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We propose to use a quantum adiabatic and simulated-annealing framework to compute the ground state of
small molecules. The initial Hamiltonian of our algorithms is taken to be the maximum commuting Hamiltonian
that consists of a maximal set of commuting terms in the full Hamiltonian of molecules in the Pauli basis.
We consider two variants. In the first method, we perform the adiabatic evolution on the obtained time- or
path-dependent Hamiltonian with the initial state as the ground state of the maximum commuting Hamiltonian.
However, this method does suffer from the usual problems of adiabatic quantum computation due to degeneracy
and energy-level crossings along the Hamiltonian path. This problem is mitigated by a Zeno method, i.e., via a
series of eigenstate projections used in the quantum simulated annealing, with the path-dependent Hamiltonian
augmented by a sum of Pauli X terms, whose contribution vanishes at the beginning and the end of the path. In
addition to the ground state, the low lying excited states can be obtained using this quantum Zeno approach with

equal accuracy to that of the ground state.

DOI: 10.1103/PhysRevResearch.3.013104

I. INTRODUCTION

Quantum chemistry concerns the application of quantum
mechanics to chemical properties of physical systems, in-
cluding their electronic structure, spectroscopy, and dynamics
[1,2]. It has broad impact, ranging from strongly correlated
systems and material design to drug discovery. While mean-
field theories (such as density functional theory) have been
widely applied to weakly correlated materials, more sophisti-
cated methods, such as the configuration interaction and the
density matrix renormalization group, are needed to accu-
rately capture electronic correlation effects [3—7]. However,
the computational cost of these high-level methods scales
poorly with the number of orbitals and electrons, thus limiting
their applications primarily to small molecules.

Recently, it was suggested that quantum chemistry prob-
lems could be one of the promising applications for which
quantum computation [8] might be used to outperform classi-
cal computers. Among the earliest proposals, Lidar and Wang
considered using quantum computation to calculate the ther-
mal rate constant [9]. Apsuru-Guzik et al. proposed using it
to calculate the ground-state energy of molecules [10], which
was later implemented experimentally with a photonic system
for the hydrogen molecule [11], as well as with a liquid
nuclear magnetic resonance (NMR) system using an adiabatic
state preparation [12]. These and subsequent works prompted
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a surge of interest in quantum chemistry via quantum com-
puters. The variational quantum eigensolver (VQE) was later
proposed for this and implemented in a photonic system
[13]. VQE is suitable for noisy intermediate scale quantum
(NISQ) processors, as it uses short-depth quantum circuits
assisted by classical optimization. A later study [14] showed
that VQE achieves a better performance than the standard
quantum phase estimation (QPE) algorithm [8] in the ground-
state calculation of molecules. Due to its simplicity and short
circuit depth, VQE has since become a standard approach for
quantum chemistry applications [15]. The extension to excited
states [16,17] has been made and an adaptive approach [18]
has also been developed.

Apart from circuit-based quantum computation, evolving
a quantum system under a suitably designed time-dependent
Hamiltonian can also achieve universal quantum computa-
tion. This possibility was first proposed by Kadowaki and
Nishimori in the context of quantum annealing to solve the
ground-state energy of a classical Ising model [19] and later
by Farhi et al. using adiabatic evolution to solve instances of
the satisfiability problem [20]. It is thus natural to consider
adiabatic quantum computation (AQC) for quantum chem-
istry problems. Recently, several studies indeed explored such
an application. For example, adiabatic state preparation was
used for studying the hydrogen molecule [12]. In Ref. [21], a
method was introduced to map the Hamiltonians of molecules
to a 2-local qubit Hamiltonian, containing only ZZ, XX, and
X Z terms. Another method was recently proposed in Ref. [22]
to map quantum-chemistry Hamiltonians to Ising spin-class
Hamiltonians, and experiments based on this method were
carried out on the existing quantum annealers of D-Wave [23].

Here, we present a study of molecular energies via an adi-
abatic framework that can be used in two different ways. Both
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variants are based on a path-dependent Hamiltonian as used in
adiabatic quantum computation [20]. The initial Hamiltonian
is constructed using a maximal set of the commuting Pauli
terms (in the qubit version) in the molecular Hamiltonian
as described in details below. We will refer to this as the
maximum commuting (MC) Hamiltonian. (It turns out that
every term in the MC Hamiltonian is proportional to a product
of Pauli Z and identity operators.) We note that similar ideas of
such grouping via commuting terms also appeared in previous
works to reduce the cost of measurements [24-28], as well as
in Ref. [29] in the context of “noncontextual” Hamiltonians
and their classical simulations. The time-dependent Hamilto-
nian for our purpose is taken to be the linear interpolation (for
time ¢ € [0, T']) between the maximum commuting Hamilto-
nian and the molecular Hamiltonian, i.e., with weights (1 —
t/T)and t/T, respectively.

Our first variant is the usual adiabatic quantum computa-
tion with such a time-dependent Hamiltonian. This approach
of quantum adiabatic evolution (QAE) yields accurate results
of molecular ground-state energies around the equilibrium
atomic position or with small perturbations of the bond length,
but not at the limit of bond breaking, which is due to the
degeneracy of ground and excited states, as well as energy-
level crossings. These issues arise because at large interatomic
separations, there are many closely spaced energy levels. In
an attempt to ameliorate these issues in obtaining the ground
state and its energy, we add to the Hamiltonian a possible
degeneracy breaking term whose strength is proportional to
(1 —t/T)/T, so that its contribution vanishes at the initial
and final times [30]. Even though the resultant path-dependent
Hamiltonian may not necessarily yield better results under
adiabatic evolution, its use in the setting of the quantum simu-
lated annealing [31] does improve the obtained ground-state
energy. This last is thus our second variant, which drives
the computation via the quantum Zeno-like projection (QZP)
to eigenstates of the instantaneous Hamiltonian along the
path at discrete time steps [31-33]. This QZP method, with
the augmented time-dependent Hamiltonian, can mitigate the
drawbacks of adiabatic evolution. By starting the initial state
to be the ground state or lowest few excited states of the maxi-
mum commuting Hamiltonian, the ground state and the lowest
few excited states of the final Hamiltonian can be obtained
for several small molecules that we consider, including LiH,
BeH,, CH,, and H,O. We also compare our results with those
from the VQE. Our numerical simulations show that the QZP
method performs the best among the three methods.

The paper is organized as follows. In Sec. II we intro-
duce the concept of the maximum commuting Hamiltonian
and give a greedy algorithm that can efficiently approximate
the maximal commuting set. In Sec. IIl we use adiabatic
quantum computation to drive the system to the molecular
ground state and numerically show that it works well in most
cases and regimes of interest. In Sec. IV we propose to use
a spectral projection method for improving the results of
the QAE with the time-dependent Hamiltonian augmented
by a Pauli X term. This also allows us to obtain excited
states without further complexity. In Sec. V, we discuss an
alternative way to construct the time-dependent Hamiltonian,
using the Hartree-Fock Hamiltonian as the initial Hamilto-
nian. But we argue that this procedure is not as favorable as

the maximum commuting Hamiltonian. In Sec. VI we make
concluding remarks.

II. MAXIMUM COMMUTING SET AND GREEDY
APPROXIMATION

In this section, we first discuss the molecular Hamiltonian
and the associated atomic orbitals and then introduce the
maximum commuting Hamiltonian and its obtainment from
the qubit-version of the molecular Hamiltonian via a greedy
algorithm.

A. Molecular Hamiltonian

The coefficients in the Hamiltonians for the molecules,
LiH, BeH,, H,O, and CH, that we consider in this work are
computed in the Slater-type orbital (STO)-3G basis (see, e.g.,
Ref. [1]). For the LiH molecule, we shall measure the dis-
tance as the interatomic distance between Li and H atoms and
arbitrarily assign this direction as the x axis. The orbitals that
will be used in the calculation include 1s for the H atom and
1s, 25, and 2p, for the Li atom. For the triatomic molecules of
the form AB,, including BeH,, CH, and H,O, we will assume
equal distance of the two B atoms measured from the A atom
and study the molecular energy as a function of the distance
AB at a fixed ZBAB angle or as a function of the ZBAB angle
at a fixed distance, typically at the equilibrium position. The
orbitals that will be used in the calculation of the triatomic
molecules include 1s for the H atom and 1s, 25, 2p,, 2py, and
2p, for Be, C, and, O atoms. We assume that for the LiH
molecule the 2p, and 2p, orbitals can be ignored due to their
linear configuration, but these are included in our calculations
for BeH,, CH,, and H,O molecules. Our goal is to find the
eigenstates and eigenenergies of a molecule’s Hamiltonian H,
especially the ground state |) and its energy Eg, with

H |Y6) = EglV¥a), ey

as well as a few low-lying states and associated energies.
In the spin-orbital language, the Hamiltonian can be writ-
ten in second quantized form as

1
H=H +H,= Zlaﬁalaﬂ + E Z uaﬂygala;a,;a,g,
a.p

By,

@)
where the Greek subscripts label the orbitals and the coeffi-
cients in the one-body and two-body terms are given below,
respectively,

v? Z;
tug = | dx;, -1 )W (x)),
B / X1 (x1)< > +Xi:|r”|> s(x1)

oy = / f dxldxz\lf::(xl)wﬁ(xl)ﬁw;(m%(xz). 3
These are calculated using a standard quantum chemistry
package, such as PYSCF [34], which is a collection of elec-
tronic structure programs powered by PYTHON. In applying
Eq. (3), we will assume that all 1s orbitals of Li, Be, C, and
O atoms are filled and inert, which means that some of the
one-body integrals will become constant and only brings a
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shift to the total energy and some of two-body integrals will
reduce to one-body terms.

B. Maximum commuting Hamiltonian

In order for our algorithms to be performed on quantum
computers, we need to convert the above fermionic Hamilto-
nian to its qubit version. There have been a few ways proposed
to do this, including the Jordan-Wigner, parity, Bravyi-Kitaev,
and superfast Bravyi-Kitaev transformations [35-37]. By us-
ing any of these methods, we can transform the fermion
operators into Pauli operators

H,= Z P, )

where P,’s are n-qubit Pauli operators, which can contain qubit
identity operators in the product. For the conversion below, we
use the “parity” method.

Next, we focus on the adiabatic-based framework and first
introduce a special initial Hamiltonian called the maximum
commuting (MC) Hamiltonian. It will be demonstrated below
that the ground state of the molecular Hamiltonian can be
found in the adiabatic approach by connecting this initial MC
Hamiltonian to the final Hamiltonian of the molecule. This
procedure works well, at least for distances around the equi-
librium position. Below we will also discuss the issues that
this approach will encounter, and later provide an alternative
method to ameliorate them.

We use the symbol S to denote a set of Pauli product
operators that commute with each other,

S={P,P,....PIVi,je{l,....k}, [P, Pi]1=0}, (5

where the P;’s come from terms in the qubit molecular
Hamiltonian (4) [8]. A maximum commuting Hamiltonian
associated with a qubit-based Hamiltonian H = Zi h;P; is a
maximal commuting set S* that maximizes the weight

mgx Z | A (6)

among all possible commuting sets. Here we give a simple
example to illustrate the maximal commuting set. Consider
the following Hamiltonian:

H =211 + 31X — 41Z + 5ZI, )

we assign every Pauli operator P; in H to a vertex, and asso-
ciate with it a weight |A;| and every pair of two commuting
Pauli operators to an edge. We note the unweighted version of
the graph was used in the context of contextuality; see, e.g.,
Ref. [38]. The Hamiltonian is thus represented by a weighted
graph, as illustrated in Fig. 1. The maximal commuting set
of H is the maximum weighted “clique” of the corresponding
graph, which consists of $* = {II,1Z, ZI} and has a weight
of 11 in this example. The set {/I, IX, ZI}, on the other hand,
has a smaller weight of 10.

C. Greedy approximation algorithm

It is in general not an easy task to find the maximal com-
muting set, as it is equivalent to the weighted maximum clique

2l

41z 3IX

YA

FIG. 1. The weighted graph constructed from H = 211 + 31X —
41Z + 5ZI1. Two vertices representing operators P; and P; are con-
nected by an edge if [P, P;] = 0.

problem. While the problem is NP-hard [39], a greedy algo-
rithm can give a good approximation efficiently when weights
are highly biased. For the purpose of molecular energies, we
do not require the set of commuting Pauli terms to be the exact
maximum. Our greedy algorithm is given below.

Algorithm 1. Greedy algorithm for maximal clique

input: a weighted graph G

output: a maximal clique of G

begin

set S =, I = V(G), where V (G) is the vertex set of G
while / is not empty do

find the vertex in / that has a maximum weight, say v;
S =S UJ{v}

I =1\ {v;}\V,, delete v; and all vertices that are not
connected to every vertex in §, say V,,, in [

end while

return S
end

After performing this greedy algorithm, we obtain one
maximal clique of the graph, which is, in general, not nec-
essarily the absolute maximum clique. But for the four
molecules (LiH, H,O, BeH,, and CH,) that we simulate, the
maximal cliques found by our greedy algorithm turn out all to
be the maximum ones. Even if we do not obtain the absolute
maximum clique, the one generated by the greedy algorithm
can still be used as an initial Hamiltonian. Note that the
above greedy algorithm has only linear-time complexity. So in
practice it is efficient in finding a good approximate maximal
clique for the problem of simulating molecular energies.

Once the initial MC Hamiltonian is obtained, we need to
be able to initialize the system in its ground state (or other
eigenstates) for adiabatic quantum computation. We note that,
however, commuting Hamiltonians are not necessarily easy to
solve. Classical Ising spin-glass models are such an example
and are NP-complete, as shown by Barahona [40]. Bravyi
and Vyalyi showed that generic quantum-mechanical 2-local
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commuting Hamiltonian problems are also NP-complete [41]
and Aharonov and Eldar did the same for 3-local commuting
Hamiltonian problems [42]. However, there are commuting
Hamiltonians that are easy. For example, models such as
Kitaev’s toric code [43] and Levin and Wen’s string-nets [44]
are solvable. Furthermore, Yan and Bacon showed that k-local
Hamiltonians with projectors onto eigenspaces of product of
Pauli matrices are in the complexity class P [45]. In our
consideration of molecular Hamiltonians, we find that those
terms in the MC set are all of the form of a product of Pauli
Z and identity operators with a certain weight, such as ¢/ ®
0*®0°® --- ®I. We note that the complexity consideration
regarding the NP-completeness deals with the worst-case sce-
nario. Very often the claim of such hardness requires inclusion
of certain randomness, such as a random local field or some
random couplings [46]. We cannot precisely characterize the
complexity of our MC Hamiltonian, despite the fact that the
generic spin glass problem is NP-complete. As a remark, it is
believed by complexity theorists that even NP-complete prob-
lems cannot be efficiently solved even by quantum computers
[47].

Nevertheless, given that our MC Hamiltonian is diagonal in
the computational basis, it is essentially a classical problem.
By substituting the Pauli-Z operators by Boolean variables
of =2x; — 1, with x; =0 or 1, we can transform our MC
Hamiltonian to a Boolean optimization problem. This is a
weighted maximum-2-satisfiability (Max-2SAT) form if the
initial reduction from fermions to spins is done with Jordan-
Wigner transformation (instead of the parity mapping). While
generic Max-2SAT problems are still NP-complete, there exist
some efficient classical algorithms such as MiniMaxSAT [48]
and wMaxS ATz [49] for average cases. Although the rigorous
time complexity of these algorithms is unknown and their
performance varies from case to case, the time complexity
is at most o(N = 2"), where n is the total number of qubits.
(Given the small number of qubits in the problems we con-
sider, we can directly solve the Boolean optimization or the
original commuting Pauli Z problems.) However, we note that
the time complexity of finding the ground state of the final full
Hamiltonian (of dimension N x N) is of order O(N3 = 237).
For a sparse matrix, this can be reduced to O(sN 2), where s is
the average number of nonzero elements in a row or column.
We can estimate s by the number of terms in the Hamiltonian
and it is of order n*. Therefore, the time complexity for solv-
ing the ground state of the final quantum chemistry problem
scales at least O(n*2%"). Thus, there is still speedup in solving
it using our proposed quantum algorithms below, compared to
classical means.

Moreover, our first approach (see Sec. III) relies on the ex-
act ground state of the MC Hamiltonian, whereas the second
approach (see Sec. IV) can work with an approximate ground
state that has nonunity, but finite nonzero overlap with the
exact MC Hamiltonian ground state. Thus, the later approach
may have better time complexity and speedup compared with
classical algorithms.

III. APPROACH BY QUANTUM ADIABATIC EVOLUTION

In this section we introduce our first quantum algorithm for
the molecular ground-state energy, by adiabatically evolving

a time-dependent Hamiltonian, listed in Eq. (9). We then
present the results obtained from applying the algorithm to
several molecules and discuss some issues this algorithm
encounters.

A. Adiabatic evolution

To drive the system from the ground state of the maximum
commuting Hamiltonian to that of the desired Hamiltonian, a
natural way is to use the idea of adiabatic evolution [20]. From
the maximal commuting set S* associated with the molecular
Hamiltonian (4), we have the corresponding maximum com-
muting Hamiltonian

Hi= ) hP. ®)
i;PeS*

We take H; to be the initial Hamiltonian and H, the fi-
nal Hamiltonian, and form the following time-dependent
Hamiltonian

H(t)

(1 I)H—i—tH
T/ ' T?

3 hiPi+% > hP. ©)

i;P,eS* iP¢S*

We set the initial state |1 (0)) to be the ground state of H; and
let the system evolve under the time-dependent Hamiltonian
H(t). According to the adiabatic theorem [50], if the system
evolves slowly enough, i.e., T being sufficiently large, then
the evolved state |y (¢)) will stay very close to the instanta-
neous ground state of H (¢), provided that there is a finite gap
separating the ground state from the excited states. Roughly
speaking, T should scale inversely proportional to the square
of the minimal gap along the path, i.e., ~1/AZ%. At the end of
the evolution, the system will arrive at our desired state—the
ground state of H,, up to a small error. We call this procedure
the quantum adiabatic evolution (QAE).

In Fig. 2(a), we illustrate the lowest few energy levels of
the time-dependent Hamiltonian H (¢) as a function of s = ¢ /T
for the water molecule at its equilibrium position. The gap be-
tween the ground state and first excited state remains roughly
constant along the path, which is the most favorable scenario
for AQC. We note that, however, there can be energy level
crossings, e.g., in Fig. 3(a) for the OH distance roughly twice
as large as in Fig. 2(a). Then the evolution cannot guarantee
the system to stay in its instantaneous ground state. But this
seems to occur only at large molecular distances; see also
discussions in Sec. III C.

B. Ground-state energy results

We apply our QAE approach to four different molecules
LiH, BeH,, CH,, and H,O, and present our results in Figs. 4—
7, respectively. In these simulations we set 7 = 10 and use
discrete-time slices to approximate the continuous time evo-
lution,

Hb'(T)) ~ e*iH(T)ATefiH(TfAT)AT o e*iH(AT)AT |w(0)) .

(10)
We choose a constant increment AT = 0.5 in the simulations,
as we do not and cannot rely on the knowledge of the gap,
which may even close [e.g., see Fig. 3(a)].
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FIG. 2. The lowest few energy levels of H,(s = ¢/T) of Eq. (11) for H,O at the equilibrium position d = 0.958 A between the O and an
H atom with (a) @ = 0 and (b) @ = 1. In case (a), the Hamiltonian reduces to H(s =t/T) = (1 — s)H; + s H, of Eq. (9).

Our results from this QAE method are compared to those
from VQE. The later uses certain kinds of ansatz wave
functions via quantum circuits and performs measurements
to read out the energy expectation value. A classical opti-
mizer is then used to search for optimal parameters in the
ansatz that minimize the energy expectation value [13,15].
The quality of VQE depends on the variational ansatz used
and the convergence depends on the classical optimizer. In
our VQE calculation we use the UCCSD variational form and
the COBYLA optimizer, implemented with the IBM QISKIT
package [51]. It begins with the Hartree-Fock state and runs
with iteration steps up to 200 for short molecular distances and
1000 for large molecular distances to optimize the variational
parameters of the quantum circuit. As seen in Figs. 5-7, the

VQE results deviate from the exact solutions substantially
at large molecular distances, and the computation at certain
distances do not even converge properly. The exact solutions
we compare to are obtained from directly diagonalizing the
associated qubit Hamiltonian in Eq. (4).

Below we discuss the results from our QAE for individual
molecules.

1. LiH molecule

For the LiH molecule, the results of the adiabatic approach
are slightly worse than those of the VQE, as seen in Fig. 4(a).
This is mostly due to the small number of the discrete-time
steps, and the accuracy can be improved by using smaller AT
or larger T and hence more segments along the Hamiltonian

(a) (a1)
— ~74.66F T,
- —74.68F
g 8 :
t T _7470F
T -746 T
w Y 7472
-74.7
-74.74
0.0 086 088 090 092 094
S S
(b) (b1) (b2)
_ _74.7F
iR 74.4
~74.8
= -74.6 .
8 -750 / ] s
£ N £-748 €750} .:iiiii
z ~_ ] g
o755 W_750 el A
-752F"
gt -75.3F .
00 02 04 06 08 10 000 005 010 015 020 080 085 090 095 100
S S S

FIG. 3. The lowest few energy levels of H,(s = ¢/T) of Eq. (11) for H,O at a position d = 1.958 A with (a) « = 0 and (b) @ = 1. Notice
that the ranges of the values in the vertical axes are different. Figures (al) and (b1) and (b2) show the blow-up in the boxed regions of (a) and
(b), respectively, and the data are represented by dots instead of connected curves. In (a), the initial ground states have a two-fold energy
degeneracy (ED) and are crossed by another energy level near s = 0.885. After adding the Hy term, see Eq. (11), the doubly degenerate levels
gradually split, as indicated by ES in (bl). As seen in (b2), the splitting reaches a maximum around s = 0.5 and then gradually closes, as
indicated by gap closing (GC). The gap closes at around s = 0.95 but it slightly opens up towards s = 1.
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equilibrium angle 180°. The results of the last six points of QAE are
-7.80 not as good as the other points due to the appearance of degeneracies
8 780 ] — Exact in the initial ground states. The lower panel indicates the errors
g \ g ~ VQE deviatir}g from the exact calculation. Som§ of the points by QZP not
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w o o > QAE
~788 \ A * QZP(a=0)
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788 B o of qubits can be reduced to six. We remark that the imple-
P 1.0 1.5 20 : 2'5 mentation of the six-qubit VQE on quantum computers was
18_5 previously presented in Ref. [15].
5 107
w ]8:; 3. CH, molecule
107° For CH; molecule, the results are shown in Fig. 6. In this
1.0 1.5 A 2.0 25 case, the QAE performs better than the VQE. However, the
d/.

FIG. 4. The ground-state energy of LiH with different ap-
proaches. (a) Top panel: Results using 7 =10 and AT =0.5.
(b) Bottom panel: Results using 7 = 40 and AT = 0.5. The result of
QAE is slightly worse than that of the VQE because of the small size
of the 4-qubit Hamiltonian, but can be improved using longer time
or equivalently more segments. Note the QZP points are not shown
in the error figure as they are O-error to the machine precision.

path, as demonstrated in Fig. 4(b). In this calculation, four
qubits are needed to represent the Hamiltonian. We note that
the simulation of an iterative quantum phase estimation for
the ground-state energy of LiH was done in Ref. [10] and
the implementation of the VQE on quantum computers was
presented in Ref. [15].

2. BeH, molecule

For BeH,, the results shown in Fig. 5 are mostly better than
those of the VQE, and agree very well with the exact solutions
at smaller distances and around the equilibrium position, but
become worse at large distances, in particular greater than
dz>24 A. This is due to the degeneracy of ground states
in the initial Hamiltonian. (We note that this issue can be
ameliorated by employing the projection method with an
augmented Hamiltonian, as discussed below.) In this calcu-
lation, ten qubits are needed to represent the Hamiltonian. If
we remove the 2p, and 2p, orbitals, as in the case of linear

QAE has the similar issue of degeneracy and level crossing at
large molecular distances d between C and H atoms, in par-
ticular, greater than d > 2.1 A. In this calculation, ten qubits
are needed to represent the Hamiltonian. We note that one

-374
-37.6 — Exact1
(0] A A A
0 _378 A ] Exact2
b= A
% -38.0 A Exact3
w vy
A Vv vy A VQE
-38.2 ;//Y
_38.4 = v QAE
' « QZP(a=0)
00 05 10 15 20 25 30 35
0.010 L aAAAal
5 0.001 ee%’%“‘?yy
Lﬁ -4 v v v
10 Vv
v v
1075 :
00 05 10 15 20 25 30 35
d/A

FIG. 6. The ground-state energy of CH, as a function of the
distance d between the C and an H atom at the equilibrium angle
6 ~ 101.89°. The three curves (labeled “Exact”) represent the lowest
three energy levels calculated from exact digaonalization, and two of
them cross at a distance of around 1.41 A. Some of the QZP points
not shown in the error figure are zero-error points.
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FIG. 7. The ground-state energy of H,O (a) as a function of
the distance d between the O and an H atom at the equilibrium
angle 6 &~ 104.45° and (b) a function of the H-O-H angle 6 at the
equilibrium position d = 0.958 A. The result of QAE atd ~ 1.76 A
is not particularly good because of the appearance of degeneracies in
the initial ground states. The lower panel in both (a) and (b) indicates
the errors to the exact calculation. Some of the QZP points not shown
in the error figure are zero-error points.

of the earlier results simulating the molecular energy of CH,
via a quantum algorithm was presented in Ref. [52] using an
iterative quantum phase estimation.

4. H,0 molecule

For the H,O molecule, the QAE approach in the approxi-
mation of Eq. (10) already brings reasonably accurate results
for the ground state and its energy compared to those of the
VQE, as shown in Fig. 7. However, there is also the issue
of degeneracy around d ~ 1.76 A. Despite this deviation, the
ground-state energy versus the angle 6 at the equilibrium
distance by the QAE is very accurate. In this calculation, ten
qubits are needed to represent the Hamiltonian. We note that
the simulation of an iterative quantum phase estimation for
the ground-state energy of H,O was reported in Ref. [10].
The result for the first singlet excited state was presented in
Ref. [53]. A more recent equation-of-motion method building

on the VQE ground state allowed access to a few low-lying
excited states [17].

C. Degeneracy and energy level crossing

Degeneracy and energy crossings are two main factors
where QAE may fail. If the initial Hamiltonian H; contains
degenerate ground states, and we arbitrarily choose one of the
states as the initial state, the final state can be a superposition
of states and may not necessarily be an eigenstate of the
final Hamiltonian. If there exists an energy crossing during
the evolution, the state may evolve to an excited state rather
than stay in the ground state. These two cases can occur for
real molecules. In our simulations, energy level crossings in
low-lying levels only occur when the molecular distances are
large, for example, in Fig. 3(a). But for smaller molecular
distances, including near the equilibrium position, no such
crossings occur, as illustrated in Fig. 2, and the results from
the QAE match the exact results very well, except for the CH;
molecule which has two levels that are close (and cross at
some distance).

We initially suspected that such issues might be improved
by adding in Eq. (9) another term, which is of the form
Hy =Y ‘ o; with a strength «, as these Pauli X terms do not
commute with Pauli Z terms (occurring in H;),

1 t T\ 1
H, (1 =(1——)H,- ‘H (1——>—H, 11
() T +T p+a T)T X ( )

where the summation in Hy is over all qubits labeled by g’s
and « is an adjustable factor. The Hy term does not change the
evolution in the beginning and at the end, but may break up the
degeneracy and eliminate some energy crossings in the middle
of the evolution; see, e.g., Fig. 3. However, infinitesimal gaps
may exist when the degeneracy is broken, and thus this mod-
ification cannot necessarily ensure the adiabatic evolution to
find the final ground state. In our simulations, we do see some
minor improvement via the QAE method using small « (e.g.,
0.1), but the results become worse for large « (e.g., 0.5). We
comment that it is partly due to this reason that we will study
a spectral projection method below and will demonstrate that
the augmented Hamiltonian (11) used in this new approach
can yield much improved outcomes.

IV. SPECTRAL PROJECTION METHOD FOR GROUND
AND EXCITED STATES

From previous discussions, we see that the QAE method
does not always yield accurate results for ground states at
large molecular distances due to the limitation of the adi-
abatic approach that we explain above. For excited states,
energy crossings are more likely to appear during the evolu-
tion and the QAE becomes insufficient in reaching low-lying
excited states of the final Hamiltonian. Therefore, we pro-
pose a different approach by using measurement instead of
evolution according to the path-dependent Hamiltonian (11).
This method was introduced in Ref. [31], and termed the
quantum-simulated annealing in the context of optimizing a
classical function. The standard quantum phase estimation [8]
can be used to achieve the measurement that projects to the
energy eigenbasis, but it is not yet suitable for current noisy
quantum computers. Other ways of spectral projection have
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been proposed, including a quantum-walk-based algorithm
[32] and a Hadamard-test spectral projection method by mea-
suring an ancilla iteratively [33]. These different methods also
allow extraction of the corresponding eigenenergies. Such a
Zeno-like measurement projects an arbitrary initial state to
an eigenstate according to the Born rule. In our work here,
we do not specify which particular algorithm will realize this
projection, but assume it can be performed.
We discretize the Hamiltonian (11) as follows:

k
Hk=Ha<ﬁT>, with k =0,1,...,N, (12)

and perform successively the projections in the energy eigen-
basis of these Hamiltonians Hy. If the overlap of successive
ground states is sufficiently close to unity, then by the quan-
tum Zeno effect the resulting final state, after the whole
sequence of projections, will be very close to the ground
state of the final Hamiltonian [31]. If there does not exist
any ground-state degeneracy, the projections will drive the
initial ground state into the final ground state of the problem
Hamiltonian with high probability. In the case of the initial
degeneracy, the projection method can yield either one of the
possibly split final eigenstates, in contrast to the adiabatic evo-
lution which produces superposition. A few repetitions of this
QZP procedure can result in multiple distinct eigenstates. To
obtain the lowest k eigenstates, we prepare about k different
lowest initial eigenstates and perform the QZP procedure mul-
tiple times. With a high probability, the outputs will contain
the desired low lying eigenstates.

A. QZP procedure and numerical results

Let us summarize the procedure of our quantum Zeno-like
projection method as follows.

(1) Given the Hamiltonian of a molecule, transform the
fermion operators to Pauli operators.

(2) Find the (approximate) maximal set of the Pauli oper-
ators by a greedy algorithm and hence the MC Hamiltonian as
well as the time-dependent Hamiltonian.

(3) Discretize the time steps by # = Z%T and obtain a
series of Hamiltonians H; = H, () at these time steps.

(4) Choose one of the MC Hamiltonian’s eigenstates as
the initial state, and perform the projections on Hj succes-
sively for k = 1, ..., N to obtain one eigenstate of the final
Hamiltonian.

(5) Repeat the above procedure multiple times to obtain
a distribution of final eigenstates. We can pick the desired
eigenstate from the distribution for further analysis.

As seen in Fig. 4, LiH is the simplest of all molecules
considered in this paper, and the results from the three differ-
ent methods all work very well, including the QZP approach
discussed in this section. This approach also works well for
other molecules, as shown in Figs. 5-7, and is the best among
the three different methods. This can be understood from the
large gap in the path-dependent Hamiltonian, as seen, e.g.,
in Figs. 2 and 3 with « = 0 and o = 1. Moreover, we per-
formed simulations of the QZP method using the lowest few
initial eigenstates and gathered statistics of final eigenstates,
as illustrated in Fig. 8 for H,O and BeH,; at their respective
equilibrium position.
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FIG. 8. The statistics of how each initial eigenstate will result
in after 20 steps of successive eigenstate projections via the QZP
method with @ = 0 for (a) H,O at the equilibrium position d =
0.958 A, (b) BeH, at the equilibrium position d = 1.33 A. Different
colors and their labels 1i,2i, ..., 8i denote the eight lowest initial
eigenstates. The labels in the horizontal axis 1f, 2f, ..., etc. denote
the obtained eigenstates according to the final Hamiltonian and the
vertical axis shows the accumulated distribution (summing those
probabilities at a particular final state). These statistics are gathered
from simulating the projection process 1000 times.

B. Improvement using nonzero o

However, for distances larger than the equilibrium position,
the results via QZP with & = 0 can deviate significantly from
their exact counterparts. As explained earlier, this is due to
many closely spaced energy levels at large distances that are
degenerate in the infinite separation limit, as illustrated in
Fig. 3. Therefore, the interpolation used in Eq. (9) encounters
level crossings and closely packed energies for s close to unity.
As we indicated, this can be resolved by introducing a po-
tentially degeneracy breaking term, as introduced in Eq. (11),
with an overall constant .

To discuss the effect due to o, we thus compare the out-
comes using several nonzero «’s with those obtained using
a = 0 via the QZP method. As an illustration we compare
the statistics of the final states from a few lowest initial states
of the MC Hamiltonian with different values of «, for the
H,0 molecule at d = 1.958 A, for which the deviation from
the exact solution is visible in Fig. 7(a). As shown in Fig. 9,
the statistics for the lowest few final states increases when o
becomes nonzero and the probability of obtaining the final
ground state by using the initial ground state of the MC
Hamiltonian is enhanced.
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FIG. 9. The statistics of which final ground state each initial eigenstate will result in after 20 steps of successive eigenstate projections
for H,O at the position d = 1.958 A with (@) @ =0, (b) @ = 0.1, (¢) @ = 0.5, and (d) & = 1. Different colors and the corresponding labels

1i, 2i, 3i, and 4i denote the lowest four initial eigenstates. The labels in the horizontal axis 1f,2f, ...,

etc. denote the obtained eigenstates

of the final Hamiltonian and the vertical axis shows the accumulated distribution (summing those probabilities at a particular final state from
different initial states). Statistics are obtained from simulating the procedure 1000 times.

We thus see improvements of the QZP method in obtaining
the ground states, as shown in Figs. 10-12. There, we only use
the initial ground state as the input and repeat the procedure

-15.0
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@ -15.2 — Exact
z
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FIG. 10. The ground-state energy of BeH, vs. the distance d
between the Be and one H atoms at the equilibrium angle, via the
QZP approach with several choices of «. Those points on the dashed
line are zero-error in terms of machine precision.

for 40 times selecting the lowest energy. By contrast, the
QAE cannot be improved by such repetition; moreover, the
o term may even make the results of QAE method worse (not

-37.9
-38.0 — Exact1
@ _38.1 — Exact2
£
£ _382 — Exact3
Y383 4 QzP(a=0)
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o
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FIG. 11. The ground-state energy of CH, vs. the distance d be-
tween the C and one H atoms at the equilibrium angle, via the QZP
approach with several choices of «. Those points on the dashed line
are zero-error in terms of machine precision (note the two points
around d = 3.0 A are not on the dashed line).
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FIG. 12. The ground-state energy of H,O vs. the distance d be-
tween the O and one H atoms at the equilibrium angle, via the QZP
approach with several choices of «. Those points on the dashed line
are 0-error in terms of machine precision.

shown). For the QZP method, the choice of the exact value of
a does not seem to be important for the overall performance.
If necessary, one may repeat the QZP procedure with a few
different values of «. Thus, we conclude that the QZP method
with nonzero « provides an alternative and viable approach
for studying molecular energies.

We also demonstrate the utility of the QZP method for
the lowest few eigenstates, using the H,O molecule as an
illustration. To do this, we choose as initial states the lowest
few eigenstates of the MC Hamiltonian (8). Repeating the pro-
cedure, we obtain and present the lowest four energy values
as a function of the O-H distance, shown in Fig. 13. In this
calculation, we use o = 0.5 in the augmented Hamiltonian.
The results are accurate as seen from the lower panel in
Fig. 13, where the errors are on the order of milli-Hartree or
even smaller.

While the QAE method in Sec. III may result in superpo-
sition of final eigenstates, the projection method by design
will always result in an eigenstate, despite the fact that we
cannot predict in advance which eigenstate will appear. If the
path-dependent Hamiltonian always possesses a gap between
s = 0 and s = 1, then the Zeno effect drags the initial ground
state to the final ground state. The introduction of the « term
in the Hamiltonian reduces the energy level crossing [e.g., see
Fig. 3(b)] and improves the performance of the QZP method.
Regarding the excited states via the QZP method, we note that
their fidelity does not depend on the fidelity of the ground
state, in contrast to the VQE approach with the equation of
motion [17].

V. COMPARISON WITH HARTREE-FOCK INITIAL
HAMILTONIAN

In the previous sections, we use the maximum commuting
Hamiltonian as the initial Hamiltonian and its ground state as
the initial state. From the perspective of the commonly used
Hartree-Fock approximation, it may seem more natural to use
the Hartree-Fock approximated ground state as the initial state
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FIG. 13. The energy of the ground state and first three excited
states for H,O calculated by the QZP with o = 0.5. The inset shows
the blow-up in the range d € [2.0, 3.0] A. The lines indicate the exact
solution. We use the lowest four eigenstates of MC Hamiltonian as
initial states, and repeat the projection procedure 40 times taking the
lowest four finial eigenstates as results. Those points on the dashed
line are O-error in terms of machine precision.

and its associated Hamiltonian (such that the first is the ground
state of the second), i.e., the qubit-version of the Fock operator
[54], as the initial Hamiltonian Hyp in constructing the full
time-dependent Hamiltonian H (¢). In doing this, we convert
the fermionic operators to qubit operators.

‘We thus numerically calculated the energy levels of H(s) =
(1 — %)Hur + 7H, for H,O at the equilibrium position, see
Fig. 14. The Fock operator Hyr is computed by the PYSCF
package [34] and transformed to Pauli operators by the QISKIT
package [51]. The transformation includes parity mapping and
the freezing of the 1s orbital. For visual convenience we add
an identity term to this Hartree-Fock Hamiltonian to force its
ground-state energy to be equal to the ground-state energy of
the final Hamiltonian. We find that the spectra along such an
interpolation is not favorable in comparison to the one with
the MC Hamiltonian as the initial Hamiltonian, as there are
low-lying eigenstates with close energies and small gaps or
level crossings, as well as degeneracies for a certain range
of 5. Adding the o term would not improve upon matters
here. This shows that using the MC Hamiltonian as the initial
Hamiltonian will work better than the Fock operator.

VI. CONCLUDING REMARKS

We propose using an adiabatic framework to compute
eigenstates and energies of molecules, and, in particular,
we employ the maximal commuting set to construct the
initial Hamiltonian, as opposed to, e.g., the Hartree-Fock
Hamiltonian. However, the issue of degeneracy can cause
instabilities in the adiabatic quantum-computational approach
(i.e., the QAE), where the ground-state energies of molecules
cannot be calculated accurately in the event of the bond
breaking at large molecular distances. As we examined, the
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alternative projection method, i.e., the quantum Zeno-like
projection (QZP) approach with additional Pauli X terms,
resolves this issue and obtains very accurate results.

We remark that it is also possible to apply the projection
method in between some steps of the adiabatic evolution or
even at the end. However, it is not clear a priori where to
insert such projection steps. We checked whether the projec-
tion added to the end of the QAE method could improve our
results. We found that in the case of bond breaking, such as
that considered in Fig. 9, this additional projection does not
help to arrive at the ground state or other low-lying states,
even if the augmented Hamiltonian H, in Eq. (11) is used.
Namely, the distribution of the final eigenstates has little prob-
ability in the final ground state and lowest few eigenstates.

The QAE method followed by an eigenstate projection is thus
not equivalent to the QZP method. This result also illustrates
that although the quantum-simulated annealing is generally
equivalent to quantum adiabatic computation, the use of the
first can give rise to an advantage in comparison with the
second in the application of molecular energy.

We demonstrated numerically that the QZP approach can
output low-lying eigenstates with high probability in addition
to the ground state. Compared to finding excited states via
the VQE [17], our method does not rely on a precise ground
state. Throughout this work, we also compared the results
from our methods to those of VQE for the ground-state energy
because VQE has become the standard quantum procedure for
molecular energies and reference results can be found in the
literature. However, one needs to treat this comparison with
a grain of salt, as the VQE is a near-term method and our
methods may require longer-term devices.

In Ref. [22], Xia, Bian, and Sais proposed a method to
map a quantum chemistry Hamiltonian to an Ising spin-class
Hamiltonian at the expense of more qubits with a constant
prefactor. In this way, quantum chemistry problems can be
carried out on the existing quantum annealers of the D-wave
and some experiments have been already carried out [23].
Current quantum annealers have constraints on connectiv-
ity and types of implementable coupling and thus our QAE
approach is not yet directly implementable on these ma-
chines. However, one may consider digital implementations
of adiabatic quantum computation, akin to our simulations
of the QAE approach. Given the number ny, of electronic
orbitals used, there are O(nf)‘b) interaction terms in the Hamil-
tonian. To digitize the evolution e ##®AT one has to use
approximately at most O(”ﬁb) terms in the first-order Trotter
decomposition; this number can be reduced by dividing these
Hamiltonian terms into groups, where within each group,
all elements commute; see, e.g., Ref. [24]. There is also an
overhead to turn multiqubit gates into some combination of
one- and two-qubit gates. To complete the digital implemen-
tation of the adiabatic evolution, one needs to repeat such
gate sequences at 7 /AT time steps (which is 20 in most of
our simulations). In current digital quantum computers, such
a long sequence of gate operations may suffer substantially
from decoherence and noise. Encouragingly, the authors of
Ref. [55] reported an experimental realization of the adiabatic
method with an execution of over 1000 gates, and where the
experiment could successfully find the solution to random
instances of the one-dimensional Ising problem. This study
indicates that if the gate error rates can be further improved,
the adiabatic approach could be promising for complex quan-
tum chemistry problems on near-future, large-scale quantum
devices.

At this moment, our QZP approach is also not readily
implementable due to the requirement to project onto the en-
ergy eigenbasis, and the Hamiltonian involves multiple-qubit
Pauli terms. Physical systems that likely possess multiple-
qubit gates include trapped ions [56] and Rydberg atoms using
blockades [57]. But projection of these qubits onto eigenstates
of a multiqubit interacting Hamiltonian is still challenging.
The standard phase estimation algorithm [8] can achieve this
but it needs to use a controlled evolution of the form ¢ — U zk,
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where U = ¢ AT is the evolution operator, “c — denotes

the controlled operation, and k =0, ..., n, — 1 where n, is
the number of ancillary qubits and sets the accuracy in the
energy and the projection. Such a controlled evolution is the
bottleneck of the algorithm as the subsequent inverse quantum
Fourier transform can be implemented semiclassically [58].
Similar to the above analysis in the QAE approach, the imple-
mentation of ¢ — U% requires decomposing at most O(ngb)
terms to single- and two-qubit gates. It incurs slightly more
overhead as the controlled version involves one more ancillary
qubit for each term. However, the approximation in the Trotter
decomposition destroys the perfect exponential relation 2% in
the power of U and the desired outcome of ancillary qubits
registering a phase in the form [0) + ¢¢2'|1). An iterative
version of the phase estimation that uses a single ancilla may
be used [59], but it also suffers from the same drawback if the
exponentiation of U is not exact.

On the other hand, there are a few other proposals to
perform spectral projection [31-33], and it is an interesting
future direction to consider how to make spectral projections
for Hamiltonians with multiqubit Pauli terms suitable for
near-term quantum computers. For example, one may use
the specific proposal of the Hadamard-test-like method in
Ref. [33]. There, the ancilla’s initial state does not need to
be |+) but can be an arbitrary pure state, and the evolution

time AT need not be proportional to 2% and can even be
random. It was demonstrated by numerical simulations that
Trotterization did not affect the projection. Thus, our QZP
approach with the spectral projection implemented in this
fashion has similar time complexity as the iterative phase
estimation approach but it has the advantage of being robust to
errors in both timing and Trotterization. To reduce the use of
multiqubit gates, one can thus optimize the expansion of the
controlled evolution into discrete one- and two-qubit quantum
gates. The number of gates depends on the native gates in
particular physical systems and requires further investigation.
With future larger-scale quantum computers and better mul-
tiqubit gates [57], the Zeno-based approach may be a viable
approach for quantum chemistry of large molecules.
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