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In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS)
equations are developed for homogeneous, fully developed gas–particle flows. To date, the
majority of RANS closures are based on extensions of single-phase turbulence models,
which fail to capture complex two-phase flow dynamics across dilute and dense regimes,
especially when two-way coupling between the phases is important. In the present study,
particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings,
interphase momentum exchange between the phases results in the spontaneous generation
of particle clusters that sustain velocity fluctuations in the fluid. Data generated from
Eulerian–Lagrangian simulations are used in a sparse regression method for model closure
that ensures form invariance. Particular attention is paid to modelling the unclosed terms
unique to the multiphase RANS equations (drag production, drag exchange, pressure strain
and viscous dissipation). A minimal set of tensors is presented that serve as the basis for
modelling. It is found that sparse regression identifies compact, algebraic models that are
accurate across flow conditions and robust to sparse training data.

Key words: multiphase flow, particle/fluid flow, turbulence modelling

1. Introduction

Many natural and industrial processes involve the flow of solid particles, liquid droplets
or gaseous bubbles whose dynamical evolution and morphology are intimately coupled
with a carrier fluid. A peculiar behaviour of disperse multiphase flows is their ability to
give rise to large-scale structures (hundreds to thousands of times the size of individual
particles), from dense clusters to nearly particle-free voids (see figure 1). The emergence
of spatial segregation in particles can be attributed to a number of factors, e.g. due to
dissipation during inelastic collisions (Hopkins & Louge 1991; Goldhirsch & Zanetti
1993), viscous damping by the fluid (Wylie & Koch 2000), preferential concentration
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Figure 1. Instantaneous snapshots of fully developed CIT at statistical steady state. A slice at the centreline
in the x–y plane is shown, with particle position (white) and normalized vertical fluid velocity uf /V0 (colour):
(a) Ar = 1.80; (b) Ar = 5.40; and (c) Ar = 18.0.

of particles by the background turbulence (Eaton & Fessler 1994) and instabilities that
arise due to interphase coupling (Glasser, Sundaresan & Kevrekidis 1998; Agrawal et al.
2001; Capecelatro, Desjardins & Fox 2014, 2015). Such large-scale heterogeneity can
effectively ‘demix’ the underlying flow, reducing contact between the phases and resulting
in enormous consequences at scales much larger than the size of individual particles, such
as hindered heat and mass transfer (Agrawal et al. 2013; Miller et al. 2014; Pouransari &
Mani 2017; Beetham & Capecelatro 2019; Guo & Capecelatro 2019).
The focus of the present work is on modelling disperse multiphase turbulence at length

scales much larger than the particle diameter. Such flows can be categorized into two broad
classes: (i) flows where the turbulence originates in the continuous phase with the discrete
phase modulating the small scales of the turbulence (see e.g. Balachandar & Eaton (2010),
and references therein); and (ii) flows where the turbulence arises due to the coupling
between the discrete and continuous phases. The former is mainly focused on how the
discrete phase modifies the classical turbulence structures seen in single-phase flows. The
latter is the focus of the present work and can be observed in gas–particle flows when
the mass of the particles is of the same order or greater than that of the gas phase, or in
bubbly flows when the bubble volume fraction is high enough to lead to buoyancy-driven
instabilities (e.g. Besnard, Harlow&Rauenzhan 1987; Rzehak &Krepper 2013; Ma, Lucas
& Bragg 2020).
To date, turbulent particle-laden flows are most often discussed in the dilute limit where

the fluid-phase turbulence interacts with inertial particles without significant feedback
from the particles. It is well established that dilute suspensions of heavy particles in
isotropic turbulence will preferentially concentrate in regions of high strain rate and low
vorticity (Eaton & Fessler 1994). In the presence of a mean body force (e.g. gravity),
particles have been observed to experience enhanced settling as a result of preferential
sweeping, by which the particles tend toward regions of downward fluid motion when
encountering vortical structures in the flow (e.g. Wang &Maxey 1993; Aliseda et al. 2002;
Ferrante & Elghobashi 2003; Yang & Shy 2003; Bosse, Kleiser & Meiburg 2006).
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When the particle concentration is sufficiently high, the background flow is largely
controlled by interphase coupling. Under these conditions, particles tend to accumulate
in regions of low vorticity, resembling preferential concentration that typically occurs in
dilute particle-laden turbulence. However, in the dense limit the vorticity is generated in
shear layers between highly concentration regions (clusters), unlike in classical preferential
concentration where vorticity would exist even in the absence of the disperse phase
(Capecelatro et al. 2015). Additional effects contribute to the settling velocity and spatial
segregation of particles in denser suspensions when two-way coupling between the phases
is non-negligible.
Seminal works by G. K. Batchelor have provided theoretical estimates describing the

motion of collections of solid particles suspended in viscous flows (Batchelor 1972, 1982),
in addition to important insights into the instabilities present in such systems. For example,
Batchelor (1988) demonstrated that small rigid spheres falling under gravity will give
rise to long-range hydrodynamic interactions that result in hindered settling (Batchelor
1972). In more recent studies, it was demonstrated that, at higher Reynolds numbers
and particle concentrations, momentum exchange between the phases results in enhanced
settling when the mean mass loading, ϕ, defined by the ratio of the specific masses of the
particle and fluid phases, is of order one or larger (Capecelatro et al. 2015). In statistically
homogeneous gravity-driven gas–solid flows, the average particle settling speed, V , can be
approximated as

V = V0 + 〈uf 〉p (1.1)

for Stokes flow (Capecelatro et al. 2015), where V0 = τpg is the terminal Stokes settling
velocity of an isolated particle with τp the particle response time and g gravity. In this
expression, the phase-averaged fluid velocity, 〈uf 〉p = 〈αpuf 〉/〈αp〉, is sometimes referred
to as the velocity seen by the particles, where uf is the local fluid velocity aligned with
gravity, αp is the local particle volume fraction and angled brackets denote a spatial and
temporal average. At sufficient mass loading, fluctuations in particle concentration can
generate and sustain fluid-phase turbulence (as shown in figure 1), referred to here as
cluster-induced turbulence (CIT). Because clusters entrain the carrier phase, uf and αp are
often highly correlated, resulting in V > V0.
Due to the breadth of length and time scales present in turbulent fluid–particle mixtures,

accurate modelling of industrial and environmental flows remains challenging. Thus, the
Reynolds-averaged Navier–Stokes (RANS) equations are the workhorse of industry to
inform engineering designs and decisions. Because of the importance of the multiphase
physics present in large-scale systems, developing multiphase RANS closures that are
accurate under relevant conditions is critically important.
To date, multiphase turbulence models have largely relied upon extensions to

single-phase models (e.g. Sinclair & Jackson 1989; Dasgupta, Jackson & Sundaresan
1994; Sundaram & Collins 1994; Cao & Ahmadi 1995; Dasgupta, Jackson & Sundaresan
1998; Cheng et al. 1999; Zeng & Zhou 2006; Jiang & Zhang 2012; Rao et al. 2012) that
were derived directly from the Navier–Stokes equations. It should be noted, however,
that multiphase turbulence does share some commonalities with single-phase flows,
especially with variable-density turbulence. For example, multiphase flows subject to
mean shear can develop velocity fluctuations that strongly modify the mean velocity
profiles and transport properties of the flow (Capecelatro, Desjardins & Fox 2018).
Single-phase, variable-density flows subject to Rayleigh–Taylor instabilities (see, e.g.
Johnson & Schilling 2011; Zhou 2017) develop velocity and density fluctuations similar
to those observed in heterogeneous bubbly flows (Mudde 2005). However, the main
difference between disperse multiphase and variable-density flows is that the former
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has a separate velocity for each phase while the latter has a single fluid velocity.
Moreover, momentum coupling by particles introduces velocity fluctuations at small
scales that further complicates the energy budget of turbulence. By introducing the slip
velocity, i.e. the velocity difference between the discrete and continuous phases, additional
dimensionless parameters, such as the Stokes number and mass loading, are needed to
describe multiphase turbulence.
In contrast to modelling by analogy with single-phase flow, Fox (2014) developed the

exact Reynolds-averaged equations for collisional fluid–particle flows. In that work, it
was demonstrated that directly averaging the Navier–Stokes equations fails to capture
important two-phase interactions. Instead, it was demonstrated that phase averaging
the mesoscale (locally averaged) equations results in a set of equations that explicitly
account for two-way coupling contributions. Capecelatro et al. (2015) further developed
the Reynolds-averaged formulation of Fox (2014) to include transport equations for the
volume-fraction variance, drift velocity and the separate components of the Reynolds
stresses of each phase and particle-phase pressure tensor. While exact, it does lead to a
large number of unclosed terms that require modelling, which is the focus of the present
study.
Accurate modelling of the unclosed terms that remain predictive from dilute to

dense regimes remains an outstanding challenge. Fox (2014) proposed closures of the
phase-averaged (PA) terms based largely on single-phase turbulence models without
extensive validation. Capecelatro, Desjardins & Fox (2016b) extended these models
to account for near-wall effects in particle-laden channel flows. Agreement with the
turbulence statistics obtained from simulation data was found to be satisfactory at first
order (e.g. PA velocities) but less so at second order (e.g. PA turbulent kinetic energy).
Innocenti et al. (2019) drew upon a probability-density-function approach, along with
extensions from single-phase turbulence modelling (particularly in the fluid phase),
showing satisfactory agreement for statistics up to second order. However, the model
was restricted to relatively dilute flows. Due to the large parameter space associated with
turbulent multiphase flows, a reliable modelling approach valid across two-phase flow
regimes (e.g. dilute to dense limit) remains elusive.
Broadly speaking, extracting new models and understanding of physics from data has a

long history in many diverse areas of science and engineering (see e.g. Jordan & Mitchell
2015). In the last decade, these data-driven techniques have been applied to turbulence
modelling in several ways, including uncertainty prediction and quantification, model
calibration and augmentation and the generation of entirely new models. Several recent
works have utilized machine learning (neural networks are particularly popular; Milano
& Koumoutsakos 2002; Lu 2010; Rajabi & Kavianpour 2012; Duraisamy & Durbin 2014;
Duraisamy, Zhang & Singh 2015; Tracey, Duraisamy & Alonso 2015; Ling, Kurzawski
& Templeton 2016; Ma, Lu & Tryggvason 2016; Bode et al. 2019; Liu & Fang 2019) in
order to translate large amounts of experimental or computational data into model closures.
Neural networks have shown relatively exceptional performance outside the region in
which they were trained. As a departure from more traditional modelling techniques,
these methods are inserted modularly, as a ‘black box’, into an existing flow solver. Thus,
while they have displayed a high level of performance on a wide range of flow conditions,
the closure does not satisfy the interpretability condition necessary for making physical
inferences. Further, a large number of neural network approaches attempt to augment or
correct existing models. However, as discussed above, in the context of multiphase flows
appropriate existing models in which to augment do not exist.
Rather than relying on a best-fit strategy, as done in neural networks, Brunton, Proctor &

Kutz (2016) developed a strategy based on sparse regression that identifies the underlying

914 A11-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
3.

14
5.

17
5.

24
9,

 o
n 

30
 Ju

n 
20

21
 a

t 1
6:

03
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.53


Sparse identification of multiphase turbulence closures

functional form of the nonlinear physics by optimizing a coefficient matrix that acts upon
a matrix of trial functions. While this method requires knowledge about the physics of the
system under configuration (in order to make informed selections of the trial functions),
it can be reasonably assumed that the modeller is not entirely naive. In fact, traditional
modelling techniques have relied nearly exclusively on this notion. Schmelzer, Dwight
& Cinnella (2020) and Beetham & Capecelatro (2020) recently extended the sparse
identification framework of Brunton et al. (2016) to infer algebraic stress models for the
closure of RANS equations. In Schmelzer et al. (2020) the models are written as tensor
polynomials and built from a library of candidate functions. In Beetham & Capecelatro
(2020) Galilean invariance of the resulting models are guaranteed through thoughtful
tailoring of the feature space.
In this work, the sparse identification modelling framework of Beetham & Capecelatro

(2020) is employed to develop multiphase closure models for homogeneous, gravity-driven
gas–solid flows. Eulerian–Lagrangian simulations are performed across a range of
Archimedes numbers and volume fractions to provide training data. The terms appearing
in the multiphase RANS equations recently derived in Capecelatro et al. (2015) are
extracted. We then build a minimally invariant basis set of tensors (i.e. a set of functional
groups that serve as candidate terms in the desired model). Such basis sets are well
established for single-phase turbulent flows (Pope 1975; Speziale, Sarkar & Gatski 1991;
Gatski & Speziale 1993); however, an analogous basis has not yet been determined for
multiphase flows. Using this basis and the sparse regression methodology, the compact
functional form of the physics-based closures are inferred. As we consider exclusively
statistically stationary and homogeneous systems, model realizability (Pope 2000) is left
for future work.

2. System description

2.1. Configuration under study
In the present study, rigid spherical particles of diameter dp and density ρp are suspended
in an unbounded (triply periodic) domain containing an initially quiescent gas of density
ρf and viscosity νf . Gravity g acts in the negative x-direction. As particles settle, they
spontaneously form clusters. Due to two-way coupling between phases, particles entrain
the fluid, generating turbulence therein. A frame of reference with the fluid phase is
considered, such that the mean streamwise fluid velocity is null. Given the relative
simplicity of the configuration, only a few non-dimensional groups arise. An important
non-dimensional number is the Archimedes number, defined as

Ar = (ρp/ρf − 1)d3pg/ν
2
f . (2.1)

Alternatively, a Froude number can be introduced to characterize the balance between
gravitational and inertial forces, defined as Fr = τ 2p g/dp, where τp = ρpd2p/(18ρf νf ) is
the particle response time. The Stokes settling velocity for an isolated particle is given
by V0 = τpg. From this a characteristic cluster length can also be estimated a priori as
L = τ 2p g. To ensure the hydrodynamics is independent of the domain size, the simulation
configurations are equal or larger than Case 4 reported in Capecelatro, Desjardins & Fox
(2016a).
To sample the parameter space typical of turbulent fluidized bed reactors (Sun & Zhu

2019), the mean particle-phase volume fraction is varied in the range 0.001 ≤ 〈αp〉 ≤ 0.05
and the Archimedes number is varied in the range 1.8 ≤ Ar ≤ 18.0 by adjusting gravity.
Due to the large density ratios under consideration, the mean mass loading ranges from
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Dimensional Quantities

V0 Stokes settling velocity [m s−1] 0.02 0.06 0.2
L Characteristic cluster length [m] 5.0 × 10−4 1.5 × 10−3 5.0 × 10−3

τp Drag time [s] 0.025
ρp Particle density [kg m−3] 1000
dp Particle diameter [m] 90 × 10−6

ρf Fluid density [kg m−3] 1
νf Fluid viscosity [m2 s−1] 1.8 × 10−5

g Gravity [m s−2] 0.8 2.4 8.0

Non-dimensional Quantities
Np Number of particles (610 370, 15 564 442, 30 518 514)
〈αp〉 Mean volume fraction ×10−2 (0.1, 2.55, 5.0)
ϕ Mean mass loading (1.0, 26.2, 52.6)
Fr Froude number 5.6 16.7 55.6
Ar Archimedes number 1.8 5.4 18.0

Computational Quantities
Domain size [m] 0.158 × 0.038 × 0.038
Grid size 512 × 128 × 128
Lx/L 316 105 32

Table 1. Summary of parameters for the configurations under consideration.

O(10) to O(102), and consequently two-way coupling between the phases is expected
to be important. Here, angled brackets denote both a spatial and a temporal average
(since the flow under consideration is triply periodic and statistically stationary in time).
A list of relevant non-dimensional numbers and other important simulation parameters are
summarized in table 1.

2.2. Volume-filtered equations
In this section, we present the volume-filtered Eulerian–Lagrangian equations used to
formulate the Reynolds-averaged equations in § 3 and generate the simulation data that
will be applied to the sparse regression methodology in § 4. The position and velocity of
the ith particle is calculated according to Newton’s second law

dx(i)
p

dt
= v(i)

p and
dv(i)

p

dt
= A(i) + F (i)

c + g, (2.2a,b)

where x(i)
p is the centre position of particle i and v

(i)
p is its velocity at time t and

g = (−g, 0, 0)T is the acceleration due to gravity. The force due to inter-particle collisions,
F c, is accounted for using a soft-sphere collision model originally proposed by Cundall
& Strack (1979). Particles are treated as inelastic and frictional with a coefficient of
restitution of 0.85 and coefficient of friction of 0.1 (Capecelatro & Desjardins 2013).
Momentum exchange between the phases is given by

A(i) = Fd

τp

(
uf − v(i)

p

)
− 1

ρp
∇pf + 1

ρp
∇ · σ f , (2.3)

where uf , pf and σ f are the fluid-phase velocity, pressure, and viscous-stress tensor
evaluated at the particle location, respectively, and Fd is the non-dimensional drag
correction of Tenneti & Subramaniam (2011) that takes into account local volume fraction
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and Reynolds number effects given by

Fd(αf ,Rep) = 1 + 0.15Re0.687p

α2
f

+ αf F1
(
αf

) + αf F2
(
αf ,Rep

)
, (2.4)

where the particle Reynolds number is defined as

Rep = αf |uf − v
(i)
p |dp

νf
. (2.5)

The remaining two terms in (2.4) are given by

F1(αf ) = 5.81αp

α3
f

+ 0.48α1/3
p

α4
f

, (2.6)

F2(αf ,Rep) = α3
pRep

(
0.95 + 0.61α3

p

α2
f

)
, (2.7)

where αf = 1 − αp is the fluid-phase volume fraction.
To account for the presence of particles in the fluid phase without resolving the boundary

layers around individual particles, a volume filter is applied to the incompressible
Navier–Stokes equations (Anderson & Jackson 1967). This procedure replaces the point
variables with smooth, locally filtered fields. These volume-filtered equations are given by

∂αf

∂t
+ ∇ · (

αfuf
) = 0 (2.8)

and
∂αfuf

∂t
+ ∇ · (

αfuf ⊗ uf
) = − 1

ρf
∇pf + ∇ · σ f − ρp

ρf
αpA + αf g, (2.9)

where A is the locally averaged momentum exchange term, evaluated at each Lagrangian
particle and projected to the Eulerian mesh. The fluid-phase viscous-stress tensor is
defined as

σ f = νf

[
∇uf + (∇uf

)T − 2
3∇ · uf I

]
, (2.10)

where I is the identity matrix.
The Eulerian–Lagrangian equations are solved using NGA (Desjardins et al. 2008), a

fully conservative, low-Mach-number finite volume solver. A pressure Poisson equation
is solved to enforce continuity via fast Fourier transforms in all three periodic directions.
The fluid equations are solved on a staggered grid with second-order spatial accuracy and
advanced in time with second-order accuracy using the semi-implicit Crank–Nicolson
scheme of Pierce (2001). Lagrangian particles are integrated using a second-order
Runge–Kutta method. Fluid quantities appearing in (2.2a,b) are evaluated at the position
of each particle via trilinear interpolation. Particle data are projected onto the Eulerian
mesh using the two-step filtering process described in Capecelatro & Desjardins (2013).

2.3. Eulerian–Lagrangian training data
The Eulerian–Lagrangian simulations were initialized with a random distribution
of particles and run for approximately 100τp until the flow reached a statistically
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〈αp〉
√

〈α′2
p 〉

〈αp〉
〈u′′′2

f 〉f
kf

〈v′′′2
f 〉f
kf

〈u′′2
p 〉p
kp

〈v′′2
p 〉p
kp

〈up〉p
V0

(〈uf 〉p+τ�
p g)

V0
Stη Reλ

Ar = 1.8 0.001 0.63 1.49 0.25 1.48 0.26 1.87 1.53 0.63 6.90
0.0255 0.76 1.58 0.21 1.61 0.20 2.56 2.39 2.57 4.10
0.05 0.74 1.51 0.24 1.52 0.24 2.46 2.34 2.97 3.29

Ar = 5.4 0.001 0.71 1.68 0.16 1.67 0.16 1.63 1.36 1.55 12.54
0.0225 0.87 1.61 0.19 1.63 0.19 2.28 2.21 5.18 10.23
0.05 0.84 1.56 0.22 1.57 0.21 2.12 2.07 6.29 8.76

Ar = 18.0 0.001 0.72 1.76 0.12 1.76 0.12 1.26 1.15 3.43 24.14
0.0255 1.00 1.70 0.15 1.73 0.14 1.86 1.91 9.92 32.54
0.05 0.98 1.64 0.18 1.68 0.16 1.81 1.83 12.97 35.52

Table 2. Statistically stationary Euler–Lagrange (EL) quantities for all nine training cases.

Streamwise direction
〈αp〉 PS VD DP DE VE PE

Ar = 1.8 0.0100 −0.004 −0.007 0.03 −0.02 0 0
0.0255 −0.189 −0.122 2.49 −2.75 −0.01 0
0.5000 −0.406 −0.162 6.04 −6.87 −0.04 0

Ar = 5.4 0.0100 −0.021 −0.049 0.15 −0.138 0 0
0.0255 −1.201 −0.482 15.18 −15.71 −0.06 0
0.5000 −2.680 −0.709 39.67 −43.00 −0.29 0

Ar = 18.0 0.0100 −0.106 −0.264 0.81 −0.732 0 0
0.0255 −9.988 −2.097 129.99 −131.1 −0.83 0
0.5000 −22.056 −3.455 317.84 −329.3 −3.32 0

Cross-stream directions
〈αp〉 PS VD DE VE PE

Ar = 1.8 0.0100 0.002 −0.0004 −0.002 0 0
0.0255 0.096 −0.0079 −0.171 0.002 0
0.5000 0.219 −0.0140 −0.455 0.012 0.002

Ar = 5.4 0.0100 0.011 −0.0016 −0.01 0 0
0.0225 0.616 −0.0293 −0.83 0.017 0.002
0.5000 1.425 −0.0537 −2.323 0.083 0.007

Ar = 18.0 0.0100 0.053 −0.0052 −0.047 0 0
0.0255 5.144 −0.1102 −5.686 0.183 0.009
0.5000 12.020 −0.2305 −17.637 0.672 0.051

Table 3. Averaged terms for each contribution in the fluid-phase Reynolds-stress transport equations (3.2)
and (3.3).

stationary state. At this point, statistics are accumulated over 50τp. Instantaneous
snapshots of the streamwise fluid velocity and particle position of each case at steady
state are shown in figure 1. It can immediately be seen that clusters of particles are
generated and entrain the fluid downward. As a consequence of the frame of reference
under consideration, the fluid flows upward in regions void of particles. Clusters are
seen to become more distinct with increasing 〈αp〉. The effect of Ar on the flow
field is less noticeable. As shown in table 2, the standard deviation in volume-fraction

914 A11-8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
3.

14
5.

17
5.

24
9,

 o
n 

30
 Ju

n 
20

21
 a

t 1
6:

03
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

53

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.53


Sparse identification of multiphase turbulence closures

fluctuations 〈α′
p
2〉1/2 increases with increasing Ar, with α′

p = αp − 〈αp〉, indicating
enhanced clustering. Perhaps less obvious, the volume-fraction fluctuations normalized
by 〈αp〉 are maximum for the intermediate volume-fraction case (〈αp〉 = 0.025).
Because turbulence in CIT is driven by two-way coupling with the particle phase,

there exist few characteristic scales that can be calculated a priori. However, the Taylor
Reynolds number Reλ = urmsλ/νf and the Stokes number Stη = τp/τη, both of which must
be computed a posteriori, provide insight on the resulting turbulence. Here, urms is the
average root-mean-square velocity, λ = √

15νf /εf urms is the Taylor micro-scale with εf

the viscous dissipation rate and τη = √
νf /εf the Kolmogorov time scale. The values of

these quantities for all nine cases are reported in table 2. It can be seen that high volume
fractions correspond to larger Stokes numbers and lower values of Reλ. Both Stη and Reλ
tend to increase when larger body forces are applied (i.e. larger Ar). Because fluid velocity
fluctuations are generated by two-way coupling, Reλ > 0 only when 〈αp〉 > 0. That said,
Reλ is seen to decrease with increasing 〈αp〉 for Ar = 1.8 and 5.4. This is likely due to
increased dissipation through drag exchange (see table 3). However, this reduction is less
dramatic as Ar increases, and Reλ is seen to be approximately constant at Ar = 18.

3. PA equations

In this section, we present the PA flow equations in which we seek to model the unclosed
terms that arise. This system of equations has been previously derived (Capecelatro et al.
2015) and is extended here to take into account nonlinear drag effects due to Fd in (2.3).
The PA is analogous to Favre averaging of variable-density flows and is denoted by

〈(·)〉p = 〈αp(·)〉/〈αp〉. Fluctuations about the PA particle velocity are expressed as u′′
p =

up(x, t) − 〈up〉p, with 〈u′′
p〉p = 0. This gives rise to the PA particle-phase turbulent kinetic

energy (TKE), kp = 〈u′′
p · u′′

p〉p/2. Here, up is the particle-phase velocity in an Eulerian
frame of reference. It should be noted that 〈up〉p is equivalent to the average particle
velocity 〈vp〉 (with angled brackets here used to represent a particle average). Thus, 〈up〉p
will be used throughout to characterize the mean settling velocity of the particle phase.
In a similar fashion, the PA operator in the fluid phase is defined as 〈(·)〉f = 〈αf (·)〉/〈αf 〉.
Fluctuations about the PA fluid velocity are given by u′′′

f = uf (x, t) − 〈uf 〉f . With this, the
fluid-phase TKE is given by kf = 〈u′′′

f · u′′′
f 〉f /2.

For the statistically stationary and homogeneous flows considered herein, continuity
implies 〈αf 〉 is constant and the fluid-phase momentum equation reduces to 〈uf 〉f = 0. In
the particle phase, the only non-zero component of the averaged momentum equation is in
the gravity-aligned direction (the x-direction in this case)

∂〈up〉p
∂t

= 1
τ �
p

(〈uf 〉p − 〈up〉p
) + 1

ρp

(〈
∂σf ,xi

∂xi

〉
p
−

〈
∂pf
∂x

〉
p

)
+ g, (3.1)

noting that for gas–solid flows, the terms involving σf ,xi and pf are small enough to be
neglected (Capecelatro et al. 2015). This implies that at steady state, 〈up〉p ≈ 〈uf 〉p + τ �

p g.
Here, we incorporate the nonlinearities associated with drag in τ �

p = τp/〈Fd〉p, where
〈Fd〉p(〈αf 〉, 〈Rep〉) is the nonlinear drag correction (2.4) defined using averaged flow
arguments. This definition does not include the dependencies on drag covariance terms
(i.e. 〈u′′′

f F
′′
d 〉p and 〈u′′

pF
′′
d 〉p), however, as shown in table 2, these terms have negligible

contributions when describing particle settling, 〈up〉p, and are thus neglected.
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The transport equations for the fluid-phase Reynolds stresses can be reduced to two
unique, non-zero components. In the streamwise direction this equation is given as

1
2

∂〈u′′′2
f 〉f
∂t

= 1
ρf

〈
pf

∂u′′′
f

∂x

〉
︸ ︷︷ ︸
pressure strain(PS)

− 1
ρf

〈
σf ,1i

∂u′′′
f

∂xi

〉
︸ ︷︷ ︸

viscous dissipation(VD)

+ ϕ

τ�
p

(
〈u′′′

f u
′′
p〉p − 〈u′′′2

f 〉p
)

︸ ︷︷ ︸
drag exchange(DE)

+ ϕ

τ�
p
〈u′′′

f 〉p〈up〉p︸ ︷︷ ︸
drag production (DP)

+ ϕ

ρp

〈
u′′′
f

∂p′
f

∂x

〉
p︸ ︷︷ ︸

pressure exchange (PE)

− ϕ

ρp

〈
u′′′
f

∂σ ′
f ,1i

∂xi

〉
p︸ ︷︷ ︸

viscous exchange (VE)

. (3.2)

Similarly, both cross-stream equations are given as

1
2

∂〈v′′′2
f 〉f
∂t

= 1
ρf

〈
pf

∂v′′′
f

∂y

〉
︸ ︷︷ ︸

PS

− 1
ρf

〈
σf ,2i

∂v′′′
f

∂xi

〉
︸ ︷︷ ︸

VD

+ ϕ

τ�
p

(
〈v′′′

f v′′
p 〉p − 〈v′′′2

f 〉p
)

︸ ︷︷ ︸
DE

+ ϕ

ρp

〈
v′′′
f

∂p′
f

∂y

〉
p︸ ︷︷ ︸

PE

− ϕ

ρp

〈
v′′′
f

∂σ ′
f ,2i

∂xi

〉
p︸ ︷︷ ︸

VE

, (3.3)

where the drag production term no longer appears, since it is a gravity-driven phenomenon.
Due to the homogeneity of the flow and symmetry in the directions perpendicular to

gravity (y and z directions in this configuration), the unique, non-zero PA Reynolds-stress
transport equations in the particle phase are given as

1
2

∂〈u′′2
p 〉p
∂t

=
〈
Θ

∂u′′
p

∂x

〉
p︸ ︷︷ ︸

PS

−
〈
σp,1i

∂u′′
p

∂xi

〉
p︸ ︷︷ ︸

VD

+ 1
τ �
p

(
〈u′′′

f u
′′
p〉p − 〈u′′2

p 〉p
)

︸ ︷︷ ︸
DE

× 1
ρp

〈
u′′
p

∂σ ′
f ,1i

∂xi

〉
p︸ ︷︷ ︸

VE

− 1
ρp

〈
u′′
p

∂p′
f

∂x

〉
p︸ ︷︷ ︸

PE

. (3.4)

Similarly, the cross-gravity equations are both (due to symmetry and homogeneity) given
as

1
2

∂〈v′′2
p 〉p
∂t

=
〈
Θ

∂v′′
p

∂y

〉
p︸ ︷︷ ︸

PS

−
〈
σp,2i

∂v′′
p

∂xi

〉
p︸ ︷︷ ︸

VD

+ 1
τ �
p

(
〈v′′′

f v′′
p 〉p − 〈v′′2

p 〉p
)

︸ ︷︷ ︸
DE

× 1
ρp

〈
v′′
p

∂σ ′
f ,2i

∂yi

〉
p︸ ︷︷ ︸

VE

− 1
ρp

〈
v′′
p

∂p′
f

∂y

〉
p︸ ︷︷ ︸

PE

, (3.5)

where Θ and σp are the granular temperature and the particle-phase viscous stress tensor,
respectively (Capecelatro et al. 2015).
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Sparse identification of multiphase turbulence closures

Due to the high density ratio in gas–solid flows, PE and VE are often negligible
(Capecelatro et al. 2015). Therefore, the overall kinetic energy balance for CIT includes
DP, PS, VD and DE. As in single-phase turbulence, VD results from the resolved
small-scale velocity fluctuations in the fluid phase. In contrast, the drag exchange terms
involve (i) DE2: viscous dissipation of unresolved fluid velocity fluctuations (in the
viscous boundary layers around individual particles) and (ii) DE1: energy transferred to
the particles at the fluid–particle interface. Sundaram & Collins (1999) showed that the
unresolved dissipation arises in the point-particle model due to the difference between
the fluid velocity at the particle location and the particle velocity. Our previous work
(Capecelatro et al. 2015) showed that the relative contribution of the interphase energy
exchange (DE1/(DE1+DE2)) is approximately 22%. Further, the ratio of resolved to
unresolved viscous dissipation was found to be less than 6% and decreases with increasing
Ar. Therefore we do not expect the unresolved viscous dissipation not captured in the
Eulerian–Lagrangian model to impact the overall balance.

4. Closure modelling

4.1. Sparse regression with embedded invariance
The focus of this section is modelling the unclosed terms that appear in the fluid-phase
Reynolds-stress equations (3.2) and (3.3). The data used to inform these closures, as
discussed in § 2.3, are averaged after the flow has become statistically stationary in time.
These values are summarized in table 3. In the streamwise direction, DP is mostly balanced
by DE. The PS and VD contain fluid-phase residual contributions, while PE and VE
contain contributions from both phases. These terms are small compared to DP and DE,
but are not negligible in general. In the cross-stream direction, DE is mostly balanced
by PS.
Each unclosed term is considered individually and models are learned using the sparse

regression methodology described in Beetham & Capecelatro (2020) and summarized
here. In this method, it is postulated that any tensor quantity D can be modelled using
an invariant tensor basis, T, and a set of ideal, sparse coefficients, β̂,

D = Tβ̂. (4.1)

The ideal coefficients are determined by solving the optimization problem

β̂ = min
β

||D − Tβ||22 + λ||β||1, (4.2)

where β is a vector of coefficients that varies depending upon the choice of a user-specified
sparsity parameter, λ and || · ||22 and || · ||1 represent the L-2 and L-1 norms, respectively.
In the case of single-phase turbulence, this methodology can be used readily with
previously derived minimally invariant basis sets (Hastie, Tibshirani & Friedman 2009).
It is helpful to note that sparse regression is openly available in several software packages,
including PySINDy (de Silva et al. 2020). However, to date an analogous basis has not
yet been identified for multiphase flows. Due to the relative simplicity of the system under
study (i.e. symmetry, homogeneity and stationarity), the parameters that may contribute to
such a basis are limited to three tensors: the fluid-phase Reynolds-stress anisotropy tensor,
R̂f , the particle-phase Reynolds-stress anisotropy tensor, R̂p, and the mean slip tensor, Ûr
(see table 4). The mean slip tensor is defined as U r = ur ⊗ ur, where ur = 〈up〉p − 〈uf 〉f
is the slip velocity vector. An important property of this vector is that in fully developed
CIT it is always aligned with the direction of the body forcing (in this case gravity).
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(I) Particle-phase anisotropic stress tensor R̂p = 〈u′′′
p u

′′′
p 〉

2kp
− 1

3 I

(II) Fluid-phase anisotropic stress tensor R̂f = 〈u′′′
f u

′′′
f 〉f

2kf
− 1

3 I

(III) Slip velocity tensor Ûr = U r
tr(U r)

− 1
3 I,

Table 4. Second-order, symmetric, deviatoric tensors available to the multiphase RANS equations for
modelling.

T (1) = I T (2) = Ûr

T (3) = Û
2
r T (4) = (ÛrR̂f )

†

T (5) = (Û2
r R̂f )

† T (6) = (Û2
r R̂

2
f )

†

T (7) = (ÛrR̂f R̂p)
† T (8) = (Û2

r R̂f R̂p)
†

T (9) = (R̂f Û
2
r R̂p)

† T (10) = (Û2
r R̂

2
f R̂p)

†

T (11) = (ÛrR̂f Û
2
r R̂p)

† T (12) = (ÛrR̂f R̂pÛ
2
r )

†

T (13) = R̂f T (14) = R̂
2
f

T (15) = R̂p T (16) = R̂
2
p

T (17) = (ÛrR̂p)
† T (18) = (Û2

r R̂p)
†

T (19) = (ÛrR̂
2
p)

† T (20) = (Û2
r R̂

2
p)

†

T (21) = (R̂f R̂p)
† T (22) = (R̂2

f R̂p)
†

T (23) = (R̂f R̂
2
p)

† T (24) = (R̂2
f R̂

2
p)

†

S(1) = tr(ÛrR̂
2
f R̂

2
p) S(2) = tr(ÛrR̂f R̂

2
p) S(3) = tr(ÛrR̂f R̂p)

S(4) = Ar S(5) = ϕ S(6) = 〈αp〉
Table 5. Minimally invariant set of basis tensors and associated scalar invariants. Here, (·)† = (·) + (·)T

denotes the tensor quantity added with its transpose.

Because the sparse regression methodology postulates the model to be a linear
combination of the basis tensors, this implies that the basis tensors must take on the
same properties as the quantity to be modelled. The four terms under consideration here
are all symmetric and thus the basis tensors must also be symmetric. The three tensor
quantities shown in table 4 are used in order to formulate a minimally invariant basis
by following the procedure described in Spencer & Rivlin (1958). This set of tensors,
along with six scalar invariants, denoted S(i), by definition can exactly describe the
Eulerian–Lagrangian data as shown in table 5. In the context of the sparse regression
methodology, the ideal coefficients β̂ may be constants or nonlinear functions of the scalar
invariants, S(i).

4.2. Results and discussion
Using the set of basis tensors defined in § 4.1, the sparse regression methodology is
employed to identify closures for the terms appearing in the fluid-phase Reynolds-stress
equations (3.2) and (3.3), based upon the Eulerian–Lagrangian data described in § 2.3.
Since flow data are homogeneous in all three spatial directions and we consider
time-averaged data, each case is zero-dimensional (i.e. a single value).
As seen in table 3, the contributions from VE and PE are either null, or relatively small

even as mass loading is increased. For this reason, modelling efforts are directed toward
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0

0.2

0.4

0.6

0.8

1.0

Number of terms

β̃

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4 ε

0.5

0.6

0.7

0.8

Figure 2. Normalized coefficients, β̃ (left axis) and associated model error, ε, ((�, lined solid square, red),
right axis) for DP. The three-term and six-term models are described in (4.4) and (4.5), respectively. Terms 1–6,
as denoted in (4.5), are represented as (•, lined solid circle, light green), (�, dotted square, light orange), (�,
densely dotted diamond, orange), (�, loosely dotted triangle, red), (•, dashed solid circle, purple), (�, densely
dash-dotted diamond, light blue), respectively. These colours also correspond with figure 4.

the four remaining terms: DP, PS, VD and DE. Each is modelled separately, beginning
with DP as it is the sole source of fluid-phase TKE in the absence of mean shear. As seen
in (3.2), it is proportional to 〈u′′′

f 〉p, which is zero in the absence of particle clusters.

4.2.1. Drag production
As input to the sparse regression algorithm, drag production is non-dimensionalized using
the square of the PA particle velocity, 〈up〉2p and the drag time, τp. Because drag production
is symmetric and also contains zero off-diagonal components, the basis set was restricted
to only include terms that are functions of Ûr and I, which also exhibit this property. While
the Reynolds stresses have null off-diagonal components for this particular configuration,
this does not hold in a general sense.
During optimization, as λ is decreased, additional terms are added to the learned model

and model error decreases (see figure 2), where model error is defined as

ε = ||D − Tβ̂||22
||D||22

. (4.3)

In examining the relationship between model error and model complexity, we observe
that a significant reduction in error is achieved with three model terms and the error is
drastically reduced when considering a six-term model. It is also notable that the most
important terms to overall model performance appear in the models with lesser complexity
and remain dominant as subsequent terms are added. This is indicated by the behaviour
of the normalized coefficients β̃, given as β̂( p)/max β̂(1), where p denotes the number of
terms in the model.
The resultant learned models with three terms and six terms are given, respectively, as

RDP = 〈up〉2p
τp

⎡
⎣1.11ϕÛr︸ ︷︷ ︸

term 1

− 0.73ϕ−2
Ûr︸ ︷︷ ︸

term 2

+ 0.37ϕI︸ ︷︷ ︸
term 3

⎤
⎦ (4.4)
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Figure 3. Drag production obtained from Eulerian–Lagrangian results (�, cross-stream component and ◦,
streamwise components) and model prediction ((�, red), cross-stream component and (•, red), streamwise
components). The model corresponds to (4.5) with λ = 0.01. The associated model error is ε = 0.01.
(a) Ar = 1.80; (b) Ar = 5.40; (c) Ar = 18.0; (d) Ar = 1.8; (e) Ar = 5.4; and ( f ) Ar = 18.0.

and

RDP = 〈up〉2p
τp

⎡
⎣0.65ϕÛr︸ ︷︷ ︸

term 1

− 0.26ϕ−2
Ûr︸ ︷︷ ︸

term 2

+ 0.22ϕI︸ ︷︷ ︸
term 3

− 0.09ϕ−2
I︸ ︷︷ ︸

term 4

+ 0.01ϕ2
Ûr︸ ︷︷ ︸

term 5

+ 0.003ϕ2
I︸ ︷︷ ︸

term 6

⎤
⎦ .

(4.5)

To illustrate the interplay between model complexity and interaction, we consider the
highly accurate, six-term model (see figures 3(d)–3( f ) and (4.5)) and the simpler,
three-term model (see figures 3(a)–3(c) and (4.4)). In comparing the performance of these
models, we observe that the general scaling and spread of the data are captured reasonably
well with the three-term model, but that the complexity added in the six-term model makes
smaller adjustments that drive down model error. As shown in figure 4, the accuracy of the
three-term model is primarily centred on the streamwise component of drag production
(see figure 4(a)); however, it over predicts the cross-stream components (see figure 4c).
The six-term model, in turn, reduces overall model error by more accurately describing
both components; however, this is most pronounced in the cross-stream direction (see
figures 4(b) and 4(d)).
In addition to discovering compact, algebraic models, sparse regression is also

robust to sparse training data (Beetham & Capecelatro 2020). To illustrate this, a
model was discovered using a sparse training dataset corresponding to (Ar, 〈αp〉) =
[(1.8, 0.05), (5.4, 0.001), (18.0, 2.55)] and then tested using the remaining six cases.
The resultant model is given as

RDP = 〈up〉2
τp

[(
0.36ϕ−1 + 0.05ϕ2 − 4 × 10−4ϕ3

)
Ûr +

(
0.01ϕ2 + 0.21ϕ−1

)
I

]
(4.6)

and shown compared with the trusted Eulerian–Lagrangian data in figures 5(a)–5(c). It is
notable that the sparsely trained model achieves reasonable accuracy using a subset of the
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Figure 4. Term contributions for the streamwise component of drag production for the three-term (4.4) and
six-term (4.5) models, shown for the case Ar = 5.40 and 〈αp〉 = 0.001. Drag production obtained from the
Eulerian–Lagrangian simulations is shown as the dotted line. Terms 1–6 are represented as (�, green),
(�, light orange), (�, orange), (�, red), (�, purple) and (�, light blue), respectively. (a) Streamwise three-term
model; (b) streamwise six-termmodel; (c) cross-stream three-termmodel; and (d) cross-stream six-termmodel.
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Figure 5. Model learned from sparse training data (denoted with grey shaded boxes). The training and testing
errors are 0.07 and 0.08, respectively. Using the convention from previous figures, Eulerian–Lagrangian
results (◦, streamwise component and �, cross-stream components) and model prediction ((•, red), streamwise
component and (�, red), cross-stream components). The sparsely trained model corresponds to (4.6):
(a) Ar = 1.8; (b) Ar = 5.4; and (c) Ar = 18.0.

available training points. While additional more challenging tests of the model are required
and reserved for future work, this preliminary result may suggest model robustness to
variations in Ar and particle volume fraction.
The remaining terms, PS, VD and DE exhibit similar performance as DP and are

summarized here. All three terms are normalized by kf /τp in order to ensure realizability
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in the Reynolds stresses. The sparse regression algorithm was given access to constant
coefficients as well as coefficients dependent upon the invariants, S(i), up to order three. It
is notable that while complex nonlinear coefficients were accessible to the algorithm, they
were ultimately not chosen.

4.2.2. Pressure strain and viscous diffusion
Pressure strain and viscous diffusion both redistribute TKE throughout the fluid phase and
are present in single-phase flows. The learned models are given as

RPS = ϕ
kf
τp

[
〈αp〉

(
14.36Ûr − 22.65R̂p

)
+ 〈αf 〉

(
2.60R̂p − 2.72R̂f

)]
(4.7)

and

RVD = kf
τp

[
−1.62R̂f R̂pR̂p + ϕ〈αp〉

(
0.53I + 0.72Ûr − 3.14R̂f R̂p

)
+ ϕ〈αf 〉

(
0.74R̂f − 0.62Ûr

)
R̂p

]
, (4.8)

respectively (see figures 6 and 7, respectively). The dominant terms important for
capturing the behaviour of PS across flow parameters are ϕ〈αp〉Ûr and ϕ〈αp〉R̂p and
inclusion of only these two terms results in model error of ε = 0.15.
In the case of VD, a four-term model is learned in which the three terms that persist into

the six-term model are ϕ〈αp〉Ûr, ϕ〈αp〉R̂f R̂p and R̂f R̂pR̂p. The fourth term, ϕ〈αp〉R̂p, is
replaced by the three remaining terms that appear in (4.8). This reduces model error from
0.29 to 0.07, in a similar manner as described for DP.

4.2.3. Drag exchange
Drag exchange describes the mechanism by which TKE is partitioned between the phases.
For this case, all terms in the model are of nearly equal importance. A four-term model is
learned which excludes ArÛr with an error of ε = 0.16 as compared with the model error
of ε = 0.15 in the case of the five-term model (see figure 8). This is due to the minimal
dependence of the data on Archimedes number

RDE = ϕ
kf
τp

[
−0.36ϕI −

(
0.02ϕ2〈αf 〉2 + 0.38Ar

)
Ûr + 0.04ϕ3〈αf 〉3R̂f

(
R̂f − R̂p

)
R̂p

]
.

(4.9)

For all of the terms considered, sparse regression is capable of uncovering models with
model error to machine precision of zero (associated with λ = 0); however, these resultant
models are substantially more complex and likely would not perform well outside the
scope of training due to overfitting subtle nonlinearities. These models, for comparison,
contain 18 terms for PS, VD and DE, respectively, and 8 terms for DP.

4.2.4. Particle-phase closures
The same procedure as described above was used to formulate closures for each of the
terms appearing in the particle-phase Reynolds stress equations. The resultant closures are
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given as

RPSp = εp

(
1.89R̂p + 2.12R̂f R̂p − 6.52R̂2

f R̂p

)
(4.10)

RVDp = εp

(
−1.91R̂p + 10.5ÛrR̂p − 11.78R̂f R̂p + 12.30R̂2

f R̂p

)
(4.11)

RDEp = εf

[(
−2.69 + 2.50ϕ〈αf 〉3 − 1.85ϕ〈αf 〉

)
I

+
(
−4.79 + 4.08ϕ〈αf 〉3 − 3.05ϕ〈αf 〉

)
Ûr

+
(
9.10 − 5.56ϕ〈αf 〉

)
ÛrR̂p +

(
21.40ϕ〈αf 〉 − 18.76ϕ〈αf 〉3

)
R̂f R̂p

]
. (4.12)

Here, the particle-phase terms are normalized by the dissipation of TKE in order to achieve
appropriate scaling behaviour with respect to time. The associated values of λ and model
error for the PS, VD and DE are given as λ = (0.3, 0.3, 1) and ε = (0.08, 0.10, 0.03),
respectively.

4.2.5. Summary of the multiphase RANS equations
In this section, we propose a complete set of transport equations for strongly coupled
gas–particle homogeneous flows, with a simpler set of equations for the transport of the
total Reynolds Stresses. This allows for improved stability and robustness. The closures
for individual balance terms are then useful to algebraically decompose the full Reynolds
stresses into individual contributions. This system, along with the particle momentum in
(3.1), is given by

∂εf

∂t
= 1

τ �
p

[
CεfV2

0

τ �
p

− εf

]
, (4.13)

∂εp

∂t
= 1

τ �
p

[
CεpV2

0

τ �
p

− εp

]
, (4.14)

∂〈u′′′
f u

′′′
f 〉f

∂t
= − 1

τ �
p

(
〈u′′′

f u
′′′
f 〉f + 0.5〈u′′

pu
′′
p〉p

)
+

(
V2
0

τ �
p

) [
(C1 − C2)

U r

tr(U r)
+ C2I

]
,

(4.15)

∂〈u′′
pu

′′
p〉p

∂t
= − 1

τ �
p

(
〈u′′

pu
′′
p〉p + 0.5〈u′′′

f u
′′′
f 〉f

)
+

(
V2
0

τ �
p

) [
(C3 − C4)

U r

tr(U r)
+ C4I

]
.

(4.16)

Here, the coefficients, Cεf ,Cεp,C1,C2,C3 and C4, depend upon flow parameters. These
dependencies were learned using the sparse regression algorithm described previously and
are all nonlinearly parameterized by the mass loading according to

Cεf = 0.44〈ϕ〉 − 0.05〈ϕ〉1.5 − 0.21〈ϕ〉−2, (4.17)

Cεp = 0.01〈ϕ〉 − 0.001〈ϕ〉1.5 + 0.02〈ϕ〉−2, (4.18)
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Figure 6. Pressure strain Eulerian–Lagrangian results (◦, streamwise component and �, cross-stream
components) and model prediction ((•, red), streamwise component and (�, red), cross-stream
components). Model corresponds to (4.7) and results from λ = 0.3. The associated model error is 0.04:
(a) Ar = 1.8; (b) Ar = 5.4; and (c) Ar = 18.0.

C1 = 1.40〈ϕ〉 − 0.18〈ϕ〉1.5 + 2.17〈ϕ〉−2, (4.19)

C2 = 0.18〈ϕ〉 − 0.02〈ϕ〉1.5 + 0.12〈ϕ〉−2, (4.20)

C3 = 1.20〈ϕ〉 − 0.16〈ϕ〉1.5 + 2.03〈ϕ〉−2, (4.21)

C4 = 0.15〈ϕ〉 − 0.02〈ϕ〉1.5 + 0.11〈ϕ〉−2. (4.22)

The fluid drift velocity, defined as ud = 〈uf 〉p − 〈uf 〉f , requires modelling for the fluid
velocity seen by the particles, 〈uf 〉p, as does the particle-phase momentum equation (3.1).
The learned model for ud is given as

ud =
√

〈α′2
p 〉

〈αp〉
[
−7.8R̂f + 4.6R̂p + 2.2

] (〈up〉p − 〈uf 〉f
)
, (4.23)

using λ = 1, resulting in a model error of 0.06. Here, we impose that the model be scaled
by the variance of the particle volume fraction, 〈α′2

p 〉, in order to ensure this quantity
approaches zero in the dilute limit.
Finally, since the variance of particle volume fraction is not known a priori, an

additional model was formulated for this quantity, using the same method described
previously, given by√

〈α′2
p 〉

〈αp〉 = 0.32R̂p : R̂p + Ûr :
(
1.10R̂f + 2.67R̂p〈αp〉1/2

)
. (4.24)

4.3. Application to transient flow
To assess model realizability, it is imperative to evaluate the transient behaviour that
precedes the stationary state. To this end, we generate transient data by using the
statistically stationary solution from the cases described in § 2 as an initial condition and
instantaneously reverse the direction of gravity, i.e.

g =
{

(−g, 0, 0), if t < 0

(g, 0, 0), if t ≥ 0
. (4.25)

This strategy generates temporally evolving data and allows us to apply our models
to a homogeneous flow, while relaxing the assumption of stationarity. Three cases
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Figure 7. Viscous diffusion Eulerian–Lagrangian results (◦, streamwise component and �, cross-stream
components) and model prediction ((•, red), streamwise component and (�, red), cross-stream components).
Model corresponds to (4.8) and results from λ = 0.2. The associated model error is 0.07: (a) Ar = 1.8;
(b) Ar = 5.4; and (c) Ar = 18.0.
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Figure 8. Drag exchange Eulerian–Lagrangian results (◦, streamwise component and �, cross-stream
components) and model prediction ((•, red), streamwise component and (�, red), cross-stream components).
Model corresponds to (4.9) and results from λ = 0.006. The associated model error is 0.15: (a) Ar = 1.8;
(b) Ar = 5.4; and (c) Ar = 18.0.
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Figure 9. Temporal evolution of drag production obtained from the learned model 4.5 (——, very thick solid,
red) and Euler–Lagrange data (······, very thick dotted, black) for CIT after gravity is reversed instantaneously:
(a) Ar, 〈αp〉 = (1.8, 0.0255); (b) Ar, 〈αp〉 = (5.4, 0.001); and (c) Ar, 〈αp〉 = (18, 0.05).

corresponding to Ar, 〈αp〉 = [(1.8, 0.0255), (5.4, 0.05), (18, 0.001)] were simulated in
order to probe the entire parameter space. The performance of the drag production model,
in particular, is highlighted in figure 9 and compared against the transient EL data for
all three cases considered. Finally, the forward solution of the system of model equations
presented is solved for these cases, and the predicted mean particle velocities are compared
with the EL data (see figure 10).
The models described herein are successful for the parameter space studied and perform

exceptionally well on transient data, despite being trained using stationary data. While care
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Figure 10. Temporal evolution of mean particle settling velocity obtained from the multiphase RANS
equations (——, very thick solid, red) and Euler–Lagrange data (······, very thick dotted, black) for CIT
after gravity is reversed instantaneously: (a) Ar, 〈αp〉 = (1.8, 0.0255); (b) Ar, 〈αp〉 = (5.4, 0.001); and
(c) Ar, 〈αp〉 = (18, 0.05).

has been taken to ensure asymptotic agreement with the dilute limit, the robustness of the
models applied to denser systems or non-homogeneous flows is left for future investigation.

5. Conclusions

In this work, the multiphase RANS equations are presented for two-way coupled gas–solid
flows. In this class of flows, the coupling between the phases spontaneously gives rise to
coherent particle structures, which in turn generate and sustain turbulence in the carrier
phase. This phenomenon has important engineering implications (Shaffer et al. 2013;
Miller et al. 2014; Beetham & Capecelatro 2019; Guo & Capecelatro 2019) and makes
the formulation of closure models that are predictive across scales and flow conditions
challenging.
We apply a newly formulated modelling methodology, sparse regression with embedded

form invariance (Beetham & Capecelatro 2020), to highly resolved Eulerian–Lagrangian
data for fully developed CIT. The benefits of this methodology as compared with Neural
Networks, which have become increasingly popular, are (i) interpretability of the resultant
closures, since they are in a closed algebraic formulation, (ii) ease of dissemination to
existing RANS solvers and (iii) robustness to very sparse training sets. The dataset used
for model development spans a range of flow parameters, specifically Ar = (1.8, 5.4, 18.0)
and 〈αp〉 = (0.001, 0.0255, 0.05), in order to formulate models across a range of typical
conditions.
Particular attention is paid to the closures for the four dominant unclosed terms that

appear in the fluid-phase Reynolds-stress equations – PS, VD, DP and DE. In applying the
sparse regression method to each of these terms individually, we discover compact closures
containing between four and six terms that are accurate across the scope of training (model
error ranges from 0.01 to 0.15). Because of the compact nature of the models developed and
the nature of the sparse regression algorithm, we are able to assess the relative importance
of each term and its role in reducing model error. Further, we demonstrate that even when
training on a subset of the Eulerian–Lagrangian data, the methodology learns a model that
remains accurate outside the scope of its training. Additionally, because of the compact,
algebraic formulation of the method, resultant models are accessible for interpretation
and terms of greater physical significance are easily identified. These findings suggest
that the sparse regression methodology holds promise for developing closures for more
complicated multiphase flows, such as channel, duct or bubbly flows. Further, since nearly
all flows of practical importance involve both walls and strong shear, future modelling
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work will focus on near-wall treatments and adaptation of the tensor basis to account for
shear and other flow conditions which result in turbulence.
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