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Abstract—The ubiquitous of 5G New Radio (5G NR) accel-
erates the massive implementations in many fields including
swarm Unmanned Aircraft System (UAS) networking. The ultra
capacities of 5G NR can provide more sufficient networking
services for the swarm UAS networking which can enable swarm
UAS to deploy in more complex and challenging scenarios
to achieve missions. However, the conventional swarm UAS
networking are mainly centralized or hierarchical which is
vulnerable to the dynamics and the deployment of swarm UAS
networking on a large scale. In this paper, we formulate a cell wall
communications for the heterogeneous swarm UAS networking
with the inspiration of biological cell wall communication. Fueled
by reinforcement learning, we resolve the edge-coloring problem
of cell wall communication scheduling to achieve the maximum
throughput between the heterogeneous swarm UAS networking
globally. The evaluation shows our proposed reinforcement learn-
ing enabled algorithm can surpass the conventional scheduling
algorithms over 90% when the time piece is less than 0.01s and
achieve the optimal throughput for the heterogeneous swarm
UAS networking.

Index Terms—reinforcement learning, throughput optimiza-
tion, swarm UAS networking, SG new radio, edge-coloring

I. INTRODUCTION

The compact and the affordable of next generation NodeB
in 5G New Radio (5G NR) stimulus the deployment of 5G
NR networking on a large scale. The lightweight and energy-
saving of 5G NR devices lead the 5G NR networking spread
from Mobile Ad-hoc Networking (MANET) to Vehicle Ad-
hoc Networking (VANET) and Flying Ad-hoc Networking
(FANET) [1]. As the mutual effects, FANET also extends
the 5G NR networking to a large scale with more flexibility
and mobility. The 5G NR enabled swarm Unmanned Aircraft
System (UAS) networking can achieve more sufficient net-
working services from the inter and the intra networking which
can provide the swarm UAS networking more capacities to
finish the complex missions which have high requirements of
collaborations and corporations simultaneously and sequen-
tially [2], [3]. With ultra-high frequencies carriers, 5G NR
can provide ultra wideband wireless communication for swarm
UAS networking with the sacrifice of transmission range and
energy divergence which attracts many researchers to make
effort to amend the trade-off to extend the reliance of 5G
NR enabled swarm UAS networking. With reliable wideband
wireless communication, the feasible throughput of swarm
UAS networking can assure the quality of services for swarm
UAS which is critical to the perception and complement of
mission from remote terminals in real time. The instantaneous

feedback and intrusion loops between remote terminals and
swarm UAS networking on the light is essential to the complex
mission complement.

As the predominant stimulus for the evolution in many
fields, machine learning fueling everything trends is prevailing
and obtains remarkable achievement. As one main branch
of machine learning, reinforcement learning is playing a
pivotal role in enhancing the swarm UAS networking. The
advantages of learning from the environment and evolving
itself with interaction with external feedback make reinforce-
ment learning can achieve more robust performance (delay,
bandwidth, and throughput) for the swarm UAS networking
[4]. Concurrently, the distributed deployment, the flexibility
of interaction, and the convenience of transfer learning from
sophisticated models of reinforcement learning can enable the
swarm UAS networking to achieve sufficient packet delivery
underneath the dynamics of swarm UAS networking. The
experience exchanging between different UAS also extends
the local optimal throughput of swarm UAS networking to
global optimization.

The conventional reinforcement learning enabled through-
put optimization focus on the central or hierarchical archi-
tecture of swarm UAS networking. The main optimal factors
are trajectory, deployment, and coverage of communication
which can enhance the swarm UAS networking temporarily in
some specific scenarios and can not deploy the optimization
on a large scale. Most optimizations will collapse as the
amount of swarm UAS networking is over some specific scale.
However, the amount of swarm UAS networking can decide
the complexity of mission complement and quality, as well
as the collaborations and cooperation between heterogeneous
swarm UAS networking.

Different from the previous work on swarm UAS network-
ing, in this paper, we focus on the communication between het-
erogeneous swarm UAS networking in bio-inspired behaviors,
cell wall communication. The cell wall communication is not
dependent on the specific UAS on the swarm UAS networking
to afford gateway services for other peers which can be
flexible and elastic to the dynamics of swarm UAS networking
on a flight. To achieve the maximum throughput between
the heterogeneous swarm UAS networking, we formulate the
routing scheduling into an edge-coloring problem which is an
NP hard problem. With reinforcement learning enhancement,
we resolve the edge-coloring problem with the minimum
colors to extend the utility of each link between the cell



wall. The evaluation shows that the reinforcement learning
enabled approach can improve the throughput of over 90%
when the time piece is less than 0.01s and elasticity of swarm
UAS networking significantly. Simultaneously, the DQN can
achieve more throughput as the number of installed beams in
UAS rises.

The paper is organized as follows: Section II illustrates
the related work of swarm UAS networking. Section III de-
scribes the methodology of our proposed approach. Section IV
presents the evaluation of the proposed methodology. Section
V concludes the paper.

II. RELATED WORK

The ubiquitous implementations of swarm UAS require
reliable, efficient, and high performance UAS networking
to provide sufficient networking services. Fueled by rein-
forcement learning, swarm UAS networking is being capable
of implementation on a large scale which accelerates the
evolution of reinforcement learning enabled approaches.

Due to the advantages of learning from interaction with
the environment, reinforcement learning can assure the robust
optimization for swarm UAS networking. Comparable with the
distributed characteristics of swarm UAS networking, Multi-
Agent Reinforcement Learning (MARL) is adopted in many
research to improve the throughput of swarm UAS networking.
Each UAS as an agent is formulated to MARL to achieve
the local optimization of throughput and coverage based on
its observations [5], and maximization of long-term rewards.
In [6], MARL is implemented to optimize the movement of
UAS with off-line exploration and on-line learning. The joint
optimization combining off-line and on-line movements will
be generated to achieve global optimization of throughput for
UAS networking and cellular networking. Similarly, MARL
optimizes the UAS’s path and time resource allocation to the
ground IoT devices jointly to achieve the maximum throughput
between UAS and IoT devices. The policy is rewarded as the
minimum throughput to reinforce each agent to achieve local
optimization [7]. A long-term resource allocation is formulated
to achieve maximum throughput for UAS networking and
optimized by MARL. The evaluation shows a good trade-
off strike between the throughput gain and the information
exchange overhead [8]. The trajectory and power allocation are
critical to the performance of swarm UAS networking. In [9],
MARL enhances the trajectory of UAS and power allocation
of UAS networking in the mission to achieve the maximization
of throughput between UAS and ground users. The evaluation
shows the networking utility and system overhead can be opti-
mized jointly. With the feedback from primary users and UAS
fusion nodes, a distributed reinforcement learning approach
is proposed in [10] which aims to improve the throughput
allocation to improve the utility of the whole system and
mitigate the security threat with congestion of spectrum and
hopping of frequencies. However, the optimization fluctuates
in the performance significantly and is lack of robust.

The conventional approaches of reinforcement learning are
to deploy Q-learning or Deep Q-learning Network (DQN) into
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Fig. 1. Communication between heterogeneous swarm UAS networking

swarm UAS networking and achieve the local optimization
and global optimization for the throughput of swarm UAS
networking. In [11], DQN aims to reduce the time consump-
tion of deployment of UAS on the networking relaying and to
obtain seamless video offloading services. A liquid Q-learning
is implemented to predict the users’ requests and states, and
deploy corresponding UAS with specific content to aid the
throughput of users [12]. Based on the real-time interaction
and historical data, Q-learning amends the policy of relay
power to reduce the bit error rate and energy consumption
underneath random jamming attacks [13]. With services pro-
viding seamless cellular networking for vehicles on highways,
actor-critic algorithms learn the vehicle movement environ-
ment to obtain the knowledge of the signal coverage and the
dynamics of vehicles to handle the continuous action space
[14]. To extend the range of 5G NR, the swarm UAS with
5G network slice extension can enable the extension of 5G
accessing scale to the other swarm UAS networking on the
flight. The extension can provide computing aid for the swarm
UAS networking which is under job offloading and minimizes
the energy consumption and queuing delay [15]. The private
base station can only provide services to the specific UAS
which is a lack of coordination between different base stations.
The throughput between the base stations and the UAS can not
satisfy the requirement of the massive heterogeneous swarm
UAS networking. A two-level architecture is proposed to opti-
mize the base stations’ behaviors and to achieve the long term
payoffs. The self-interested and independent behaviors are
deployed on the lower level of purchasing the noncooperation
subgames, and the cooperative game is implemented to obtain
the global optimizations [16]. To improve Multiple Input and
Multiple Output (MIMO) throughput, DQN learns the environ-
ment policies through interacting with the external networking
which can achieve the 20% improvement of throughput [17].

III. SYSTEM MODELING

To achieve a complex mission complement, there needs
several swarm UAS that play different roles in the processing
of different mission execution stages in some scenarios. The
conventional communication between heterogeneous swarm



UAS networking is hierarchical and central which needs
specific UAS, as gateways, to provide packet delivery services.
The hierarchical and central architectures of communication
are lack flexibility, elasticity, and reliance on the dynamics of
swarm UAS networking and can not be deployed on a large
scale. The cell wall communication between heterogeneous
swarm UAS networking is decentralized and dynamic. As
Fig. 1 depicts, swarm A and swarm B are two heterogeneous
swarm UAS networking which contains N and M UAS
in each swarm respectively and need packet delivery for
collaborations and cooperation. To achieve a feasible commu-
nication volume, swarm A and swarm B select qualified UAS
(marked in dash line circles) in each peer to provide packet
delivery services. The mechanism of selection for the qualified
UASs are mainly dependent on the estimation from Automatic
Dependent Surveillance-Broadcast (ADS-B). The UASs are
in the range of communication for swarm UAS networking
can be qualified. Due to the dynamics of each swarm UAS
networking, the qualified UAS are variable to achieve stable
and sufficient connections between heterogeneous swarm UAS
networking.

In this scenario, each UAS is equipped with a compact and
energy saving mmWave devices that can generate H mmWave
radio frequency (RF) beams for connections. Along with Time
Division Multiple Access (TDMA), each UAS in the cell
wall can provide gateway services for the inter swarm UAS
networking. We define that there are n UAS in swarm A and m
UAS of swarm B to construct the cell wall for communication
between swarm A and swarm B. Here, A = {A,|n < AN} and
B = {B,|m < M}.

For a convenience, we simplify the cell wall from swarm
UAS networking which is depicted as Fig. 2. The simplifi-
cation of the cell wall can be mapped into a directed graph
G = (V, &) with vertex set V and edge set £. Here, V = AUB,
V is the union of swarm A and swarm B. £ denotes the
connections between swarm A and swarm B. cg denotes the
throughput capacity of £. With the radio transmission, cg
is formulated as cg = gglog(l + lopfﬁ) and cg > 0.
Here, ge denotes the direct gain between linked vertexes.
pe denotes the transmission power from vertex )V and o is
Gaussian noise distributed with zero mean. PL¢ is the path
loss for beam transmission in line of sight which is formulated
in: PLg = 20log(dg) + 20log(fe) — 147.55 where dg¢ and
fe denote the corresponding distance and frequencies of £
respectively.

The packet delivery duration for the cell wall is definite
which denotes 7 and obtains F frames for sequential connec-
tions. Simultaneously, each F contains multiple time unit time
that can be divided into NN time slots ¢, where N > 1. The
ith slot t; is subjected to: Zfil t; =1. Here, 0 <t; <1.In
t;, a set of connections &; C &£ are active for packet delivery.

IV. REINFORCEMENT LEARNING ENABLED THROUGHPUT
OPTIMIZATION FOR CELL WALL COMMUNICATION

With constructed cell between swarm A and swarm B, we
assume the topology of the cell wall keeps stable in each frame
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Fig. 2. Cell wall communication between heterogeneous swarm UAS net-
working

F which also means that the qualified UAS in the cell wall
of swarm A and swarm B stay unchanged in each time slot
t;. During each time slot, the feasible throughput for the each
edge is formulated into cg, = t;ce. With the avoidance of
collision between different beams, the more time slot the edge
& occupies, the more feasible throughput will the cell wall
achieve. The whole optimization can be given:

N €&
InaXE E ti - S;-¢j
%

i=1 j=1

(1a)

N
subject to > t; <1,t; >0
=1

(1b)

Where, s; is the selection of link & in " slot ¢; with
throughput capacity s;, s; € {0, 1}.

To achieve the maximum throughput for the cell wall
communication, we schedule different pieces in each time slot
that activates different links in each piece. Here, we install a
link time ¢¢ for [£] — 1 links and the left time mod(t;,t7)
(mod is the modulo operation) is assigned for the last links. We
perform edge-coloring on the cell wall networking to achieve
the maximum throughput for the swarm A and swarm B. We
assume there are just « colors that are sufficient for G in the
time slot ¢;. Each color is corresponding to one set of active
links in time duration t9 expect from the last one with time
assignment of mod(t;,t9). In the time slot ¢;, the maximum
utility of link active time is given:

at? = ([2] = 1) + mod(t;, 19) 2a)
< -1+ 2b)
<[t]<1 (2¢)

The proof (2) shows the whole links can be scheduled into
the ¢;, and we do not need extra scaling for the at? to fit the
time slot ¢;. Combined with (1), we can rend the maximum
throughput for edge-coloring scheduling which is given:

N a-—-1
DYt 3 sk 3 mod(t, 1) s:-¢x) Ga)
i=1 j=1 €€ 1€E.

subject to (1b) (3b)



Based on the optimization of the throughput between cell
wall communication, the less color we use for the edge-
coloring, the more throughput we will achieve. However, an
edge-coloring problem for a graph is NP hard problem which
has been proofed in [18]. Theoretically, the maximum colors
of edge-coloring for G is 3[A(G)/2]. Here, A(G) is the
maximum node degree of G. Based on the proof in [18], the
A(G) is given:

(4a)

(4b)

Based on the rendering of A(G), we can have o for edge
coloring of G.

t9(m+n—1)+1
2.9
Theoretically, we have « options for the graph G to fill all
the edges without collisions. The conventional resolution to
the edge-coloring is a NP hard problem. Here, we leverage
the Q learning approaches to solve the edge-coloring of G.
Generally, the fewer colors the agents adopt, the more rewards
they will get. The updating processing of agent is given:

Qt+l(s7a) = Qt(sva’) + ¢{Tt - Qt(sva)
+max Q(s',a’)}

a=3-] ] ®)

(6)

Where ¢ is the learning rate, ¢ € (0,1), s is the current
state observed by agent, s’ is the next state predicted by the
agent. a and a’ are the current action adopted and the next
action predicted by agents respectively. Q* is what the value
the agent can achieve in the current sequential time ¢ and the
r® is the cumulative rewards the agent achieved. The whole
processing is to maximize the Q-value at each step.

We incorporate Deep Neural Network (DNN) into the
framework of Q-learning to achieve the edge-coloring problem
resolving. The Q-value updating function from (6) can be
modified with weight derived from DNN: Q!(s,a;6). The
DNN can be trained to minimize the loss function L() which
is given:

L'(0) = E(sa0)[(r* + max Q" (s',a;07) — Q'(s,a:0))°]
(N
Here, 6 is the parameter networking for the Q-network at
iteration t and 6~ is the parameters at iteration ¢ + 1. 6~
fixed when optimizing the L!(6) at t. By differentiating L*(6),

we can have:
VS*Lte = E(s,a;e) [(max Qt+1(s/a a; 9_) - Qt (8, a; 9)
r)?Vo-Q(s,a,07)]

To bridge the connection between the cell wall networking
and DQN, we need to decompose the edge-coloring problem
into modeling which can interact with DQN. With interaction
with the modeling of the cell wall, the DQN can derive optimal

®)

operations for the edge-coloring resolving. The optimization
can be given:

maxﬂ (9a)
subject to (1b) (9b)
B<a %)
ENNEY =09\ pne€ (9d)
B
Dt <19 >0 (%)
p=1
N B
DNt <1t >0 (9f)
i=1 p=1

Here, f3 is the colors adopted by DQN, which is not bigger than
the theoretical colors derived from [18], a. £’ = {Vs LVAL
VE and VY denotes the endpoints of connection £ at time
piece t9. Simultancously, £ = {Vi, Vi }. Vﬁ; and Vi,
denotes the endpoints of connection St at time piece t9.
Et and Ef\ are two connections actlve at time piece t9.
Correspondingly, all the active scheduling in the time slot ¢;
can not be over the allocation of ;.

The action space for agent is the coloring as € {1,2, ..., 5},
and the state s of the environment can be denoted as the edge
EY in time piece t9. Thus, the reward function of action can

be given:
. { (9d) (9¢) (9/)

. (10)
0, otherwise

In (10), the reward of action is based on the counts of colors
which input the colored G to detect the state of G and output
the desired operations to maximize the reward. Each successful
operation can be reward as . The total reward for one iteration

can be given:
£
1
max E —
£ ag
s=1

Here, i denotes the average reward of edge k in the i time
slot. To achieve the successful coloring for G, the state keeps
unchanged if the subjection is broken.

We combined (6) and (11), and the updating processing
agent can be given:

Y

Q"*(s,a) =

(12)

The detailed pseudocode is shown as Algorithm 1. We inte-
grate DQN updating processing into the max throughput of o
for the cell wall.

The above optimization shows the single active link for
UAS in time piece t9 in the cell wall. With different active
frequencies, the UAS can generate multiple beams at the same
time to deliver packages to the multiple UAS simultaneously.



Algorithm 1: Render the max throughput o for cell
wall
Initial G = (V, £) for Initial Schedule S
setting t9;
Calculate A(G)' + W%Hl;
Calculate a = 3[A(G)/2];
Initial random a}°; Initial s';
th(at(],Sto) «— %o;
ay
$=1
while V, L' > 0 do
Input G* into DNN ;
st < DNN;
it £'NEY #0 then
| Break;
else

rt o« L.
ag

maxy e, QH(s',a’) + max(i| sHks
Q'(s,a) + tjto .Zig a%;
Q" (s,a) + Q'(s,a) + ¢{r' — Q(s,a) +
maxy e, QU(s’,a’)};
LY(0) +
(rt + max, Q' (s',a;07) — Q¥(s,a;0));
| Vo L'6 « L'(0);

if Vyo- L' = 0 then
L 0= 25\21 Z?:Nfg " Si Gys

Here, we will loose the constraint of UAS in (1b) to I which
means there are I' beams active in different frequencies. The
optimization of (1) can be modified to:

N £
max E E tr Sk Ci
kev J

(13a)
k=1 j=1
N
subject to » tp < Tty >0, (13b)
k=1

Comparable with the modification of (13), (2) can be given:

at? — ((%‘1 — 1) + mod(t, 19) (14a)
<(E -1+ (14b)
<[t <T (14c)

With the consideration of minimum interference between fre-
quencies, we keep « unchanged to achieve the stability of the
cell wall communication and maximum throughput between
heterogeneous swarm UAS networking.

V. EVALUATION

In this part, we will evaluate the throughput optimization for
cell wall which is critical to the performance of swarm UAS
networking. The configuration is shown as the TABLE I. With
5G NR, each UAS is installed with a mobile beamforming

TABLE I
CELL WALL CONFIGURATION
Transmission Power, p 20 dBm
Distances between centers of S and S2, d 100 m
Direct gain, g 30 dB
Carrier frequency, f 28 GHz
Noise power, No/B -174 dBm/Hz
Bandwidth 1 GHz
Minimum SINR threshold -5 dB
3000
& 3
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Throughput (Gbps
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Fig. 3. Scheduled throughput between swarm A and swarm B

device which can generate mmWave beams over the carrier
of 28 GH z. To approximate the practical dynamics of swarm
UAS, we scatter the cell wall distances between heterogeneous
swarm UAS range from 15 m to 100 m with the distribution
of Poisson (A = 20) randomly. There are 30000 UAS for
each swarm (swarm A and swarm B) scattering randomly in
the space: 50 m x 200 m x 50 m with the spatial constraints:
i = 1. Here, a = 20m, b =30 m, ¢ = 25 m.

Fig. 3 shows the edge-coloring based scheduling solved by
the Karloff algorithm for one beam installed on the swarm
UAS. We compared the throughput from swarm A and swarm
B and calculated the feasible throughput between swarm
A and swarm B with consideration of collisions between
beams occurring. The result shows that the two heterogeneous
swarm UAS networking can obtain more throughput with the
reduction of ¢9 from 1s to 0.01s. The beam utility reaches the
maximum when #9 is less than 0.01 which keeps steady for
the setting from 0.01s to 0.001s.

Fig. 4 shows the throughput and normalized improvement of
the cell wall for DQN. With trained by the best result, the DQN
can achieve better performance over the Karloff algorithm than
90% when ¢9 is set in the range of 0.01s to 0.001s. There are
still some collisions for DQN based edge coloring resolving
when t9 = 1s. Simultaneously, the DQN can achieve more
throughput as the number of installed beams in UAS rises.

Fig 5 shows the training processing of DQN in the edge-
coloring resolving. As the episode number increases the av-
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erage reward and episode reward are becoming convergence
and the total reward can reach 1714.95. With colored edges
for cell wall in multiple beams of UAS, the whole throughput
can be improved significantly.

VI. CONCLUSION

In this paper, we resolve the edge-coloring problem of
cell wall communication scheduling to achieve the max-
imum throughput between the heterogeneous swarm UAS
networking with DQN. The evaluation shows our algorithm
can surpass the conventional scheduling algorithms over 90%
when the time piece is less than 0.0ls and achieve the
optimal throughput. As the beams installed on UAS increases,
the whole throughput between cell wall of swarm A and
swarm B can be enhanced remarkably. In the near future,
we will explore the efficiency of the reinforcement learning
with variable training frameworks to achieve more flexibility
and elasticity of cell wall communication for heterogeneous
swarm UAS networking.
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