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Abstract—Radio frequency (RF) signal classification has sig-
nificantly been used for detecting and identifying the features of
unknown unmanned aerial vehicles (UAVs). This paper proposes
a method using empirical mode decomposition (EMD) and
ensemble empirical mode decomposition (EEMD) on extracting
the communication channel characteristics of intruding UAVs.
The decomposed intrinsic mode functions (IMFs) except noise
components are selected for RF signal pattern recognition based
on machine learning (ML). The classification results show that
the denoising effects introduced by EMD and EEMD could both
fit in improving the detection accuracy with different features
of RF communication channel, especially on identifying time-
varying RF signal sources.Whilte

Index Terms—Micro UAS Detection, EMD, EEMD, RF Fin-
gerprint, Machine Learning, time-varying RF signal

I. INTRODUCTION

In recent years, the advancing in control and material
technology has made the micro unmanned aerial system (UAS)
more reliable. With the price dropping on armature UAS,
the market of micro UAS has been expanding for a while.
However, the imminent threat brought by it leads to the less
secured airspace for those sensitive facilities, such as airports,
nuclear power plants, electrical transformers [1] [2] [3] [4].

Doppler radar has been investigated for a few years in
detecting the presence of micro UAS [5] [6] [7]. Micro-
Doppler signature generated by the blade flashing has been
effectively applied in the unknown UAV detection [8] [9] [10].
In [11] [12], the authors show that the Short Time Fourier
Transform (STFT) and Fast Fourier Transform (FFT) could
be well applied in estimating the blade flashing characteristic
of micro UAS, rotation rate, physical parameters of the rotor
blade with a long period of signal sampling time. However,
the limited surveillance airfield of active radar could cause the
low spectrum resolution to realize long range detection.

RF fingerprint is also used as the main resource for detecting
micro UAVs. In [13] [14] [15] [20], the author applied con-
ventional STFT and ML algorithm to find the time-frequency-
energy spectrum pattern when UAVs present. In [16], a static
RF source detection has been discussed for identifying the
numbers of intruding UAVs in the indoor experiment. Due
to the features of scattering transmission and reception in RF
communication, a short period of signal sampling should not
appear to be the problem in RF based long range detection.

On the other hands, the low signal noise ratio (SNR) and
increasingly complex wireless signal environment are the main
issues.

Compared with conventional Fourier transform, the em-
pirical mode decomposition (EMD) shows more benefits in
mitigating the noise generated by UAS body vibrating, en-
vironment effects [11]. In [9], six popular entropy features
from the micro Doppler signature (m-DS) is introduced by
selected intrinsic mode function (IMF). The results show
that the combination of features could be well applied in
recognizing the UAVs’ presence. [8] discussed the possibilities
in applying EMD in reconstructing the blade flashing signal
for distinguishing the m-DS of micro UAS.

Inspired by the two methods on denoising the received
signal, we propose the long range UAVs detection method by
applying EMD and EEMD on extracting features of RF finger
print from intruding UAVs. The decomposed intrinsic mode
functions (IMFs) except noise components are selected for RF
signal pattern recognition based on machine learning (ML).
In the end, various machine learning classifiers (i.e., CNN,
MLP, Decision Tree, SVM) training results would compare the
denoising performance of EMD and EEMD on the received
signal data.

The rest of the paper is organized as follows. In section II,
the comparison and background between two primary adaptive
signal decomposition methods, EMD and EEMD, is presented.
In section III, a detailed description of the experiment setting
and data acquisition would be given. The classification results
from different classifiers are discussed in section IV. Finally,
in section V, we conclude our paper.

II. METHODOLOGIES

Fig. 1 shows the overview of the proposed method for
obtaining the pattern of time varying RF signal of UAS. Two
types of IMFs (CS-IMFs and VS-IMFs) are obtained based on
the transformation of received complex signal. The non-noise
and featured IMFs are selected to form the time- frequency-
energy spectrum by STFT. Finally, we use the ML classifiers
in identifying the intruding UAVs based on the received RF
signal patterns.



r- - e T T T T T I A
RF signal analysis with EMD and EEMD IMF selection based on
sampled

|

| Complex value
I EEMD

| complex RF

|

|

|

signal ‘

components' features

\
|
Detection of signal
Variation
|
- | Features for VS-IMFs
Manitude Real value EMD ‘ and C§-IMFs

\

\

\

\

I

computation |

| IMF selection |

L — — 4

| I

Pattern classification based | Spectrogram analysis [
i - : STFT

on ML classifier | of decomposed signal |

| I

| I

4

*Note: Video signal IMFs Spectrogram formation

(VS-IMFS) Control signal IMFs g G S Mg g Sy
(CS-IMFs)

Input:

Fig. 1: An overview of the proposed RF finger print recogni-
tion method

A. EMD and EEMD

EMD algorithm is firstly introduced by Huang et.al [17],
which is a data driven method for analyzing the non linear
and and non stationary signal. EMD is an adaptive method to
decompose time sequential data into a set of intrinsic mode
function (IMF) components, which becomes the basis of rep-
resenting the data. The obtained basis mostly own a physically
meaningful representation of the underlying processes and
there is no need for harmonics [18]. It could be formulated as
follows.

K

f(n) = ZIMFsk(ck) +7r(n)

k=1

(1

where the M F'si,(n) denotes the kth intrinsic mode func-
tion (IMF) with the certain frequency components at c; and
r(n) is the residual between the local extremals and final
divided IMF signal. K = 10 is picked here.

The linear combination of IMF's and residual function
forms the signal decomposed. The following equation explains
the process of getting IMFs.

hi(n) = f(n) — mi(n) 2

where m;(n) is the average value of the upper envelope and
lower envelope, h;(n) is the potential intrinsic mode function
which obeys the following sifting rule.

N 2
Stdi _ Z hl — 1(71) — hl(n)

h? —1(n) )

n=0

in which, Std; denotes the standard deviation of sum on
difference rate of the hf — 1, the IMF could be defined when
Std; shows a smaller value than the given threshold value.

However, with the influence of extremal point unevenly dis-
tributed on the signal, EMD counters the IMF decomposition
mistakes of mode mixing. EEMD [19] solves the mode mixing
problem. EEMD defines the true IMF components as the mean
of an ensemble of trials. In each trial white noise of finite
amplitude is added into the signal and then EMD is applied

to the signal and then EMD applied to this signal. It could be
explained as following procedures:

1. Add white noise series w(n) to the targeted time sequence
data f(n) and decompose the IM Fs;(n) into IMFs.

2. Repeat step 1 for multiple times with different white
noise series and ensemble of corresponding IMFs of the
decomposition gives the final IMF.
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Fig. 2: 10 EMD IMFs of 2.4G Control Signal

Fig. 2 shows the EMD decomposition on the 2.4G uplink
of micro UAS. The 10th IMF still keep the same trigger
edge comparing with original signal. It suggests EMD could
not fully extract the packet transmission feature signal by a
limited number of IMF, which implies the mode mixing while
decomposing the original signal as multiple sub-factors.

EEMD is applied here to generated 10 IMFs graphs of
2.4G uplink signal between micro UAS and remote controller.
Notably, we see that the Fig. 3 decomposition process stops at
the 5th IMFs. The IMF6 to IMF10 reveals the features closed
to white noise.Considering the IMFs after IMF5 is mainly
dominated by the noise component as there is no package
transmitting in the UAS communication link. Therefore, we
choose IMF1-IMF5 as for the subsequent pattern formation
by STFT.

B. Short Time Fourier Transform on IMFs

Short time Fourier transform (STFT) obtains the spectro-
gram of IMFs by calculating the magnitude of signal as
follows.

inf
STFT(f.t)= > s(tyw(t —m)e 72mkn/N

n=—inf
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Fig. 3: 10 EEMD IMFs of 2.4G Control Signal

where s(t) indicates the signal on each of IMF s(t) =
IMFs, w(t) denotes the discreet window function and n
represents the sample number and N is the FT analysing
window. Index m is the positions of the analysis window,
in which m(i — 1) = m(i) + nN. k indicates the index of
frequency components kwg where wy = 27 fs/N.
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Fig. 4: White noise

To view the different time-frequency spectrum features
of different IMF functions, STFT is then applied to each
IMF. The time-frequency-energy distributions of the signal
are obtained and formed on more prominent features in
recognizing the signal. Fig. 4 shows the white noise on the
spectrogram after the signal decomposition by EEMD. The
main component from IMF1 to IMF5 shows the same signal
strength across the time domain.
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Fig. 5: 1 control signal source

Fig.5 shows a more apparent packet transmission that could
be easily distinguished from the ”straight-line” features. It
could be seen more clearly from the Fig.7 of the downlink
signal transmitting. The longer-lasting time of downlink signal
emitted from the UAS, it has more potent signal energy on the
spectrum. The exciting part from Fig.6 is the signal strength
shows a more prominent feature of control packet transmission
than any of the previously received signals, and we could see
the two packages on the spectrum. It implies the possibilities
of EEMD’s application in detecting multiple micro UAVSs since
the package transmission behavior could be easier decomposed
by this method.
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Fig. 6: 2 control signal sources

III. EXPERIMENT

The test micro UAV has two communication channels: 1)
downlink at 5.8G transmitting video packet 2) uplink at 2.4G
transmitting control packet. To receive the signal with the right
center frequency, we adopted GNURadio modules as following
parameter setting.

The source library defines the device centering frequency
at 2.455G at both receiver 1 and 2 with 31.25MH z sampling
frequency. Both signals are connected with the FFT frequency
sink of 15SMH z bandwidth and file sink to record the complex
signal.

The test filed includes a 340ft flying track parallel with the
receiver location site in which we conducted two types of
Micro UAS flying method, one along with the flying site, the
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receiver captures varying RF signal strength and the second
UAS flying with surrounding the receiver, in which the RF
signal keeps the same strength in the recording process.

At the end of the testing phase, we obtained RF signal from
micro UAS at 2.4G with one and two uplink signals, 5.8G
one downlink signal, white noise from the environment with
no major RF signal interference.

I'V. RESULT AND DISCUSSION

The machine learning classifier is trained to recognize the
spectrogram (i.e., Fig.4-Fig.7) pattern. A 100x 256 matrix is
obtained for representing the 256 frequency points with 100
time samples. By combining the other 5 IMF channels, we
obtain a 100x 1280 matrix for describing 5 IMFs components.
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Fig. 8: Accuracy of ML Classification based on EMD

Labels of training classifier are assigned as follows:

1) white noise (label 0)

2) one control signal(label 1)

3) two control signals (label 2)

4) one video signal (label 3)

By comparing Fig. 8 and Fig. 9, EMD generally reaches
lower accuracy on label 1 and label 2, which could be ex-
plained from Fig. 2 that EMD shows less denoising ability on
noncontinuous packet transmission such as control signal on
uplink. This leads to the first five IMFs components generated
by EMD could not include most channel features and failed
to filter the environment noise, resulting in the spectrogram
pattern mixing.
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Fig. 9: Accuracy of ML Classification based on EEMD

100% accuracy on label 0 is because the white noise
shows lower value on decomposed IMFs compared with
packet transmission signal, which implies that both EMD and
EEMD denoising method could distinguish the none intruding
UAVs situation. This could contribute to more promising UAV
presence detection system with lower false-positive rate.

From Fig. 9, Label 3 has the lower accuracy in signal
type classification compared with Fig.8, since it has a unique
continuous packet transmission pattern, which could be seen
from the spectrogram in Fig. 7. Furthermore, continuous
packet transmission signals in the downlink channel could be
easily mixed up with the noise in EEMD. Due to the fact they
share more similar signal distribution in the time domain.

As discussed above, EEMD adds up the white noise in the
base of the standard EMD method, which cancels the uneven
distribution of extremal points. Therefore, the pattern of two
control signals on the label is more obviously represented by
the EEMD. However, the less accurate classification result
on the downlink channel shows that EMD could effectively
detect channel with packet transmission interval. Therefore,
it is possible to apply these two adaptive signal denoising
methods in identifying the features of unknown UAV RF
communication channels.

V. CONCLUSION

This paper has proposed a novel method of applying EMD
and EEMD signal decomposition in micro UAS detection.
Nearly, the UAS’s control and video signal with limited band-
width was decomposed into a few sets of intrinsic mode func-
tions. Each IMF function represents the different frequency
components in the link between the UAV and its remote
controller. By classifying the pattern formed by IMFs with
different machine learning classifiers, much better detection
accuracy shows the advantages of applying two methods on
distinguishing different features of UAVs RF communication
channels.
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