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Abstract
Purpose—To investigate the use and efficiency of 3-D deep learning, fully convolutional 
networks (DFCN) for simultaneous tumor cosegmentation on dual-modality nonsmall cell lung 
cancer (NSCLC) and positron emission tomography (PET)-computed tomography (CT) images.

Methods—We used DFCN cosegmentation for NSCLC tumors in PET-CT images, considering 
both the CT and PET information. The proposed DFCN-based cosegmentation method consists of 

a) Author to whom correspondence should be addressed. xiaodong-wu@uiowa.edu; Telephone: (319) 335-6490; Fax: 319-335-6028. 
CONFLICT OF INTEREST
The authors have no relevant conflicts of interest to disclose.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Med Phys. 2019 February ; 46(2): 619–633. doi:10.1002/mp.13331.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



two coupled three-dimensional (3D)-UNets with an encoder-decoder architecture, which can 
communi- cate with the other in order to share complementary information between PET and CT. 
The weighted average sensitivity and positive predictive values denoted as Scores, dice similarity 
coefficients (DSCs), and the average symmetric surface distances were used to assess the 
performance of the pro- posed approach on 60 pairs of PET/CTs. A Simultaneous Truth and 
Performance Level Estimation Algorithm (STAPLE) of 3 expert physicians’ delineations were 
used as a reference. The proposed DFCN framework was compared to 3 graph-based 
cosegmentation methods.

Results—Strong agreement was observed when using the STAPLE references for the proposed 
DFCN cosegmentation on the PET-CT images. The average DSCs on CT and PET are 0.861 
± 0.037 and 0.828 ± 0.087, respectively, using DFCN, compared to 0.638 ± 0.165 and 0.643 
± 0.141, respectively, when using the graph-based cosegmentation method. The proposed DFCN 
cosegmentation using both PET and CT also outperforms the deep learning method using either 
PET or CT alone.

Conclusions—The proposed DFCN cosegmentation is able to outperform existing graph-based 
segmentation methods. The proposed DFCN cosegmentation shows promise for further integration 
with quantitative multimodality imaging tools in clinical trials.
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cosegmentation; deep learning; nonsmall cell lung cancer (NSCLC); tumor contouring

Positron emission tomography and computed tomography (PET-CT) have revolutionized 
modern cancer therapy. Several studies have demonstrated that the estimate of tumor extent 
and distribution is most accurate when functional and morphological image data are 
combined using PET- CT.1–3 Outcomes are reported to improve with PET-CT guided 
radiotherapy.4–7 To make full use of both PET and CT image modalities, accurate tumor 
delineation on PET- CT images is vital for tumor staging, response prediction, treatment 
planning, and prognostic assessment. The current standard of care for radiation therapy 
target determination relies on manually contouring the CT portion of combined PET-CT 
image dataset often combined with a threshold method for volume definition on the PET 
images. The manual contouring on CT is performed visually on a slice- by-slice basis by the 
radiation oncologist for tumor delineation. They have very limited support from automated 
segmentation tools and threshold determined volumes on PET often require significant 
manual editing. The development of standardized and highly reproducible PET-CT 
segmentation techniques would be immensely valuable for clinical care and for research.8

Although PET-CT images are routinely used in clinic, many clinically available PET-CT 
segmentation algorithms only work for a single modality or work for the fused PET- CT 
images. A major challenge in CT segmentation is that the pathological and physiological 
contrast uptake cannot be distinguished; meanwhile, the pathological and physiological 
changes are often more differentiable using molecularly based PET radiotracers. The 
American Association of Physics in Medicine (AAPM) Task Group (TG) 2119 and the 
MICCAI challenge10 have published recommendations for PET image segmentations. To 
take advantage of the dual modality nature of PET-CT imaging, cosegmentation aims to 
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simultaneously compute the tumor volume defined on the CT image as well as that defined 
on the PET image by combining physiological information from the PET image with the 
anatomical information from CT image.11,12 Substantial progress has been made in 
automating the tumor definition extracted from PET-CT scans.11–28 Although these methods 
showed promise, there are still limitations when adapting them for clinical use. Most 
previous methods depend on user-defined foreground seeds belonging to the tumor.11,12 

Secondly, features modeling components in graph-based cosegmentation algorithms were 
designed to complement human experience or more complicated clinical priors.12,23–25 

Therefore, finding optimal parameters and features is difficult especially with the presence 
of lesions. These challenges have restricted clinical application. Efforts to automate PET- CT 
tumor segmentation are consequently needed in modern radiotherapy.

Due to inherent differences in PET and CT imaging modalities, the tumor boundary defined 
in PET does not always match that in CT. Therefore, simultaneously segmenting tumors in 
both PET and CT while admitting the (subtle) difference of the boundaries defined in the 
two modalities is a more reasonable approach than using fused PET-CT images where 
identical tumor boundaries are assumed. Figure 1 shows the tumor boundary differences 
between CT and PET images in a lung tumor.

In this work, we attempt to address these challenges and seek data-driven deep learning 
solutions for automatically delineating features directly from PET-CT scans to develop a 
computer- aided automatic processing tool for tumor segmentation. Deep learning is able to 
outperform most conventional approaches29 and is able to manage many medical tasks.30–38

Several publications detail the potential power of this approach.39,40 In this paper, we focus 
on investigating 3D-UNet, deep-fully convolutional networks (DFCN) for tumor delineation 
in PET-CT scans. The 3D-UNet for semantic segmentation31,38,41 performs voxel-wise 
classification and was adopted to label each voxel as lesion or background. To achieve PET-
CT tumor cosegmentation, we propose a novel DFCN network which integrates two coupled 
3D-UNets within an encoder-decoder architecture. One 3D-UNet performs the PET tumor 
segmentation and the other is used for performing CT tumor segmentation. The two U-Nets 
communicate with each other to allow the complementary features from both modalities to 
“flow” between the two U-Net networks to produce more consistent tumor contours. To 
demonstrate the applicability and performance of our method, we evaluate the proposed 
segmentation approach on PET-CT scans of nonsmall cell lung cancer (NSCLC) patients 
and compare its results to manual segmentation, which is the standard of care for NSCLC 
segmentation in PET-CT volumes.

1. METHODS AND MATERIALS
1.A. Image data

A total of 60 NSCLC patients who received stereotactic body radiation therapy (SBRT) were 
analyzed in this study following institutional review board (IRB) approval. All patients had 
PET-CT images for simulation and received follow-up CT images between 2 and 4 months 
after radiotherapy treatment. Fluorine 18-fluorodeoxyglucose (18F-FDG) PET and CT 
images were obtained using a dual PET/CT scanner (Siemens Biograph 40, Siemens 
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Medical Solutions, Erlangen, Germany). All patients were injected with 370 BMq ± 10% of 
18F-FDG with an uptake time of 90 min ± 10%. In all cases, subjects fasted for more than 4 
h and had a blood glucose of less than 200 mg/dl. The gross tumor volume (GTV) for each 
of the PET and CT image datasets was separately delineated by three radiation oncologists 
on both CT and 18F-FDG PET images, with the guidance of the corresponding images in 
the other modality. All contouring was completed using VelocityAI (Varian Medical System, 
Inc., Palo Alto, CA). In this study, while physicians referred to the other modality to define 
the tumor contours on either PET or CT, they did not visualize the corresponding PET and 
CT scans at the same time using the software’s fusion feature. The reference standard for 
each scan was then generated by applying the STAPLE algorithm42 to the three manual 
delineations.

1.B. Methods

1.B.1. Data preprocessing—In our experiments, we first resampled each pair of the 
registered PET-CT scans with an isotropic spacing in all 3D, and then cropped a fixed size of 
each 3D volume (that is, 96 9 96 9 48 voxels) centered at each lesion. In order to remove 
unrelated image details, we took a similar intensity thresholding strategy as that used by 
Zhong et al.28 For the CT images, we truncated the intensity values of all scans to the range 
of [−500, 200], and for the PET images, we truncated the SUV of all scans to the range of 
[0.01, 20.0].

1.B.2. DFCN-based cosegmentation—The proposed DFCN-based cosegmentation 
framework (briefly called DFCN-CoSeg) consists of two coupled 3D- UNets with an 
encoder-decoder architecture, as illustrated in Fig. 2.

Each 3D-UNet is used to handle the tumor segmentation in PET or in CT, and both are 
communicating with each other to share the complementary features from the other 
modality.

In this work, we mainly employ the 3D version of the original two-dimensional (2D) U-Net 
with encoder-decoder architecture,38 for single-modality segmentation, (CT-only or PET-
only). This consists of a number of down-sampling (encoder) and up-sampling (decoder) 
modules,38 as depicted in Fig. 2 and Table I. Given an input image cube with a size of 96 9 
96 9 48, the first convolutional layer which produces 32 features maps is mainly adopted to 
extract the low level features. Based on these feature maps, a U-type network architecture is 
formed, in which the encoder module contains four convolutional and max-pooling (for 
down-sampling) layers with 64, 128, 256, and 512 feature maps, respectively; and the 
decoder module contains four de-convolutional (for up-sampling) and convolutional layers 
with 256, 128, 64, 32 feature maps respectively. For each convolutional layer, the size of all 
convolutional kernels is 3 9 3 9 3; while for all max-pooling layers, the pooling size is 2 9 2 
9 2 with a stride of 2. In all deconvolutional layers, we up-sample the input features maps by 
a factor of 2. Using a technique similar to that described by Cicek et al.31, the feature maps 
are concatenated after deconvolution with those corresponding features in the prior encoder 
module. More specifically, using the CT data as the input, the first convolutional layer 
produces 32 feature maps (denoted by F1), the encoder 1 produces 64 feature maps (denoted 
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as F2), and so on and so forth. Then, in the corresponding decoder module, we concatenate 
them to ensure maximizing information flow between layers, which helps improve the 
gradient flow computation and the network training.

After the decoder, a soft- max classifier implemented by the fully convolutional operation is 
used to generate voxel-level probability maps and the final predictions. After that, the 
probabilities and predictions were given as inputs to the loss functions. In this work, two 
kinds of well-known loss functions were studied:

1. The cross-entropy loss function (denoted as CELoss), which is defined as:

L
CE = − 1

N
∑

i − 1

N
∑

c = 1

2
yi
c logpi

c

Where pi
c denotes the probability of each voxel i belongs to class c (i.e., 

nontumor or tumor), yi
c indicates the ground truth label for voxel i.

2. The dice coefficient loss function (denoted as DICE-Loss), which is defined as:

L
DICE = − 1

N
∑

i − 1

N
1 − 2 A ∩ B

A + B

where A is the reference standard volume (ground truth), and B is the predicted 
volume.

To facilitate the complementary feature flow between the two 3D-UNets to achieve PET/CT 
tumor co segmentation, we propose a feature-level fusion scheme, which takes advantage of 
skipping connections between layers. Figure 2 shows the organization of the proposed 
feature fusion scheme. The network has two parallel 3D-UNets, one for CT and the other for 
PET, which share the same network architecture as previously described. For feature fusion, 
we concatenate the feature maps from the corresponding encoders from both CT and PET 
branches using either the CT or the PET decoder in each branch. In this way, the decoder 
module can incorporate the complementary features each modality extracted in their 
respective encoder modules, which maximizes the information flow between either short or 
long range connections while preserving the various low-mid-high semantic scales of the 
levels of the layers. In contrast with the single 3D-UNet, the DFCN-CoSeg network 
simultaneously generates two tumor label predictions: one for CT and the other for PET. 
During the process of net- work training, the DFCN-CoSeg loss function is the sum of the 
two separate losses for CT and PET.

The 3D-UNets were implemented using the open source TensorFlow-GPU43 package. All 
networks ran on NVIDIA GeForce GTX 1080 Ti GPU with 11GB of memory. The 3D- 
UNets were trained by the Adam optimization method with a mini-batch size of 4 and for 21 
epochs. For the proposed DFCN-CoSeg network, the mini-batch size is set to two due to the 
GPU memory limit. The learning rate was initialized as 10–4 and half-decreased according 
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to a piecewise linear scheme. With regard to weight initialization, we adopted the truncated 
normal distribution with zero mean and a standard deviation of 0.01. To avoid overfitting, 
the weight decay was adopted to obtain the best performance on the test set.

1.B.3. DFCN-CoSeg network training—Of the total 60 pairs of PET-CT scans, 38 
pairs were used as the training set, and the remaining 22 pairs were used as the test set. The 
selection procedure began by sorting all scan pairs according to the size of the tumor 
volume. Then three scan pairs out of every five pairs in that order were selected to be in the 
training set. The test set consisted of the remaining 22 scans. This stratified strategy ensured 
that the training set is representative of the whole dataset in terms of tumor volume. All 
parameters were tuned on the training set. All reported results were obtained on the test set. 
Among the 22 cases of the test set, 10 cases were selected as the validation set to observe the 
learning curves for single- modality 3D-UNets and DFCN-CoSeg. Based on the learning 
curves, their best models on the validation set were determined and used to evaluate their 
performance on the whole test set (22 cases). None of the 22 cases in the test set were 
employed for training the networks.

Due to the extremely limited annotated data, several data augmentation methods were 
adopted to enhance the training set. For each pair of coregistered PET-CT scans in the 
training set, a number of rigid translation, rotation and flip operations were performed to 
obtain additional training datasets. To perform rigid translation, the corresponding region-of-
interest (ROI) bounding boxes were cropped by shifting the gravity mass center in a fixed 
voxel range in (5, 10, 15, 20). This shift occurred along the eight combinations of the three 
axis directions. For each original ROI this resulted in 32 translated ROIs. The rotation and 
flip operations were extended to those ROIs to further enlarge the training set. For the rigid 
rotation operation, each ROI image was rotated 90°, 180°, and 270° counter-clockwise 
around the z axis (slice-axis) to generate new ROI images. In addition, each ROI image was 
flipped horizontally and vertically to generate new ones. In this augmentation process, the 
duplicated ROIs were removed.

See Fig. 3 for detailed some examples of these data augmentations.

1.C. Compared methods

We conducted quantitative comparisons for three semiautomatic graph-based 
cosegmentation approaches: (a) the graph-based PET-CT cosegmentation method,12 (b) the 
random-walker-based cosegmentation method23 and (c) the matting-based cosegmentation 
method.28 For these semiautomatic methods, a few manual seeds should be defined on the 
tumor. In our experiment, the same initialization procedure was employed as described by 
Song et al.12 The user needs to specify two concentric spheres with different radii to serve as 
object and background seeds. All voxels inside the smaller sphere were used as the object 
seeds. All voxels outside the larger sphere were used as background seeds. For the hyper-
para- meters, a grid search strategy based on a training set was used. The proposed DFCN-
CoSeg method was compared to the deep learning-based method, where 3D-UNet was 
directly applied to segment the tumor boundaries using either PET or CT.
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According to AAPM TG2116 recommendations,44 the segmentation performance was 
evaluated using three criteria:

1. Accuracy score (Score), which is defined as the weighted average sensitivity 
(SE) and positive predictive value (PPV). Following the characterization of Hatt 
et al.20, we computed the accuracy Score as Score = 0.5 9 SE + 0.5 9 PPV.

2. Dice similarity coefficient (DSC), which measures the volume overlap of two 
segmentations, A and B. It is defined as 2|A ∩ B|/(|A| + |B|), with a range of 
[0,1]. The higher the DSC is, the better volume overlap the two segmentations 
have.

3. Average symmetric surface distance (ASSD), which is defined as:

ASSD =
∑a ∈ Aminb ∈ Bd a, b + ∑b ∈ Bmina ∈ Ad a, b

A + B

where A denotes the boundary surface of the reference standard and B denotes the computed 
surface; a and b are mesh points on the reference surface and the computed surface 
respectively. d(a, b) Represents the distance between a and b

|A| and |B| are the number of points on A and B respectively. The lower the ASSD is, the 
better volume overlap the two segmentations have.

Statistical significance of the observed differences was determined using a 2-tailed paired t-
test for which a P value of 0.05 was considered significant.

3. RESULTS
Table II shows the mean values and standard deviations for the three performance metrics 
(Score, DSC and ASSD) for the evaluated methods on the test scans (22 cases). In addition 
to the cosegmentation results, we include three reference methods (Song et al.12, Ju et al.23, 
and Zhong et al.28) using either CT or PET. Compared to the three reference methods, the 
pro- posed DFCN-CoSeg approach (with the best Scores of 0.865 ± 0.034 on CT and 0.853 
± 0.063 on PET) achieves significantly better results using either the DSCs or ASSDs as 
metrics. This demonstrates that the trained deep learning net- work can learn to be more 
descriptive and better discriminate between features than the traditional manual methods. 
When incorporating dual image modality information (PET-CT) into the segmentation 
process, segmentation accuracy using either deep learning based or other graph-cut based 
methods can consistently improve the results of both CT and PET scans than a single 
modality is able to achieve alone. This suggests that the dual image modality information 
(PET-CT) facilitates simultaneous cosegmentation. Considering the different loss functions 
for the deep learning based methods (3D-UNets or DFCN-CoSeg), the models trained with 
dice coefficient loss performed better than those using cross-entropy based models. For 
example, the deep learning based 3D-UNet method with the dice coefficient loss, achieved 
much higher DSCs on both CT and PET (0.811 ± 0.151 over 0.638 ± 0.165, and 0.794 
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± 0.111 over 0.643 ± 0.141, respectively), compared to either method used by Song et al.12, 
Ju et al.23, or Zhong et al.28

The first MICCAI challenge for PET tumor segmentation (Hatt et al.10) reported 0.642 to 
0.810 DSC values from 15 different segmentation methods (see Table I, Hatt et al.10). The 
DSC values of the DFCN-CoSeg approach with results of over 80% are comparable to and 
even competitive with the results of the MICCAI challenge. The DFCN-CoSeg method 
achieved the best overall Score on both CT and PET (0.865 ± 0.034 and 0.853 ± 0.063, 
respectively) and revealed much smaller standard deviations than any other of the compared 
methods. Although the average Scores, DSCs or ASSDs from the DFCN-CoSeg are higher 
than those obtained when using the single-modality 3D-UNets, the statistical comparison did 
not show a significant improvement on either CT or PET. However, the DFCN-CoSeg 
standard deviation is much smaller than those from the single-modality 3D-UNets (0.037 
over 0.151 on CT, 0.087 over 0.111 on PET). This suggests that while the 3D-UNets can 
effectively learn to discriminate features to recognize tumor voxels, the simple 
multimodality feature fusion can only provide limited improvement given the high 
segmentation accuracy on the PET image. We surmise that although the features learned by 
the network from PET images are able to localize the overall tumor position, they may not 
provide more useful information on the true tumor boundary. This provides an advantage 
over the previous single modality graph-cut based semiautomatic methods that promise to 
diminish physician work load and consequently facilitate the widespread use of PET-CT 
images.

Figure 4 illustrates the segmentation results of the com- pared methods on four PET-CT scan 
pairs. The proposed DFCN-CoSeg method can obtain more consistent results against the 
STAPLE-generated ground truth. The example results demonstrate that the proposed DFCN-
CoSeg method is able to locate tumor boundaries on PET images more accurately than the 
other compared methods.

The intermodality consistency between the STAPLE based ground truth on each image 
modality and the manual con- tours of three physicians were tested and summarized in Table 
III. The DCS value of all manual contours on CT images over their ground truth of STAPLE 
was 0.867, while that on PET images was 0.875. No significant inter image modality 
variations were found between the STAPLE ground truth and all corresponding manual 
contours (P = 0.423). In Table III, the three physicians are denoted as P1, P2, and P3. Their 
respective manual contours on CT (PET) are denoted as P1_CT, P2_CT, and P3_CT 
(P1_PET, P2_PET, and P3_PET). The STAPLE_CT (STAPLE_PET) is obtained from the 
STAPLE algorithm with P1_CT (P1_PET), P2_CT (P2_PET) and P3_CT (P3_PET) as 
inputs.

4. DISCUSSION
4.A. Performance

Accurate tumor delineation in image-guided radiotherapy, is critically important yet efforts 
to automate the process radiotherapy treatment planning or delivery remain elusive.19 In this 
work, our DFCN-CoSeg approach for PET-CT offers improved automation, requires no 
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direct interaction and enables efficient computer-aided segmentation which may facilitate 
eventual clinical use. Our framework takes advantage of the assumption that the combination 
of information derived from dual image modality (PET-CT) would vastly improve the 
capability of an automated, learning-based segmentation approach. Our goal is to automate 
the manual delineation done by radiation oncologists to define tumor by contouring PET-CT 
images so that the radiation oncologists can review and modify the automated tumor 
efficiently. Owing to the successful adoption of deep fully convolutional neural network 
architecture, the automated feature extraction is conducted on both dual-modal- ity PET-CT 
images and able to discriminate between tumors or nontumors. The proposed DFCN-CoSeg 
was evaluated on 60 NSCLC cases and the promising experimental results have 
demonstrated the efficiency over previous graph-based PET-CT cosegmentation methods.

Feature fusion between medical images acquired using distinct modalities is a challenging 
problem due to the inter- image variability inherent in each type. These include: different 
noise, various image resolutions, different contrast, or misregistration of the images to 
mention a few.45,46 Traditional methods include morphology-based fusion,47 wavelet- based 
fusion,48 component analysis based fusion,49 and hybrid fusion.50 Different feature fusion 
approaches using deep neural networks are discussed:

1. The first and most basic method is to combine the input images/features and 
process them jointly in a single UNET. This describes most methods in the 
literature for handling multi-image modality datasets such as the fusion of 
multiparametric brain MR images of T1- and T2- weighted MRI for brain tumor 
segmentation.34,37

2. The second approach is to conduct feature fusion on images of different 
resolutions34 through two steps of extracting different sizes of input patches in 
the input images and giving them as inputs of different networks to obtain the 
different feature levels to conduct the feature fusion.

3. The last method is to conduct feature fusion based on deep convolutional and 
recurrent neural networks (RNN), where the RNNs are responsible for exploiting 
the intraslice and interslice contexts respectively.51

The novelty of our approach lies in the investigation of the encoder-decoder based 3D-UNet 
for the cosegmentation in dual-modality PET-CT images. Our contribution is to con- sider 
the difference between each segmentation on either the PET or the CT image and to design a 
coupled feature fusion network based on the 3D-UNet architecture. This allows us to 
simultaneously produce high quality, voxel-wise segmentation for tumors in PET-CT images 
and specifically to cosegment tumors in PET-CT images. A novel DFCN network was 
proposed where two coupled 3D-UNets with an encoder-decoder architecture were 
integrated. One 3D-UNet is used to perform the PET image tumor segmentation and the 
other to perform the CT image segmentation. The two UNets communicate with each other 
to allow the complementary features from both modalities to “flow” between the two 3D-
UNet networks to produce consistent tumor contours.

Figure 5 shows the DSC training curves on single-modality 3D-UNets trained on either CT- 
or PET- only data, and the training curves of DFCN-CoSeg on both PET and CT. From the 
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learning behaviors in those figures we can observe that the training set accuracy is much 
higher than that on the validation set on the single-modality 3D-UNet, for either CT or PET. 
The curves show a relatively large fluctuation com- pared to those from DFCN-CoSeg.

This may be due to the lack of complementary information from the other modality and the 
large variation in the tumor volume sizes. By contrast, the learning curves are much 
smoother than that of the single-modality 3D-UNet for the dual-modality DFCN-CoSeg 
network. This indicates that the complementary information exchanged between CT and 
PET images can help learn to better discriminate features, which in turn helps locate the 
local optimum for network training. Second, considering the loss functions, the DICELoss 
has achieved smoother learning curves compared to the CELoss, which indicates that the 
dice loss function is more robust on data variability in the training set compared to the 
simple cross-entropy loss. Third, as shown in these figures, we can see the mean DSCs on 
the training set are consistently increasing and become steady after about 15 epochs, while 
the mean DSCs on the validation set did not increase. We determined the best models for 
these networks based on their respective mean DSCs on the validation set, then evaluated 
them on the 22 cases that did not participate in the real net- work training.

4.B. Data augmentation improves general performance

In this subsection we study if data augmentation can improve general performance in PET-
CT segmentation. We again ran the same experiments described above, but without the data 
augmentation on the training set, that is, the training set only includes the original 38 cases. 
All models were trained in the same way as described above. Table IV shows the 
segmentation performances based on Score, DSC and ASSD on our test set (22 cases) for 
these models trained either with or without data augmentation. Figure 6 illustrates the 
accuracy curves trained without data augmentation. As we can see in the table and figures, 
those network models trained with data augmentation can achieve significantly better 
performance than those without data augmentation. Compared to Fig. 5, the learning curves 
in Fig. 6 also get steady more quickly (about 10 000 steps), which indicates that these 
models were quickly fitted on the training set without data augmentation.

4.C. Testing on whole-body PET-CT images

The inputs for the proposed DFCN-CoSeg network are two fixed-size bounding boxes (i.e., 
cropped from the original whole-body PET/CT images respectively). In our experiments we 
first crop the bounding boxes containing lesions according to the ground truth segmentation 
as the input of the networks. However, it is very important in clinical practice to directly 
segment the whole-body PET-CT scans simultaneously. To this end, we conducted 
additional experiments to test the segmentation performance of the proposed method on 
resampled whole-body PET-CT scans (i.e., with voxel spacing of 1 9 1 9 1 mm). 
Specifically, we first resampled the whole-body PET/CT scans to isotropic voxel spacing (1 
9 1 9 1 mm), then based on the sliding window technique, cropped the paired PET/CT sub-
volume, gave them as inputs of the 3D-UNets or DFCN-CoSeg, and generated the final 
results on whole-body predictions.
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Table IV shows the statistics of the segmentation results on the respective whole-body 
PET/CT images of the test set. As shown in this table, for most cases, the SEs and PPVs of 
the proposed DFCN-CoSeg are overall higher than those of the 3D-UNets. The high 
sensitivities indicate the proposed DFCN-CoSeg can correctly detect and segment the 
tumors in the whole-body images. However, in some cases (e.g., A- IA002114), the 
specificities of the proposed DFCN-CoSeg are lower than 50%.

The main reason for the relatively poor results for the tumor segmentation is that it is located 
in the boundary between two adjacent sliding windows. The tumor region located in the 
boundary presented relatively poor predictive results when compared to the tumor located in 
the center region. From the viewpoint of fully convolutional networks, as our DFCN-CoSeg 
models were trained based on tumor- centralized PET/CT bounding boxes, they may be 
biased in the centralized inputs.

The automatic object localization techniques could help improve this. It is worth noting that 
much research has been devoted to automatically obtaining these bounding boxes with a 
high degree of confidence that they will contain lesions within them (e.g., lung nodule object 
detection52), and results from these modules can be used as the inputs for the proposed 
DFCN-CoSeg method. It is also worth observing that recent advances in computer vision 
have demonstrated the efficiency of simultaneously conducting object detection and 
segmentation in a single deep network frame- work (e.g., Mask-RCNN).53

4.D. Limitations

Although the proposed DFCN-CoSeg method has achieved some improvement over the 
traditional graph-based method, the absolute assessment based on DSCs is still about 82% 
on PET and 86% on CT. There is still much improvement needed in terms of performance, 
robustness, and stability. For the single-modality 3D-UNets, we observed that the DSCs on 
two test datasets were below 70%. It seems the tumor patterns in the two datasets were not 
adequately represented in the training set. We thus plan to enlarge the training set in the 
future.

In terms of the network architecture design, our DFCN- CoSeg network was inspired by the 
encoder-decoder based 3D fully convolutional networks (3D-FCN)32,37and the 3D- UNets.
30,31,34 As a natural extension of the well-known 2D FCN proposed by Long et al.41, 3D-
FCNs have been success- fully applied to semantic segmentation tasks in medical imaging, 
such as liver segmentation,32brain tumor segmentation,34 and pancreas segmentation.54 As 
demonstrated in these studies, the skip connections designed in 3D-FCNs or 3D-UNets were 
very important to help recover the full spatial resolution at the network outputs, which is 
suitable for voxel-wise segmentation tasks. Various typical extensions include the extended 
U-Net based on the DenseNet,55 or the short skip connection.56 In this work, we utilized a 
coupled skip connection between the two 3D-UNets for CT or PET, taking advantage of 
both modalities to produce two separate segmentations. Although our proposed method 
achieved good results, designing a more efficient feature fusion architecture would be very 
beneficial.
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The proposed DFCN-CoSeg method utilizes a pixel-wise cross-entropy loss or dice 
coefficient loss in the last layer of its network, which is insufficient to learn both local and 
global contextual relations between pixels. Although the use of UNet architecture may 
alleviate this problem, enabling it to implicitly learn some local dependencies between 
pixels; it is still limited by their pixel-wise loss function. This is because it lacks the ability 
to enforce the learning of multi-scale spatial constraints directly in the end-to-end training 
process. We propose the future integration of Conditional Random Fields (CRFs) into our 
DFCN-CoSeg framework with an end-to-end training process to enforce the pixel-wise 
labeling consistency to improve the segmentation accuracy.

AAPM Task Group 2116 recommends the use of different types of ground truth datasets 
including phantom and clinical contouring. The proposed DFCN-CoSeg method has been 
thoughtfully validated on clinical contouring. It is natural to also validate our method on 
simulated PET-CT images and those obtained from phantoms. However, the performance of 
a model with supervised learning frequently deteriorates on data from a new deployment 
domain, which is known as a domain shift problem.57 The domain shift from simulated 
images to real data can be particularly challenging.58,59 Our DFCN-CoSeg model, as a 
supervised learning method trained on physician’s manual contours, may not well work on 
the simulated and phantom data.

In this study, all PET and CT datasets were obtained from a single PET-CT scanner 
(Siemens Medical Solutions, Inc.). Different PET-CT scanners have unique acquisition and 
reconstruction properties, for PET datasets especially: spatial reconstruction, noise 
properties, and voxel size. The sensitivity study of the proposed DFCN-CoSeg method for 
each specific PET-CT scanner needs to be investigated. In fact, this is another domain shift 
problem in transfer learning, which has been widely recognized in machine learning or 
computer vision. Pre- trained convolutional neural networks have been designed and trained 
on the ImageNet dataset such as AlexNet,60 Google InceptionNet,61 and ResNet-50.62 These 
pretrained models or weights have been widely adopted and transferred into other tasks such 
as RGBD segmentation63 or remote sensing image analysis64to initialize the target networks

4.E. Impact

For one unique tumor, one segmentation represents patho- logically and morphologically 
true tumor boundaries. How- ever, the tumor boundaries are defined according to whether 
they are macroscopically or microscopically identified. If two image modalities are the same 
type of morphological or anatomical image such as CT and MRI, then the macroscopic 
tumor boundaries can be similar depending on tumor sites. For instance, lung cancer tumor 
boundaries that presented considerable image intensity changes on both MRI and CT are 
similar due to the significant electron density difference between the tumor and the adjacent 
lung tissue. The segmentations based upon their image intensities are similar even though 
the physics underlying the image generation for these images is different. In the case of 
cervical cancer, CT and MRI tumor boundaries vary considerably due to the poor soft-tissue 
contrast on CT. MRI is critical for tumors requiring high soft-tis- sue contrast such as 
gynecologic cancer, breast cancer, or prostate cancer. Even though each tumor is unique its 
boundary identification is different due to the physics underlying the generation of each 
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medical image. This is especially true between molecular images such as PET or functional 
MRI (e.g., DCE (dynamic contrast enhanced) or DWI (diffusion weighted image) MRI) and 
anatomical images such as CT. PET images visualize the uptake region of radiotracer such 
as F18-FDG (Fludeoxyglucose) as a marker for the tissue uptake of glucose, indicating a 
close correlation with tumor metabolism.65 The high glucose uptake in tumor cells is used as 
a surrogate to identify an active tumor region using PET images, thus the highly active 
regions identified by F18-FDG PET images do not necessarily represent every single tumor 
cell or anatomically defined tumor. When tumor cells are not active or highly hypoxic, they 
are not included in the F18-FDG PET positive regions. In addition, when other radiotracers 
for PET images such as F18-FMISO (fluoromisonidazole) or F18-FLT are used, then 
specific subtumor regions are identified based on molecularly defined criteria. F18-FMISO 
PET images pre- sent hypoxic tumor regions66 while F18-FLT PET images efficiently 
identify proliferating tumor regions.67 In general, the identified tumor regions using 
molecular imaging are considerably different from anatomical CT imaging which identifies 
high electron density regions.

Besides the fundamental technical differences required to generate functional or anatomical 
images, PET images take a longer time (typically 10–20 min for acquisition vs less than 2 
min in CT acquisition) to acquire. For a tumor site affected by respiratory motion like lung 
cancer, the acquisition time will include the full range of motion for PET images, while the 
tumor region in a CT scan (often fully acquired in a breath hold) is less affected by breathing 
motion. As a result, the tumor boundary varies between PET and CT images. In addition, 
PET images have a relatively poor spatial resolution ( ““ 3–5 mm), while the spatial 
resolution of CT images can be submillimeter (e.g., 0.6 mm). These inherent imaging 
features all cause challenges in identifying tumor boundaries between PET and CT images.

Simultaneously segmenting tumors from both PET and CT while admitting the difference of 
the boundaries defined in the imaging modalities is a more reasonable method than those 
previously applied to fused PET-CT images, where identical tumor boundaries were 
assumed.

Advances in radiomics and machine learning in PET-CT images involve the accurate, robust, 
and reproducible segmentation of the tumor volume in each imaging modality to extract 
numerous unique features from each imaging modality. These radiomics features include 3D 
shape descriptors, intensity- and histogram-based metrics and 2nd or higher order textural 
features (Hatt et al.10). By obtaining different radiomics features from each imaging 
modality, including different segmentations from each image modality, we expect that the 
use of radiomics and CNN would improve the efficiency of diagnosis, prognosis 
determination and clinical decision-making critical for therapeutic interventions such as 
surgery, chemotherapy, or radiotherapy.

In our study, we presented two PET-CT cosegmentation approaches; Segmentation of PET 
images while interacting with CT images and vice versa. Two different cosegmentations 
could be variously adapted in current clinical applications. The PET-based cosegmentations 
can be further investigated to improve current PET-based prognostic assay studies in nuclear 
medicine in which the metrics of PET images, such as standardized uptake value (SUV) and 
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metabolic tumor volume (MTV) have been extensively studied.68 In addition, the CT-based 
cosegmentation potentially improves contouring accuracies and robustness for radiation 
therapy, especially for determining high dose regions used in approaches such as SBRT in 
which the target (tumor) con- touring accuracy is critical. To our knowledge, the proposed 
DFCN-CoSeg network is the first CNN-based, simultaneous segmentation approach for both 
PET and CT.

Our proposed deep learning DFCN-CoSeg cosegmentation framework can be successfully 
applied to the simultaneous cosegmentation of GTVs in the PET-CT image dataset. The 
cosegmented GTV is expected to improve the efficacy of radiotherapy. The proposed 
DFCN-CoSeg approach will not fully replace input and review by physicians. However, we 
expect this supplementary segmentation tool would act as an aid and would improve the 
robustness and consistency of contouring. Beichel at al.69 compared a semiautomated 
segmentation vs experts contouring method, and presented the intra- and interoperator 
standard deviations that were significantly lower for the semi-automated segmentation. Also, 
con- touring capability is expected to improve the efficiency of molecular image guided 
radiotherapy when used in concert with a PET-CT Linac system70 in which fast, accurate 
con- touring is critical for adaptive replanning on each fraction. The developed deep fully 
convolutional network based segmentation can also be applied to current kV-cone-beam, CT 
based, adaptive replanning approaches. The improved accuracy of using deep learning based 
cosegmentation is expected to improve its prognostic power for the therapy selection for 
lung cancer patients and improve clinical outcomes. In addition, the current state-of-the-art 
in tumor diagnosis and characterization does not perform 3D contouring due to its extended 
acquisition time but instead performs three, 1D tumor measurements (length, width, and 
height) from which tumor size and stage is determined. Before and after chemotherapy, 3D 
contouring (segmentation) is not clinically performed for response assessment. No 
contouring is per- formed following radiation therapy in order to assess response to therapy. 
DFCN-CoSeg could provide a metric following treatment if correctly applied. The 
prognostic power, of DFCN-CoSeg applied to GTV is being studied and its results will be 
assessed. Given that integrated PET-CT scanners are widely available, the developed deep 
learning based cosegmentation technique in this work is readily avail- able as a tool to be 
utilized in nonsmall cell lung carcinoma clinical trials. In addition, the proposed computer-
aided, auto- mated tumor volume identification method using deep learning is expected to 
advance the accuracy of target delineation for radiation therapy planning. This will be 
especially important for SBRT in which high-precision tumor identification is crucial in the 
process of defining the spatial extent of the therapeutic radiation dose distribution. It is 
expected that the improved accuracy and robustness of using deep learning based 
cosegmentation on both PET and CT images would improve outcomes and reduce the 
toxicity of radiation therapy for nonsmall cell lung cancer.

5. CONCLUSIONS
In this work, we investigated the deep 3D fully convolutional neural networks for tumor 
cosegmentation on dual- modality PET-CT images. Experimental results demonstrated the 
effectiveness of our proposed method and improved accuracy compared to several common 
existing methods. Our method would benefit clinics as it does not require unique knowledge 
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to implement effectively. Our dual 3D UNet cosegmentation framework could be further 
applied to other multi-modality data, for example, PET/MR. Validation of the PET/CT 
segmentation on other datasets including multi-institutional trials and more different neural 
network architectures will also be investigated in the future.
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Figure 1. 
Tumor contours are different in computed tomography (CT) (left), positron emission 
tomography (PET) (middle), and the fused PET and CT images (right). Due to the inherent 
differences between molecular imaging (PET) and morphological images (CT), the tumor 
boundary as defined between PET and CT images may differ.
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Figure 2. 
A schematic illustration of our proposed deep learning, fully convolutional networks 
(DFCN)-CoSeg network with feature fusion for positron emission tomography (PET)-
computed tomography (CT) cosegmentation. Two parallel 3D-UNets are built for CT and 
PET respectively. In DFCN-CoSeg, all feature maps produced by all the encoders of either 
the CT or PET branch are concatenated in the corresponding decoders, as depicted by the 
dotted arrow lines.
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Figure 3. 
Illustration of some examples using data augmentation. And these augmentation operations 
were conducted in the X–Y plane.
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Figure 4. 
Segmentation results of compared methods on four positron emission tomography-computed 
tomography scan pairs. Red: ground truth generated by Simultaneous Truth and 
Performance Level Estimation Algorithm, Blue: Song et al’s.12 method, Green: the 3D-
UNet method (first two columns), Green: Proposed deep learning, fully convolutional 
networks-CoSeg method (last two columns).
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Figure 5. 
Mean dice similarity coefficient (DSC)s on training and validation sets during the network 
training with CELoss (a,b,c) and DICELoss (d,e,f). 3D-UNet computed tomography (CT)/
positron emission tomography (PET) means 3D-UNet trained on CT or PET only data. Deep 
learning fully convolutional networks (DFCN)-CoSeg means the feature fusion DFCN-
CoSeg network architecture for PET-CT cosegmentation.
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Figure 6. 
Mean dice similarity coefficients (DSC)s on training and validation sets during the network 
training with CELoss(a,b,c) and DICELoss(d,e,f). These networks were trained with only 
the original 38 cases as the training set, i.e., without data augmentation
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TABLE I.

Architecture of a basic three-dimensional (3D)-UNet.

Feature size 3DUNet

Input 1 9 96 9 96 9 48

Conv 1(F1) 32 9 96 9 96 9 48 Conv, 3 9 3 9 3, 32, stride 1

Encoder 1(F2) 64 9 48 9 48 9 24 Conv, 3 9 3 9 3, 64,

maxpool, stride 2

Encoder 2(F3) 128 9 24 9 24 9 12 Conv, 3 9 3 9 3, 128,

maxpool, stride 2

Encoder 3(F4) 256 9 12 9 12 9 6 Conv, 3 9 3 9 3, 256,

maxpool, stride 2

Encoder 4(F5) 512 9 6 9 6 9 3 Conv, 3 9 3 9 3, 512,

maxpool, stride 2

Decoder 4 256 9 12 9 12 9 6 Deconv, concat(F4), 3 9 3 9 3, 256, conv

Decoder 3 128 9 24 9 24 9 12 Deconv, concat(F3), 3 9 3 9 3, 128, conv

Decoder 2 64 9 48 9 48 9 24 Deconv, concat(F2), 3 9 3 9 3, 64, conv

Decoder 1 32 9 96 9 96 9 48 Deconv, concat(F1), 3 9 3 9 3, 32, conv

Output 2 9 96 9 96 9 48 Conv, 1 9 1 9 1, 2, conv, stride 1
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TABLE II.

Statistics of the compared methods on the test set (22 cases) based on the contours generated by Simultaneous 
Truth and Performance Level Estimation Algorithm (STAPLE). Average values and their standard deviations 
were reported.

Score DSC ASSD

Methods Modalities Single Dual Single Dual Single Dual

Song et al. CT 0.712 ± 0.140 0.734 ± 0.089 0.597 ± 0.257 0.638 ± 0.165 2.574 ± 2.447 1.938 ± 1.132

PET 0.735 ± 0.084 0.740 ± 0.074 0.629 ± 0.158 0.643 ± 0.141 2.901 ± 2.607 2.656 ± 2.131

Ju et al. CT 0.778 ± 0.082 0.765 ± 0.098 0.765 ± 0.093 0.759 ± 0.100 1.484 ± 0.745 1.650 ± 0.823

PET 0.817 ± 0.064 0.820 ± 0.061 0.776 ± 0.106 0.782 ± 0.099 1.526 ± 1.068 1.473 ± 0.970

Zhong et al. CT 0.798 ± 0.058 0.809 ± 0.058 0.766 ± 0.095 0.783 ± 0.095 1.186 ± 0.828 1.080 ± 0.714

PET 0.774 ± 0.065 0.816 ± 0.054 0.711 ± 0.123 0.778 ± 0.086 2.102 ± 2.002 1.502 ± 1.083

3D-UNet (CELoss) CT 0.812 ± 0.115 — 0.780 ± 0.185 — 1.667 ± 1.863 —

PET 0.846 ± 0.084 — 0.811 ± 0.133 — 1.127 ± 0.718 —

DFCN-CoSeg (CELoss) CT — 0.850 ± 0.061 — 0.836 ± 0.095 — 0.895 ± 0.661

PET — 0.848 ± 0.064 — 0.823 ± 0.086 — 1.066 ± 0.660

3D-UNet (DICELoss) CT 0.839 ± 0.085 — 0.811 ± 0.151 — 1.291 ± 1.313 —

PET 0.832 ± 0.075 — 0.794 ± 0.111 — 1.229 ± 0.587 —

DFCN-CoSeg (DICELoss) CT — 0.865 ± 0.034 — 0.861 ± 0.037 — 0.806 ± 0.605

PET — 0.853 ± 0.063 — 0.828 ± 0.087 — 1.079 ± 0.761
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TABLE III.

Dice similarity coefficients (DSC) values of each physician expert.

Dice similarity coefficients (DSC) STAPLE_CT

P1_CT P2_CT P3_CT

0.846 0.819 0.934

STAPLE_PET

P1_PET P2_PET P3_PET

0.901 0.901 0.825
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Table 4

With Data-Augmentation Without Data-Augmentation

Methods Modalities Score DSC ASSD Score DSC ASSD

3D-UNet(CELoss) CT 0.812 ± 0.115 0.780 ± 0.185 1.667 ± 1.863 0.752 ± 0.157 0.719 ± 0.207 3.154 ± 4.336

PET 0.846 ± 0.084 0.811 ± 0.133 1.127 ± 0.718 0.819 ± 0.078 0.779 ± 0.127 2.491 ± 2.809

DFCN-CoSeg (CELoss) CT 0.850 ± 0.061 0.836 ± 0.095 0.895 ± 0.661 0.818 ± 0.084 0.806 ± 0.108 1.226 ± 0.987

PET 0.848 ± 0.064 0.823 ± 0.086 1.066 ± 0.660 0.793 ± 0.101 0.771 ± 0.116 1.993 ± 2.346

3D-UNet (DICELoss) CT 0.839 ± 0.085 0.811 ± 0.151 1.291 ± 1.313 0.759 ± 0.156 0.728 ± 0.204 3.431 ± 5.176

PET 0.832 ± 0.075 0.794 ± 0.111 1.229 ± 0.587 0.832 ± 0.076 0.808 ± 0.105 1.308 ± 0.750

DFCN-CoSeg (DICELoss) CT 0.865 ± 0.034 0.861 ± 0.037 0.806 ± 0.605 0.811 ± 0.098 0.785 ± 0.152 2.632 ± 4.657

PET 0.853 ± 0.063 0.828 ± 0.087 1.079 ± 0.761 0.803 ± 0.087 0.778 ± 0.107 1.856 ± 1.976
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TABLE V.

Statistics of SEs, PPVs on the whole-body PET/CT images of the test set. The “Voxels” means the number of 
tumor voxels in the resampled data with volume spacing of 1 9 1 9 1 mm.

3D-Unets(CT)CoSeg(PET) 3D-Unets(PET) DFCN-CoSeg(CT) DFCN-

Name Voxels-ct Voxels-pt SE PPV SE PPV SE PPV SE PPV

A-IA002126 3430 6496 0.903 0.105 0.645 0.093 0.871 0.171 0.590 0.135

A-IA002122 16806 31164 0.678 0.402 0.964 0.278 0.864 0.421 0.903 0.407

A-IA0002096 12424 22990 0.502 0.143 0.166 0.430 0.655 0.748 0.074 1.000

A-IA002119-M 10522 7888 0.854 0.168 0.567 0.485 0.861 0.821 0.721 0.758

A-IA0002111 2034 2476 0.755 0.015 0.999 0.141 0.873 0.249 0.924 0.323

A-IA0002114 37628 23224 0.044 0.026 0.745 0.020 0.370 0.062 0.440 0.027

A-IA0002097 2786 7036 0.293 0.025 0.891 0.114 0.857 0.087 0.867 0.260

A-IA000991-M 3116 12318 0.587 0.090 0.821 0.035 0.934 0.014 0.930 0.042

A-IA0001254 65604 104091 0.365 0.023 0.599 0.610 0.564 0.540 0.558 0.793

A-IA002135-M 4494 5240 0.852 0.081 0.927 0.090 0.900 0.089 0.961 0.140

A-IA002133 6910 9458 0.837 0.071 0.739 0.480 0.916 0.516 0.558 0.671

A-IA0002094 1026 2040 0.175 0.006 0.647 0.032 0.666 0.030 0.578 0.025

A-IA002130 5018 6156 0.886 0.254 0.633 0.946 0.938 0.817 0.927 0.852

A-IA002134 21210 41666 0.425 0.083 0.870 0.208 0.869 0.234 0.896 0.257

A-IA002131 11156 6510 0.767 0.258 0.012 0.000 0.768 0.029 0.736 0.010

A-IA0002108 7832 2258 0.797 0.111 0.752 0.024 0.789 0.427 0.882 0.070

A-IA001491 2068 1206 0.517 0.016 0.912 0.021 0.613 0.046 0.949 0.034

A-IA0001345 39432 44552 0.844 0.590 0.949 0.787 0.869 0.839 0.885 0.883

A-IA0002109 2908 6730 0.863 0.055 0.995 0.037 0.879 0.024 0.989 0.044

A-IA0002117 12292 17586 0.699 0.108 0.787 0.671 0.870 0.906 0.838 0.983

Mean 0.632 0.132 0.731 0.275 0.796 0.354 0.760 0.386
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