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Abstract

When studying subgroups of Out(F,,), one often replaces a given subgroup
‘H with one of its finite index subgroups Hg so that virtual properties of H
become actual properties of Hg. In many cases, the finite index subgroup is
Ho = H NIA,(Z/3). For which properties is this a good choice? Our main
theorem states that being abelian is such a property. Namely, every virtually
abelian subgroup of 1A, (Z/3) is abelian.
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1 Introduction

It is common, when studying elements of Out(F,,), to replace the given element by an
iterate in order to improve its invariance properties. For example, each § € Out(F},)
has an iterate ¢ = 0% satisfying the following properties.
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(1) If some iterate of ¢ fixes a conjugacy class [a] then ¢ fixes [a].

(2) If some iterate of ¢ fixes the conjugacy class [F| of a free factor F then ¢ fixes
[F].

(3) ¢ fixes each element in its set L(¢) of attracting laminations.
(4) ¢ fixes each element in its set of singular rays and eigenrays.

If 6 is rotationless in the sense of [FHI1] then iteration is not necessary: each of
the above properties is automatically satisfied by ¢ = 6 [FH11, Lemma 3.30 and
Definition 3.13]. Every 6 has a rotationless iterate and the number of iterates required
is uniformly bounded [FHI11, Lemma 4.42].

The subgroup analog of replacing an individual element 6 with a rotationless
iterate 6% is to replace a given subgroup H with its finite index subgroup HNIA,,(Z/3)
where 1A,,(Z/3) < Out(F,) is the finite index subgroup consisting of elements that
act trivially on Z/3 - homology. This was done, for example, in the proof of the Tits
Alternative for Out(F;,) [BEH00], [BEHO5|, [BEFHO04].

In [HM| Section 2](see also [BFHOS, Propositions 3.16 and 4.41]) we proved that
all elements of IA,,(Z/3) satisfy (1) - (3) above. (If an element of IA,,(Z/3) satisfies (4)
then it is rotationless [FH|, Lemma 3.12].) These invariance properties played a signif-
icant role in our series of papers [HM] establishing the ‘subgroup decomposition’ the-
orem for Out(F,) and then again in ([HM15], [HMI7a]), in which the H?-alternative
for Out(F,,) is established: for every finitely generated subgroup H < Out(F,,) either
H is virtually abelian or H?(#H;R) has uncountably infinite dimension.

The main result of this paper is motivated in part by [HM15] and[HM17al, in which
virtually abelian subgroups appear naturally and in which information is lost when
one passes to finite index subgroups, and in part by our appreciation of the importance
of IA,,(Z/3). Having seen that elements of TA,,(Z/3) satisfy (1) - (3) without iteration,
one can ask analogously, which virtual properties of arbitrary subgroups of Out(F},)
are true for subgroups of 1A,,(Z/3) without passing to a subgroup of finite index?
Our main theorem in this paper is one such property.

Theorem 1.1. Each virtually abelian subgroup H < 1A, (Z/3) is abelian.

Abelian subgroups of Out(F,,) are finitely generated and IA,,(Z/3) is torsion free;
the former is contained in [BL94] and the latter follows from [BEHO0, Corollary 5.7.6].
Thus,

Corollary 1.2. Every virtually abelian subgroup of Out(F,,) has a finitely generated,
free abelian subgroup of index at most |GL(n,Zs3)| < 3,

In Section [2] after a brief review of PG and UPG subgroups, we reduce Theo-
rem [1.1] to the following proposition.



Proposition 1.3. Suppose that K < 1A, (Z/3) is an abelian UPG subgroup. Then
the normalizer of K in 1A, (Z/3) equals the centralizer of K in 1A, (Z/3).

All PG elements of 1A, (Z/3) are UPG [BEHOO, Corollary 5.7.6] and, in fact,
rotationless (Lemma [3.12). Therefore Proposition may be equivalently restated
using PG in place of UPG. The proof of Proposition appears in Section [4

Continuing with the theme of studying IA,,(Z/3), we pose the following question,
the answer to which is yes if ¢ and 1 are rotationless by an easy application of [FHI11),
Theorem 5.3].

Question 1.4. Are roots unique in the group 1A, (Z/3)? That is, if ¢, € 1A, (Z/3)
and ¢F = ¥ for some k> 1, is p = ?

Section [3| contains background material including subsections on UPG elements
and UPG subgroups.

2 Reduction to Proposition

Each ¢ € Out(F,) has an associated finite set £(¢) of attracting laminations, each
of which is invariant under some iterate of ; see Section 3.1, and in particular
Definitions 3.15, of [BEFHO00]. (The role of attracting laminations in this paper is
limited to the first paragraph of the proof below.) For a subgroup H < Out(F},), we
let L(H) = UpenL(H). If L(¢)) = 0, then we say that ¢ has polynomial growth and
write ¢ € PG(F,) or simply ¢» € PG. If in addition, the image of ¢ in GL(n,Z) is
unipotent then we write ¢» € UPG(F,) or simply ¢ € UPG [BFHO00], [BEHO05].
Proof of Theorem assuming Proposition [1.3: Let H < IA,(Z/3) be virtually
abelian. We first follow the proof of [BEH00, Theorem 7.0.1] to show that that there
is an exact sequence
1K —>H—-7ZF—=1

for some k and some abelian subgroup K < UPG. By [HMI5, Lemma 4.8], L(H)
is a finite collection {Aq,..., Ay} of H-invariant laminations. For each 1 < i < k,
let PF,, : Stab(A;) — Z be the expansion factor homomorphism for A; as defined
in [BFHOO, Section 3.3]. Let PF = @®F ,PF,, : H — Z* be the direct sum of
the restrictions to H of the PF,,’s. If 6 is an element of the kernel K of PF then
L(0)NL(H) =0 by [BEHO0, Corollary 3.3.1]. Thus £(f) = 0 and K is PG. Applying
our assumption that H < IA,(Z/3), we have that K is UPG by [BFH00, Corollary
5.7.6]. It then follows that K is solvable [BFHO05|, Corollary 1.3]. Since K is virtually
abelian, it is finitely generated by [BL94] (see also [BFHO04]). We can therefore apply
[BEHO04l, Corollary 3.11] to conclude that K is abelian.

Proposition implies that K is in the center of H. In particular [¢, ¢s] (Which
is an element of K') commutes with ; and v, for all ¥y,1s € H. For all p > 1 and



all Y1,19 € H we have [thy,1o]P = [}, o] and similarly [¢1,9]P = [¢1, 48], For the
first of these equations the inductive step is:

[1h1,102]P = [, Ya]P hrabatpy M hy = o [hr, ho]P T eporp M5!
=1 W}ffla Yol tothy M5!
= Py} oty Pay Mhothy My = [0, 4y

Since H is virtually abelian, there exists p > 1 such that [¢/7, %] is trivial. It follows
that [i1, wg]”Q is trivial. Since finite order UPG elements are trivial [BFHO05, Lemma
4.47], we conclude that [, ] is trivial for all ¢y, 1y € H. O

3 Background

3.1 Basics

Much of the material in this subsection is standard and is included to establish nota-
tion and for convenient reference. Further details can be found in [HM| Section 2.2],
[FHT11) Section 2] or [HM] Section 1.1].

Marked graphs The free group F,, of rank n is identified with 7 (R,,) where R,
is the graph with one vertex and n edges. A marked n-graph is a connected finite
graph G of rank n that has no valence one vertices and is equipped with a homotopy
equivalence R,, — G called a marking of G. The marking provides an identification of
F,, with 71 (G) that is well defined up to inner automorphism. A homotopy equivalence
f : G — @G determines an outer automoprphism of 7;(G) and hence an element
¢ € Out(F,) that we say is represented by f : G — G.

Edges of G are assumed to be oriented with £ = E~! denoting the edge E with
its orientation reversed. All of the f : G — G that we consider will take vertices to
vertices and restrict to an immersion on each edge. A direction d at a vertex v € G
is the germ of an oriented edge FE with initial vertex v. Define the action of f on
directions by d — d' where d’ is the direction determined by the first edge in f(FE).

We denote the universal cover of G by G and the set of ends of G by dG.

Fact 3.1. Suppose that f : G — G is a homotopy equivalence of a marked graph. Then
each lift f : G — G extends continuously over dG by a homeomorphism f G — 0G.

For each a € F,, the inner automorphism i, : F,, — F,, is defined by i,(g) = aga™";
the conjugacy class of a is denoted by [al.

Fact 3.2. Fach © € Aut(F,,) extends continuously to a homeomorphism g:) : 0F, —
OF,,. For each non-trivial inner automorphism i, its boundary extension i, fizes two
points, a source a~ and a sink a™.



Fact 3.3. For each marked graph G, the identification of m(G) with F,, induces
(1) an identification of the group of covering translations of G with F, and
(2) an identification of OG with OF,

so that for each non-trivial a € F,, if T, is the covering translation of G identified
by with a, and if A, is the axis of T, then the following hold: a~ and a® are
identified by (@) with the repelling and attracting endpoints of A, respectively; and the
projection of A, into G is a circuit that represents the conjugacy class [a] of a. More
generally, for any 6 € Out(F,) and homotopy equivalence f : G — G representing 0,
there is a bijection .
f+<06

between the set of lifts f : G — G and the set of © € Aut(F,,) representing 6 such
that the homeomorphisms f : 0G — G and o: OF,, — OF,, defined in Fact and
Fact agree under identification (@

Fact 3.4. [BFH0J, Lemma 2.4] Suppose that ® € Aut(F,) and a € F,. If 0D fixes
either a™ or a™ then a € Fix(®) and 0P fizes both a™ and a™.

Principal lifts, rotationless outer automorphisms and rotationless maps
[FH11] We will only be interested in principal lifts and principal vertices in the
UPG setting and so we can give simplified versions of their definitions.

Fact 3.5. [GJLLIS, Proposition I1.1] For © € Aut(F},,), we denote the fized subgroup
of © by Fix(©). There is a disjoint union

Fix(0) = Fix_(0) U Fix, (0) U O Fix(©)
where Fix,((:)) C OF, is a finite union of Fix(©)-orbits of repellers and Fix+(@) C
OF, is a finite union of Fix(©)-orbits of attractors. Fixy(©) C JF, is defined to be
0Fix(©) U Fix,(O).

Remark 3.6. In the special case that Fix(©) = (a) and Fix(8) = 0 Fix(0) = {a*},
it may happen that a® or ¢~ has an attracting neighborhood for the action of 0.
This happens for example if © = i,. In all other cases, Fix+(@) is exactly the set of
isolated attractors and Fix_(@) is exactly the set of isolated repellers.

Notation 3.7. The F,-orbit of an element of Fix+(@)) is called an eigenray for 6.
The F,-orbit of an element of Fix_(©) is an eigenray for 67

Definition 3.8. An automorphism O representing a UPG 6 € Out(F),) is principal
[FH11 Definition 3.1] if either Fixy(©) contains at least three points or if Fixy(0©)
is a two point set that is not {a*} for some a € F, on 0F,. The set of principal ®



representing 6 is denoted by P(#). An element ¢ € Out(F},) is rotationless [FHI11,
Definition 3.13] if: (i) ® +— ®* defines a bijection between P(¢) and P(¢F) for all
k > 1; and (ii) Fixy(®) = Fixy(®*) for all & € P(¢) and all k > 1.

If f: G — G represents 6 and f : G — G corresponds to © € P(0) as in Fact
then we say that f is principal. An element z of the set Per(f) of f-periodic points
is principal [FH11, Definition 3.18] unless it is contained in a component C' of Per(f)
that is topologically a circle and each point in C has exactly two periodic directions.
If each principal vertex and periodic direction at a principal vertex has period one
then we say that f: G — G is rotationless.

Paths An edge path o in a marked graph G is a concatenation of edges o =

.. E;FE; ... of G where the terminal endpoint of E; equals the initial endpoint
of E;,; for all i. If there is no backtracking, i.e. if E;;, # E; ' for all i, then we say
that o is a path. If a path ¢ C G is a bi-infinite concatenation then we say that o is
a line in G. (All of the lines in this paper are oriented.) If a path ¢ C G is a singly
infinite concatenation then we say that o is ray. We also allow the trivial path which
is just a single vertex. Concatenation o = o109 of edge paths o, and o9 is defined if
01 has a terminal vertex, oo has an initial vertex and if these vertices are equal. The
concatenation of paths need not be path.

Paths and edge paths in G are defined similarly. Edge paths in G lift to edge paths
in G with paths lifting to paths. A line in G lifts to a line in G with well defined
distinct ideal endpoints in dG. Conversely, every ordered pair of distinct points in
OG is the ideal endpoint pair for a unique line in G. A ray in G lifts to a ray in G
with one endpoint at a vertex and the other an ideal endpoint in G.

Suppose that f : G — G is a homotopy equivalence and f : G — G is a lift. For
any finite path & ¢ G with endpoints Z, §, we define f#( ) to be the umque path
with endpoints f(z), f(§). We define f4(5) for rays and lines similarly using f if one
or both endpoint is ideal. This descends to a well defined action ¢ — fu(o) of f on
the set of paths in G.

A circuit in G is a cyclic concatenation of edges without backtracking and so can
be viewed as an immersion of a circle. A circuit in G lifts to a line in G and we can
extend the definition of f4 to include circuits. A closed path o determines a circuit if
the initial edges of o and & are distinct. If a circuit o represents the conjugacy class
la] of @ € F,, and if f: G — G represents 6 € Out(F,) then fu(o) represents 6([al).

A decomposition ¢ = ...0;0,.1 ... into subpaths is a splitting if

f#’;(a) =.. -fi(ai)fi(ffm) e

is a decomposition into subpaths for all £ > 1, When the decomposition into ¢;’s is a
splitting we write 0 = ... - 0; - 0441 -

An abstract line is the F,-orbit of an ordered pair of distinct points in 9F,. If
G is any marked graph then the identification of G with 0F,, (Fact defines a
bijection between abstract lines and F,-orbits of lines in G and so also a bijection
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between abstract lines and lines in G. An abstract ray is an F,-orbit of a point in
OF,. There is a bijection between abstract rays and equivalence classes of rays in G,
where two rays in GG are equivalent if they have a common infinite subray.

Free factor systems [BEFHOQ, Section 2.6] If Ay, ..., A; are non-trivial free factors
and Ajx...x Ay is a free factor of F), then the set of conjugacy classes {[A1], ..., [Ax]}
is a free factor system. We write

{[31]7 T [Bl]} L {[Al]7 R [Ak]}

and say that {[B1],...,[Bi]} is contained in {[A4], ..., [Ax]} if for each B; there exists
A; so that some conjugate of B; is a subgroup of A;.

For every inclusion H C G of a subgraph in a marked graph, there is an associated
free factor system F(H) = {[m(C1)],...,[m1(Ck)]} where {Cy,...,Ck} is the set of
non-contractible components of G; see [BFH00, Example 2.6.1] for details. We say
that H C G realizes F(H). Every free factor system is realized by some H C G and
every nested sequence F; C Fo C ... C JF; is realized by some nested sequence of
subgraphs H; C Hy C ... C H; C G. One may assume without loss that the H;’s are
core subgraphs, meaning that all vertices have valence at least two. If F C F’ can
be realized by core subgraphs H C H' such that H' \ H is a single edge then we say
that F C F' is a one-edge extension; otherwise, F C F' is a multi-edge extension.

Fact 3.9. [BFHOO, Section 2.6] Suppose that [F] is a 0-invariant free factor conjugacy
class and that © € Aut(F,) represents 6 and preserves F'. Then the element 6 ‘ F of
Out(F') determined by the restriction 0 } F' is independent of the choice of ©.

A conjugacy class is carried by [F] if some representative of it is an element of F'.
An abstract ray is carried by [F] if it is represented by a point in OF. An abstract
line is carried by [F] if it is represented by an ordered pair of points, both of which
are contained in OF. A conjugacy class, abstract ray or abstract line is carried by
a free factor system F if it is carried by a component of F. If H is a subgraph of
a marked graph G then a conjugacy class [resp. abstract line| is carried by F(H) if
and only if the corresponding circuit [resp. line] in G is contained in H.

Fact 3.10. [HM17, Fact 1.10] (see also [BH92, Section 2.6]) For any set X of

abstract lines, abstract rays and conjugacy classes there is a unique minimal (with
respect to T) free factor system Fgupp(X) that carries each element of X. If 6 €
Out(F,) and X is 0-invariant then F,,(X) is 6-invariant.

3.2 UPG elements

In this section we review some facts about individual UPG elements of Out(F,).
A CT f : G — G is a particularly nice kind of topological representative of
6 € Out(F,). The complete definition of a CT is given on [FHII, page 47]. Since
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we will only use CT representatives in the special case when 6 is UPG, the definition
can be simplified considerably. Fact and the proof of Lemma [3.12] give a pretty
complete picture of CTs in this context.

We delay the proof that every UPG element is rotationless, and hence represented
by a CT f : G — G [FH11, Theorem 4.28|, until we have listed some properties
enjoyed by such CTs.

A CT f: G — G is equipped with a filtration ) = Gy C G; C ... C Gy = G
by f-invariant subgraphs. The subgraphs H, = G, \ G,_; are called the strata. A
path has height r if it is contained in G, and crosses at least one edge in H,.. The set
of fixed points for f and the set of periodic points for f are denoted by Fix(f) and
Per(f) respectively. The set of vertices of G is V. Recall that V' is invariant under
each f: G — G that we consider. .

Fact 3.11. Fach CT f : G — G representing 8 € UPG satisfies the following
properties.

(1) Each stratum H; is a single edge E;. If E; is not fized then there is a non-trivial
closed path u; C G;_1 such that f(E;) = E;u,.

(2) Fix(f) = Per(f) is the union of V with the set of fized edges.

(3) A direction based at a vertex is fixved if and only if it is periodic if and only if it
is not the terminal direction of a non-fized edge.

(4) Fach vertex is principal.
(5) A lift f:G = G is principal if and only if Fix(f) £,

Proof. The strata of f : G — G are classified into three types: EG, NEG, and zero
strata. From [BFHO0, Lemma 3.1.9] and our assumption that £(6) = 0, it follows
that f : G — G has no EG strata. The (Zero Strata) property of a CT therefore
implies that f : G — G has no zero strata. Thus, every stratum of f : G — G is
NEG. Item (1) therefore follows from [FH11, Lemma 4.21]. Items (2) and (3) follow
from (1). A vertex that is incident to a fixed edge or is the terminal endpoint of
a non-fixed edge is principal by the (Periodic Edges) and (Vertices) properties of a
CT respectively. All other vertices are the initial endpoints of at least two non-fixed
edges and so are principal by Definition [3.8] This proves (4). Item (5) follows from
(4) and [FH11, Remark 4.8, Corollaries 3.17 and 3.27]. O

A finite path ¢ C G is a Nielsen path it fu(0) = o and is an indivisible Nielsen
path if there is no non-trivial decomposition of o into Nielsen subpaths. Note that by
Lemma , we would have the same set of indivisible Nielsen paths if we allowed
paths to have endpoints that are not vertices.

In order to apply CT theory to UPG elements we must prove that they are rota-
tionless. We will do this indirectly by using a result from [BFHO0] to find a pretty
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good relative train track map, namely one that satisfies various of the conclusions of
Fact [3.11] and then we will quote [FH11l, Proposition 3.29].

Lemma 3.12. Each 8 € UPG is rotationless.

Proof. By [BFH00, Proposition 5.7.5], € is represented by a relative train track map
f : G — @G and filtration ) = Gy C G; C ... C Gy = G with a subsequence of
invariant core subgraphs ) = Gy = G,y C Gya) C ... C Gy(m) = G such that G, 41
is obtained from G, ;) in one of the following ways.

(a) Adding a single fixed edge that is either a loop or has both endpoints in G, ;;
r(j+1)=r() + 1.

(b) Adding a single non-fixed edge satisfying Fact [3.111) with both endpoints in
Grgyr(+1) =r()+ 1.

(c) Adding two non-fixed edges satisfying Fact [3.11)(1) with a common initial vertex
not in G,(;) and both terminal endpoints in G,;y; 7(j + 1) = r(j) + 2.

It is obvious from (a) - (c) that Fact[3.11)(1) is satisfied. This implies items (2) and
(3) of Fact [3.11] which in turn prove that f : G — G is rotationless (Definition [3.8)).
By [FHI11, Proposition 3.29], we are reduced to showing that f : G — G satisfies
the five properties listed in [FHII, Theorem 2.19]. Property (Z) applies only to zero
strata and so is vacuous in this context. Properties (F) and (NEG) are immediate
from (a) - (c). The endpoints of an indivisible Nielsen path are not contained in
the interior of a fixed edge and so are vertices by Fact [3.11)(1). This verifies the (V)
property of [FHI1, Theorem 2.19]. If a stratum H,, is a forest in Per(f) then it is a
single fixed edge E,, with endpoints in a core subgraph G,,_1 by (a) - (c). It follows
that the free factor support of G,,_; is not equal to the free factor support of G;U E,,
for any filtration element G;. This verifies the (P) property of [FH11, Theorem 2.19]
and we are done. ]

We assume for the rest of this subsection that

e § € UPG and that f : G — G is a CT representing 6, hence f satisfies the
conclusion of Lemma [3.11]

If a root-free a € F, is fixed by m > 2 elements of P() then its unoriented
conjugacy class [a], is called an azis or twistor for 6 with multiplicity m — 1. An edge
E in a stratum H; is linear if there is a Nielsen path u C G;_; such that f(F) = Fu.
Recall from Fact [3.3|that each non-trivial a € F,, corresponds to a covering translation
T, : G — G with axis A,.

Fact 3.13. For each root-free a € F,, if |al, is a twistor for 6 of multiplicity m > 2
then :

(1) There is a closed path w that determines a circuit representing [al,.
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(2) There are exactly m — 1 linear edges E', ... E™~1 such that f(E') = E'w% for
some d; # 0. Furthermore, the values d; are pairwise distinct. We say that w
is the twist path for E'.

(8) For each | = 1,...,m — 1, there is a lift f; of f such that for each lift E', if
the terminal endpoint of E' is contained in A, then the initial endpoint of E' is
fixed by fl These lifts are pairwise distinct, preserve A, and each acts without
fixed points on A,.

(4) For eachl=1,...,m — 1, the lift fi corresponds to an element ©, € P(0) that
fizes a. These automorphisms ©; account for all but one element ©g € P(0)
that fixes a. The lift fo of f that corresponds to ©q fizes points in A,.

Proof. The (NEG Nielsen Paths) property of a CT implies that Fix(f;) N A, = 0.
The rest of the fact follows from the (Linear Edges) property of a CT and [FHII,
Lemma 4.40]. O

Fact 3.14. If E is a linear edge with twist path w then every occurence of E in a
Nielsen path p for f is contained in a subpath of p of the form EwPE.

Proof. We may assume that p is indivisible. Let r be the height of p and s the height
of E. The r < s case is vacuous and the r = s case follows from the (NEG Nielsen
Paths) property for a CT. If r > s then the (NEG Nielsen Paths) property implies
that 0 = F'w'PE’ for some p # 0, where E’ is a linear edge of height r and its twist
path w’ has height less than r. Each occurence of F in o is contained in w’” and we
are done by induction. O

Notation 3.15. Letting E be a non-fixed edge of height r with f(F) = Eu for some
closed path u of height < r [Fact ], its iterates split as f*(E) = F-u - fy(u) -
o f?’;_l(u). In this case, the nested sequence E C f(F) C f?(E) C ... converges
to a ray Rg that we say is determined by E. If E is a linear edge with twist path w
then Ry = Ew*™. If E is non-linear then the set of terminal endpoints of lifts of Ry
to G is an F,-orbit in OF,, that we denote [ORE]. Note that Rg \ F is a ray in G,_4
and so [0Rg]| is carried by the free factor system determined by G,_;.

Fact 3.16. The assignment E +— [ORg]| defines a bijection between the set € of non-
linear, non-fized edges of G and the set of eigenrays of 6 (Notation .

Proof. This is contained in [HM17bl Fact 1.49]; see also [FH11, Lemma 4.36]. O

Corollary 3.17. If F C {[F.]} is a O-invariant one-edge extension then F carries
every twistor and eigenray for 6.

Proof. By [FH11), Theorem 4.5], there exists a CT f : G — G representing ¢ in which
F is represented by a filtration element G,. Each non-fixed edge E above G satisfies
f(E) = E - u for some non-trivial path u C Gs. The corollary therefore follows from
Fact [3.13] Notation [3.15 and Fact [3.16] O
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Fact 3.18. Fixy(0) # 0 for all © € Aut(F},) representing 0.

Proof. Let f C~¥ — G be the lift of f corresponding to ©. If © is principal then
Fixn(© definition. We may therefore assume that © is not principal and
hence by Fact 1.} that f is fixed point-free. In this case there is a path 6 € G
such that & - f# ) f #( ) - ... converges to a point in Fixy(©). The construction of
g is carried out in the proof of [BFHO(, Proposition 5.4.3]. A more directly quotable
reference is [FH, Lemma 6.4]. O

Fact 3.19. [BFH0J, Proposition 4.44] If the conjugacy class of the free factor F' is
0-invariant then 0|F is UPG.

The following lemma is not known for elements of Out(F},) that are not UPG.

Lemma 3.20. © € P(§) <= 01 e P(671).

Proof. By symmetry, it suffices to assume that © € P(#) and prove that ©~! €
P(6~1). If the rank of Fix(©) is at least two then this follows from the Definition
and the fact that Fix(©) = Fix(©~'). We may therefore assume that Fix(0) has rank
one or zero. We show below that there is an injective map Fix, (6) — Fix+(é\*1).
Assuming this for now, we complete the proof as follows. The cardinality of FiXJr((;—\l)
is at least one in the rank one case and at least two in the rank zero case. It follows that
Fixy(©~1) contains at least three points unless Fix(©~') has rank zero and Fix, (1)
contains exactly two points. In this case, Fact implies that Fix+(é\*1) # {a*} for
any non-trivial a € F;, so ©7! € P(§7') in this case as well.

It remains to show that there is an injective map Fix, (0) — Fix+(6/)\1). The
lift f: G — G corresponding to © satisifies f — ©. For each P € F1x+(f) there
is (Fact [3 -) a non-fixed non-linear edge E, a lift £ of E and a lift Rp of Rp
(Notation ) with initial edge E, such that RE converges to P and intersects
Fix(f) only in its initial endpoint ¢ [FHI11, Lemma 3.36]. Let r be the height of
E. By Lemma |3.11] u. ) there is a component C' of G,_; that contains the terminal
endpoint of E and hence contains all of Rg but its first edge. Let I' € G be the
component of the full pre-image C' that contains the terminal endpoint of the initial
edge E of Rp. Then T is f-invariant and dI' contains P. The (NEG Nielsen Paths)
property of a CT implies that f | I is fixed point free. [FHI1I, Lemma 3.16] therefore
implies that P is the only element of Fix,(f) contained in dT. Since Fix,(f) is
iq-invariant for each a € Fix(0), it follows that d Fix(6) N ol = {.

Let F' be the free factor that represents the unique element of F(C') and satisfies
OF = OI'. The automorphism ¥ := ©~1 | F represents the restriction 1) = 67! | F,
which is UPG by Fact By Fact there exists at least one point Q) € Fixy (V).
Since  Fix(¥) = OFix(©) N al = 0, Q € Fix, ().

To see that P — () is injective, suppose that P’ # P is a point in Fix+(@) and
that C', IV, F’ and @)’ are defined as above with P replaced by P’. Since C' and C" are

11



components of filtration elements of GG, either they are disjoint or one is contained in
the other. It follows [HMI17h, Fact 1.2] that either 0F and OF" are disjoint or one is
contained in the other. The latter is ruled out by the fact that P = Fix, (©) N oF
and P’ = Fix, (©) N JF’. Thus OF and OF" are disjoint and @ # @Q’. O

Definition 3.21. Every path ¢ C G with endpoints, if any, at vertices has a highest
edge splitting ¢ = ...0_1 - 0y - 01 ... defined as follows. If r is the height of ¢ and
E, is not fixed then this splitting is defined by taking the splitting vertices ( i.e. the
endpoints of the terms) to be exactly those vertices that are either the initial endpoint
of an edge in ¢ that projects to E,. or the terminal endpoint of an edge that projects
to E,. If E, is fixed then both endpoints of an edge that projects to F, or £, are
splitting vertices. The projected splitting o = ...0_1 - 09 - 01 ... is the highest edge
splitting of o.

Fact 3.22. (1) The highest edge splitting o = ...0_1 - 0¢-01... of 0 is in fact a
splitting.

(2) For any lift f, ) i ) ~
f3(0) = .. fy(6-1) - f(G0) - fy(01) ...
1s the highest edge splitting of f#(&).

Proof. Item (1) is contained in the statement and proof of [BFH00, Lemma 4.1.4].
For (2)), let V5 and V ) be the highest edge splitting vertices of ¢ and f#( )
respectlvely Assuming at ﬁrst that E is not fixed, each term &; in the highest edge
splitting of & have the form ET’yE . E.7, 7E L 5, B, or E ! for some non-trivial
path 4 that projects into G,_;. Smce f(E,) = E,u, for some path v, C G,_1,
the f#—image of each of these types is another path of the same type. It follows
that V) C f(V5). Tt also follows that if &; ends with E; ! [respectively begins
with E,] then f4(;) ends with E! [respectively begins with E,]. This implies that
f(vs) C Vi, (5. This completes the proof in the case that E. is not fixed. The
remaining case is similar and is left to the reader. O]

Lemma 3.23. Suppose that fis a lift of f:G — G, that [L 1S an f#-mvam’ant line
that is disjoint from Fix(f) and that an endpoint of ji is fized by a covering translation
T. Then [ is the axis Ap of T'.

Proof. Let i =...-fi_y-fig- fi-. .. be the highest edge splitting of p. Fact[3.22]implies
that there exlsts p € Z such that (f)#(fis) = fiip for all fi;. From the assumption that
Fix( f) i = 0, it follows that p # 0 and so the splitting is bi-infinite. The highest
edge splitting Ar = ... -a_1-ag-ay ... of Ar is also bi-infinite. Since fi and Arp
have a common ray, they must have the same height. After re-indexing the &;’s, we
may assume that &; = fi; for all sufficiently large j. It follows that (f)4(d;) = @4
for all &; and hence that for all j there exists £ > 0 such that (f)’;(ﬁ]) = (f);&(o?])
Since ; and o  are paths in G with the same endpoints, it follows that &; = fi; for
all 7 and 6 = Arp. m
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3.3 Abelian UPG subgroups

We assume throughout this section that K is an abelian UPG subgroup of Out(Fy,).
Lemma [3.12] implies that each element of K is rotationless and so K is a rotationless
abelian UPG subgroup.

The main definitions in [FH09] make use of

PEO) =P(O) U (P(E)) ™
In the UPG case, Lemma implies that
PEO) =P(O) =P(O~)"
We have simplified the definitions in this subsection accordingly.

Remark 3.24. As noted in [HMI7a, Section 6.1.2], the definition of P*(f) was
misstated in [FHII] as P*(0) := P(0) UP(O71).

Definition 3.25. [FH09, Definition 3.9] A set X C OF,, with at least three points is
a principal set for K if for each ¢ € K there exists ® € P(¢) such that X C Fix(gI\D).
For each such X, the assignment ¢ — & defines a lift sx of K into Aut(F,) called
the principal lift determined by X.

If X is a principal set and X’ C X contains at least three points then X’ is a
principal set and sy, = syx. For any principal set X', the maximal (with respect to
inclusion) principal set containing X’ is given by

—

X = ﬂd)EK FlX(S)p(Qﬁ)
See [FH09, Remark 3.10].

Automorphisms that differ by conjugation by an inner automorphism are said
to be isogredient. If X is a maximal principal set and ¢ € F), then i.(X) is also a
maximal principal set and s;,(x)(¢) = icsx(¢)i, ! for each ¢ € K. Thus F,-orbits of
maximal principal sets correspond to isogredience classes of principal lifts.

The following definition generalizes to the setting of UPG abelian subgroups the
concepts that were defined just preceding Fact

Definition 3.26. [FH09, Definition 4.1] We say that the unoriented conjugacy class
lal, of a € F, is an azis or twistor of multiplicity m — 1 > 1 for K and write
[a], € A(K) if {a*} is contained in m distinct maximal principal sets. The maximal
principal sets that contain {a*} are called linear principal sets or more specifically
a-linear principal sets. If X; and X5 are distinct a-linear principal sets then for each
6 € K there exists an integer d(f) such that sx,(¢) = iz(e)sxl(g). The assignment
0 — d(0) defines a homomorphism w : K — Z called the comparison homomorphism
determined by X, and X,. Note that w depends only on the F,-orbit of the pair
(X1, Xo); ie. (X1, Xo) and (X3, X3) := (1.X1,1.X2) determine the same comparison
homomorphism.
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Fact 3.27. [FH09, Lemma 4.3] There are only finitely many comparison homomor-
phisms for K.

Fact 3.28. [FH09, Lemma 4.6] If 0,¢ € K and w(f) = w() for all comparison
homomorphisms w then 6 = ¢.

Definition 3.29. [FH09, Definition 4.7] ¢ € K is generic if w(¢) # 0 for each
comparison homomorphism w.

Fact 3.30. [FH0Y, Lemma 4.10] If 6 € K is generic then {Fix(©) : © € P(A)} is the
set of maximal principal sets for K.

Corollary 3.31. If ¢,6 € K are generic then {Fix(©) : © € P(6)} = {Fix(®) : ® €
P(#)}-

Corollary 3.32. [a], € F,, is a twistor for K of multiplicity m — 1 if and only if [al,
18 a twistor of multiplicity m — 1 for some, and hence every, generic element of K.

Fact 3.33. [FH0Y, Lemma 4.9] K has a basis of generic elements.
Fact 3.34. [FH0Y, Lemma 2.6] Suppose that 0,1 € Out(F,), that ¢ := 0¥ = fy~1
and that U € Aut(F,) represents 1. Then

(1) Fix(\If@_\Fl) — U(Fix ©) for all © € Aut(F,) representing 0.

(2) Fix, (VOU1) = U(Fix,(8)) and Fix_(VOU-!) = U(Fix_(8)) for all © €
Aut(F,) representing 6. .

(3) © — WOU™! defines a bijection between P(6) and P(¢p) that preserves isogre-
dience classes.

Lemma 3.35. If 0 is generic in K and ¢ € Out(F},) then 0¥ is generic in K¥ =
{wep™' : ¢ € K}. Moreover, for any U € Aut(F,) representing v, ¥ induces a
bijection between [a-linear] principal sets in K and [¥(a)-linear] principal sets in K¥.

Proof. Choose ¥ € Aut(F,) representing . The following are easy consequences of
Fact [8.34t

o A(KY) =1(A(K)).

e If X; is a |a-linear] principal set for K then W(X;) is a [¥(a)-linear] principal
set for K.

e Ifw: K — Zis the comparison homomorphism determined by X; and X3 then
the comparison homomorphism w? : K¥ — Z determined by ¥(X;) and ¥ (X})
satisfies w¥(0Y) = w(6).

The lemma now follows from the definition of genericity. m
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Lemma 3.36. If0 € K is generic in K and [F] is a K-invariant free factor conjugacy
class then K ‘ F (see Fact is an abelian UPG subgroup and 6 ‘ F' 1s generic in
K|F.

Proof. Fact implies that K ‘ F' is an abelian UPG subgroup. Each maximal
principal set for K ‘ F extends uniquely to a maximal principal set for K. It follows
that each coordinate homomorphism wy for K | I is the restriction of a coordinate
homomorphism w for K. Thus each wx( | K) = w(f) # 0 proving that 6 | K is
generic. O

4 Proof of Proposition (1.3

Assuming that K < IA,(Z/3) is an abelian UPG subgroup and that ¢ € 1A, (Z/3)
normalizes K, our goal is to show that ¢ commutes with each 8 € K. By Facts |[3.12
and [3.33] K is rotationless and has a basis of of generic elements. We may therefore
assume that 6 is generic. Letting ¢ = 0¥ = ¥~ € K, our goal is to show that
o =40.

Suppose that [a], € A(K) (see Definition 3.26|) and that W is a representative of 1.
Lemma implies that [¥(a)], € A(K¥) = A(K) and hence that ¢ permutes the
elements of A(K). It follows that ¢ fixes each element of A(K) by [HMI17c, Theorem
4.1]. We can therefore choose ¥, representing ¢ that fixes a. Lemma implies
that if X; is an a-linear principal set for K then \I//;(XZ) is an a-linear principal set
for K¥ = K. Thus

(%) For each a € F), with [a], € A(K) there exists ¥, € Aut(F,) representing 1
such that W,(a) = a. Letting {Xo,...,X;n—1} be the a-linear principal sets,

the automorphism V¥, induces a permutation 7, of {0,...,m — 1} such that
U, (X;) = Xr,0). Corollary 3.32|implies that [a], is twistor for § with multiplic-
ity m — 1.

The main work of the proof is to show that each 7, is the identity. Assuming this
fact for the moment, we complete the proof of the proposition.

Fix [a], € A(K) and let {Xo,..., X1}, ¥, and 7, be as in (x). Let ©; =
sx,(0) € P(0) (see Definition |3.25) and ®; = ¥,0,¥;! € P(¢). Then

Fix(®;) = \/IJ\Q(FIX(@Z)) = Vo (Xi) = X = Xi

with the middle equality following from Fact and the genericity of #. Thus
sx,(¢) = @;. If X; and X are distinct a-linear principal sets then

0, = ile,
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for some d # 0 and
®; = U,0,U, " = ,is0, U, " = if VOV, " =il

This proves that w(f) = w(¢) where w is the comparison homomorphism determined
by X; and X;. Since a,% and j are arbitrary, Fact completes the proof of Propo-
sition [L.3

Fixing a as in (x), it remains to prove that 7, is the identity.

Lemma 4.1. Suppose that ) = Fo C F1 T ... C Fy = {[Fn]} is a mazimal nested
sequence of free factor systems that are invariant by both K and ¢ and that [F] is
a component of F; for some 1 < j < J. Then [F] is invariant by both K and 1);
moreover, for all n € K, each axis and eigenray for n | F is carried by Fj_.

Proof. Since K,¢ C 1A,,(Z/3), [HM17d, Lemma 4.2] implies that [F] is invariant by
both K and . By Fact , Krp =K ! F'is a UPG subgroup that is obviously
normalized by ©p := 1 | F. Each component of F;_; is contained in a unique
component of F;. The union of the components of F;_; that are contained in [F]]
define a free factor system of F' that we denote by F’. Since F;_; C F; is invariant
by both K and 1 and is maximal with respect to these properties, it follows that
F' C {[F]} is invariant by both Kr and ¢ and is maximal with respect to these
properties. By [BFHO05, Theorem 5.1] there is a Kp-invariant free factor system F”
of F' such that 7' C— F” and such that F” T {[F]} is a one-edge extension. By
Corollary [3.17, F” carries each axis and eigenray for all np € Kp. It follows from
Fact and the definitions that 1) maps the axes and eigenrays of np € Kp to
the axes and eigenrays of 77}{1F € Kp and so the set X of axes and eigenrays that
occur for some element of K is ¢ p-invariant. For the same reason, X is K-invariant.
By Fact [3.10], Faupp(X U F') is invariant by both K and 1. Moreover, Fyypp(X U F')
contains F' by construction and is properly contained in {[F]} because it is contained
in F”. It follows that Fypp(X UF') = F and s0 Faypp(X) T F' T Fi_1. O

Having fixed a as in (*), the notations of (x) remain in force for the rest of the
paper, as do Notations [£.2] and [£.4] below. Recall also that 6 is a generic element of
K, that 9 normalizes K and that ¢ = 6.

Notation 4.2. Let ) = Fy C F, T ... C Fy = {[F,]} be a maximal nested sequence
of free factor systems that are invariant by both K and ¢. By [FH, Theorem 1.1]
there is a CT f : G — G representing 6 with filtration ) = Go Cc G, C ... C Gy =G
and a subfiltration by core graphs () = Gy = G,) C G,y C ... C Gy = G such
each F; is realized by G, ;); moreover, for each j and each component C of G,(;), f|C
is a CT representing 0 ‘ [11(C)]. For each 1 < j < J, define the j-stratum of the
subfiltration to be the subgraph S; = G, ;) \ Gr(j-1). Choose h : G — G representing
t such that each G, ;) is h-invariant.
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Corollary 4.3. If E; is a non-fized edge in S; then f(E;) = E;-w; for some non-trivial
closed path u; C Gyj—1).

Proof. Let C' be the component of G, ;) that contains E; and let I’ be a free factor
representing [ (C)]. By construction, f | C'is a CT representing 6 | F. If E; is linear
then u; = w!* where w; is the twist path for E; and [w],, is an axis for ¢ | F. In this
case, Lemma completes the proof. If E; is non-linear then ORp, is an eigenray
for 6 | F by Fact @ Lemma therefore implies that f?’;(uz) C Gy(j—1) for some
k > 0 which implies that u; C G, ;1) O

Notation 4.4. For 0 < i < m — 1, let ©; = sx,(0), let ﬁ . G — G be the lift
corresponding to ©; and let fi : OF, — OF, be the extension of f; given by Fact 3.1
Then Oy, ..., 0,,_1 are the elements of P() that fix a and Fix(f;) = X; by Facts
and [3.30] After possibly reindexing the X;’s, we may assume that ©q,...,0,, 4
correspond to linear edges E', ..., E™ ! as in Fact . We may also assume that
the twist path for [a], represents [a]. Superscript indices, primarily i, j, k or [, take
values in the set {1,...,m — 1}. Edges indexed by subscripts like E, or E, can be
any edge at all, perhaps even an element of {E',... E™ 1},

The twist path for £, ..., E™ ! is denoted by w. We define rays by iterating w
and w~! in the positive and negative directions as follows:

Ri(w) = (www...) R, (w) = (wow...)

R_(w) = (... www) R_(w) = (... www)

Given a line «, we say that o ends with w* if there is a concatenation expression
a = [fRy(w). Similarly, a begins with w™ if a = R_(w)pf; a ends with w*> if
a = fRy(w); and « begins with w™ if « = R_(w)f. Since the notation should make
the context clear, we will usually abuse notation by ignoring ‘R’ and writing Sw™>
instead of SR, (w), and similarly for the other three possibilities.

Definition 4.5. Recall that all lines in this paper are oriented. Since X; contains
at,a” and at least one other point, there exist lines in G with initial endpoint in
X; \ {a*} and terminal endpoint in {a*}. For 0 < i < m — 1, let ¥; be the set of
such lines of minimum ‘subfiltration height’ j(i) € {1,,J}. To be more precise, let
1 < j(i) < J be the minimum value for which there exists an (f;)4-invariant line
d # A, (equivalently, a line & # A, with endpoints in X;) that terminates at either
a® or a” and whose projection ¢ is contained in G,;;)). The set of all such & is
denoted by iz and the set of projections o is denoted by ¥;. Note that every o € ¥;
ends with w* or w™°.

Remark 4.6. If ¢ # 0 then by Lemma below, j(i) is the minimum value for
which G, ;) contains E.
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Remark 4.7. If o0 € 3J; decomposes as ¢ = Sw~° then there is a lift ¢ with terminal
endpoint a¢~ and initial endpoint, say P # a*, in X;. The line &' that has initial
endpoint P and terminal endpoint a™ projects to ¢’ € ¥; that decomposes as ¢’ =
Blw.

Lemma 4.8. If m,(k) =i then:

(1) j(k) = j(i).
(2) Yy (Xk) = 2.
(3) Fsupp(Zk) = V(Foupp(Z)) = Foupp(Zi)-

Proof. Recall that h : G — G represents ¢y and that each GT(J is h-invariant. Let
h: G — G be the lift corresponding to V,. In particular, h = U, fixes both = and a*.
If & € ¥ then hy (&) has endpoints in T «(Xk) = X; and projects to hy (o) C Griiry)-
Thus j(i) < j(k). This can be repeated to show that j(k) > j(m.(k)) > j(x2(k)) >

Since 7, has finite order it follows that j(7!(k)) is independent of [ and in
particular that j(k) = j(i). Since W, (X} N 0G.(jky)) = Xi N OG,(j(y), it follows that
hy(Xx) = %; and hence that (Feupp(Zk)) = Feupp(Xi). Ilterating this argument,
shows that ' (Faupp(Ek)) = Feupp(Sai(r)) for all I > 1. Since m, has finite order,
Feupp(2k) is preserved by an iterate of ¢ and so [HM17c, Lemma 4.2] is also preserved

by . O]

Our strategy for proving that m, is the identity is to assume that this is not the
case, and to produce a closed path § C G representing a homology class in H;(G;Z/3)
that is not fixed by ¢. Typically § will occur as a subpath of some nonperiodic line 7
in some ¥; having the form 7 = w*>dw*>. Homology information of such paths § will
be extracted from the algebraic crossing number of each line in each ¥; with certain
edges E,. The information about lines in the sets 3J; that we need for these purposes
is contained in the following lemma.

Lemma 4.9. For0<i:<m—1and ¢ € ENi, let 0 = ...-6_1~&0-51-...~be the
decomposition where the endpoints of the &,,’s are exactly the vertices of Fix(f;) N&.

(1) The decomposition is a non-trivial splitting whose finite terms are fived edges
and indivisible Nielsen paths for f;.

(2) If a finite 65 crosses E, or E, for some non-fized edge E, C Sjy then E, is
linear and oy = Eyw}E, where wy, is the twist path for E,. Moreover, wy>E, -
05110512+ 1S an element of ¥;.

(3) If i # 0 then the splitting has a last term and it projects to Eiw**.

(4) If i = 0 then the splitting has no last term.

18



(5) If the splitting has a first term o and if oy crosses E' or E* where E* C S;;
and 1 <t < m — 1 then og has the form wr>E".

Proof. Non-triviality of the decomposition follows from Lemma It is a splitting
because each of its terms is fixed by fl# For the same reason, each finite 4, is a
Nielsen path. If G; is neither a single edge nor an indivisible Nielsen path then it
would contain a fixed point in its interior; the (Vertices) property of a CT would then
imply that ; contains a fixed vertex in its interior which is not the case. This proves
[@. )

If 6, is finite but not a fixed edge then oy = Fyw; E, for some linear edge £, C
G,(j(s)) with twist path wg by (1) and the (NEG Nielsen path) property of a CT.
Corollary 4.3 ﬂ implies that w, C GT(](Z 1) and so does not cross any edge in ;).
Thus E, = E, and the main statement of (2)) is satisfied. The moreover part of (2 .
follows from the following observations: the turn (E,, 0541) is legal; G541 - spa-
and E > are fz# -invariant rays; G411 - 0gy0- -+ and Epu?;too project into Sj;)

For H we assume that ¢ # 0. Lemma implies that Fix(f;) N A, = 0 so there
is a last fixed point in ¢ and a last term, say &,. Since G, is an fi#—invariant ray,
Fact @ implies that each term in the highest edge splitting of & is fi#—invariant.
If this splitting is non-trivial, the terminal endpoint of its first term would be fixed in
contradiction to the fact that the interior of &3 is disjoint from Fix( ﬁ) The highest
edge splitting of g, is therefore trivial which means that ¢, = Eqﬁ where Eq is a non-
fixed edge with fixed initial direction and p has height strictly less than that of E,,.

Let Rp, be the ray determined by £, (Notation 3.15). The lift that begins with

E, terminates at some @ € 9 Fix(0;) U Fix,(6;) C X; (see Fact [3.5) and intersects
le( f;) only in its initial endpoint by (NEG Nielsen Paths). If @ is not equal to the
terminal endpoint P of & then the line L connecting @) to P is disjoint from Fix( fl)
and so equals A, by Lemma |3.23] - In this case, @ is either a™ or a~. The same is
true if Q = P because P is either ™ or a™. If E, is non-linear than Q € Fix( f)
by Facts and |3 . 5| therefore imply that E is hnear It follows that RE \ E, is
Contained in the axis of a covering translation that shares a terminal ray Wlth A, and
so equals A,. Since REQ \Eq projects to w;too, [w,]u = [w], and so w, = w and the
terminal endpoint of Eq is in A,. Combining this with Fact|3.13[and the fact that the
initial endpoint of Eq is fixed, we see that that E, = E*. This completes the proof of
B).

If i = 0 then A, NFix( ;) is non-empty by Lemma and is invariant under the
covering translation 7T} associated to a because fl fixes a+ and a~. It follows that a™
and a~ are in the closure of A, NFix(f;). This proves

The proof of ([5)) is similar to that of . Assumlng that the splitting has a first
term & crossing Et or Bt C S, let R= G, " and let P be its terminal endpomt As
in the proof of , the hlghest edge splitting of R must be trivial so R = Eqp where
Eq is a non—ﬁxed edge with fixed initial direction and p has height strictly less than

that of E,. Let R, be the ray determined by E,, let ﬁEq be the lift that begins with
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Eq and let ) € X; be the terminal endpoint of EEq. If P=Q then R = ]/%E and
]/%;q \ Eq C Gr(ji)-1) by Corollary In this case, E, = E" so 00_1 = Rp: and is
satisfied. Suppose then that P # Q. The line L connecting @Q to P is disjoint from
Fix(f;). Its highest edge splitting must be bi-infinite for otherwise the endpoints of
its first or last term would be fixed. It follows that the he1ght of p equals the height of
RE \ E, and so is at most r(j(i) — 1) by Corollary . It then follows that £, = E*
and Rp, = E'w*>. There is a conjugate a’ of a such that Ay shares an endpomt with
R?E:. Lemma implies that L = A,. We conclude that G, ' begins with Eq — Ft
and is otherwise contained in A,. This completes the proof of . O

Definition 4.10. If a path 7 crosses E* and E’ a finite number of times then we
define the algebraic crossing number c¢;(1) of T with E* to be the number of times
that 7 crosses E' minus the number of times that 7 crosses E'. For closed paths
0 C G, the formula

d+— ¢;(6) mod 3
defines a homomorphism

H(G;Z/3)— Z/3
and this homomorphism is nontrivial if and only if E? is nonseparating. For infinite

paths of the form 7 = w™§w>, since w does not cross E* we have ¢;(1) = ¢;(9).

We sometimes use edge path notation in describing lines and rays. In particular,
a line or ray o ends with w* if the ray R(w) := w™ is a terminal subray of o and
o ends with w=> if the ray R(w) := w™ is a terminal subray of 0. Analogously o
begins with w™[resp. w=>°] if c=! ends with R(w) [resp.R(w)].

Corollary 4.11. Forall1 <i<m—1and alloc € ¥;, ¢;(0) =0 or 1.

Proof. Let ¢ = -...-0_1 -0g -0y ... be the splitting given by Lemma The
corollary follows from

e ¢;(0s) =0 for each finite o.
e There is a last terminal term and its contribution to ¢;(o) is 1.
e If there is a first term then its contribution to ¢;(0) is 0 or —1.
each of which is an immediate consequence of Lemma 4.9, O

Verification that 7, (as defined in (x)) is the identity: To prove that 7, is
the identity, it suffices to show that m,(l) = [ for all [ > 0; the [ = 0 case then follows
from the fact that 7, is a permutation. Suppose to the contrary that [ > 0 and that
ma(k) = [ for some k # [.

We claim that X»j; contains a line 7 that begins with w*, ends with w* and
satisfies ¢;(7) = —1. If each line in X is contained in G\ E' then the same is true for
the realization in G of each line in F(X}) in contradiction to the fact (Lemma[4.9}(3))
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that every line in ¥; crosses E' and the fact (Lemma [1.8(3)) that F(%;) = F(5%).
We may therefore choose a line € ¥, that crosses E' or E'. By Remark , we
may assume that g ends with w*. Let p = ... - pu_1 - po - p1 - ... be the splitting
given by Lemma [4.9] The last term in the splitting, if it exists, does not cross E; or
E; by items and of Lemma . If some finite term p, crosses E' or E' then
ts = EBlw*E' by Lemma . In this case, 7 = W E' g 41 /tssa - - . is contained in
Y by Lemma and ¢;(7) = —1. If no finite term of the splitting crosses FE'
or E' then there must be a first term p, and it must cross E! or E' so p, = w>FE!
by Lemma . In this case, 7 = W E iy 1ptpyo . . . satisfies ¢(7) = —1. If 7 # p
then 7 and p have lifts 7 and 2 with terminal endpoint ¢ and with initial endpoints
bounding A, some b € F, satisfying [b] = [w]. Since one of the endpoints of A, is
contained in X}, the other is also so 7 € ¥, as desired. This completes the proof of
the claim.

There is a closed path 0 such that 7 = w>*éw™>. The line 7/ = hy(r) € %
is obtained from w™>h4(§)w™> by tightening. No copies of E; or E; are cancelled
during the tightening process, so 7 = w>§w™ where ¢’ is a closed path satisfying

(0") = ¢i(hy(0)). Applying Definition [£.10] we have
a(d) =q(r)=-1 and a(hy(0)) = a(d) = a(r')

Since ¥ € IA,,(Z/3) and h is a topological representative of 1,

a(t') mod 3 = ¢;(hy(d)) mod 3 = ¢(§) mod 3 = —1
This contradiction to Corollary completes the verification of (x) and hence the
proof of Proposition [L.3] O
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