawback of these strategies is the inconsistent and slow
convergence behavior under changes in wind speed within
region 2. Rotea [4] analyzed the root cause of inconsistent
convergence and proposed a “log-power feedback” strategy
for ESC-based wind turbine control, which was validated
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with a simple reduced order model. Later, Ciri et al. [5]
demonstrated, through high-accuracy, large eddy simulations,
that the log-power feedback ESC calibrated at a given wind
speed exhibits consistent and robust performance across all
wind speeds within region 2 under realistic turbulent wind
conditions.

The maximization of power in off-design conditions may
have unintended consequences, such as an increase in
aeromechanical loads on the blades and the turbine structure.
Xiao et al. [6] proposed a multi-objective ESC for wind
turbines with a single performance index combining the
power and load objectives using pre-defined weights for
the load and power objectives. Simulation results with the
CART3 turbine model in FAST showed promising results.

In the current work, we propose a log-feedback, real-time
weighted, multi-objective ESC algorithm for wind turbines.
The performance index for the power objective (objective to
be maximized) is the logarithm of the rotor power scaled
by rated power, while the logarithm of standard deviation
of the load moments, scaled by its running mean, is used
as the performance index for the load objective function
(objective to be minimized). The tunable turbine parameters
are region-2 generator torque gain (kt) and blade pitch angle
(β). The real-time weighting seeks the shortest path to the
Pareto front of the power and load objectives. Three different
load objective are studied here: (1) Tower Base Fore-aft
Bending Moment (TBFABM), (2) Blade Root Flap-wise
Bending Moment (BRFWBM), and (3) combination of (1)
and (2). FAST simulations on NREL 5MW turbine model
demonstrate the effectiveness of the proposed approach.

Our preliminary study shows that the algorithm can
achieve significant levels of load reductions, relative to log-
power-feedback only ESC, with little to no change in energy
capture. A contribution of this paper is the use of an update
rule to determine real-time weights in order to achieve Pareto
optimality in the power and loads optimization objectives.

The rest of the paper is organized as follows. Design
guidelines for ESC, logarithmic feedback and multi-objective
ESC are introduced in Section II. Section III has detailed
discussion of the method adopted and ESC parameter design.
Results are discussed in Section IV and conclusions can be
found in Section V.

II. EXTREMUM SEEKING CONTROL (ESC)
A. ESC principles and design guidelines

A model-free, real-time optimization technique like ESC
can optimize the performance of a nonlinear plant by search-
ing for the unknown and/or time-varying input parameter
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Fig. 1. Conventional ESC.

u∗ that optimizes a selected performance index f(u). A
single -input single-output periodic perturbation based ESC
strategy to extract the gradient information is shown in
Figure 1. Fin(s) and Fout(s) are unity-gain, linear time-
invariant (LTI) approximations of the input and output dy-
namics, respectively, and y = f(t, u) denotes a possibly
time-varying static map of the nonlinear plant. The online
gradient estimation of ESC operation is based on applying
a periodic dither d1(t) = asinωt and demodulation signal
d2(t) = sin(ωt+θ), where a is the dither amplitude, ω is the
dither frequency and θ is the phase compensation. The high-
pass filter FHP (s) is applied to the performance index y that
aims to optimize (maximize/minimize) by tuning the input
u. The low-pass filter FLP (s) with an integrator and gain
k completes the ESC loop. The input u to the plant results
from the perturbation by the dither, i.e. u = û + asinωt.
As for the plant output, the gradient is carried in the dither
harmonic component. High-pass filtering of the output can
remove the DC component; after which, multiplication by
the demodulation signal can shift the gradient content to the
DC. Application of the low-pass filter retains the gradient
estimate at DC. Closing the loop with integral control can
drive the gradient to 0 at steady state, provided that the
averaged system is asymptotically stable, which implies that
the optimum input u∗ is reached. The standard ESC design
guidelines [7] have been adopted in this study.

B. Conventional ESC with log-of-power feedback

Rotea [4] performed an analysis for ESC-based, Region-2
wind turbine control, which justifies the advantages of using
logarithmic power feedback over power feedback under
different wind speeds. The power contained in incoming
wind of velocity is given by

Pwind =
1

2
πR2ρV 3 (1)

where, ρ is air density in kg/m3, R is rotor radius in m, and V
is the incoming wind speed perpendicular to the rotor plane
in m/s. The rotor power produced can then be given by

P = PwindCp(u) (2)

where, Cp denotes the power coefficient of wind turbine,
and u is a manipulated input such as the generator torque
(or equivalently torque gain), blade pitch angle or yaw
measurement. With the rotor power used as the performance
index for ESC, its gradient with respect to u is

∂P

∂u
= Pwind

∂Cp(u)

∂u
(3)

Fig. 2. Conventional ESC with log-power feedback.

which depends on the wind speed. For a gradient search
algorithm like ESC, a wind speed dependent gradient yields
a wind speed dependent convergence rate. This explains why
the appropriate gain has to be tuned under different wind
speeds. In contrast, if the logarithmic power is used as the
performance index, i.e. J = lnP , the gradient becomes

∂J

∂u
=

∂

∂u
ln (PwindCp(u)) =

1

Cp(u)

∂Cp(u)

∂u
(4)

which is independent of the wind speed. Therefore, the ESC
process thus designed will be less affected by wind speed
fluctuation. Rotea [4] demonstrated the effectiveness of this
log-power feedback ESC with a Simulink-based simulation
study. This idea from [4] is patent pending [8]. A typical
conventional ESC with log power feedback is shown in
Figure 2.

C. Multi-objective ESC with log-feedback

A multi-objective optimization (MOO) problem generally
consists of a number of conflicting objective functions. Here,
a real-time weighting selection algorithm is employed to
obtain the optimal weights for the multi-objective extremum
seeking control problem of wind turbines. Kumar and Gans
[9] presented a real-time weighted multi-objective algorithm,
in which they employed an extra inner loop ESC to determine
the weights for multi-objective optimization in real-time.
Results with static functions showed the promise of real-
time weighting. This method employed the Multiple Gradient
Descent Algorithm (MGDA) proposed in [10]. Since the
extra inner loop will introduce an extra perturbation in the
wind turbine system, the real-time weighted multi-objective
algorithm is modified in this work and is discussed in detail
in section III.

Conventionally, ESC is employed to maximize the output
power in Region-2 operation of wind turbines by operating
the wind turbine under optimal torque and pitch conditions.
Extracting maximum power in off-design conditions can lead
to higher mechanical loads on these structures, which will
reduce the lifetime operation of these turbines. Therefore,
conflicting objectives of power and mechanical loads can be
used as optimizing functions in the multi-objective frame-
work for wind turbines with optimizing variables as torque
gain (kt) and blade pitch (β). A detailed explanation on the
implementation is presented in the next section. We make
two assumptions here. The first is that the load cost function
is convex. Under this assumption, the Pareto optimality
condition is given by

534

Authorized licensed use limited to: Nicholas Gans. Downloaded on August 08,2021 at 17:04:23 UTC from IEEE Xplore.  Restrictions apply. 



α
∂P

∂x
+ (1− α)∂L

∂x
= 0 (5)

where P is the output power from wind turbine, L is the
mechanical load being optimized, with x1 as torque gain
(kt), x2 as blade pitch angle (β), x can be given as x =
[x1, x2]

T and α ∈ (0, 1) gives weights on the two functions.
The second assumption is that accurate measurements for
rotor power, generator speed and structural load moments
are available.

III. IMPLEMENTATION AND MULTI-VARIABLE
CONTROLLER DESIGN

A. Implementation methodology

Real-time weighted, multi-variable, multi-objective opti-
mization for wind turbines was implemented, as shown
in Figure 3. For this study, power (P ) is the objective
to maximize and three different combination of load (L)
objectives (to minimize) were evaluated: (i) L = L1(x1, x2)
consisted of only the tower base fore-aft bending moment
(TBFABM), (ii) L = L2(x1, x2) consisted of only the blade
root flap-wise bending moment (BRFWBM), and (iii) L =
L3(x1, x2) is a combination of TBFABM and BRFWBM
with weights on each calculated based on multi-attribute
decision theory (MADT) [11]. Under MADT, the weights
included an additional cross-weighting term that addresses
the effects of correlations/combinations between the two
individual load moments. Overall, the load objective function
for the combination case was given by

L3(x1, x2) = k1L1 + k2L2 + (1− k1 − k2)L1L2 (6)

where k1 and k2 are the appropriately calculated weights, and
(1 − k1 − k2) is the aforementioned cross-weighting term.
Here, we derived these to be k1 = 0.73 and k2 = 0.26.
These values were obtained based on hypothetical lottery
scenarios over which the load moment in consideration will
have substantial change [11]. It can be seen here that the
cross-weighting term is almost negligible for our selected
case.

From Figure 3, it can be seen that the objective functions
power and load are first processed through a moving average
filter of 12.5s. The power objective is then normalized
with the rated turbine power, and its logarithm is fed to
the gradient estimator. For the load objective, its running
standard deviation is used, which is scaled with its running
mean value and logarithm of the resultant is fed to the
gradient estimator blocks. Note that for the combination
case in (6), L1 and L2 are the normalized, non-dimensional
tower base and blade root moments. The gradient estimator
(GE) block is simply the high pass filter (HPF) FHP (s), the
modulating signal and the low pass filter (LPF) FLP (s) as
shown in Figure 4. The partial derivatives thus obtained are
then concatenated to obtain the power and the load gradient
vectors. These are then used to determine the optimizing
weight α in real-time inside the multi-objective optimization
(MOO) algorithm block.

In Figure 5, ∇P (x) is the power gradient vector, and
∇L(x) is the load gradient vector. The optimal α will yield

the minimum norm solution β∗ = α∇P (x)+(1−α)∇L(x)
(α thus obtained is optimal, as β would be the shortest
length vector to the convex hull of the gradient vectors and
hence least distance to the Pareto front). Therefore, the multi-
objective weighting can be obtained in real-time through
some trigonometric manipulations. The steps followed to
determine the weight α is as below:
Step 1: Calculate cos θ using dot product, where θ is angle

between the two conflicting gradient vectors.

cos θ =
∇P.∇L
‖∇P‖‖∇L‖

(7)

Step 2: If ‖∇P‖ = ‖∇L‖, α is set to 0.5.
Step 3: If cos θ is between 0 and 1 (i.e., angle between two

gradient vectors is acute), α is set to 1 if ‖∇P‖ <
‖∇L‖ and if ‖∇L‖ < ‖∇P‖, α is set to 0.

Step 4: Else the length z and d are calculated to obtain the
weight α = z

d .

B. Multi-variable ESC Parameter Design

ESC parameters were designed as discussed in [7]. The
dither frequencies of both the ESC’s were selected within
the bandwidth of the plant dynamics. Rotor inertia and
actuator dynamics corresponds to the input dynamics, output
dynamics is reflected due to sensory dynamics and/or signal
conditioning. To simplify, input and output dynamics are
combined for parameter estimation from a open-loop step
test responses under constant wind input. The step response
of the rotor speed under step change in torque-gain and blade
pitch indicates first-order dynamics. The estimated time con-
stant from the torque-gain and blade pitch to the rotor speed
is approximately 8s. The corresponding bandwidth of the
combined input-output dynamic for the ESC is 0.125 rad/s.
Dither frequency for both the torque gain ESC and the blade
pitch ESC were selected within the estimated bandwidth. The
Bode plots for the estimated plant dynamic and the filters in
ESC design are shown in Figure 6. The low-pass and high-
pass filters are first order filters. The ESC parameters are
listed in Table I. Dither amplitude was selected, so that the
dithered output has appropriate SNR at the dither frequency
with respect to the section of output due to measurement
noise, external disturbance and process variation.

The non-dimensional normalized torque gain introduced
in [4], and later utilized in [12], is used here as the control
parameter u. The optimal value of normalized torque gain is

uopt =
kopt
Ir
×N3 ≈ 0.061 (8)

where, kopt = 2.34 Nm/(rad/s)2 is the optimal generator
torque gain for the NREL 5MW turbine, N is the gear ratio
and Ir is the rotor inertia. The optimal generator torque
control law is given by τg = koptω

2
g , where ωg denotes the

generator speed. Optimal blade pitch angle for this turbine
is βopt = 0◦.

IV. RESULTS

The proposed logarithmic-feedback multi-objective op-
timization strategy for wind turbine region-2 control is
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Fig. 3. Implementation of multi-objective ESC with log-feedback of power and loads.

Fig. 4. Gradient estimator (GE). Fig. 5. Illustration of the position
of minimum norm solution (β∗) with
respect to the gradient vectors.

Fig. 6. Bode plots of input dynamics, LPF, HPF and the dither frequencies.

designed and simulated with the NREL 5MW reference
turbine model in FAST. Main parameters of the turbine
model are listed in Table II. The controllers are evaluated
for hub-height mean wind speed of 9m/s, no wind shear and
turbulent intensities (TI) of 10%, 15% and 20% respectively.
Six different seeds were used to generate wind profiles for
each turbulent intensity case in TurbSim, and then aggregate
damage equivalent loads (DEL’s obtained using MLife) are
reported for comparison. Energy output was averaged over
the six cases. ESCs were turned on at 150s. FAST simula-
tions were performed first for the multi-variable (torque gain
and blade pitch angle) single objective (power maximization)

TABLE I
ESC PARAMETERS OF NREL 5MW REGION 2 CONTROLLER

Parameter Torque-gain ESC Blade-pitch ESC
Dither Frequency 0.02rad/s 0.04rad/s
Dither Amplitude 0.005 (non-dimensional) 0.4deg

Cut-off Freq. of LPF 0.015rad/s 0.015rad/s
Cut-off Freq. of HPF 0.018rad/s 0.018rad/s
Phase Compensator 0.36rad 0.209rad

Integrator Gain 0.00055/s 0.037/s

TABLE II
MAIN SPECIFICATIONS OF NREL 5MW TURBINE

Description Value
Rating 5MW

Rotor diameter 126m
Cut-in, Rated, Cut-out wind speed 3m/s, 11.4m/s, 25m/s

Cut-in, Rated rotor speed 6.9RPM, 12.1RPM
Rotor Inertia 35444067kg.m2

ESC under different turbulent intensity wind profiles and
then for the multi-variable, multi-objective ESC. All three
combinations of load objectives discussed in Section III
were evaluated. Percentage change is reported in terms of
reduction in DEL’s of multi-objective result with respect to
the single objective result.

Figures 7 and 8 display the time series for torque gain,
blade pitch, rotor power and rotor speed with load objective
TBFABM and 15% TI case. It can be observed that with
multi-objective ESC, control inputs torque gain and blade
pitch angle of the turbine operates in slightly sub-optimal
conditions, with rotor speed lower than the optimal value
such that the structural loads can be reduced. Time series
for other TI and different feedback cases are not shown due
to space limits.

Figure 9 displays the time series of the weight α assigned
on the power objective, as well as the power and load gradi-
ent vectors,∇P and∇L, respectively. It can be observed that
the cosine of the angle between the two gradient vectors is
changing with time, and accordingly, the weight α is being
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Fig. 7. Time series for torque gain and blade pitch with load objective
TBFABM (9m/s, 15% TI wind).

Fig. 8. Time series for rotor power and rotor speed with load objective
TBFABM (9m/s, 15% TI wind).

modified in real time for faster convergence to the Pareto
front.

Figure 10 shows the change in tower-base fore-aft bending
moment (TBFABM) DEL, while Figure 11 shows the DEL
percentage change in blade root flap-wise bending moment
(BRFWBM). The average percentage change in energy pro-
duction is shown in Figure 12. All three controllers (for each
load objective) are evaluated. All metrics are calculated for
three values of turbulence intensity (TI). Averaging these
results across all three TIs, we obtain the aggregate change
in loads and energy shown in Table III.

Preliminary conclusions can be drawn from Table III.
Firstly, note that if one assumes the same level of interest
in reducing both loads (blade and tower), the controller
with tower-load feedback (TBFABM feedback) performs as
well as the controller with blade-load feedback (BRFWBM
feedback), but both the controllers have a lower average total
load reduction (row 3 in Table III) than the controller with
combined load feedback. In this case, one would select the
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Fig. 9. Time series for multi-objective parameters with load objective
TBFABM (9m/s, 15% TI wind).
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Fig. 10. DEL change in tower base fore-aft bending moment.

combined load feedback controller, which has the largest
average load reduction and energy loss (1.8%) approximately
the same as the best possible energy loss (1.7%). One point
to consider here would be if only tower-load feedback is
used, then only one sensor on the tower would be required
in comparison to two sensors (one on tower and one on
blade) for the combined feedback case. Note from Table III
that the combined load feedback controller attains the largest
blade DEL reduction (87%); hence, this controller is the best
choice even if we only care about reductions in blade DEL.
One would select the blade-load feedback controller if the
target is to reduce tower DELs only, because this controller
achieves the largest tower DEL reduction (59%). However,
based on this metric alone, this controller is about 34% better
than the tower-feedback controller and about 37% better
than the combined load feedback controller. Given all the
uncertainties associated with this analysis, the use of blade-
load feedback may not be justified.
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Fig. 11. DEL change in blade root flap-wise bending moment.
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Fig. 12. Change in energy capture.

V. CONCLUSION

This paper proposes a real-time weighted multi-objective
ESC with log-feedback strategy for wind turbine control.
The proposed multi-objective strategy is compared with a
conventional single objective (power maximization) ESC
strategy. The 5MW NREL reference turbine model is used
to evaluate the performance of both strategies. Three differ-
ent load objectives are considered: tower fore-aft bending
moment, blade-root flapwise bending moment and a com-
bination of both. Preliminary results demonstrate that the
proposed method converges to solutions with much greater
load reductions than the change in energy capture. That is,
the inclusion of load objectives in this multi-objective ESC
configuration reduces loads with little to no impact on energy
capture. From the limited analysis, it can be concluded
that the multi-objective ESC controller with log-feedback of
power and combined load of tower and blade offers the best
compromise in terms of performance, but it requires two
sensors. For simplicity, load feedback of tower would be the
best option.

TABLE III
AVERAGE CHANGE IN LOADS AND ENERGY FOR THE THREE LOAD

OBJECTIVES

TBFABM
feedback
(L1)

BRFWBM
feedback
(L2)

Combined
feedback
(L3)

TBFABM DEL Change(%) -44 -59 -43
BRFWBM DEL Change(%) -81 -66 -87

Average DEL Change(%) -62.5 -62.5 -65
Energy(%) -1.7 -2.3 -1.8

The algorithm presented for multi-objective optimization
(see Fig. 3) does not require the design of weights for the
individual objectives. Instead, such weights are calculated in
real-time, resulting in an algorithm that appears to converge
to the Pareto optimal solution that is closest to the initial
condition for the optimization variables. Additional work
is required to determine the convergence properties of the
proposed algorithm.
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