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Abstract

When studying subgroups of Out(Fn), one often replaces a given subgroup
H with one of its finite index subgroups H0 so that virtual properties of H
become actual properties of H0. In many cases, the finite index subgroup is
H0 = H ∩ IAn(Z/3). For which properties is this a good choice? Our main
theorem states that being abelian is such a property. Namely, every virtually
abelian subgroup of IAn(Z/3) is abelian.
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1 Introduction

It is common, when studying elements of Out(Fn), to replace the given element by an
iterate in order to improve its invariance properties. For example, each θ ∈ Out(Fn)
has an iterate ϕ = θk satisfying the following properties.
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(1) If some iterate of ϕ fixes a conjugacy class [a] then ϕ fixes [a].

(2) If some iterate of ϕ fixes the conjugacy class [F] of a free factor F then ϕ fixes
[F ].

(3) ϕ fixes each element in its set L(ϕ) of attracting laminations.

(4) ϕ fixes each element in its set of singular rays and eigenrays.

If θ is rotationless in the sense of [FH11] then iteration is not necessary: each of
the above properties is automatically satisfied by ϕ = θ [FH11, Lemma 3.30 and
Definition 3.13]. Every θ has a rotationless iterate and the number of iterates required
is uniformly bounded [FH11, Lemma 4.42].

The subgroup analog of replacing an individual element θ with a rotationless
iterate θk is to replace a given subgroupH with its finite index subgroupH∩IAn(Z/3)
where IAn(Z/3) < Out(Fn) is the finite index subgroup consisting of elements that
act trivially on Z/3 - homology. This was done, for example, in the proof of the Tits
Alternative for Out(Fn) [BFH00], [BFH05], [BFH04].

In [HM, Section 2](see also [BFH05, Propositions 3.16 and 4.41]) we proved that
all elements of IAn(Z/3) satisfy (1) - (3) above. (If an element of IAn(Z/3) satisfies (4)
then it is rotationless [FH, Lemma 3.12].) These invariance properties played a signif-
icant role in our series of papers [HM] establishing the ‘subgroup decomposition’ the-
orem for Out(Fn) and then again in ([HM15], [HM17a]), in which the H2

b -alternative
for Out(Fn) is established: for every finitely generated subgroup H < Out(Fn) either
H is virtually abelian or H2

b (H;R) has uncountably infinite dimension.
The main result of this paper is motivated in part by [HM15] and[HM17a], in which

virtually abelian subgroups appear naturally and in which information is lost when
one passes to finite index subgroups, and in part by our appreciation of the importance
of IAn(Z/3). Having seen that elements of IAn(Z/3) satisfy (1) - (3) without iteration,
one can ask analogously, which virtual properties of arbitrary subgroups of Out(Fn)
are true for subgroups of IAn(Z/3) without passing to a subgroup of finite index?
Our main theorem in this paper is one such property.

Theorem 1.1. Each virtually abelian subgroup H < IAn(Z/3) is abelian.

Abelian subgroups of Out(Fn) are finitely generated and IAn(Z/3) is torsion free;
the former is contained in [BL94] and the latter follows from [BFH00, Corollary 5.7.6].
Thus,

Corollary 1.2. Every virtually abelian subgroup of Out(Fn) has a finitely generated,
free abelian subgroup of index at most |GL(n,Z3)| < 3n

2
.

In Section 2, after a brief review of PG and UPG subgroups, we reduce Theo-
rem 1.1 to the following proposition.
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Proposition 1.3. Suppose that K < IAn(Z/3) is an abelian UPG subgroup. Then
the normalizer of K in IAn(Z/3) equals the centralizer of K in IAn(Z/3).

All PG elements of IAn(Z/3) are UPG [BFH00, Corollary 5.7.6] and, in fact,
rotationless (Lemma 3.12). Therefore Proposition 1.3 may be equivalently restated
using PG in place of UPG. The proof of Proposition 1.3 appears in Section 4.

Continuing with the theme of studying IAn(Z/3), we pose the following question,
the answer to which is yes if ϕ and ψ are rotationless by an easy application of [FH11,
Theorem 5.3].

Question 1.4. Are roots unique in the group IAn(Z/3)? That is, if ϕ, ψ ∈ IAn(Z/3)
and ϕk = ψk for some k ≥ 1, is ϕ = ψ?

Section 3 contains background material including subsections on UPG elements
and UPG subgroups.

2 Reduction to Proposition 1.3

Each ψ ∈ Out(Fn) has an associated finite set L(ψ) of attracting laminations, each
of which is invariant under some iterate of ψ; see Section 3.1, and in particular
Definitions 3.15, of [BFH00]. (The role of attracting laminations in this paper is
limited to the first paragraph of the proof below.) For a subgroup H < Out(Fn), we
let L(H) = ∪ψ∈HL(H). If L(ψ) = ∅, then we say that ψ has polynomial growth and
write ψ ∈ PG(Fn) or simply ψ ∈ PG. If in addition, the image of ψ in GL(n,Z) is
unipotent then we write ψ ∈ UPG(Fn) or simply ψ ∈ UPG [BFH00], [BFH05].

Proof of Theorem 1.1 assuming Proposition 1.3: Let H < IAn(Z/3) be virtually
abelian. We first follow the proof of [BFH00, Theorem 7.0.1] to show that that there
is an exact sequence

1 → K → H → Zk → 1

for some k and some abelian subgroup K < UPG. By [HM15, Lemma 4.8], L(H)
is a finite collection {Λ1, . . . ,Λk} of H-invariant laminations. For each 1 ≤ i ≤ k,
let PFΛi

: Stab(Λi) → Z be the expansion factor homomorphism for Λi as defined
in [BFH00, Section 3.3]. Let PF = ⊕k

i=1PFΛi
: H → Zk be the direct sum of

the restrictions to H of the PFΛi
’s. If θ is an element of the kernel K of PF then

L(θ)∩L(H) = ∅ by [BFH00, Corollary 3.3.1]. Thus L(θ) = ∅ and K is PG. Applying
our assumption that H < IAn(Z/3), we have that K is UPG by [BFH00, Corollary
5.7.6]. It then follows that K is solvable [BFH05, Corollary 1.3]. Since K is virtually
abelian, it is finitely generated by [BL94] (see also [BFH04]). We can therefore apply
[BFH04, Corollary 3.11] to conclude that K is abelian.

Proposition 1.3 implies that K is in the center of H. In particular [ψ1, ψ2] (which
is an element of K) commutes with ψ1 and ψ2 for all ψ1, ψ2 ∈ H. For all p ≥ 1 and
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all ψ1, ψ2 ∈ H we have [ψ1, ψ2]
p = [ψp1, ψ2] and similarly [ψ1, ψ2]

p = [ψ1, ψ
p
2]. For the

first of these equations the inductive step is:

[ψ1, ψ2]
p = [ψ1, ψ2]

p−1ψ1ψ2ψ
−1
1 ψ−1

2 = ψ1[ψ1, ψ2]
p−1ψ2ψ

−1
1 ψ−1

2

= ψ1[ψ
p−1
1 , ψ2]ψ2ψ

−1
1 ψ−1

2

= ψ1ψ
p−1
1 ψ2ψ

1−p
1 ψ−1

2 ψ2ψ
−1
1 ψ−1

2 = [ψp1, ψ2]

Since H is virtually abelian, there exists p ≥ 1 such that [ψp1, ψ
p
2] is trivial. It follows

that [ψ1, ψ2]
p2 is trivial. Since finite order UPG elements are trivial [BFH05, Lemma

4.47], we conclude that [ψ1, ψ2] is trivial for all ψ1, ψ2 ∈ H.

3 Background

3.1 Basics

Much of the material in this subsection is standard and is included to establish nota-
tion and for convenient reference. Further details can be found in [HM, Section 2.2],
[FH11, Section 2] or [HM, Section 1.1].

Marked graphs The free group Fn of rank n is identified with π1(Rn) where Rn

is the graph with one vertex and n edges. A marked n-graph is a connected finite
graph G of rank n that has no valence one vertices and is equipped with a homotopy
equivalence Rn → G called a marking of G. The marking provides an identification of
Fn with π1(G) that is well defined up to inner automorphism. A homotopy equivalence
f : G → G determines an outer automoprphism of π1(G) and hence an element
ϕ ∈ Out(Fn) that we say is represented by f : G→ G.

Edges of G are assumed to be oriented with Ē = E−1 denoting the edge E with
its orientation reversed. All of the f : G → G that we consider will take vertices to
vertices and restrict to an immersion on each edge. A direction d at a vertex v ∈ G
is the germ of an oriented edge E with initial vertex v. Define the action of f on
directions by d ↦→ d′ where d′ is the direction determined by the first edge in f(E).

We denote the universal cover of G by G̃ and the set of ends of G̃ by ∂G̃.

Fact 3.1. Suppose that f : G→ G is a homotopy equivalence of a marked graph. Then
each lift f̃ : G̃→ G̃ extends continuously over ∂G̃ by a homeomorphism f̂ : ∂G̃→ ∂G̃.

For each a ∈ Fn, the inner automorphism ia : Fn → Fn is defined by ia(g) = aga−1;
the conjugacy class of a is denoted by [a].

Fact 3.2. Each Θ ∈ Aut(Fn) extends continuously to a homeomorphism Θ̂ : ∂Fn →
∂Fn. For each non-trivial inner automorphism ia, its boundary extension îa fixes two
points, a source a− and a sink a+.
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Fact 3.3. For each marked graph G, the identification of π1(G) with Fn induces

(1) an identification of the group of covering translations of G̃ with Fn and

(2) an identification of ∂G̃ with ∂Fn

so that for each non-trivial a ∈ Fn, if Ta is the covering translation of G̃ identified
by (1) with a, and if Aa is the axis of Ta then the following hold: a− and a+ are
identified by (2) with the repelling and attracting endpoints of Aa respectively; and the
projection of Aa into G is a circuit that represents the conjugacy class [a] of a. More
generally, for any θ ∈ Out(Fn) and homotopy equivalence f : G → G representing θ,
there is a bijection

f̃ ↔ Θ

between the set of lifts f̃ : G̃ → G̃ and the set of Θ ∈ Aut(Fn) representing θ such

that the homeomorphisms f̂ : ∂G̃ → ∂G̃ and Θ̂ : ∂Fn → ∂Fn defined in Fact 3.1 and
Fact 3.2 agree under identification (2).

Fact 3.4. [BFH04, Lemma 2.4] Suppose that Φ ∈ Aut(Fn) and a ∈ Fn. If ∂Φ fixes
either a+ or a− then a ∈ Fix(Φ) and ∂Φ fixes both a+ and a−.

Principal lifts, rotationless outer automorphisms and rotationless maps
[FH11] We will only be interested in principal lifts and principal vertices in the
UPG setting and so we can give simplified versions of their definitions.

Fact 3.5. [GJLL98, Proposition I.1] For Θ ∈ Aut(Fn), we denote the fixed subgroup
of Θ by Fix(Θ). There is a disjoint union

Fix(Θ̂) = Fix−(Θ̂) ∪ Fix+(Θ̂) ∪ ∂ Fix(Θ)

where Fix−(Θ̂) ⊂ ∂Fn is a finite union of Fix(Θ)-orbits of repellers and Fix+(Θ̂) ⊂
∂Fn is a finite union of Fix(Θ)-orbits of attractors. FixN(Θ) ⊂ ∂Fn is defined to be
∂ Fix(Θ) ∪ Fix+(Θ).

Remark 3.6. In the special case that Fix(Θ) = ⟨a⟩ and Fix(Θ̂) = ∂ Fix(Θ) = {a±},
it may happen that a+ or a− has an attracting neighborhood for the action of Θ̂.
This happens for example if Θ = ia. In all other cases, Fix+(Θ̂) is exactly the set of

isolated attractors and Fix−(Θ̂) is exactly the set of isolated repellers.

Notation 3.7. The Fn-orbit of an element of Fix+(Θ̂) is called an eigenray for θ.

The Fn-orbit of an element of Fix−(Θ̂) is an eigenray for θ−1.

Definition 3.8. An automorphism Θ representing a UPG θ ∈ Out(Fn) is principal
[FH11, Definition 3.1] if either FixN(Θ) contains at least three points or if FixN(Θ)
is a two point set that is not {a±} for some a ∈ Fn on ∂Fn. The set of principal Φ
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representing θ is denoted by P (θ). An element ϕ ∈ Out(Fn) is rotationless [FH11,
Definition 3.13] if: (i) Φ ↦→ Φk defines a bijection between P (ϕ) and P (ϕk) for all
k ≥ 1; and (ii) FixN(Φ) = FixN(Φ

k) for all Φ ∈ P (ϕ) and all k ≥ 1.
If f : G→ G represents θ and f̃ : G̃→ G̃ corresponds to Θ ∈ P (θ) as in Fact 3.3

then we say that f̃ is principal. An element x of the set Per(f) of f -periodic points
is principal [FH11, Definition 3.18] unless it is contained in a component C of Per(f)
that is topologically a circle and each point in C has exactly two periodic directions.
If each principal vertex and periodic direction at a principal vertex has period one
then we say that f : G→ G is rotationless.

Paths An edge path σ in a marked graph G is a concatenation of edges σ =
. . . EiEi+1 . . . of G where the terminal endpoint of Ei equals the initial endpoint
of Ei+1 for all i. If there is no backtracking, i.e. if Ei+1 ̸= E−1

i for all i, then we say
that σ is a path. If a path σ ⊂ G is a bi-infinite concatenation then we say that σ is
a line in G. (All of the lines in this paper are oriented.) If a path σ ⊂ G is a singly
infinite concatenation then we say that σ is ray. We also allow the trivial path which
is just a single vertex. Concatenation σ = σ1σ2 of edge paths σ1 and σ2 is defined if
σ1 has a terminal vertex, σ2 has an initial vertex and if these vertices are equal. The
concatenation of paths need not be path.

Paths and edge paths in G̃ are defined similarly. Edge paths in G lift to edge paths
in G̃ with paths lifting to paths. A line in G lifts to a line in G̃ with well defined
distinct ideal endpoints in ∂G̃. Conversely, every ordered pair of distinct points in
∂G̃ is the ideal endpoint pair for a unique line in G̃. A ray in G lifts to a ray in G̃
with one endpoint at a vertex and the other an ideal endpoint in ∂G̃.

Suppose that f : G → G is a homotopy equivalence and f̃ : G̃ → G̃ is a lift. For
any finite path σ̃ ⊂ G̃ with endpoints x̃, ỹ, we define f̃#(σ̃) to be the unique path

with endpoints f̃(x̃), f̃(ỹ). We define f̃#(σ̃) for rays and lines similarly using f̂ if one
or both endpoint is ideal. This descends to a well defined action σ ↦→ f#(σ) of f on
the set of paths in G.

A circuit in G is a cyclic concatenation of edges without backtracking and so can
be viewed as an immersion of a circle. A circuit in G lifts to a line in G̃ and we can
extend the definition of f# to include circuits. A closed path σ determines a circuit if
the initial edges of σ and σ̄ are distinct. If a circuit σ represents the conjugacy class
[a] of a ∈ Fn and if f : G→ G represents θ ∈ Out(Fn) then f#(σ) represents θ([a]).

A decomposition σ = . . . σiσi+1 . . . into subpaths is a splitting if

fk#(σ) = . . . fk#(σi)f
k
#(σi+1) . . .

is a decomposition into subpaths for all k ≥ 1, When the decomposition into σi’s is a
splitting we write σ = . . . · σi · σi+1 · . . .

An abstract line is the Fn-orbit of an ordered pair of distinct points in ∂Fn. If
G is any marked graph then the identification of ∂G with ∂Fn (Fact 3.3) defines a
bijection between abstract lines and Fn-orbits of lines in G̃ and so also a bijection
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between abstract lines and lines in G. An abstract ray is an Fn-orbit of a point in
∂Fn. There is a bijection between abstract rays and equivalence classes of rays in G,
where two rays in G are equivalent if they have a common infinite subray.

Free factor systems [BFH00, Section 2.6] If A1, . . . , Ak are non-trivial free factors
and A1∗ . . .∗Ak is a free factor of Fn then the set of conjugacy classes {[A1], . . . , [Ak]}
is a free factor system. We write

{[B1], . . . , [Bl]} ⊏ {[A1], . . . , [Ak]}

and say that {[B1], . . . , [Bl]} is contained in {[A1], . . . , [Ak]} if for each Bi there exists
Aj so that some conjugate of Bi is a subgroup of Aj.

For every inclusion H ⊂ G of a subgraph in a marked graph, there is an associated
free factor system F(H) = {[π1(C1)], . . . , [π1(Ck)]} where {C1, . . . , Ck} is the set of
non-contractible components of G; see [BFH00, Example 2.6.1] for details. We say
that H ⊂ G realizes F(H). Every free factor system is realized by some H ⊂ G and
every nested sequence F1 ⊏ F2 ⊏ . . . ⊏ Fl is realized by some nested sequence of
subgraphs H1 ⊂ H2 ⊂ . . . ⊂ Hl ⊂ G. One may assume without loss that the Hi’s are
core subgraphs, meaning that all vertices have valence at least two. If F ⊏ F ′ can
be realized by core subgraphs H ⊂ H ′ such that H ′ \H is a single edge then we say
that F ⊏ F ′ is a one-edge extension; otherwise, F ⊏ F ′ is a multi-edge extension.

Fact 3.9. [BFH00, Section 2.6] Suppose that [F ] is a θ-invariant free factor conjugacy
class and that Θ ∈ Aut(Fn) represents θ and preserves F . Then the element θ

⏐⏐ F of
Out(F ) determined by the restriction θ

⏐⏐ F is independent of the choice of Θ.

A conjugacy class is carried by [F ] if some representative of it is an element of F .
An abstract ray is carried by [F ] if it is represented by a point in ∂F . An abstract
line is carried by [F ] if it is represented by an ordered pair of points, both of which
are contained in ∂F . A conjugacy class, abstract ray or abstract line is carried by
a free factor system F if it is carried by a component of F . If H is a subgraph of
a marked graph G then a conjugacy class [resp. abstract line] is carried by F(H) if
and only if the corresponding circuit [resp. line] in G is contained in H.

Fact 3.10. [HM17b, Fact 1.10] (see also [BH92, Section 2.6]) For any set X of
abstract lines, abstract rays and conjugacy classes there is a unique minimal (with
respect to ⊏) free factor system Fsupp(X) that carries each element of X. If θ ∈
Out(Fn) and X is θ-invariant then Fsupp(X) is θ-invariant.

3.2 UPG elements

In this section we review some facts about individual UPG elements of Out(Fn).
A CT f : G → G is a particularly nice kind of topological representative of

θ ∈ Out(Fn). The complete definition of a CT is given on [FH11, page 47]. Since
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we will only use CT representatives in the special case when θ is UPG, the definition
can be simplified considerably. Fact 3.11 and the proof of Lemma 3.12 give a pretty
complete picture of CTs in this context.

We delay the proof that every UPG element is rotationless, and hence represented
by a CT f : G → G [FH11, Theorem 4.28], until we have listed some properties
enjoyed by such CTs.

A CT f : G → G is equipped with a filtration ∅ = G0 ⊂ G1 ⊂ . . . ⊂ GN = G
by f -invariant subgraphs. The subgraphs Hr = Gr \ Gr−1 are called the strata. A
path has height r if it is contained in Gr and crosses at least one edge in Hr. The set
of fixed points for f and the set of periodic points for f are denoted by Fix(f) and
Per(f) respectively. The set of vertices of G is V . Recall that V is invariant under
each f : G→ G that we consider. .

Fact 3.11. Each CT f : G → G representing θ ∈ UPG satisfies the following
properties.

(1) Each stratum Hi is a single edge Ei. If Ei is not fixed then there is a non-trivial
closed path ui ⊂ Gi−1 such that f(Ei) = Eiui.

(2) Fix(f) = Per(f) is the union of V with the set of fixed edges.

(3) A direction based at a vertex is fixed if and only if it is periodic if and only if it
is not the terminal direction of a non-fixed edge.

(4) Each vertex is principal.

(5) A lift f̃ : G̃→ G̃ is principal if and only if Fix(f̃) ̸= ∅.

Proof. The strata of f : G → G are classified into three types: EG, NEG, and zero
strata. From [BFH00, Lemma 3.1.9] and our assumption that L(θ) = ∅, it follows
that f : G → G has no EG strata. The (Zero Strata) property of a CT therefore
implies that f : G → G has no zero strata. Thus, every stratum of f : G → G is
NEG. Item (1) therefore follows from [FH11, Lemma 4.21]. Items (2) and (3) follow
from (1). A vertex that is incident to a fixed edge or is the terminal endpoint of
a non-fixed edge is principal by the (Periodic Edges) and (Vertices) properties of a
CT respectively. All other vertices are the initial endpoints of at least two non-fixed
edges and so are principal by Definition 3.8. This proves (4). Item (5) follows from
(4) and [FH11, Remark 4.8, Corollaries 3.17 and 3.27].

A finite path σ ⊂ G is a Nielsen path if f#(σ) = σ and is an indivisible Nielsen
path if there is no non-trivial decomposition of σ into Nielsen subpaths. Note that by
Lemma 3.11(2), we would have the same set of indivisible Nielsen paths if we allowed
paths to have endpoints that are not vertices.

In order to apply CT theory to UPG elements we must prove that they are rota-
tionless. We will do this indirectly by using a result from [BFH00] to find a pretty
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good relative train track map, namely one that satisfies various of the conclusions of
Fact 3.11, and then we will quote [FH11, Proposition 3.29].

Lemma 3.12. Each θ ∈ UPG is rotationless.

Proof. By [BFH00, Proposition 5.7.5], θ is represented by a relative train track map
f : G → G and filtration ∅ = G0 ⊂ G1 ⊂ . . . ⊂ GN = G with a subsequence of
invariant core subgraphs ∅ = G0 = Gr(0) ⊂ Gr(1) ⊂ . . . ⊂ Gr(m) = G such that Gr(j+1)

is obtained from Gr(j) in one of the following ways.

(a) Adding a single fixed edge that is either a loop or has both endpoints in Gr(j);
r(j + 1) = r(j) + 1.

(b) Adding a single non-fixed edge satisfying Fact 3.11(1) with both endpoints in
Gr(j); r(j + 1) = r(j) + 1.

(c) Adding two non-fixed edges satisfying Fact 3.11(1) with a common initial vertex
not in Gr(j) and both terminal endpoints in Gr(j); r(j + 1) = r(j) + 2.

It is obvious from (a) - (c) that Fact 3.11(1) is satisfied. This implies items (2) and
(3) of Fact 3.11, which in turn prove that f : G → G is rotationless (Definition 3.8).
By [FH11, Proposition 3.29], we are reduced to showing that f : G → G satisfies
the five properties listed in [FH11, Theorem 2.19]. Property (Z) applies only to zero
strata and so is vacuous in this context. Properties (F) and (NEG) are immediate
from (a) - (c). The endpoints of an indivisible Nielsen path are not contained in
the interior of a fixed edge and so are vertices by Fact 3.11(1). This verifies the (V)
property of [FH11, Theorem 2.19]. If a stratum Hm is a forest in Per(f) then it is a
single fixed edge Em with endpoints in a core subgraph Gm−1 by (a) - (c). It follows
that the free factor support of Gm−1 is not equal to the free factor support of Gl∪Em
for any filtration element Gl. This verifies the (P) property of [FH11, Theorem 2.19]
and we are done.

We assume for the rest of this subsection that

• θ ∈ UPG and that f : G → G is a CT representing θ, hence f satisfies the
conclusion of Lemma 3.11.

If a root-free a ∈ Fn is fixed by m ≥ 2 elements of P(θ) then its unoriented
conjugacy class [a]u is called an axis or twistor for θ with multiplicity m− 1. An edge
E in a stratum Hi is linear if there is a Nielsen path u ⊂ Gi−1 such that f(E) = Eu.
Recall from Fact 3.3 that each non-trivial a ∈ Fn corresponds to a covering translation
Ta : G̃→ G̃ with axis Aa.

Fact 3.13. For each root-free a ∈ Fn, if [a]u is a twistor for θ of multiplicity m ≥ 2
then :

(1) There is a closed path w that determines a circuit representing [a]u.
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(2) There are exactly m− 1 linear edges E1, . . . , Em−1 such that f(El) = Elwdl for
some dl ̸= 0. Furthermore, the values dl are pairwise distinct. We say that w
is the twist path for El.

(3) For each l = 1, . . . ,m − 1, there is a lift f̃l of f such that for each lift Ẽl, if
the terminal endpoint of Ẽl is contained in Aa then the initial endpoint of Ẽl is
fixed by f̃l. These lifts are pairwise distinct, preserve Aa and each acts without
fixed points on Aa.

(4) For each l = 1, . . . ,m− 1, the lift f̃l corresponds to an element Θl ∈ P(θ) that
fixes a. These automorphisms Θl account for all but one element Θ0 ∈ P(θ)
that fixes a. The lift f̃0 of f that corresponds to Θ0 fixes points in Aa.

Proof. The (NEG Nielsen Paths) property of a CT implies that Fix(f̃i) ∩ Aa = ∅.
The rest of the fact follows from the (Linear Edges) property of a CT and [FH11,
Lemma 4.40].

Fact 3.14. If E is a linear edge with twist path w then every occurence of E in a
Nielsen path ρ for f is contained in a subpath of ρ of the form EwpĒ.

Proof. We may assume that ρ is indivisible. Let r be the height of ρ and s the height
of E. The r < s case is vacuous and the r = s case follows from the (NEG Nielsen
Paths) property for a CT. If r > s then the (NEG Nielsen Paths) property implies
that σ = E ′w′pĒ ′ for some p ̸= 0, where E ′ is a linear edge of height r and its twist
path w′ has height less than r. Each occurence of E in σ is contained in w′p and we
are done by induction.

Notation 3.15. Letting E be a non-fixed edge of height r with f(E) = Eu for some
closed path u of height < r [Fact 3.11(1)], its iterates split as fk(E) = E · u · f#(u) ·
. . . · fk−1

# (u). In this case, the nested sequence E ⊂ f(E) ⊂ f 2(E) ⊂ . . . converges
to a ray RE that we say is determined by E. If E is a linear edge with twist path w
then RE = Ew±∞. If E is non-linear then the set of terminal endpoints of lifts of RE

to G̃ is an Fn-orbit in ∂Fn that we denote [∂RE]. Note that RE \ E is a ray in Gr−1

and so [∂RE] is carried by the free factor system determined by Gr−1.

Fact 3.16. The assignment E ↦→ [∂RE] defines a bijection between the set E of non-
linear, non-fixed edges of G and the set of eigenrays of θ (Notation 3.7).

Proof. This is contained in [HM17b, Fact 1.49]; see also [FH11, Lemma 4.36].

Corollary 3.17. If F ⊏ {[Fn]} is a θ-invariant one-edge extension then F carries
every twistor and eigenray for θ.

Proof. By [FH11, Theorem 4.5], there exists a CT f : G→ G representing θ in which
F is represented by a filtration element Gs. Each non-fixed edge E above Gs satisfies
f(E) = E · u for some non-trivial path u ⊂ Gs. The corollary therefore follows from
Fact 3.13, Notation 3.15 and Fact 3.16.
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Fact 3.18. FixN(Θ) ̸= ∅ for all Θ ∈ Aut(Fn) representing θ.

Proof. Let f̃ : G̃ → G̃ be the lift of f corresponding to Θ. If Θ is principal then
FixN(Θ) ̸= ∅ by definition. We may therefore assume that Θ is not principal and
hence by Fact 3.11(5) that f̃ is fixed point-free. In this case there is a path σ̃ ⊂ G̃
such that σ̃ · f̃#(σ̃) · f̃ 2

#(σ̃) · . . . converges to a point in FixN(Θ). The construction of
σ̃ is carried out in the proof of [BFH00, Proposition 5.4.3]. A more directly quotable
reference is [FH, Lemma 6.4].

Fact 3.19. [BFH05, Proposition 4.44] If the conjugacy class of the free factor F is
θ-invariant then θ|F is UPG.

The following lemma is not known for elements of Out(Fn) that are not UPG.

Lemma 3.20. Θ ∈ P(θ) ⇐⇒ Θ−1 ∈ P(θ−1).

Proof. By symmetry, it suffices to assume that Θ ∈ P(θ) and prove that Θ−1 ∈
P(θ−1). If the rank of Fix(Θ) is at least two then this follows from the Definition 3.8
and the fact that Fix(Θ) = Fix(Θ−1). We may therefore assume that Fix(Θ) has rank

one or zero. We show below that there is an injective map Fix+(Θ̂) → Fix+(Θ̂−1).

Assuming this for now, we complete the proof as follows. The cardinality of Fix+(Θ̂−1)
is at least one in the rank one case and at least two in the rank zero case. It follows that
FixN(Θ̂−1) contains at least three points unless Fix(Θ−1) has rank zero and Fix+(Θ̂−1)

contains exactly two points. In this case, Fact 3.4 implies that Fix+(Θ̂−1) ̸= {a±} for
any non-trivial a ∈ Fn so Θ−1 ∈ P(θ−1) in this case as well.

It remains to show that there is an injective map Fix+(Θ̂) → Fix+(Θ̂−1). The

lift f̃ : G̃ → G̃ corresponding to Θ satisifies f̂ = Θ̂. For each P ∈ Fix+(f̂) there

is (Fact 3.16) a non-fixed non-linear edge E, a lift Ẽ of E and a lift R̃E of RE

(Notation 3.15) with initial edge Ẽ, such that R̃E converges to P and intersects
Fix(f̃) only in its initial endpoint ṽ [FH11, Lemma 3.36]. Let r be the height of
E. By Lemma 3.11(1) there is a component C of Gr−1 that contains the terminal
endpoint of E and hence contains all of RE but its first edge. Let Γ ⊂ G̃ be the
component of the full pre-image C that contains the terminal endpoint of the initial
edge Ẽ of R̃E. Then Γ is f̃ -invariant and ∂Γ contains P . The (NEG Nielsen Paths)
property of a CT implies that f̃

⏐⏐ Γ is fixed point free. [FH11, Lemma 3.16] therefore

implies that P is the only element of Fix+(f̂) contained in ∂Γ. Since Fix+(f̂) is
îa-invariant for each a ∈ Fix(Θ), it follows that ∂ Fix(Θ) ∩ ∂Γ = ∅.

Let F be the free factor that represents the unique element of F(C) and satisfies
∂F = ∂Γ. The automorphism Ψ := Θ−1

⏐⏐ F represents the restriction ψ = θ−1
⏐⏐ F ,

which is UPG by Fact 3.19. By Fact 3.18 there exists at least one point Q ∈ FixN(Ψ).

Since ∂ Fix(Ψ) = ∂ Fix(Θ) ∩ ∂Γ = ∅, Q ∈ Fix+(Ψ̂).

To see that P ↦→ Q is injective, suppose that P ′ ̸= P is a point in Fix+(Θ̂) and
that C ′,Γ′, F ′ and Q′ are defined as above with P replaced by P ′. Since C and C ′ are
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components of filtration elements of G, either they are disjoint or one is contained in
the other. It follows [HM17b, Fact 1.2] that either ∂F and ∂F ′ are disjoint or one is
contained in the other. The latter is ruled out by the fact that P = Fix+(Θ) ∩ ∂F
and P ′ = Fix+(Θ) ∩ ∂F ′. Thus ∂F and ∂F ′ are disjoint and Q ̸= Q′.

Definition 3.21. Every path σ̃ ⊂ G̃ with endpoints, if any, at vertices has a highest
edge splitting σ̃ = . . . σ̃−1 · σ̃0 · σ̃1 . . . defined as follows. If r is the height of σ and
Er is not fixed then this splitting is defined by taking the splitting vertices ( i.e. the
endpoints of the terms) to be exactly those vertices that are either the initial endpoint
of an edge in σ̃ that projects to Er or the terminal endpoint of an edge that projects
to Ēr. If Er is fixed then both endpoints of an edge that projects to Er or Ēr are
splitting vertices. The projected splitting σ = . . . σ−1 · σ0 · σ1 . . . is the highest edge
splitting of σ.

Fact 3.22. (1) The highest edge splitting σ = . . . σ−1 · σ0 · σ1 . . . of σ is in fact a
splitting.

(2) For any lift f̃ ,
f̃#(σ̃) = . . . f̃#(σ̃−1) · f̃#(σ̃0) · f̃#(σ̃1) . . .

is the highest edge splitting of f̃#(σ̃).

Proof. Item (1) is contained in the statement and proof of [BFH00, Lemma 4.1.4].
For (2), let Vσ̃ and Vf̃#(σ̃) be the highest edge splitting vertices of σ̃ and f̃#(σ̃)

respectively. Assuming at first that Er is not fixed, each term σ̃j in the highest edge
splitting of σ̃ have the form Ẽrγ̃Ẽ

−1
r , Ẽrγ̃, γ̃Ẽ

−1
r , γ̃, Ẽr or Ẽ−1

r for some non-trivial
path γ̃ that projects into Gr−1. Since f(Er) = Erur for some path ur ⊂ Gr−1,
the f̃#-image of each of these types is another path of the same type. It follows
that Vf̃#(σ̃) ⊂ f̃(Vσ̃). It also follows that if σ̃j ends with Ẽ−1

r [respectively begins

with Ẽr] then f̃#(σ̃j) ends with Ẽ
−1
r [respectively begins with Ẽr]. This implies that

f̃(Vσ̃) ⊂ Vf̃#(σ̃). This completes the proof in the case that Er is not fixed. The
remaining case is similar and is left to the reader.

Lemma 3.23. Suppose that f̃ is a lift of f : G → G, that µ̃ is an f̃#-invariant line
that is disjoint from Fix(f̃) and that an endpoint of µ̃ is fixed by a covering translation
T . Then µ̃ is the axis AT of T .

Proof. Let µ̃ = . . . · µ̃−1 · µ̃0 · µ̃ · . . . be the highest edge splitting of µ. Fact 3.22 implies
that there exists p ∈ Z such that (f̃)#(µ̃i) = µ̃i+p for all µ̃i. From the assumption that
Fix(f̃) ∩ µ̃ = ∅, it follows that p ̸= 0 and so the splitting is bi-infinite. The highest
edge splitting AT = . . . · α̃−1 · α̃0 · α̃1 · . . . of AT is also bi-infinite. Since µ̃ and AT
have a common ray, they must have the same height. After re-indexing the α̃j’s, we
may assume that α̃j = µ̃j for all sufficiently large j. It follows that (f̃)#(α̃j) = α̃j+p
for all α̃j and hence that for all j there exists k > 0 such that (f̃)k#(µ̃j) = (f̃)k#(α̃j).
Since µj and αj are paths in G with the same endpoints, it follows that α̃j = µ̃j for
all j and σ̃ = AT .

12



3.3 Abelian UPG subgroups

We assume throughout this section that K is an abelian UPG subgroup of Out(Fn).
Lemma 3.12 implies that each element of K is rotationless and so K is a rotationless
abelian UPG subgroup.

The main definitions in [FH09] make use of

P±(θ) := P(θ) ∪ (P(θ−1))−1

In the UPG case, Lemma 3.20 implies that

P±(θ) = P(θ) = P(θ−1)−1

We have simplified the definitions in this subsection accordingly.

Remark 3.24. As noted in [HM17a, Section 6.1.2], the definition of P±(θ) was
misstated in [FH11] as P±(θ) := P(θ) ∪ P(θ−1).

Definition 3.25. [FH09, Definition 3.9] A set X ⊂ ∂Fn with at least three points is

a principal set for K if for each ϕ ∈ K there exists Φ ∈ P(ϕ) such that X ⊂ Fix(Φ̂).
For each such X, the assignment ϕ → Φ defines a lift sX of K into Aut(Fn) called
the principal lift determined by X.

If X is a principal set and X ′ ⊂ X contains at least three points then X ′ is a
principal set and sX′ = sX . For any principal set X ′, the maximal (with respect to
inclusion) principal set containing X ′ is given by

X = ∩ϕ∈K Fix(ŝX′(ϕ)

See [FH09, Remark 3.10].
Automorphisms that differ by conjugation by an inner automorphism are said

to be isogredient. If X is a maximal principal set and c ∈ Fn then ic(X) is also a
maximal principal set and sic(X)(ϕ) = icsX(ϕ)i

−1
c for each ψ ∈ K. Thus Fn-orbits of

maximal principal sets correspond to isogredience classes of principal lifts.
The following definition generalizes to the setting of UPG abelian subgroups the

concepts that were defined just preceding Fact 3.13.

Definition 3.26. [FH09, Definition 4.1] We say that the unoriented conjugacy class
[a]u of a ∈ Fn is an axis or twistor of multiplicity m − 1 ≥ 1 for K and write
[a]u ∈ A(K) if {a±} is contained in m distinct maximal principal sets. The maximal
principal sets that contain {a±} are called linear principal sets or more specifically
a-linear principal sets. If X1 and X2 are distinct a-linear principal sets then for each
θ ∈ K there exists an integer d(θ) such that sX2(ϕ) = i

d(θ)
a sX1(θ). The assignment

θ ↦→ d(θ) defines a homomorphism ω : K → Z called the comparison homomorphism
determined by X1 and X2. Note that ω depends only on the Fn-orbit of the pair
(X1, X2); i.e. (X1, X2) and ic(X1, X2) := (icX1, icX2) determine the same comparison
homomorphism.

13



Fact 3.27. [FH09, Lemma 4.3] There are only finitely many comparison homomor-
phisms for K.

Fact 3.28. [FH09, Lemma 4.6] If θ, ϕ ∈ K and ω(θ) = ω(ψ) for all comparison
homomorphisms ω then θ = ϕ.

Definition 3.29. [FH09, Definition 4.7] ϕ ∈ K is generic if ω(ϕ) ̸= 0 for each
comparison homomorphism ω.

Fact 3.30. [FH09, Lemma 4.10] If θ ∈ K is generic then {Fix(Θ̂) : Θ ∈ P(θ)} is the
set of maximal principal sets for K.

Corollary 3.31. If ϕ, θ ∈ K are generic then {Fix(Θ̂) : Θ ∈ P(θ)} = {Fix(Φ̂) : Φ ∈
P(ϕ)}.

Corollary 3.32. [a]u ∈ Fn is a twistor for K of multiplicity m− 1 if and only if [a]u
is a twistor of multiplicity m− 1 for some, and hence every, generic element of K.

Fact 3.33. [FH09, Lemma 4.9] K has a basis of generic elements.

Fact 3.34. [FH09, Lemma 2.6] Suppose that θ, ψ ∈ Out(Fn), that ϕ := θψ = ψθψ−1

and that Ψ ∈ Aut(Fn) represents ψ. Then

(1) Fix(Ψ̂ΘΨ−1) = Ψ̂(Fix Θ̂) for all Θ ∈ Aut(Fn) representing θ.

(2) Fix+(Ψ̂ΘΨ−1) = Ψ̂(Fix+(Θ̂)) and Fix−(Ψ̂ΘΨ−1) = Ψ̂(Fix−(Θ̂)) for all Θ ∈
Aut(Fn) representing θ. .

(3) Θ ↦→ ΨΘΨ−1 defines a bijection between P(θ) and P(ϕ) that preserves isogre-
dience classes.

Lemma 3.35. If θ is generic in K and ψ ∈ Out(Fn) then θψ is generic in Kψ =

{ψϕψ−1 : ϕ ∈ K}. Moreover, for any Ψ ∈ Aut(Fn) representing ψ, Ψ̂ induces a
bijection between [a-linear] principal sets in K and [Ψ(a)-linear] principal sets in Kψ.

Proof. Choose Ψ ∈ Aut(Fn) representing ψ. The following are easy consequences of
Fact 3.34:

• A(Kψ) = ψ(A(K)).

• If Xi is a [a-linear] principal set for K then Ψ̂(Xi) is a [Ψ(a)-linear] principal
set for Kψ.

• If ω : K → Z is the comparison homomorphism determined by X1 and X2 then
the comparison homomorphism ωψ : Kψ → Z determined by Ψ̂(X1) and Ψ̂(X2)
satisfies ωψ(θψ) = ω(θ).

The lemma now follows from the definition of genericity.
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Lemma 3.36. If θ ∈ K is generic in K and [F ] is a K-invariant free factor conjugacy
class then K

⏐⏐ F (see Fact 3.9) is an abelian UPG subgroup and θ
⏐⏐ F is generic in

K
⏐⏐ F .

Proof. Fact 3.19 implies that K
⏐⏐ F is an abelian UPG subgroup. Each maximal

principal set for K
⏐⏐ F extends uniquely to a maximal principal set for K. It follows

that each coordinate homomorphism ωK for K
⏐⏐ F is the restriction of a coordinate

homomorphism ω for K. Thus each ωK(θ
⏐⏐ K) = ω(θ) ̸= 0 proving that θ

⏐⏐ K is
generic.

4 Proof of Proposition 1.3

Assuming that K < IAn(Z/3) is an abelian UPG subgroup and that ψ ∈ IAn(Z/3)
normalizes K, our goal is to show that ψ commutes with each θ ∈ K. By Facts 3.12
and 3.33, K is rotationless and has a basis of of generic elements. We may therefore
assume that θ is generic. Letting ϕ = θψ = ψθψ−1 ∈ K, our goal is to show that
ϕ = θ.

Suppose that [a]u ∈ A(K) (see Definition 3.26) and that Ψ is a representative of ψ.
Lemma 3.35 implies that [Ψ(a)]u ∈ A(Kψ) = A(K) and hence that ψ permutes the
elements of A(K). It follows that ψ fixes each element of A(K) by [HM17c, Theorem
4.1]. We can therefore choose Ψa representing ψ that fixes a. Lemma 3.35 implies

that if Xi is an a-linear principal set for K then Ψ̂a(Xi) is an a-linear principal set
for Kψ = K. Thus

(∗) For each a ∈ Fn with [a]u ∈ A(K) there exists Ψa ∈ Aut(Fn) representing ψ
such that Ψa(a) = a. Letting {X0, . . . , Xm−1} be the a-linear principal sets,
the automorphism Ψa induces a permutation πa of {0, . . . ,m − 1} such that

Ψ̂a(Xi) = Xπa(i). Corollary 3.32 implies that [a]u is twistor for θ with multiplic-
ity m− 1.

The main work of the proof is to show that each πa is the identity. Assuming this
fact for the moment, we complete the proof of the proposition.

Fix [a]u ∈ A(K) and let {X0, . . . , Xm−1}, Ψa and πa be as in (∗). Let Θi =
sXi

(θ) ∈ P(θ) (see Definition 3.25) and Φi = ΨaΘiΨ
−1
a ∈ P(ϕ). Then

Fix(Φ̂i) = Ψ̂a(Fix(Θ̂i)) = Ψ̂a(Xi) = Xπa(i) = Xi

with the middle equality following from Fact 3.30 and the genericity of θ. Thus
sXi

(ϕ) = Φi. If Xi and Xj are distinct a-linear principal sets then

Θj = idaΘi
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for some d ̸= 0 and

Φj = ΨaΘjΨ
−1
a = Ψai

d
aΘiΨ

−1
a = idΨa(a)ΨaΘiΨ

−1
a = idaΦi

This proves that ω(θ) = ω(ϕ) where ω is the comparison homomorphism determined
by Xi and Xj. Since a, i and j are arbitrary, Fact 3.28 completes the proof of Propo-
sition 1.3.

Fixing a as in (∗), it remains to prove that πa is the identity.

Lemma 4.1. Suppose that ∅ = F0 ⊏ F1 ⊏ . . . ⊏ FJ = {[Fn]} is a maximal nested
sequence of free factor systems that are invariant by both K and ψ and that [F ] is
a component of Fj for some 1 ≤ j ≤ J . Then [F ] is invariant by both K and ψ;
moreover, for all η ∈ K, each axis and eigenray for η

⏐⏐ F is carried by Fj−1.

Proof. Since K,ψ ⊂ IAn(Z/3), [HM17c, Lemma 4.2] implies that [F ] is invariant by
both K and ψ. By Fact 3.19, KF := K

⏐⏐ F is a UPG subgroup that is obviously
normalized by ψF := ψ

⏐⏐ F . Each component of Fj−1 is contained in a unique
component of Fj. The union of the components of Fj−1 that are contained in [F ]
define a free factor system of F that we denote by F ′. Since Fj−1 ⊏ Fj is invariant
by both K and ψ and is maximal with respect to these properties, it follows that
F ′ ⊏ {[F ]} is invariant by both KF and ψF and is maximal with respect to these
properties. By [BFH05, Theorem 5.1] there is a KF -invariant free factor system F ′′

of F such that F ′ ⊏ F ′′ and such that F ′′ ⊏ {[F ]} is a one-edge extension. By
Corollary 3.17, F ′′ carries each axis and eigenray for all ηF ∈ KF . It follows from
Fact 3.34 and the definitions that ψ maps the axes and eigenrays of ηF ∈ KF to
the axes and eigenrays of ηψF

F ∈ KF and so the set X of axes and eigenrays that
occur for some element of KF is ψF -invariant. For the same reason, X is K-invariant.
By Fact 3.10, Fsupp(X ∪F ′) is invariant by both K and ψ. Moreover, Fsupp(X ∪F ′)
contains F ′ by construction and is properly contained in {[F ]} because it is contained
in F ′′. It follows that Fsupp(X ∪ F ′) = F ′ and so Fsupp(X) ⊏ F ′ ⊏ Fj−1.

Having fixed a as in (∗), the notations of (∗) remain in force for the rest of the
paper, as do Notations 4.2 and 4.4 below. Recall also that θ is a generic element of
K, that ψ normalizes K and that ϕ = θψ.

Notation 4.2. Let ∅ = F0 ⊏ F1 ⊏ . . . ⊏ FJ = {[Fn]} be a maximal nested sequence
of free factor systems that are invariant by both K and ψ. By [FH, Theorem 1.1]
there is a CT f : G→ G representing θ with filtration ∅ = G0 ⊂ G1 ⊂ . . . ⊂ GN = G
and a subfiltration by core graphs ∅ = G0 = Gr(0) ⊂ Gr(1) ⊂ . . . ⊂ Gr(J) = G such
each Fj is realized by Gr(j); moreover, for each j and each component C of Gr(j), f |C
is a CT representing θ

⏐⏐ [π1(C)]. For each 1 ≤ j ≤ J , define the jth-stratum of the
subfiltration to be the subgraph Sj = Gr(j) \Gr(j−1). Choose h : G→ G representing
ψ such that each Gr(j) is h-invariant.
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Corollary 4.3. If Ei is a non-fixed edge in Sj then f(Ei) = Ei·ui for some non-trivial
closed path ui ⊂ Gr(j−1).

Proof. Let C be the component of Gr(j) that contains Ei and let F be a free factor
representing [π1(C)]. By construction, f

⏐⏐ C is a CT representing θ
⏐⏐ F . If Ei is linear

then ui = wpii where wi is the twist path for Ei and [wi]u is an axis for θ
⏐⏐ F . In this

case, Lemma 4.1 completes the proof. If Ei is non-linear then ∂REi
is an eigenray

for θ
⏐⏐ F by Fact 3.16. Lemma 4.1 therefore implies that fk#(ui) ⊂ Gr(j−1) for some

k > 0 which implies that ui ⊂ Gr(j−1).

Notation 4.4. For 0 ≤ i ≤ m − 1, let Θi = sXi
(θ), let f̃i : G̃ → G̃ be the lift

corresponding to Θi and let f̂i : ∂Fn → ∂Fn be the extension of f̃i given by Fact 3.1.
Then Θ0, . . . ,Θm−1 are the elements of P(θ) that fix a and Fix(f̂i) = Xi by Facts 3.3
and 3.30. After possibly reindexing the Xi’s, we may assume that Θ1, . . . ,Θm−1

correspond to linear edges E1, . . . , Em−1 as in Fact 3.13. We may also assume that
the twist path for [a]u represents [a]. Superscript indices, primarily i, j, k or l, take
values in the set {1, . . . ,m − 1}. Edges indexed by subscripts like Ep or Eq can be
any edge at all, perhaps even an element of {E1, . . . , Em−1}.

The twist path for E1, . . . , Em−1 is denoted by w. We define rays by iterating w
and w−1 in the positive and negative directions as follows:

R+(w) = (www . . .) R+(w̄) = (w̄w̄w̄ . . .)

R−(w) = (. . . www) R−(w̄) = (. . . w̄w̄w̄)

Given a line α, we say that α ends with w∞ if there is a concatenation expression
α = βR+(w). Similarly, α begins with w∞ if α = R−(w)β; α ends with w̄∞ if
α = βR+(w̄); and α begins with w̄∞ if α = R−(w̄)β. Since the notation should make
the context clear, we will usually abuse notation by ignoring ‘R’ and writing βw∞

instead of βR+(w), and similarly for the other three possibilities.

Definition 4.5. Recall that all lines in this paper are oriented. Since Xi contains
a+, a− and at least one other point, there exist lines in G̃ with initial endpoint in
Xi \ {a±} and terminal endpoint in {a±}. For 0 ≤ i ≤ m − 1, let Σi be the set of
such lines of minimum ‘subfiltration height’ j(i) ∈ {1, , J}. To be more precise, let
1 ≤ j(i) ≤ J be the minimum value for which there exists an (f̃i)#-invariant line
σ̃ ̸= Aa (equivalently, a line σ̃ ̸= Aa with endpoints in Xi) that terminates at either
a+ or a− and whose projection σ is contained in Gr(j(i)). The set of all such σ̃ is

denoted by Σ̃i and the set of projections σ is denoted by Σi. Note that every σ ∈ Σi

ends with w∞ or w−∞.

Remark 4.6. If i ̸= 0 then by Lemma 4.9(3) below, j(i) is the minimum value for
which Gr(j(i)) contains E

i.
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Remark 4.7. If σ ∈ Σi decomposes as σ = βw−∞ then there is a lift σ̃ with terminal
endpoint a− and initial endpoint, say P ̸= a+, in Xi. The line σ̃′ that has initial
endpoint P and terminal endpoint a+ projects to σ′ ∈ Σi that decomposes as σ′ =
β′w∞.

Lemma 4.8. If πa(k) = i then:

(1) j(k) = j(i).

(2) ψ#(Σk) = Σi.

(3) Fsupp(Σk) = ψ(Fsupp(Σk)) = Fsupp(Σi).

Proof. Recall that h : G → G represents ψ and that each Gr(j) is h-invariant. Let

h̃ : G̃→ G̃ be the lift corresponding to Ψa. In particular, ĥ = Ψ̂a fixes both a
− and a+.

If σ̃ ∈ Σk then h̃#(σ̃) has endpoints in Ψ̂a(Xk) = Xi and projects to h#(σ) ⊂ Gr(j(k)).
Thus j(i) ≤ j(k). This can be repeated to show that j(k) ≥ j(πa(k)) ≥ j(π2

a(k)) ≥
. . .. Since πa has finite order it follows that j(πla(k)) is independent of l and in
particular that j(k) = j(i). Since Ψ̂a(Xk ∩ ∂Gr(j(k))) = Xi ∩ ∂Gr(j(i)), it follows that
h#(Σk) = Σi and hence that ψ(Fsupp(Σk)) = Fsupp(Σi). Iterating this argument,
shows that ψl(Fsupp(Σk)) = Fsupp(Σπl

a(k)
) for all l ≥ 1. Since πa has finite order,

Fsupp(Σk) is preserved by an iterate of ψ and so [HM17c, Lemma 4.2] is also preserved
by ψ.

Our strategy for proving that πa is the identity is to assume that this is not the
case, and to produce a closed path δ ⊂ G representing a homology class in H1(G;Z/3)
that is not fixed by ϕ. Typically δ will occur as a subpath of some nonperiodic line τ
in some Σi having the form τ = w∞δw∞. Homology information of such paths δ will
be extracted from the algebraic crossing number of each line in each Σi with certain
edges Ep. The information about lines in the sets Σi that we need for these purposes
is contained in the following lemma.

Lemma 4.9. For 0 ≤ i ≤ m − 1 and σ̃ ∈ Σ̃i, let σ̃ = . . . · σ̃−1 · σ̃0 · σ̃1 · . . . be the
decomposition where the endpoints of the σ̃m’s are exactly the vertices of Fix(f̃i) ∩ σ̃.

(1) The decomposition is a non-trivial splitting whose finite terms are fixed edges
and indivisible Nielsen paths for f̃i.

(2) If a finite σ̃s crosses Ep or Ēp for some non-fixed edge Ep ⊂ Sj(i) then Ep is
linear and σs = Epw

∗
pĒp where wp is the twist path for Ep. Moreover, w±∞

p Ēp ·
σs+1σs+2 · · · is an element of Σi.

(3) If i ̸= 0 then the splitting has a last term and it projects to Eiw±∞.

(4) If i = 0 then the splitting has no last term.
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(5) If the splitting has a first term σ̃0 and if σ0 crosses Et or Ēt where Et ⊂ Sj(i)
and 1 ≤ t ≤ m− 1 then σ0 has the form w±∞Ēt.

Proof. Non-triviality of the decomposition follows from Lemma 3.23. It is a splitting
because each of its terms is fixed by f̃i#. For the same reason, each finite σ̃l is a
Nielsen path. If σ̃l is neither a single edge nor an indivisible Nielsen path then it
would contain a fixed point in its interior; the (Vertices) property of a CT would then
imply that σ̃l contains a fixed vertex in its interior which is not the case. This proves
(1).

If σ̃s is finite but not a fixed edge then σs = Eqw
∗
qĒq for some linear edge Eq ⊂

Gr(j(i)) with twist path wq by (1) and the (NEG Nielsen path) property of a CT.
Corollary 4.3 implies that wq ⊂ Gr(j(i−1)) and so does not cross any edge in Sj(i).
Thus Eq = Ep and the main statement of (2) is satisfied. The moreover part of (2)
follows from the following observations: the turn (Ep, σs+1) is legal; σ̃s+1 · σ̃s+2 · · ·
and Ẽpw̃

±∞
p are f̃i#-invariant rays; σ̃s+1 · σ̃s+2 · · · and Ẽpw̃

±∞
p project into Sj(i).

For (3) we assume that i ̸= 0. Lemma 3.13 implies that Fix(f̃i)∩Aa = ∅ so there
is a last fixed point in σ̃ and a last term, say σ̃b. Since σ̃b is an f̃i#-invariant ray,

Fact 3.22 implies that each term in the highest edge splitting of σ̃b is f̃i#-invariant.
If this splitting is non-trivial, the terminal endpoint of its first term would be fixed in
contradiction to the fact that the interior of σ̃b is disjoint from Fix(f̃i). The highest
edge splitting of σ̃b is therefore trivial which means that σ̃b = Ẽqρ̃ where Ẽq is a non-
fixed edge with fixed initial direction and ρ has height strictly less than that of Eq.

Let REq be the ray determined by Eq (Notation 3.15). The lift R̃Eq that begins with

Ẽq terminates at some Q ∈ ∂ Fix(Θi) ∪ Fix+(Θ̂i) ⊂ Xi (see Fact 3.5) and intersects
Fix(f̃i) only in its initial endpoint by (NEG Nielsen Paths). If Q is not equal to the
terminal endpoint P of σ̃ then the line L̃ connecting Q to P is disjoint from Fix(f̃i)
and so equals Aa by Lemma 3.23. In this case, Q is either a+ or a−. The same is
true if Q = P because P is either a+ or a−. If Eq is non-linear than Q ∈ Fix+(f̃i)
by Facts 3.16 and 3.5 therefore imply that Eq is linear. It follows that R̃Eq \ Ẽq is
contained in the axis of a covering translation that shares a terminal ray with Aa and
so equals Aa. Since R̃Eq \ Ẽq projects to w±∞

q , [wq]u = [w]u and so wq = w and the

terminal endpoint of Ẽq is in Aa. Combining this with Fact 3.13 and the fact that the
initial endpoint of Ẽq is fixed, we see that that Eq = Ei. This completes the proof of
(3).

If i = 0 then Aa ∩Fix(f̃i) is non-empty by Lemma 3.13 and is invariant under the
covering translation Ta associated to a because f̃i fixes a

+ and a−. It follows that a+

and a− are in the closure of Aa ∩ Fix(f̃i). This proves (4).
The proof of (5) is similar to that of (3). Assuming that the splitting has a first

term σ̃0 crossing E
t or Ēt ⊂ Sj(i), let R̃ = σ̃−1

0 and let P be its terminal endpoint. As

in the proof of (3), the highest edge splitting of R̃ must be trivial so R̃ = Ẽqρ̃ where
Ẽq is a non-fixed edge with fixed initial direction and ρ has height strictly less than

that of Eq. Let REq be the ray determined by Eq, let R̃Eq be the lift that begins with
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Ẽq and let Q ∈ Xi be the terminal endpoint of R̃Eq . If P = Q then R̃ = R̃Eq and

R̃Eq \ Ẽq ⊂ Gr(j(i)−1) by Corollary 4.3. In this case, Eq = Et so σ−1
0 = REt and (5) is

satisfied. Suppose then that P ̸= Q. The line L̃ connecting Q to P is disjoint from
Fix(f̃i). Its highest edge splitting must be bi-infinite for otherwise the endpoints of
its first or last term would be fixed. It follows that the height of ρ̃ equals the height of
R̃Eq \ Ẽq and so is at most r(j(i)− 1) by Corollary 4.3. It then follows that Eq = Et

and REt = Etw±∞. There is a conjugate a′ of a such that Aa′ shares an endpoint with

R̃Eq . Lemma 3.23 implies that L̃ = Aa′ . We conclude that σ̃−1
0 begins with Ẽq = Ẽt

and is otherwise contained in Aa′ . This completes the proof of (5).

Definition 4.10. If a path τ crosses Ei and Ēi a finite number of times then we
define the algebraic crossing number ci(τ) of τ with Ei to be the number of times
that τ crosses Ei minus the number of times that τ crosses Ēi. For closed paths
δ ⊂ G, the formula

δ ↦→ ci(δ) mod 3

defines a homomorphism
H1(G;Z/3) ↦→ Z/3

and this homomorphism is nontrivial if and only if Ei is nonseparating. For infinite
paths of the form τ = w∞δw∞, since w does not cross Ei we have ci(τ) = ci(δ).

We sometimes use edge path notation in describing lines and rays. In particular,
a line or ray σ ends with w∞ if the ray R(w) := w∞ is a terminal subray of σ and
σ ends with w−∞ if the ray R(w̄) := w̄∞ is a terminal subray of σ. Analogously σ
begins with w∞[resp. w−∞] if σ−1 ends with R(w̄) [resp.R(w)].

Corollary 4.11. For all 1 ≤ i ≤ m− 1 and all σ ∈ Σi, ci(σ) = 0 or 1.

Proof. Let σ = · . . . · σ−1 · σ0 · σ1 · . . . be the splitting given by Lemma 4.9. The
corollary follows from

• ci(σs) = 0 for each finite σs.

• There is a last terminal term and its contribution to ci(σ) is 1.

• If there is a first term then its contribution to ci(σ) is 0 or −1.

each of which is an immediate consequence of Lemma 4.9.

Verification that πa (as defined in (∗)) is the identity: To prove that πa is
the identity, it suffices to show that πa(l) = l for all l > 0; the l = 0 case then follows
from the fact that πa is a permutation. Suppose to the contrary that l > 0 and that
πa(k) = l for some k ̸= l.

We claim that Σk contains a line τ that begins with w∞, ends with w∞ and
satisfies cl(τ) = −1. If each line in Σk is contained in G \El then the same is true for
the realization in G of each line in F(Σk) in contradiction to the fact (Lemma 4.9-(3))
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that every line in Σl crosses E
l and the fact (Lemma 4.8-(3)) that F(Σl) = F(Σk).

We may therefore choose a line µ ∈ Σk that crosses El or Ēl. By Remark 4.7, we
may assume that µ ends with w∞. Let µ = · . . . · µ−1 · µ0 · µ1 · . . . be the splitting
given by Lemma 4.9. The last term in the splitting, if it exists, does not cross El or
Ēl by items (3) and (4) of Lemma 4.9. If some finite term µs crosses E

l or Ēl then
µs = Elw∗Ēl by Lemma 4.9-(2). In this case, τ = w∞Ēlµs+1µs+2 . . . is contained in
Σk by Lemma 4.9-(2) and cl(τ) = −1. If no finite term of the splitting crosses El

or Ēl then there must be a first term µb and it must cross El or Ēl so µb = w±∞Ēl

by Lemma 4.9(5). In this case, τ = w∞Ēlµb+1µb+2 . . . satisfies cl(τ) = −1. If τ ̸= µ
then τ and µ have lifts τ̃ and µ̃ with terminal endpoint a+ and with initial endpoints
bounding Ab some b ∈ Fn satisfying [b] = [w]. Since one of the endpoints of Ab is
contained in Xk the other is also so τ ∈ Σk as desired. This completes the proof of
the claim.

There is a closed path δ such that τ = w∞δw∞. The line τ ′ = h#(τ) ∈ Σl

is obtained from w∞h#(δ)w
∞ by tightening. No copies of El or Ēl are cancelled

during the tightening process, so τ ′ = w∞δ′w∞ where δ′ is a closed path satisfying
cl(δ

′) = cl(h#(δ)). Applying Definition 4.10, we have

cl(δ) = cl(τ) = −1 and cl(h#(δ)) = cl(δ
′) = cl(τ

′)

Since ψ ∈ IAn(Z/3) and h is a topological representative of ψ,

cl(τ
′) mod 3 = cl(h#(δ)) mod 3 = cl(δ) mod 3 = −1

This contradiction to Corollary 4.11 completes the verification of (∗) and hence the
proof of Proposition 1.3.
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