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Nonzero spectral gap in several uniformly spin-2 and hybrid spin-1 and spin-2 AKLT models
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Recently a few 2D AKLT models have been shown to be gapped, including the one on the hexagonal lattice,
whose local spin magnitude is spin-3/2. Here we report the existence of a nonzero spectral gap on several
nontrivial AKLT models having either solely spin-2 or mixed spin-2 and spin-1 degrees of freedom. The hybrid
models we consider are defined on the 3D diamond and 2D kagome lattices, where lattice sites are spin-2 and
one single spin-1 degree of freedom is added on some or all of the edges. Although the spectral gap problem
for the uniformly spin-2 AKLT models on the diamond, kagome, and square lattices is still open, we are able to
establish the existence of the gap for spin-2 AKLT models on two planar lattices, which we call the inscribed
square lattice and the triangle-octagon lattice, respectively. So far these latter two are the only two uniformly
spin-2 AKLT models that have a provable nonzero gap above the ground state. We also discuss some attempts to
prove the gap existence on both the square and kagome lattices. In addition, we show that if one can show that
the gap of a finite-size, weighted AKLT Hamiltonian is larger than a certain threshold, then the original AKLT
model on the square lattice is gapped in the thermodynamic limit. The threshold of the gap we obtain scales
inversely with the linear size of the problem.
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I. INTRODUCTION

The spin models constructed by Affleck, Kennedy, Lieb,
and Tasaki (AKLT) in 1987 [1,2] have prompted many further
developments. These include symmetry-protected topolog-
ical phases [3–5], where the spin-1 AKLT chain notably
exemplifies the one-dimensional Haldane phase [6] and the
two-dimensional spin-2 model realizes Haldane’s 2D disor-
dered phase [7]. One key property for such phases of matter
to be stable is the existence of a nonzero energy gap above
the ground state. In one dimension, this was already solved
in the original AKLT work [1] and general methods have
been proposed and successfully applied [1,8,9]. Another, un-
expected development in the study of AKLT states is their
application to quantum computation [10–16]. In particular,
certain two-dimensional AKLT states can be used under local
measurements as a resource for universal quantum computa-
tion [12–16]. The existence of a gap would be useful to ensure
that the ground state can be efficiently created by cooling a
system under the engineered Hamiltonian.

AKLT’s original conjecture, that the spin-3/2 AKLT model
on the hexagonal/honeycomb lattice has a nonzero spectral
gap, was proved recently in Refs. [17,18]. These two works
analytically reduced different gap criteria and numerically
verified them beyond any doubt. In Ref. [17] the existence of
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a nonzero gap was also demonstrated for other 2D degree-3
lattices (with uniformly spin-3/2 degrees of freedom) and
two singly decorated ones (spin-1 mixed with, respectively,
spin-3/2 and spin-2). But no AKLT models with uniformly
spin-2 degrees of freedom in two or higher dimensions have
yet been shown to be gapped in the thermodynamic limit.
Here, we employ the method of Ref. [17] to several other
AKLT models on: (1) the 3D singly decorated diamond lattice
(mixed spin-2 and spin-1; see Fig. 1), (2) two 2D decorated
kagome lattices (also mixed spin-2 and spin-1; see Fig. 2),
(3) the 2D triangle-octagon lattice (see Fig. 3), and (4) the 2D
‘inscribed square lattice’ (see Fig. 4), with the latter two being
uniformly spin-2.

Reference [19] was the first to discuss the problem of
the gap on decorated honeycomb lattices, and proved the
existence of the gap when the number n of decorations on
each edge is 3 or greater. Similar decorated lattices for the
AKLT models were also discussed previously in the context
of measurement-based quantum computation in Ref. [15].
Extending the work of Ref. [19] to other lattices, Ref. [20]
reduces the gap issue for multiply decorated (n � 2) lattices
to a problem involving two original lattice sites and inci-
dent edges with decoration. This can be solved without the
knowledge of nearby local geometry, be the undecorated lat-
tice two-dimensional, three-dimensional, or even higher. This
result implies that AKLT models on these decorated lattices
are gapped in general. The unresolved problem of singly
decorated lattices, with n = 1, may require the knowledge of
nearby geometry, as demonstrated in the 2D singly decorated
square lattice and hexagonal lattice [17]. They are the variant
closest to the AKLT model on the original (undecorated)
lattices.
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FIG. 1. (a) The decorated diamond lattice. (b) The overlapping
scheme. (c) The subgraph �. (d) A pair of overlapping subgraphs.
(e) The three parts of this pair of overlapping subgraphs.

FIG. 2. The scheme for calculating the lower bound of two types
of decorated kagome lattices: (A) uniformly decorated and (B) half-
decorated. Also shown is the partition used to bound the gap of the
respective subpatch.

FIG. 3. The triangle-octagon lattice and the proposed overlap-
ping scheme.

The spin-2 AKLT model on the original, undecorated dia-
mond lattice is known to be disordered [21], but a sufficient
condition for this to hold is the existence of a nonzero gap
above the ground state, which is still evasive at the moment.
The related singly-decorated model, with a single spin-1 en-
tity added to every edge of the diamond lattice, is also likely
to be disordered as the spin-1 decoration is likely to have
larger quantum fluctuations than the spin-2 degrees of free-
dom, which may suppress any magnetic order. Here, we show
that this decorated model is indeed gapped, demonstrating that
the disordered nature of the model is stable against small per-
turbations. We also provide several different approaches for
lower-bounding the energy gap, one of which yields �lower �
0.013622, which is still likely much lower than the actual gap.

The existence of a nonzero spectral gap in the spin-2 AKLT
model on the kagome lattice is also not yet proved. We thus
consider decorating the kagome lattice in two different ways,
as illustrated in Fig. 2, where we have a spin-1 decoration (A)
on every edge between neighboring spin-2 sites and (B) on
only half of the edges. These two models are also shown to be
gapped.

Additionally, we are able to establish the existence of a
nonzero gap for AKLT models on two planar lattices where
every site has spin 2, which we call the inscribed square
lattice and the triangle-octagon lattice, respectively. Despite
these results, we are still not able to prove a nonzero gap for

FIG. 4. The inscribed square lattice and the overlapping scheme.
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the square lattice and the kagome lattice, but we discuss a
few possible approaches to achieve that goal. Additionally, by
using the approach introduced in Ref. [18], we also provide
a finite-size criterion for the square lattice. We show that
if one can determine that the gap of a weighted, finite-size
AKLT Hamiltonian is larger than a certain threshold, then
the AKLT Hamiltonian on the square lattice is gapped in the
thermodynamic limit. This gap threshold scales inversely with
the linear size of the problem. This means that if numerical
methods, such as DMRG or other tensor network methods,
could demonstrate a gap larger than the threshold for a certain
size, then the issue of the AKLT gap on the square lattice
would be solved. The remainder of the paper is organized
as follows. In Sec. II, we review the method of proving the
gap and provide more detailed discussions on how to obtain
the lower bound on the energy gap. Different approaches for
lower-bounding the gap are presented. In Sec. III, we give our
results demonstrating the nonzero gap of the AKLT models
on the singly decorated diamond lattice, two decorated
kagome lattices, and two other planar lattices. In Sec. IV, we
describe our attempts and ideas to tackle the gap problem on
the kagome and square lattices. In Sec. V, we generalize the
finite-size method in Ref. [18] and derive a corresponding
criterion for establishing the gap in the AKLT model on the
square lattice. We conclude in Sec. VI.

II. KEY METHODS

Following the procedure developed in Refs. [17,20], we
first partition the graph (corresponding to the lattice in ques-
tion) into overlapping subgraphs, which collectively contain
all the edges. The original AKLT Hamiltonian can then be re-
arranged according to these subgraphs, with a suitable weight
for each edge. We can use projectors supported on these
subgraphs to construct a Hamiltonian that lower bounds the
original AKLT Hamiltonian. If such a lower-bounding Hamil-
tonian can be shown to be gapped, then the original AKLT
Hamiltonian is gapped and a lower bound on the gap may
also be obtained. Examples of these partitions for degree-3
Archimedean lattices were found in Ref. [17], and those for
the five models shown to be gapped in this work are shown in
Figs. 1–4.

There are multiple choices of subgraphs, with no generic
approach to determine which one to successfully prove a
nonzero gap. It is thus necessary to check explicitly whether
the gap criterion is satisfied. We shall discuss this criterion
below; but, in brief, it reduces to an eigenvalue problem for
a sum operator supported on two overlapping subgraphs; see
Eqs. (5) and (6) below. However, even for two subgraphs
with relatively small sizes, the corresponding Hilbert space
may have too large a dimension to diagonalize on any com-
puter. The tensor-network method introduced in Ref. [17] will
be used to reduce the problem size substantially, and if it
becomes solvable on a computer, the gap criterion can be
verified with high precision.

A. Lower-bounding the Hamiltonian using projectors

Given a set of subgraphs �i, the AKLT Hamiltonian can
be rearranged as the sum of weighted AKLT Hamiltonian on

each subgraph,

HAKLT =
∑

e

He =
∑

i

∑
e∈�i

w(�i )
e He. (1)

We then bound the subgraph AKLT Hamiltonian H�i with the
orthogonal projector H̃i that has the same ground space as H�i ,

H�i =
∑
e∈�i

w(�i )
e He � γ0H̃i, (2)

where γ0 is the least nonzero eigenvalue of H�i .

B. Gappedness and gap lower bound

If we can prove the lower-bounding Hamiltonian H̃ =∑
i H̃i has a gap γ̃ , i.e.

H̃2 � γ̃ H̃ , (3)

then the AKLT Hamiltonian is gapped. To do this, we consider
contributions to H̃2. Since nonoverlapping pairs of Hamil-
tonian terms commute, we can thus discard these positive
semi-definite terms, yielding a lower bound on H̃2,

H̃2 =
∑

i

H̃i +
∑
i �= j

H̃iH̃ j (4a)

� H̃ +
∑
〈i, j〉

{H̃i, H̃j} � (1 − z̃η)H̃ , (4b)

where 〈i, j〉 denotes a pair of neighbors that overlap, z̃ is the
number of neighbors that subgraph �i overlaps, and η is the
overlapping parameter defined in Eq. (6) below, which mea-
sures how much the anticommutator can contribute negatively.
We will discuss below in detail how to determine η.

Importantly, if 1 − z̃η > 0, then H̃ is gapped and so is the
original AKLT Hamiltonian. In terms of Eq. (3), we can take
γ̃ = 1 − z̃η > 0, and, combining with γ0, we find a lower
bound on the gap of the original AKLT Hamiltonian,

�lower = γ0(1 − z̃η). (5)

C. Reducing the gap criterion to an eigenvalue problem

From the above discussion, we know that η < 1/z̃ guaran-
tees the existence of the gap. It is thus important to discuss the
property η, defined as the greatest possible negative contribu-
tion the cross-term of overlapping subgraphs can make, i.e.,

{H̃i, H̃j} � −η(H̃i + H̃j ). (6)

For convenience, we define E = 1 − H̃i, F = 1 − H̃j as the
complements of the subgraph projectors. Equation (6) holds
if and only if the following holds:

{E , F } � −η(E + F ), (7)

as proved in Refs. [9,20]. Geometrically, η is the cosine of the
least nontrivial angle between the hyperplanes corresponding
to the two projectors E and F , and 1 ± η is the greatest or,
respectively, least noninteger eigenvalue of E + F . This can
be shown by considering an eigenvector w. If we exclude the
subspaces ker E

⋂
ker F and ker E⊥ ⋂

ker F⊥, which corre-
spond to eigenvalues 0 and 2, respectively, then there is a
unique decomposition of any vector w into two vectors w =

013255-3



GUO, POMATA, AND WEI PHYSICAL REVIEW RESEARCH 3, 013255 (2021)

u + v, with u and v lying in ker F⊥ and ker E⊥, respectively.
If w is an eigenvector of E + F , the two vectors u and v in the
decomposition obey [20]

Eu = u, Ev = −αu (8a)

Fv = v, Fu = −αv, (8b)

where α ∈ [−1, 1] is related to the eigenvalues of E + F and
{E , F } by

(E + F )(u + v) = (1 − α)(u + v), (9a)

(EF + FE )(u + v) = −α(E + F )(u + v). (9b)

Since 1 ± α gives all the noninteger eigenvalues of H̃i + H̃j =
21 − E − F , by comparing (9) with the definition of η, we
have

η = sup
α/∈Z

|α|, (10)

which was proven in Ref. [20].

D. Projecting the problem into a lower-dimensional subspace

For an overlapping pair of subgraphs �i and � j , we split
their union into three subgraphs �L ≡ �i \ � j , �M ≡ �i

⋂
� j ,

and �R ≡ � j \ �i. The noninteger eigenvectors of E + F are
in the subspace spanned by the tensor products of ground
states of the local AKLT Hamiltonians for �L, �M , and �R,
so we can perform the diagonalization on a smaller “virtual”
space.

To understand this, we denote by AL, AM , and AR the
projectors onto the ground space of the AKLT Hamiltonian
for �L, �M , and �R, respectively. Without loss of generality,
we consider A = AL, satisfying [17,20]

EA = AE = E , (11a)

FA = AF. (11b)

The first equation comes from the frustration freeness of
AKLT Hamiltonians and �A ⊂ �i. The second comes from
�A

⋂
� j = ∅. Then for an eigenvector w = u + v of E + F

with a noninteger eigenvalue (and hence α �= 0), the projector
A preserves w,

Aw = α−2AFEw = α−2FAEw = α−2FEw = w. (12)

Hence, AL, AM , and AR preserve the noninteger spectrum of
E + F . We can thus find an orthonormal basis which spans
the image of AL ⊗ AM ⊗ AR.

E. Constructing the projectors using tensor networks

There is an isometry that maps the ground space of the
AKLT Hamiltonian on a subgraph to the “virtual-space” rep-
resentation which consists of virtual-spin degrees of freedom
for each vertex with free edges [17,20]. Thus, there is a
“holographic” correspondence for the ground space from the
physical spins on the bulk to the virtual spins on the boundary.
Our goal is to replace the physical indices in the projectors E
and F by virtual indices on the boundaries of the subgraphs
�L, �M , and �R. This makes it possible to numerically solve
a diagonalization problem when the original physical dimen-
sion is much too large for diagonalization to be tractable. We

emphasize that the reduction, though done numerically via the
singular value decomposition (SVD), is exact in principle.

This isometry is built out of the AKLT tensor �� , which
can be written in terms of a tensor network. The basic building
blocks of the tensor network are the following.

(1) For each vertex a with degree za, an isometry P[za/2]
a ,

which maps the total symmetric space of za virtual spin-1/2
(with basis states labeled by ↑ and ↓) to the physical spin-za/2
space. The expressions for a degree-2 vertex and a degree-4
vertex are, respectively,

P[1]
a = |1〉 〈↑↑| + |0〉 1√

2
(〈↑↓| + 〈↓↑|) + |−1〉 〈↓↓| , (13a)

P[2]
a = |2〉 〈↑↑↑↑|

+ |1〉 1

2
(〈↑↑↑↓| + 〈↑↑↓↑| + 〈↑↓↑↑| + 〈↓↑↑↑|)

+ |0〉 1√
6

(〈↑↑↓↓| + 〈↑↓↑↓| + 〈↓↑↑↓|

+ 〈↑↓↓↑| + 〈↓↑↓↑| + 〈↓↓↑↑|)
+ |−1〉 1

2
(〈↑↓↓↓| + 〈↓↑↓↓| + 〈↓↓↑↓| + 〈↓↓↓↑|)

+ |−2〉 〈↓↓↓↓| . (13b)

(2) For each edge e = (a, b), an antisymmetric tensor K
which contracts with a pair of virtual spin-1/2’s on each end
of the edge,

Ke = 1√
2

(|↑〉a |↓〉b − |↓〉b |↑〉a). (14)

These two elements combine to define the AKLT wave func-
tion, providing a natural expression of the wave function in
terms of a tensor network; see, e.g., Fig. 5.

As illustrated in Fig. 5(h), if we contract all the vertex
tensors and edge tensors, we can treat the resulting tensor as
a matrix, with the “right side” being a fusion of uncontracted
indices that correspond to virtual spins on the dangling edges
of the subgraph, and the ‘left side’ being a fusion of indices
corresponding to the physical spins on the vertices. However,
this matrix is not full-rank, because for vertices with z′

a > 1
dangling edges, the vertex tensor only acts nontrivially on the
totally symmetric subspace of the remaining z′

a spin-1/2s. We
can “fix” it by further contracting the remaining z′

a virtual

spins with P′[z′
a/2]†

a , which means that we replace these z′
a

spin-1/2s with a spin-z′
a/2 degree of freedom. It was shown

that such a counting is exact [17] and is a generalization of
the uniqueness of the ground state in the AKLT model under
appropriate boundary conditions [22].

Altogether we arrive at the AKLT tensor, as illustrated in
Figs. 5(a)–5(c),

�� =
∏
a∈�

P[za/2]
a

∏
e∈�

Ke

∏
a∈∂�

P′[z′
a/2]†

a . (15)

This tensor �� : Hvirtual → Hphysical is an isometry from the
virtual space to the AKLT ground subspace of the physical
degrees of freedom. Therefore the ground subspace is the span
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FIG. 5. Illustration of how to extract the projector to the AKLT
ground space of an given region or subgraph. (a) A subgraph in a
1D AKLT chain is used as an example, where each physical spin
can be written as symmetric sum of virtual spins. [(b) and (c)] The
AKLT tensor � = UU † is constructed by applying symmetrizers P
at each vertex to the tensor product of antisymmetric virtual spin
doublet states K at each edge and external virtual spins at dangling
edges. [(d) and (e)] The AKLT basis tensor U is the AKLT tensor,
orthonormalized using a singular value decomposition � = UsV †.
To avoid storing tensors with large physical dimensions explicitly,
s and V are calculated numerically from �†�. U is represented in
terms of a tensor network as U = �V s−1. (f) The projector 	 =
UU †. [(g) and (h)] Another example of an AKLT Tensor on a more
complicated subgraph.

FIG. 6. We can reduce the dimension of the projector E =
UL+MU †

L+M by using the fact that AL = ULU †
L , AM , AR only annihilate

eigenvectors of E with integer eigenvalue. Since UL acts isometri-
cally on the image of AL , the noninteger eigenvalues of E + F can be
obtained by performing the spectral decomposition of tensors derived
from the tensor in the dashed green box and the corresponding tensor
for M + R.

of the left singular vectors of �� , which can be obtained from
the singular value decomposition (SVD) of �� ,

�� = U�s�V †
� , (16a)

	� = U�U †
�, (16b)

where U� is the orthonormalized AKLT tensor whose column
vectors span the ground subspace of the AKLT Hamiltonian
H�; 	� is the projector to the ground subspace.

To avoid the large physical dimension and to take advan-
tage of the smaller virtual dimension, we can perform the
SVD via the eigenvalue decomposition for �†�, which is a
dim Hv × dim Hv matrix,

�†� = V�s2
�V †

� . (17)

Since U� is a dim Hp × dim Hv matrix, which may be too
large to fit in the computer memory, we express U� from
the tensor network representation of �, as seen in Figs. 5(d)
and 5(e),

U� = ��V�s−1
� . (18)

Using the tensor-network representations of AL =
ULU †

L , AM , AR, E , and F , we can write the action of
(AL ⊗ AM ⊗ AR)E and (AL ⊗ AM ⊗ AR)F by contracting
the physical indices; see Fig. 6. To extract the noninteger
eigenvalues, we can consider only the tensor inside the
dashed box in Fig. 6. This reduces to studying the action of E
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FIG. 7. The α vs λ plane, where α is as in (9) and λ is the
eigenvalue of a quadratic polynomial of E + F , which we hope to
choose such that eigenvectors with α � −η0 will yield an eigenvalue
�2 + 2η0. Note that α is symmetrically distributed with respect to
0. Here η0 = 0.2.

and F on the image of AL ⊗ AM ⊗ AR, using the orthonormal
basis UL ⊗ UM ⊗ UR.

F. Methods to extract the largest noninteger eigenvalue

We use the standard ARPACK library to do the eigenvalue
decomposition in Eq. (17) and sparse maximum-eigenvalue
extractions of quadratic polynomials of E + F . Below, we
mostly focus on the case where the size of E + F (when
reduced to virtual degrees of freedom) is large enough that
it cannot be exactly diagonalized directly but is still small
enough to extract the largest or smallest eigenvalues by the
Lanczos method.

The tensor-network representations in (18) and Figs. 5, 6
are handled using a python package called TENSORNETWORK.
The action of E on a vector v ∈ Hv is evaluated by contract-
ing the tensor network representation of this expression. The
path of contraction is calculated using the PYTHON package
OPT_EINSUM, to ensure that the size of intermediate tensors
does not exceed the memory limit.

Given the action of E and F , one can extract the spectrum
using the iterative method provided in ARPACK. However, the
size of the problem makes it only feasible to extract the first
several greatest-magnitude eigenvalues. Thus we consider the
quadratic polynomial of E + F :

O ≡ (2 + η0)(E + F ) − (EF + FE ). (19)

The action of O on an eigenvector w is

Ow = (2 + η0 + α)(1 − α)w. (20)

As illustrated in Fig. 7, our goal is to find η = supα/∈Z |α|,
where the noninteger α’s are symmetrically distributed
around 0.

We first guess an η0 and evaluate the largest eigenvalue λ

of O. If λ is close to 2 + 2η0 up to numerical error, then we
can almost claim that there is no noninteger α � η0. In this
case, the largest eigenvalue comes from a = −1 or a ≈ −η0.
The approximation sign comes from numerical error. We can
further exclude the second case by doing another calculation
using a slightly smaller η′

0. If λ′ ≈ 2 + 2η′
0, then we know

α = −1. By decreasing η0 carefully we finally find an η0,
where λ − (2 + 2η0) is large enough compared to the numer-
ical error. Then, we have

α = − 1
2 (1 + η0 ±

√
(η0 + 3)2 − 4λ). (21)

The + branch is less than −1 and can be excluded, so

η = − 1
2 (1 + η0 −

√
(η0 + 3)2 − 4λ). (22)

Importantly, if 1 − z̃η > 0, where z̃ is the number of overlap-
ping neighbors of a subgraph, then the corresponding AKLT
model has a nonzero spectral gap.

G. Evaluating the lower bound of the subgraph
Hamiltonian gap

Having obtained the overlapping parameter η to verify the
gap, the next step is to give a lower bound on the gap of the
AKLT Hamiltonian via �lower = γ0(1 − z̃η), where γ0 is the
gap of the weighted AKLT Hamiltonian on the subgraph �i,

H�i =
∑
e∈�i

weHe � γ0H̃i. (23)

The weights of the Hamiltonian term for a given edge in dif-
ferent subgraphs ums up to unity:

∑
i w

(�i )
e = 1. We note that

the weighted AKLT Hamiltonian on a finite graph is always
gapped, since there are only finite number of eigenstates.

There are three ways to calculate the gap of this weighted
AKLT Hamiltonian, which we now discuss.

1. The direct method

The ARPACK library contains a procedure to get the alge-
braically smallest eigenvalue given a sparse Hermitian linear
operator. To calculate the gap, which is the second smallest
eigenvalue above (with the smallest one being zero), we use
the AKLT projector to shift the ground states to a higher level,

OP =
∑
e∈�i

weHe +
(∑

e∈�i

we

)
	�. (24)

Then we can apply ARPACK procedures to numerically calcu-
late the smallest eigenvalue of the shifted Hamiltonian.

2. Lower bounding with sub-sub-graph projectors

For a larger subgraph to which one cannot apply the direct
method, we decompose it further into sub-sub-graphs, which
collectively contain all the edges in the subgraph, with weights
on each edge summing up to the corresponding weight of the
edge in the subgraph; see Fig. 8(a).

The weighted subgraph AKLT Hamiltonian is the sum of
weighted AKLT terms in the sub-sub-graphs, which can each
be lower-bounded by the sum of projectors orthogonal to the
local ground state with appropriate weights (w′

j),

H�i =
∑
�′

j

H�′
j
�

∑
�′

j

w′
j H̃�′

j
, (25)

where w′
j are the gaps of the Hamiltonian on the sub-sub-

graphs, which can be calculated by method 1, and H̃�′
j
=

1�′
j
− 	�′

j
is the projector onto the Hilbert space orthogonal
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FIG. 8. Approach I for lower-bounding the gap. (a) The subgraph
is decomposed into four overlapping regions. (b) An isometry will be
applied to the nonoverlapping regions (the four triangular shapes A′,
B′, C′, and D′) for dimensional reduction.

to the local ground state supported in the sub-sub-graph �′
j of

subgraph �i.
As in the reduction from physical to virtual degrees of

freedom when we calculate the parameter η, we can project
the Hamiltonian on the right-hand side (r.h.s.) of Eq. (25) to
the virtual degrees of freedom and calculate its gap in order
to bound the gap of the above H�i ; see Fig. 8(b). This method
was proposed in Section B of the Supplemental Materials of
Ref. [17].

3. Overlapping sub-sub-graphs

In Eq. (25), we divide a subgraph �i further into a few
overlapping sub-sub-graphs �′

j . If these �′
j are chosen such

that they are related by symmetry such as rotation, then the
gap of their weighted AKLT Hamiltonians is identical, i.e.,
w′

j = w, yielding H�i � w
∑

�′
j
H̃�′

j
. As in Eq. (3), we calcu-

late the parameter η for
∑

�′
j
H̃�′

j
, obtaining a lower bound on

the gap of H�i of w(1 − zη), where z denotes the number of
overlapping neighbors of each sub-sub-graph �′

j . Of course,
such a lower bound is meaningful only when η < 1/z.

III. RESULTS FOR FIVE AKLT MODELS

A. Decorated diamond lattice

We choose subgraphs � as in Fig. 1. Each �i over-
laps with z̃ = 12 other � j’s in the same configuration. The

virtual dimensions of �L = �i \ � j , �M = �i
⋂

� j , and �R =
� j \ �i are 1024, 16, and 1024, respectively; their product
is 16 777 216. The parameter η, determined from the largest
noninteger eigenvalue 1 + η of the projector sum E + F , is
calculated to be η = 0.04131015388 < 1

12 . This shows that
the mixed spin-1/spin-2 AKLT model on the singly decorated
diamond lattice has a nonzero gap in the thermodynamic limit.

We note that, in principle, our calculations are accurate to
machine precision. However, in the following, we shall only
present ten digits of accuracy, rounding the eleventh digit of
η up and the eleventh digit of the gap estimate γ0 down, such
that the resulting value of �lower in Eq. (5) is strictly a lower
bound.

Next, we give two approaches to lower-bound the spectral
gap of the AKLT Hamiltonian on the singly decorated dia-
mond lattice.

1. First approach for a gap lower bound

Here we apply the method described in Sec. II G 2 to
lower-bound the gap of an AKLT Hamiltonian. To do this, we
consider the lower-bounding Hamiltonian HAKLT = ∑

i H�i �
γ0

∑
i H̃i, where γ0 is the gap of the weighted AKLT Hamil-

tonian H�i in a region �i, and the lower bound of the AKLT
gap is �lower = γ0(1 − z̃η). We will seek a lower bound on γ0,
as we cannot directly calculate its value, due to the excessive
Hilbert-space dimension 31655. We partition �i into five over-
lapping sub-regions A, B,C, D, E , as illustrated in Fig. 8(a).
We note that the weights in front of the local AKLT terms
are 1 in sub-region E and 1/4 in all other sub-regions A-D.
To lower-bound γ0, we first lower-bound the Hamiltonian

H�i via H�i � γ5[(1E − 	E ) + ∑D
j=A

1
4 (1 j − 	 j )] := γ5H̃5,

where 	 j is the projector to the ground space in subregion
j, and 1 j is the identity operator supported on it. The gap
of the AKLT Hamiltonian in each region is calculated to be
γ5 = 0.17064623273.

The second step is to bound the gap of H̃5. Even though
it has the same dimension as that of H�i , it consists of pro-
jectors on subregions. Therefore we can apply an isometry
U5, similar to those used in complexity reduction for calcu-
lating the parameter η, that consists of a product of isometric
transformations on the four nonoverlapping subregions A′, B′,
C′, and D′, shown in Fig. 8(b). This reduces the dimension
of H̃5 to that of H̃ ′

5 ≡ U5H̃5U
†
5 , which acts on a Hilbert space

of dimension 216 × 34 × 5. Such a reduction allows us to use
the Lanczos method to show the lowest nonzero eigenvalue
of H̃5 to be γR = 0.15830084148. As this number is smaller
than the minimal weight 1/4 of the projectors in H̃5, γR is a
lower bound on the energy gap of H̃5, following from propo-
sition 5 in the Supplemental Material of Ref. [17]. Thus γ0

is lower-bounded by γ0 � γ5γR ≈ 0.027013442238, and the
lower bound on the gap of the AKLT Hamiltonian on the
decorated diamond lattice is

�lower � γ0(1 − z̃η)

= 0.013622288769. (26)

2. A second approach for the lower bound

Here we give an alternative to obtain the gap lower
bound, described in Sec. II G 3. We first give the bound
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FIG. 9. Approach II for the gap lower bound via decomposing
one subgraph � into four overlapping sub-sub-graphs.

obtained:

�lower � γ0(1 − z̃η)

� 0.013110607533 × (1 − 12 × 0.041310153882)

= 0.0066113929572. (27)

As we explain above, the gap γ0 of the AKLT Hamiltonian
on a subgraph � of the decorated diamond lattice cannot be
directly calculated. The second approach is to further de-
compose � into four overlapping sub-sub-graphs �sub, j ; see
Fig. 9(a). These four sub-sub-graphs are related to each other
by rotating with respect to the center spin-2 site. We thus
can lower-bound the Hamiltonian H� � γ1

∑4
j=1 H̃sub, j :=

γ1H̃sub, where γ1 is the gap of the weighted AKLT Hamilto-
nian in each region and H̃sub, j is the projector onto the Hilbert
space orthogonal to the local ground space. The physical
dimension of each �sub, j is 5234 = 2025, so we obtain the
sub-sub-graph gap γ1 = 0.044374363959 by exact diagonal-
ization.

To obtain a lower bound on the gap of H̃sub, we consider its
square,

H̃2
sub � H̃sub,1 + H̃sub,2 + H̃sub,3 + H̃sub,4

+{H̃sub,1, H̃sub,2} + {H̃sub,1, H̃sub,3}
+ {H̃sub,1, H̃sub,4} + {H̃sub,2, H̃sub,3}
+ {H̃sub,2, H̃sub,4} + {H̃sub,3, H̃sub,4} (28a)

� (1 − z1η1)H̃sub, (28b)

where the parameter η1 is given by

η1 = sup
α/∈Z

|α|, (29)

with α’s defined by the eigenvalue equation

(H̃sub,1 + H̃sub,2)w = (1 − α)w. (30)

Each �sub,i overlaps with z1 = 3 other �sub, j’s, with vir-
tual dimensions 16 × 5 × 16 = 1280. The parameter η1 =
0.23484848485 is calculated using the method described
above in Sec. II. Thus, we obtain a lower bound γ0 on the

gap of the subgraph Hamiltonian,

γ0 � γ1(1 − z1η1)

= 0.044374363959 × (1–3 × 0.23484848485)

= 0.013110607533. (31)

We also used three other approaches to lower bound the
gap of the singly decorated diamond AKLT Hamiltonian. The
results from all five different approaches (based on three dif-
ferent partitions of the Hamiltonian) are listed in Appendix A.

B. Two decorated kagome lattices

Here we consider two different types of decorated kagome
lattices, in Fig. 2: one uniformly decorated (A) and the other
half decorated (B). Each subgraph overlaps with z̃ = 6 neigh-
bors. The total virtual dimension UL ⊗ UM ⊗ UR acts on is
324 × 27 × 324 = 2 834 352 for both cases.

It turns out that we can prove both models are gapped. For
both cases, we have calculated the η parameter and estimated
the corresponding lower bound on the gap. The results are
ηA = 0.061837628688 and ηB = 0.063876201589. Both sat-
isfy the criterion 1 − ηz > 0, and both models are gapped.

Using the method described in Sec. II G 2, the lower
bounds of the subgraph gaps γ0,A and γ0,B is calculated.
The virtual dimensions are 273 × 33 = 531 441 for A, and
363 × 53 = 5 832 000 for B, respectively. The gaps of the rel-
evant sub-sub-graphs (see Fig. 2) are γA = 0.087161682566,
γB1 = 0.27562963489, and γB2 = 0.78571428572. Thus the
lower bound on the AKLT model on the subgraphs is ob-
tained: γ0,A = 0.045113229196 and γ0,B = 0.11856350721.

Therefore we find lower bounds for these two AKLT mod-
els of, respectively,

�lowerA = γ0,A(1 − z̃ηA)

= 0.028375058500, (32)

�lowerB = γ0,B(1 − z̃ηB)

= 0.073123188281. (33)

C. Triangle-octagon lattice

We use the subgraph �, as shown in Fig. 3. Each
�i is overlapping with z̃ = 4 other � j’s. The total virtual
dimension UL ⊗ UM ⊗ UR acts on in this case is 512 ×
16 × 512 = 4 194 304. This configuration yields an η =
0.22524594477 < 1

4 .
The physical dimension of a single subgraph is 59 =

1 953 125, which is small enough for exact diagonalization on
the physical space. In practice, we adopt a shifted Hamilto-
nian Hshifted = ∑

e∈� weHe + (
∑

e∈� we)	� , which shifts the
ground state to an eigenvalue

∑
e∈� we = 10, much larger

than the possible gap. As described in Sec. II G 1, we then
calculate the gap by extracting the least eigenvalue of Hshifted

using ARPACK, which gives γ0 = 0.09764599552. The lower
bound of the AKLT Hamiltonian on the triangle-octagon lat-
tice is thus

�lower = γ0(1 − z̃η)

= 0.0096685374671. (34)
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FIG. 10. The decomposition scheme of a subgraph of the in-
scribed square lattice. It also shows how the weights of the edges
of sub-sub-graphs sum up to the weights in the subgraph, and the
weights in the subgraphs sum up to 1 in the whole lattice.

D. Inscribed square lattice

We use the subgraph � in Fig. 4. Each �i overlaps with
z̃ = 4 other � j’s with the same configuration. The total virtual
dimension UL ⊗ UM ⊗ UR acts on in this case is 3888 × 27 ×
324 = 34 012 224. The result is η = 0.20517748800 < 1

4 .
We further decompose the subgraph according to Fig. 10.

The gaps of sub-sub-graphs are γA = γC = 0.077207219973
and γB = 0.082508095136. The physical dimension of the
subgraph is 512 = 244 140 625, which is reduced further (by
projection to the virtual degrees of freedom) to 16 × 27 ×
25 × 27 × 16 = 4 665 600. Using the method described in
Sec. II G 2, the lower bound of the subgraph gap is calculated
to be γ0 = 0.058117906479.

Combining the above results, we have a lower bound on
the gap of the AKLT Hamiltonian on the inscribed square
lattice of

�lower = γ0(1 − z̃η)

= 0.010419962243. (35)

IV. CONSIDERATIONS FOR THE KAGOME
AND SQUARE LATTICES

A. Attempts on the kagome lattice

We choose the subgraph � as in Fig. 11. Each �i over-
laps with z̃ = 6 other � j’s with the same configuration. The
total virtual dimension UL ⊗ UM ⊗ UR acts on is 324 × 27 ×
324 = 2 834 352. The resulting overlap parameter is η =
0.17067852083 > 1

6 , which does not satisfy the gap criterion
unfortunately. So with this overlapping scheme we cannot
prove the existence of a gap in the kagome AKLT model,
although this does not imply that the gap does not exist.

Noting that η just slightly exceeds the threshold, we nat-
urally guess that by using a larger subgraph partition, we
might be able to find an η which satisfies the criteria. Here
we propose another overlapping scheme shown in Fig. 12. For

FIG. 11. The kagome lattice and an overlapping scheme that has
been tested.

each subgraph, there are six others that overlap it, and these
overlapping pairs are divided into 2 types, as some of the pairs
are topologically identical. The total virtual dimensions UL ⊗
UM ⊗ UR acts on are 8748 × 27 × 8748 = 2 066 242 608 and
8748 × 729 × 3888 = 24 794 911 296 for the two different
pairs. Unfortunately, these dimensions are too large for our
current computing resources.

B. A possible attempt on the square lattice

Here we present an overlapping scheme for the square
lattice; see Fig. 13. Each subgraph overlaps with z̃ = 8 neigh-
boring subgraphs. The overlapping pairs can be divided into
2 types: AB (4 pairs) and AC (4 pairs), with respective
virtual dimension 2916 × 6561 × 2916 = 55 788 550 416 and
78732 × 81 × 78732 = 502 096 953 744. If we could prove
that 4ηAB + 4ηAC < 1, then we could prove the existence of a
spectral gap in the square lattice AKLT model. However, these
dimensions are too large for us to carry out the calculations.

V. A FINITE-SIZE CRITERION FOR THE
SQUARE-LATTICE MODEL

Here we prove a finite-size criterion, inspired by the work
of Lemm, Sandvik and Wang [18] on the hexagonal lattice.
To do this, we select an N × N region with 4N additional
sites around it, as shown in Fig. 14, and a factor a to weight
Hamiltonian terms by. We find that the original AKLT gap
in the thermodynamic limit can be bounded by the following

FIG. 12. Another kagome lattice overlapping scheme.
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FIG. 13. A proposed overlapping scheme for the square lattice.
There are two types of overlapping pairs: AB and AC. We suspect
the partition presented here could be used to prove the existence
of the gap of the spin-2 square-lattice AKLT model. However, its
computational cost is still out of reach given present resources.

expression:

� � f (a)

g(a)

(
γF (a) − f (a2) − g(a)

f (a)

)
, (36)

where

f (a) ≡ 2(2N − 1) + (N − 1)(N − 2)a, (37)

g(a) ≡ 2N + 2(N − 2)a + (N − 2)2a2, (38)

and γF (a) is the actual gap of the weighted finite-size AKLT
Hamiltonian on the subgraph. By fine-tuning the parameter
a we might find that the actual finite-size gap γF (a) exceeds
the threshold γTH(a) ≡ f (a2 )−g(a)

f (a) , making the lower bound a
positive value. If so, this would prove the existence of the

FIG. 14. An illustration of the subgraph F�, with N × N plaque-
ttes and 4N surrounding sites. We note that N � 3, and two examples
with N = 4 and N = 5 are shown.

TABLE I. Threshold γTH of the subgraph gap lower bound in
order to establish the gap in the thermodynamic limit for the square-
lattice AKLT model.

N a γTH

4 1.28759 0.191729
5 1.31366 0.156829
10 1.3654 0.081199
20 1.39034 0.0410889
40 1.40244 0.0206377
100 1.40954 0.00827357

spectral gap for the original AKLT model on the square lattice.
The minimum γTH’s for subgraphs with different sizes N (i.e.,
the feature length) are shown in Table I.

In fact, by examining its dependence on N , we observe
that γTH ∼ O( 1

N ). We expect that, as N increases, γF will
converge to a�, and so with N large enough it should exceed
the threshold, hopefully while the problem size is numerically
accessible. In Appendix B, we give details of the proof for
the finite-size criterion; we illustrate different types of pairs
of projectors in Fig. 15.

Discussion

For a subgraph with size N and interior edge weight a, we
can prove that the infinite lattice is gapped if the gap is greater
than γTH(a), where

γTH(a) = (N − 2)a2 − 2(N − 2)a + 2(N − 1)

(N − 1)(N − 2)a + 2(2N − 1)
. (39)

The behavior of γTH(a) is shown in Fig. 16 for a few N’s and
the minimum values are tabulated in Table I.

FIG. 15. Illustration of the subgraph F� (left) and three types of
edge pairs (right). To analyze the R term in Eq. (B10a), we categorize
pairs of edges into three types. The accumulated weight of each
type of pair is summarized in Tables II, III, and IV, respectively. An
example pair of type O, with m = 2, n = 0 and weight a × 1 = a, is
shown in a N = 5 subgraph.
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TABLE II. The accumulated weights of type P1 edge pairs in an
N × N subgraph. Note that the case of m = 0 is excluded, as it counts
terms in H̃F� and gives f (a2). It is straightforward to check that all
entries in the right column are not greater than g(a) = 2N + 2(N −
2)a + (N − 2)2a2.

m hi(a)

1 � m � N − 2 2(N − m) + 2(N − 1)a + (N − 1)(N − 2 − m)a2

N − 1 N + 1

One can analytically find the minimal value of γTH:

a0 ≡ arg mina(γTH(a))

= −4N + 2 + √
2N4 − 2N3 + 6N2 − 2N

(N − 1)(N − 2)
, (40a)

γTH(a0) = −2
N2 + N − √

2N4 − 2N3 + 6N2 − 2N

(N − 1)2(N − 2)
. (40b)

In the large N limit, γTH is inversely proportional to N ,

a0 =
√

2 + O
(

1

N

)
, (41a)

γTH(a0) = 2
√

2 − 2

N
+ O

(
1

N2

)
. (41b)

We note that the scaling in Eq. (41b) slightly improves
the result of 3/N by Lemm [23]. We note that it should be
possible to allow more weights in the Hamiltonian to improve
the threshold to be inversely proportional to the square of the
linear size [24–27].

In the large a limit, γTH is linear in a as expected and
inversely proportional to N :

γTH = 1

N − 1
a + O(1). (42)

If the infinite lattice has a gap �, one would expect, as one
increases N , the boundary effect diminishes and the subgraph
gap γF converges to a�. However, one can make the gap
threshold γTH ∼ O( 1

N ) arbitrary small. Therefore, with a large
enough N , one should be able to find a configuration where
the gap is greater than the threshold, which would prove the
existence of the gap.

FIG. 16. The gap threshold γTH(a) for a few finite sizes N .

In contrast, if the infinite lattice is gapless, then one would
expect that the gap γF of a finite-size subgraph would con-
verge to zero as N increases, and γTH would provide an upper
bound for the diminishing gap. However, it is strongly be-
lieved that the AKLT model on the square lattice is gapped, as
provided by the exponential decay of the two-point correlation
function [22]. Two estimates of the gap in the thermodynamic
limit using numerical tensor-network methods give a consis-
tent value of � ≈ 0.015 [28,29]. Further strong evidence of
the existence of the gap on the square lattice was obtained
from studying the boundary state of the model [30].

VI. CONCLUDING REMARKS

We have established the existence of nonzero spectral gap
for AKLT models on five lattices: (1) the singly decorated
diamond lattice; (2) two singly decorated kagome lattices; (3)
the triangle-octagon lattice, where an octagon is inserted into
each plaquette, creating four triangles surrounding each site of
the original square lattice; (4) the “inscribed” square lattice,
where a diamond (or alternatively circle) is inscribed in every
other plaquette of the square lattice. The first three models in
(1) and (2) are composed of a mixture of spin-2 and spin-1
degrees of freedom. The spin-2 model on the undecorated
diamond lattice is known to be magnetically disordered, but
the existence of a gap is still an open question. The consider-
ation of the decorated diamond lattice may be regarded as an
analysis of a nontrivial three-dimensional model by itself and
a step towards solving the undecorated model. Intuitively, dec-
orating the diamond lattice with a spin-1 degree of freedom on
every edge introduces more quantum fluctuation (than in the
original diamond lattice) and reduces the tendency towards
magnetic ordering. The unique ground state and the proof of a
gap for the decorated diamond lattice support this intuition. In
addition to its existence, we also provide different approaches
to lower bound the value of the gap, though we believe that
values we obtained are much smaller than the actual gap.

AKLT models on all 2D regular lattices are disordered
[21]. The kagome lattice has geometric frustration, whose
effect is subtly reflected by certain generalized measurements
[14,15]. However, decoration by introducing spin-1 sites re-
duces this frustration. We have shown that the AKLT models
on two decorated kagome lattices are also gapped. The other
two planar models we considered derive from modification
of the square lattice and both consist of uniformly spin-2
degrees of freedom. To our knowledge, these are the only
spin-2 AKLT models for which a gap has been proven. In the
square and kagome lattice models, the gap is believed to exist
but still has not been proven.

We have also made an attempt on the kagome case and
have selected the lattice partition in Fig. 11, where z̃ = 6. The
η parameter for such a configuration was calculated to be η ≈
0.1707 > 1/6. Unfortunately, this value just barely exceeds
1/z̃ by less than 3% and a nonzero gap cannot be concluded.
One thus needs to consider a partition with larger unit cells,
such as the one shown in Fig. 12. However, the problem size
for that is beyond our current numerical capacity.

For the square lattice, we also suggest a partition in Fig. 13
that might be used to test the gap criterion for the square-
lattice AKLT model. However, the computer memory needed
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TABLE III. The accumulated weights of type P2 edge pairs in an N × N subgraph. The case m = n = 0 is excluded as it counts terms
in QF� and gives g(a). (Note further that n counts the edges between the two in question, not the total offset, which is why, e.g., the case
m = n = 0 is edges that are touching rather than fully coinciding.) It is straightforward to check that all entries in the last column are not
greater than g(a) = 2N + 2(N − 2)a + (N − 2)2a2.

m n hi(a)

0 1 � n � N − 2 2(N − n) + 2(N − 2)a + (N − 2)(N − 2 − n)a2

1 � m � N − 2 0 � n � N − 2 2 + 2(2N − 3 − m − n)a + (N − 2 − m)(N − 2 − n)a2

N − 1 0 � n � N − 2 N − n
0 N − 1 N
1 � m � N − 2 N − 1 N − m
N − 1 N − 1 1

to perform the calculation is also beyond our capacity. As
another approach, we have derived a finite-size criterion for
the square lattice similar to the one of Lemm, Sandvik and
Wang for the hexagonal lattice [18]. If we take the previously
estimated thermodynamic gap � ≈ 0.015 as the target, we
would need to take N = 40 in order for γTH(a0)/a0, i.e. the
local gap threshold divided by the local Hamiltonian weight
a0, to fall below the value 0.015. Numerical estimation of the
local gap for such a large problem size may be inaccessible.
Nevertheless, the scaling is likely to be improved [24–27] and
a lower value of N might suffice. In conclusion, establishing
rigorously the existence of the nonzero gap in the AKLT
model on the square lattice remains open.
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APPENDIX A: DIFFERENT LOWER-BOUNDING
METHODS FOR THE SINGLY DECORATED

DIAMOND LATTICE

In calculating the gap bound for the decorated diamond
lattice we have five results coming from three different in-
termediate Hamiltonians. The results here are presented with
fewer digits of precision than in the main text.

(1) Five-vertex Hamiltonian terms (a spin-2 plus the four
adjacent spin-1s), as in Fig. 8: H5 = 1

4 (H5
A + H5

B + H5
C +

H5
D) + H5

E . The H5
X are bounded relative to the original Hamil-

tonian by γ5 = 0.1706462, and the bound of H5 relative to the
full 17-vertex projector is γR = 0.1583008, giving an overall
relative bound of γ0 = 0.02701344.

(2) Six-vertex Hamiltonian terms (an outer spin-2 and the
four surrounding spin-1s plus the inner spin-2), as in Fig. 9:
H6 = H6

A + H6
B + H6

C + H6
D, where we have to bound H6

X rel-
ative to sum of terms from the original Hamiltonian where
(unlike in the other cases where all coefficients are 1) the four
terms that include the outer spin-2 have coefficient 1/4; this
gives γ ′

6 = 0.04437436.
(a) By computing the overlap parameter η′ =

0.2348484 . . . (between projectors of the two overlapping
regions) we get the relative bound γ0 = 0.01311061.

(b) Alternatively, by using proportion 5 of the SM of
Ref. [17] we bound H6 relative to the full projector with
γR = 0.3274050, getting γ0 = 0.01452839.

(3) Nine-vertex Hamiltonian terms (an outer spin-2 and
the central spin-2 plus the 7 spin-1s neighboring either), as
in Fig. 17: H9 = 1

4 (H9
A + H9

B + H9
C + H9

D).
(a) The H9

X ’s are bounded relative to the original Hamil-
tonian by γ9 = 0.02066720. By computing the overlap η′ =
0.05060345 we get the relative bound γ0 = 0.01752971.

(b) Alternatively, by using proposition 5, we bound H9

relative to the full projector with γR = 0.8655232, getting
γ0 = 0.01788794.

All of the above five different values of γ0 give respec-
tive lower bounds on the AKLT gap via �lower = γ0(1 −
z̃η), where z̃ = 12 and η = 0.041310153882 was obtained in
Sec. III A.

APPENDIX B: PROOF DETAILS FOR THE
SQUARE-LATTICE FINITE-SIZE CRITERION

We use F� to denote an instance of the weighted graph F
as a subgraph of the lattice � in Fig. 14, which consists of

TABLE IV. The accumulated weights of type O edge pairs in an N × N subgraph. Note that m and n are exchanged by reflections across
x = y, so the table is symmetric under exchange of m and n. The case m = n = 0 is excluded as it counts terms in QF� and will give g(a). It
is straightforward to check that all entries in the right column are not greater than g(a) = 2N + 2(N − 2)a + (N − 2)2a2.

m n hi(a)

0 1 � n � N − 2 (N + 1 − n) + (3N − 5 − n)a + (N − 2)(N − 2 − n)a2

0 N − 1 N
1 � m � N − 2 1 � n � N − 2 2 + 2(2N − 3 − m − n)a + (N − 2 − n)(N − 2 − m)a2

1 � m � N − 2 N − 1 N − m
N − 1 1 � n � N − 2 N − n
N − 1 N − 1 1
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FIG. 17. Partitioning the subgraph into four overlapping regions,
each with 9 spins.

N × N plaquettes at the center, including a central plaquette
� ∈ �, and 4N surrounding ‘dangling’ sites connecting to it.
The edge set of F� is denoted by EF� .

To each translation of F�, indexed by all plaquettes �,
we assign an operator HF� = ∑

e∈EF�
wePe, where Pe is the

AKLT Hamiltonian term (a projector) on two neighboring
spins connected by an edge e and the weight we is either 1 or
a, according to the pattern indicated in Fig. 14. We then square
HF� and sum over all translations (of the plaquette �),

A ≡
∑
�∈�

H2
F� . (B1)

There are two operator inequalities that we will derive, fol-
lowing the idea in Ref. [18]:

A � f (a)γFH, (B2)

A � f (a2)H + g(a)(Q + R), (B3)

where f and g are two functions defined below, H is the
original AKLT Hamiltonian on the whole lattice �, and Q and
R contain terms involving pairs of edges in H2 which share a
vertex or not, respectively:

H =
∑
e∈E

Pe, (B4)

Q =
∑

e,e′∈E,e∼e′
{Pe, Pe′ }, (B5)

R =
∑

e,e′∈E,e�e′
{Pe, Pe′ }. (B6)

After we square the total Hamiltonian H , the squared terms
give back H and there are two types of cross-terms, such that

H2 = H + Q + R. (B7)

By combining Eqs. (B2) and (B3), derived below, we con-
clude that

H2 � f (a)

g(a)

(
γF (a) − f (a2) − g(a)

f (a)

)
H, (B8)

and hence the lower bound in Eq. (36), provided the expres-
sion inside the bracket in Eq. (B8) is positive.

Proof of Eqs. (B2) and (B3). We first study the number
of single-edge terms in

∑
�∈� HF� . There are two equiv-

alent types of edges, vertical and horizontal edges, each
of which appears, in F�, (N − 1)(N − 2) times within the
central square and 2(2N − 1) times outside of it. Thus, by
translation, the accumulated weight for each edge term is
f (a) = 2(2N − 1) + (N − 1)(N − 2)a. If we label the gap of
HF� as γF , then we can lower-bound A as

A =
∑
�∈�

H2
F� �

∑
�∈�

γFHF� = γF f (a)H. (B9)

We then consider the number of cross-terms in A =∑
�∈� H2

F�
and decompose H2

F�
= H̃F� + QF� + RF� ,

where

H̃F� =
∑

e∈EF�

w2
e Pe, (B10a)

QF� =
∑

e,e′∈EF� ,e∼e′
wewe′ {Pe, Pe′ }, (B10b)

RF� =
∑

e,e′∈EF� ,e�e′
wewe′ {Pe, Pe′ }. (B10c)

Since each cross-term only arises when both edges are in the
same subgraph F�, we expect we can use constant coeffi-
cients to bound QF� and RF� relative to Q and R.

As the weight of each edge in H̃F� is squared, we straight-
forwardly determine that the coefficient (which we also call
the “accumulated weight”) for each edge in A is f (a2):∑

�∈�

H̃F� = f (a2)H. (B11)

For each pair of edges which share one vertex, one can
easily see by counting that both the parallel and perpendicular
cases have the same accumulated weight g(a) ≡ 2N + 2(N −
2)a + (N − 2)2a2, and thus∑

�∈�

QF� = g(a)Q. (B12)

It turns out that the number of combinations of edges in
each class of R can be bounded by those of Q. There are three
types of equivalent classes of pairs:

P1: a pair of parallel edges separated by m edges along the
direction perpendicular to them.

P2: a pair of parallel edges separated by m edges in the
parallel and n in the perpendicular direction.

O: a pair of orthogonal edges separated by m edges paral-
lel to the first one and n edges parallel to the second.

See Fig. 15 for an illustration of these three classes. We
tabulate all possible cases i of the accumulated weight hi(a)
in these three classes in Tables II–IV. As can be checked, for
N � 4 all cases are less than or equal to g(a) for positive a, so
we conclude that ∑

�∈�

RF� � g(a)R. (B13)

Summing up, we arrive at Eq. (B3).
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