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Underdamped stochastic thermodynamic engines in contact with a heat bath
with arbitrary temperature profile
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We study thermodynamic processes in contact with a heat bath that may have an arbitrary time-varying peri-
odic temperature profile. Within the framework of stochastic thermodynamics, and for models of thermodynamic
engines in the idealized case of underdamped particles in the low-friction regime subject to a harmonic potential,
we derive explicit bounds as well as optimal control protocols that draw maximum power and achieve maximum
efficiency at any specified level of power.
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I. INTRODUCTION

For more than 200 years, Carnot’s idealized concept of
a heat engine [1] has been the cornerstone of equilibrium
thermodynamics [2]. It provided a standard as well as led
to the discovery of the absolute temperature scale, entropy,
and the second law of thermodynamics. The sequel, beyond
equilibrium and quasistatic operation, proved a challenging
one. Statistical mechanics and stochastic fluctuation theories
have since, and for over a hundred years, been advancing
our insight into the irreversibility of nonequilibrium thermo-
dynamic transitions. In this endeavor, a particular promising
model of far-from-equilibrium transitions is that of stochastic
thermodynamics (also stochastic energetics) [3–6] that fol-
lowed at the heels of fluctuation theories [7–11].

In the present work we adopt the framework of stochastic
thermodynamics so as to quantify the amount of power as
well as the efficiency that thermodynamic engines can achieve
when harvesting energy from a heat bath with an arbitrary but
periodically fluctuating temperature profile. Our study is ex-
pected to be of value, in particular, to theorists and engineers
that work with nano machines and nano sensing devices at the
scale of molecular and thermal fluctuations. Specifically, in
our work, the Langevin equation

dXt = vt dt (1a)

mdvt =−∇xU (t, Xt )dt −γ vt dt +
√

2γ kBT (t )dBt , (1b)

provides a model for a molecular system that interacts with a
thermal environment. In this, Xt ∈ R denotes the location of a
particle (which is taken to be one-dimensional for notational
simplicity), vt ∈ R represents its velocity at time t , m its
mass, γ the viscosity coefficient of an ambient medium, kB

the Boltzmann constant, T (t ) the time-varying temperature
of the heat bath at time t that a statistical ensemble of par-
ticles is in contact with, Bt a standard Brownian motion that
represents thermal excitation from a heat bath, and U (t, x)

a time-varying potential exerting a force −∇xU (t, x) on a
particle at location x ∈ R. This potential represents a control
action that models interaction of our ensemble of particles
with the external world.

This Langevin model has been extensively used to describe
heat engines in a Carnot-like cycle, that cycles through contact
with heat baths of different temperature, in order to quantify
maximum power that can be drawn as well as efficiency at
maximum power. Specifically, foundational work has been
carried out in the overdamped regime [12–14] where inertial
effects are neglected, as well as in the underdamped regime
[15,16] under a low-friction assumption, where inertial effects
now dominate dissipation. Most importantly, experimental
realization and verification of findings have been reported in
different settings [17–19].

Energy and entropy exchange between a heat bath and a
particle ensemble is not particular to (thermodynamic) en-
gines. Fluctuations in chemical concentrations in conjunction
with the variability of electrochemical potentials may provide
a universal source of cellular energy [20]. Indeed, a similar
mechanism appears to be at play in biological engines. In
these, energy exchange appears to be mediated by continu-
ous processes and energy differentials [21], in contrast to the
classical Carnot cycle which alternates between heat baths of
constant temperature in an idealized engine. Thus, as contem-
plated by E. Schrödinger [22,23], the ability of life to maintain
a distance from equilibrium may be tied to mechanisms that
allow drawing energy out of naturally or self-induced fluctu-
ating temperature or chemical concentrations.

It is partly the above circle of ideas that led us to consider
the rudimentary model of a cyclic process (periodical tem-
perature profile of a heat bath) that fuels a molecular engine
represented by stochastically driven Langevin dynamics. An-
other paradigm that may provide context is that of molecular
engines that may some day be engineered to tap onto cyclic
temperature fluctuations for work production. The work we
present below is an extension of recent studies for periodic
temperature profile in the linear regime [24–26]. It addresses
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the nonlinear regime and, in particular, the case of under-
damped dynamics where the low-friction assumption applies.

II. ENERGETICS AND LOW-FRICTION APPROXIMATION

Throughout the paper we will consider the Langevin dy-
namics (1) with a harmonic potential

U (t, x) = 1
2 q(t )x2,

where q(t ) represents its intensity and constitutes our control
variable. The total energy of a particle is the sum of kinetic
and potential energies,

Et = 1
2 mv2

t + 1
2 q(t )X 2

t .

The work and heat exchange at the level of a single particle,
d̄ Wt and d̄ Qt , respectively, are [3]

d̄ Wt = 1

2
q̇(t )X 2

t dt, (2a)

d̄ Qt = −γ v2
t dt + γ kBT (t )

m
dt +

√
2γ kBT (t )vt dBt . (2b)

These definitions are in agreement with the first law of ther-
modynamics, i.e., dE = d̄ Q + d̄ W . Taking the expectation of
(2) yields the average rate of work and heat exchange,

d̄Wt = 1

2
q̇(t )�x(t )dt, (3a)

d̄Qt =
[
−γ�v (t ) + γ kBT (t )

m

]
dt, (3b)

where �x and �v are the variances of Xt and vt , respectively.
The averaged expressions also satisfy the first law of thermo-
dynamics dEt = d̄Qt + d̄Wt , where

Et = 1
2 q(t )�x(t ) + 1

2 m�v (t )

is the average total energy of the particle.
The governing equations for the variance are obtained from

the Langevin dynamics (1),

�̇x(t ) = 2�xv (t ), (4a)

�̇xv (t ) = �v (t ) − q(t )

m
�x(t ) − γ

m
�xv (t ), (4b)

�̇v (t ) = −2q(t )

m
�xv (t ) − 2γ

m
�v (t ) + 2γ kB

m2
T (t ), (4c)

where �xv (t ) is the correlation between Xt and vt .
Although the differential equations for the evolution of

the variance are explicit and in closed-form, the analysis for
maximizing efficiency is still challenging due to the presence
of the three coupled ODEs. As a result, it is common to
consider simplifying approximations that hold in different
physical regimes.

Our analysis concerns the underdamped (or low-friction)
regime that is studied in Refs. [15,16]. When the temperature
T (t ) and the harmonic potential intensity q(t ) are constant, the
low-friction regime holds when the particle in (1) undergoes
many oscillations before dissipation effects become signifi-

cant. Mathematically, this amounts to
√

q
m � γ

m . In the case

where T (t ) and q(t ) are time varying periodic functions, it

is required in addition that their power spectrum mostly lies
below the natural frequency of oscillations

√
q/m.

Under the low-friction assumptions, the equipartition con-
dition

1
2 q(t )�x(t ) = 1

2 m�v (t ) (5)

holds approximately [16, Section 4.2]. As a result, it is pos-
sible to express the dynamics of our system as a function of
�v (t ) uniquely. More precisely, we can use (4a) to express
�xv (t ) as follows:

�xv (t ) = 1

2
�̇x = m

2q(t )
�̇v − mq̇(t )

2q(t )2
�v,

where the second equality comes from the equipartition con-
dition (5). Now, we can rewrite �xv (t ) in (4c), to obtain

�̇v (t ) = �v (t )

[
q̇(t )

2q(t )
− γ

m

]
+ γ kB

m2
T (t ). (6)

For this equation to be meaningful, we require q(t ) to be
(weakly) differentiable. Equation (6) is the underlying model
for our analysis through the rest of the paper.

III. ANALYSIS OF MAXIMUM POWER

We consider a stochastic thermodynamic engine driven
by a periodic temperature T (t ) with period t f . The averaged
power output over a cycle is equal to

P = − 1

t f

∫ t f

0
d̄Wt .

Using the first law of thermodynamics dEt = d̄Qt + d̄Wt ,
the power can be expressed in terms of heat exchange as
follows:

P = 1

t f

∫ t f

0
(d̄Qt − dEt )

= γ

t f

∫ t f

0

[
kBT (t )

m
− �v (t )

]
dt + 1

t f
[E (t f ) − E (0)], (7)

where the definition (3b) is used and Et ≡ E (t ), for clarity.
To account for possible discontinuities in T (t ) and q(t ), as it
is often the case in the underdamped setting [15,27,28], we
consider a cycle from 0+ to t+

f . Thus, q, �v , and E , which are
periodic, satisfy

q(0+) = q(t+
f ) and �v (0+) = �v (t+

f ), (8)

and E (0+) = E (t+
f ). The latter condition removes the bound-

ary terms in (7), while conditions (8) impose an integral
constraint on �v (t ). Specifically, if we divide (6) by �v (t )
and integrate from 0+ to t+

f we obtain

log

[
�v (t+

f )

�v (0+)

]
= log

[
q(t+

f )

q(0+)

] 1
2

− γ

m
t f + γ kB

m2

∫ t f

0

T (t )

�v (t )
dt .

(9)
Thus, in view of (8),∫ t f

0

T (t )

�v (t )
dt = mt f

kB
. (10)

This integral constraint is the main ingredient in our analysis
for both maximum power and maximum efficiency.
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We first consider maximizing power output, namely,

max
�v (·)

γ

t f

∫ t f

0

[
kBT (t )

m
− �v (t )

]
dt, (11)

subject to the constraint (10). We observe that due to (10),∫ t f

0
�v (t )dt =

∫ t f

0

[
�v (t ) + c

T (t )

�v (t )

]
dt − c

mt f

kB

for any arbitrary constant c. The minimal value for the in-
tegrand �v (t ) + c T (t )

�v (t ) , pointwise and with respect to �v (t ),

is attained for �v (t ) = √
cT (t ). This choice for �v (t ) also

satisfies (10) for
√

c = kB
mt f

∫ t f

0

√
T (t )dt . Therefore,

�v (t ) =
[

kB

mt f

∫ t f

0

√
T (s)ds

]√
T (t ) (12)

is the unique maximizer of (11).
The relation between �v (t ) and the protocol q(t ) can be

obtained from (6) by direct integration (cf. (9)), which for the
optimizing �v (·) gives

q(t ) = q0
T (t )

T (0)
exp

{
2γ t f

m

[
t

t f
−

∫ t
0

√
T (s)ds∫ t f

0

√
T (s)ds

]}
. (13)

Note that, q0 specifies the starting value q(0) of the optimal
protocol. Further, q(t ) is continuous at all times when T (t )
is, which agrees with the intuition that jumps in the control
are necessitated for adapting to a sudden jump in temperature
[12,15].

Finally, inserting (12) into the expression for power, we
obtain that, under this protocol, any value for q0 gives the
same level of power, namely,

P∗ = γ kB

m
Var(

√
T ) (14)

where

Var(
√

T ) = 1

t f

∫ t f

0
T (t )dt −

[
1

t f

∫ t f

0

√
T (t )dt

]2

quantifies fluctuations in
√

T (t ).
Thus, expression (14) quantifies the maximum power that

can be drawn in terms of an explicit measure of temperature
fluctuations.

It is interesting to consider the shape of temperature fluc-
tuations that allows maximum power to be drawn under the
optimal protocol. In view of the above, it is easy to see that
when T (t ) ∈ [Tc, Th], the Carnot temperature profile

TCarnot (t ) =
{

Th, t ∈ [
0,

t f

2

)
Tc, t ∈ [ t f

2 , t f
)
,

(15)

allows drawingmaximum power, which in this case is

γ kB

m

(
√

Th − √
Tc)2

4
.

This special profile (Carnot) has already been studied in
Ref. [15].

IV. ANALYSIS OF MAXIMUM EFFICIENCY
AT FIXED POWER

The classical definition of efficiency is the ratio of work
produced over the amount of heat drawn from the hot bath
into the system,

ηQ = −W
Qh

. (16)

This definition presumes that the environment that constitutes
the hot heat bath is well defined, and as a consequence that Qh

is well defined as well. This is clearly the case for a Carnot
cycle, T (t ) = TCarnot (t ), when the system remains in contact
with the bath at Th during the interval [0,

t f

2 ).
For this case, at maximum power,

Qh =
∫ t f

2

0
d̄Qt = γ kB

m

t f

4

√
Th(

√
Th − √

Tc),

where the second equality is obtained using (3b) and the
optimal expression for �v in (12). It follows that

ηQ = 1 −
√

Tc

Th
,

which is precisely the Curzon-Ahlborn efficiency [29,30].
This result was obtained in Ref. [15].

However, in the setting of an arbitrary periodic temperature
profile, it is not entirely clear what constitutes the hot bath.
The same bath serves as hot and cold, at different times, and
therefore Qh and ηQ may be given different definitions and be
subject to different interpretations [24,26].

In the present work, following Ref. [26], we adopt

ηU = −W
U ,

as our definition of efficiency, where

U = −kB

∫ t f

0
S(ρt )Ṫ (t )dt,

[also U = kB
∫

T (t )Ṡ(ρt )dt , using integration by parts] repre-
sents the effective uptake of thermal energy, while

S(ρt ) = −
∫∫

ρt (x, v) log[ρt (x, v)]dxdv

denotes the entropy of the particle-distribution ρt . The value U
can be thought of as the maximal amount of work that can be
extracted when the dissipation is zero and the transition takes
place quasistatically. In general, over a cycle,

U = −W + Wdiss,

where the dissipation

Wdiss =
∫

kBT (t )

[
Ṡ(ρt )dt − d̄Q

kBT (t )

]
︸ ︷︷ ︸

Ṡtotal

,

relates to the total entropy production rate Ṡtotal in the system
and the environment. For quasistatic transitions Wdiss = 0 and
ηU = 1.

In the underdamped low-friction regime with quadratic
potential, the distribution ρt is Gaussian with independent
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components (x, v) whose covariance are �x(t ) and �v (t ),
respectively. Using the standard formula for the entropy of
Gaussian distributions together with the equipartition condi-
tion (5) expressed in terms of the variances, U simplifies to

U = −kB

2

∫ t f

0
ln

[
(2πe)2 m

q(t )
�2

v (t )

]
Ṫ (t )dt .

In case T (t ) is discontinuous, the limits of integration need
to be taken as 0+ and t+

f , and similarly in what follows.
Integration by parts gives

U = kB

2

∫ t f

0

[
2
�̇v (t )

�v (t )
− q̇(t )

q(t )

]
T (t )dt

= k2
Bγ

m2

∫ t f

0

T (t )2

�v (t )
dt − kBγ

m

∫ t f

0
T (t )dt,

where we have used (6) to establish the second equality.
We now seek to optimize efficiency at a given power. To

this end, it suffices to minimize the dissipation U subject to
the given power. Thus, we consider

min
�v (·)

∫ t f

0

T (t )2

�v (t )
dt, (17)

subject to (10) together with

γ

t f

∫ t f

0

[
kBT (t )

m
− �v (t )

]
dt = P,

for any given level of power P . We follow a variational ap-
proach. The Lagrangian for our optimization problem is

L = T (t )2

�v (t )
+ λ

[
�v (t ) − kBT (t )

m
+ P

γ

]
+ μ

[
T (t )

�v (t )
− m

kB

]
,

where λ,μ are the Lagrange multipliers. The stationarity con-
dition for �v (t ) gives

�v (t ) = 1√
λ

√
T (t )2 + μT (t ).

Applying the power constraint we obtain

√
λ =

∫ t f

0

√
T (t )2 + μT (t )dt

kB
m

∫ t f

0 T (t )dt − t f

γ
P

.

In a similar manner as before, the optimal protocol can now
be obtained by direct integration of (6), to give

q(t ) = q0
T (t )2 + μT (t )

T (0)2 + μT (0)
exp

{
2γ [t − r(t )]

m

}
, (18)

where

r(t ) =
∫ t f

0

√
T (s)2 + μT (s)ds∫ t f

0 T (s)ds − t f m
γ kB

P

∫ t

0

√
T (s)√

T (s) + μ
ds.

It now remains to fix μ by imposing the last constraint, which
yields r(t f ) = t f . This is,∫ t f

0

√
T (t )2 + μT (t )dt

∫ t f

0

√
T (t )√

T (t ) + μ
dt

= t f

∫ t f

0
T (t )dt − t2

f m

γ kB
P . (19)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.6

0.8

1

0

FIG. 1. (a) Maximum efficiency at fixed power for the temper-
ature profiles portrayed in (b). (b) Temperature profiles with colors
and patterns matching the corresponding performance curves in (a).

In general, Eq. (19) cannot be solved explicitly for μ.
However, it is easily seen that when P = 0, then μ = 0 is a
solution. Also, as P → P∗, then the solution μ → ∞. It is
worthwhile to point out that the condition r(t f ) = t f makes
the protocol (18) continuous for continuous temperature pro-
files.

For notational convenience, we let

g(t ) = 1

t f

∫ t f

0
g(t )dt

denote the average of a periodic function g(t ) over the period.
Now, putting all of the ingredients together, the optimal U is

U∗ = t f

κ

⎛
⎝√

[T (t ) + μ]T (t )

T (t ) − κP
×

{
T (t )

3
2√

[T (t ) + μ]

}
− T (t )

⎞
⎠,

where κ = m/(γ kB). Consequently, the maximum efficiency
at fixed power is

η∗
U

(P ) = κP(√
[T (t )+μ]T (t )
T (t )−κP × { T (t )

3
2√

[T (t )+μ]

} − T (t )
) . (20)

Figure 1 displays the trade-off between power and effi-
ciency for three different temperature profiles. Note that for
vanishing power we obtain the maximum possible efficiency,
i.e., η∗

U
= 1, that corresponds to vanishing dissipation. On

the other hand, as κP → κP∗ = Var(
√

T ) (from (14)), the
limiting value from (20) gives that

η∗
U

→
√

T (t )Var(
√

T )

T (t )
3
2 − T (t ) × √

T (t )
. (21)

This is precisely the efficiency at maximum power obtained
by using the optimal protocol (13). The limit in (21) can also
be expressed in terms of the third moment of the square root
of the temperature

μ3(
√

T ) = 1

t f

∫ t f

0
[
√

T (t ) −
√

T (t )]3dt,
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specifically,

η∗
U

→ 1

2+ μ3 (
√

T )

Var(
√

T )
√

T (t )

. (22)

Thus, for any temperature profile such that μ3(
√

T ) = 0, the
limit is 1

2 , which in particular is true for the Carnot-like tem-
perature profile T (t ) = TCarnot (t ). We also note that the third
moment can be negative, leading to efficiency that exceeds 1

2 ,
albeit at the cost of decreasing maximum power.

V. EXAMPLE: SINUSOIDAL TEMPERATURE PROFILE

In the following we compare our results to the ones ob-
tained in the linear response regime, where it is assumed
that Th − Tc 	 Th + Tc [24,31]. To this end, we consider the
sinusoidal temperature profile

T (t ) = Th + Tc

2
+ Th − Tc

2
cos(ωt ), (23)

with ω 	
√

q
m so as to ensure that the low-friction assumption

holds.
We first use our analytical result to recover the expressions

obtained in the linear response regime. Specifically, assuming

T = Th−Tc

2 is much smaller than T̄ = Th+Tc
2 , we have that

q∗(t ) = q0 + q0

T

T̄
cos(ωt ) + O(
T 2),

P∗ = γ kB

8m


T 2

T̄
+ O(
T 3),

η∗
U

(P∗) = 1

2
+ O(
T 2),

where the first two coincide with the expressions for the op-
timal protocol and power that are given in Refs. [24,31], in
the limit where q0

m is large enough to satisfy the requirements
of the low-friction regime. In fact, in the linear response
regime η∗

U
(P∗) = 1

2 + O(
T 2) holds for any temperature
profile whose time-dependent component is an odd function
of t .

Moreover, in order to illustrate the utility of our results, we
compare the optimality of the protocol obtained in this paper,
to the one obtained in the linear response regime. Specifically,
we solve numerically the equations for the variance (4) for
two protocols:

(i) the optimal protocol obtained with low-friction as-
sumption according to (13),

(ii) the optimal protocol obtained in linear response
regime in Ref. [24] and Ref. [31, Eqs. (29) and (30a)].

These two protocols, along with the temperature profile,
are shown in Fig. 2. Then, we use the numerical solution to the
equations for the variance to compute power and efficiency.
The result, as the temperature difference Th − Tc is varied, is
shown in Fig. 3.

In these numerical examples, we made sure γ

m 	
√

q
m so

that the low-friction assumption remains valid. As it is ex-
pected, the optimal protocol under the linear response regime
assumption performs well when the temperature ratio is small,
giving a numerical result that agrees with Eqs. (13) and (20).
However, as the temperature ratio increases, higher order

0 1 2 3 4 5 6
0

50

100

150

200

250

0

0.5

1

1.5

2
Low friction regime
Linear response regime
Temperature

FIG. 2. Comparison between the optimal protocols q(t ) in the
low-friction and linear response regimes, for the sinusoidal tempera-
ture profile shown with a red-dotted curve.

terms become significant and the protocol is no longer opti-
mal.

We finally highlight how the numerical value of power and
efficiency, using the optimal protocol (13), deviates from the
analytical expressions for maximum power (14) and efficiency
at maximum power (21) with increasing values of the friction
coefficient γ . This is shown in Fig. 4. Specifically, for small
values of γ√

mq , the analytical and numerical results for power

and efficiency coincide. For larger values of γ√
mq the approx-

imation error becomes significant due to the fact that the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

Low friction regime (numerical)
Linear response regime
Low friction regime (analytical)

FIG. 3. Power and efficiency for (1) with a temperature profile
(23) as functions of temperature ratios for two protocols: (i) the opti-
mal protocol obtained under the low-friction assumption (13) (solid
line), and (ii) the optimal protocol obtained in the linear response
regime [31, Eqs. (29) and (30a)] (dashed line). For comparison, the
analytical expressions for maximum power (14) and efficiency (21)
in the low-friction regime are also drawn (dotted curve).
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0 0.2 0.4 0.6 0.8 1
-5

0

5

10

10-3

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

Numerical
Analytical

FIG. 4. Numerical values for power and efficiency as a function
of the friction coefficient for the system governed by Eq. (4), driven
by the optimal protocol (13) obtained in the low-friction regime
(solid line). For comparison, we have included the analytical expres-
sions for maximum power (14) and the efficiency at maximum power
(21) obtained under the low-friction assumption (dotted line).

condition γ√
mq 	 1, and hence, the approximate equipartition

relation (5), no longer hold.

VI. CONCLUDING REMARKS

The present work quantifies maximum power, as well as
the efficiency at any level of power, that can be achieved by
a thermodynamic engine in the (underdamped) low-friction
regime, modeled by a Langevin equation and in contact with
a heat bath with periodic temperature profile.

It turns out that the maximum power and efficiency are
expressed in terms of finite moments of the square root of the
temperature profile. Moreover, when the temperature changes
continuously, the optimal control protocol is expressed explic-
itly in terms of the temperature and certain finite moments,
and is continuous in time as well.

Of particular interest is the efficiency at maximum power
and, specifically, the relation between useful work and dis-
sipation. Interestingly, when the third moment of the square
root of the temperature profile is zero (for instance, due to
a suitable time symmetry), at maximum power in the low-
friction regime, the losses in dissipation equal the amount of
work that can be extracted by the engine, yielding ηU = 1

2 .
It is of interest to explore possible connections of this result
to the universal bound on the efficiency at maximum power
being 1

2ηC , where ηC is the Carnot efficiency [14,32].
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