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Abstract
Positron emission tomography and computed tomography (PET-CT) plays a critically important 
role in modern cancer therapy. In this paper, we focus on automated tumor delineation on PET-CT 
image pairs. Inspired by co-segmentation model, we develop a novel 3D image co-matting 
technique making use of the inner-modality information of PET and CT for matting. The obtained 
co-matting results are then incorporated in the graph-cut based PET-CT co-segmentation 
framework. Our comparative experiments on 32 PET-CT scan pairs of lung cancer patients 
demonstrate that the proposed 3D image co-matting technique can significantly improve the 
quality of cost images for the co-segmentation, resulting in highly accurate tumor segmentation on 
both PET and CT scan pairs.

Index Terms—
image segmentation; interactive segmentation; lung tumor segmentation; image matting; 
cosegmentation

1. INTRODUCTION
PET-CT has been widely used in modern cancer imaging. Accurate tumor delineation from 
PET and CT plays an important role in tumor staging, clinical management/decision 
making, treatment planning, and therapy response assessment. The PET-CT co-segmentation 
technique, which makes use of advantages of both modalities, has achieved impressive 
performance for tumor segmentation [1, 2].

In the past decades, extensive endeavors have been made on automated tumor definition 
from PET-CT scans. Recently, the co-segmentation technique for tumor delineation on both 
PET and CT images has been attracted great attentions [3, 4, 5, 6, 7]. In those works, tumor 
contours on PET and on CT are segmented simultaneously while admitting their possible 
differences. On the other hand, as demonstrated in those previous works, the design of cost 
functions in the framework of graph based co-segmentation is critical to achieve good 
segmentation performance. Consequently, the region/unary costs were usually designed 
carefully based on some sophisticated image priors (e.g., Gaussian mixture models [3, 4], 
shape prior [7], texture information [6], …etc.) or clinical information from expertise [4, 5, 
6, 7].
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Recently, Zhong et al. [8] have introduced the 3D alpha matting technique to compute the 
region costs for graph-cut based PET-CT co-segmentation. The 3D alpha matting in [8] is 
conducted separatly on PET and on CT images, which may not make use of the modality-
wise contextual information. In this paper, inspired by the co-segmentation model [4], we 
develop a novel 3D alpha matting technique for PET-CT co-segmentation. Specifically, the 
3D alpha matting is jointly computed on both PET and CT images by “minimizing” the 
difference between their matte values. The resulting matte values are then used to design the 
region costs in the co-segmentation model [4]. Compared to previous PET-CT segmentation 
approaches, the proposed method is also completely image-derived with less relying on 
image and clinical priors. By integrating the proposed 3D alpha co-matting technique into 
the context-aware co-segmentation framework [4], the proposed PET-CT 3D co-matting 
method eases the design of cost functions for the graph-cut based segmentation, and 
significantly outperforms the PET-CT co-segmentation approach [4].

2. METHODOLOGY
Zhong et al. [8] have extended the 2D alpha matting [9] to 3D and propose to adopt the 
“matte” values to compute tumor object probability maps for the subsequent co-
segmentation. In this work, inspired by the co-segmentation model, we further extend the 3D 
alpha matting to handle multi-modality image scans to simultaneously compute the matte 
values for voxels in different image modalities by considering the mutually interacting 
contextual information between the modalities.

The proposed PET-CT tumor segmentation method is semi-automated, and the general 
framework is mostly similar to that in [8], which mainly consists of three steps: (1) Active 
contour is adopted to generate larger seed regions from given initial seeds on PET and CT 
image pairs, respectively. (2) Based on the new seed regions, 3D image co-matting is jointly 
conducted on both PET and CT volumes to obtain the tumor object probability maps, which 
are further used for computing region/unary costs for the co-segmentation model [4]. This is 
the main improvement from that in [8]. The key contribution of this paper is to compute the 
region costs with the proposed 3D co-matting technique. (3) The PET-CT co-segmentation is 
formulated as a a Markov Random Field (MRF) optimization problem with label-
consistency constraint, which penalizes the segmentation difference between the two image 
datasets. The optimization problem can be solved optimally by the well-known max-flow/
min-cut algorithm to obtain the simultaneous tumor segmentation results [4].

Due to the space limit, we will mainly focus on the second step of the proposed method. The 
detailed description of Step (1) and (3) can be found in Ref. [8]. In the following, we first 
briefly review the 3D alpha matting technique [8], then introduce the proposed 3D alpha co-
matting algorithm in detail.

2.1. 3D alpha matting
Given a 3D image I with size of H × W × D, the 3D alpha matting [8] can be formulated as:
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α = arg min
α

αTLα + λ αT − bS
T DS α − bS , (1)

where α ∈ ℝN × 1 is the alpha matte vector for all N = W ×H × D voxels, and L ∈ ℝN × N is a 
image-adaptive matting Laplacian matrix, λ is a coefficient, DS is a diagonal matrix with an 
element 1 for each seed voxel and with an element 0 for each of the non-seed voxels, bS is a 
vector indicating the alpha values for the seed voxels. Since (1) is a quadratic optimization 
problem, we can obtain the final global optimum solution by solving a sparse linear system 
[9].

By considering the neighborhood relationships among spatially in-slice adjacent voxels and 
those adjacent voxels between slices (e.g., 3 × 3 × 3 neighborhood), the constructed matting 
Laplacian matrix L can better model tumor object structures, and consequently the 
probability maps (i.e. matting vector α) generated from alpha matting help produce better 
segmentation results. Zhong et al.[8] have applied the 3D alpha matting technique to 
generate the alpha matte map for each of the PET and CT datasets, separately, for the 
purpose of PET-CT co-segmentation of tumors. However, the two separately computed 
matte maps may not well make use of the contextual information of the other modality.

2.2. 3D alpha co-matting

In this subsection, we propose a novel 3D alpha co-matting method to compute two alpha 
matte maps for the PET and CT scans simultaneously. The mutual contextual information 
from both modalities is well integrated in the computation of alpha matting.

In the proposed method, we first generate a trimap using the user-given seeds in the same 
way as described in [8]. Based on the trimap, the 3D co-matting problem is formulated as 
optimizing the objective function J(α, β), with:

J(α, β) = αTL1α + λ1 αT − bS
T DS α − bS + βTL2β + λ2 βT − bS

T DS β − bS + λ3 α − β 2
2,

where α and β corresponds to the alpha matte maps for the input CT and PET images, 
respectively. The first two terms is the energy function for alpha matting on the CT images. 
The third and the fourth terms compose of the energy function for alpha matting on the PET 
image. The last term is to enforce the consistency between the alpha matte values of the 
corresponding voxels in PET and CT images. The alpha mattes on the input CT and PET 
images should be ideally as same as possible for the corresponding voxels. L1 and L2 are the 
matting Laplacian matrices on CT and PET images, respectively. λ1, λ2 and λ3 are 
regularization constants.

We solve this model iteratively using the alternative optimization, i.e., fix one variable, and 
solve another variable. For example, fix β, we can solve the α easily by

L1 + λ1DS + λ3I α = λ1bS + λ3β, (2)

and similarly, the β can be updated by
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L2 + λ2DS + λ3I β = λ2bS + λ3α . (3)

The final solution is iteratively achieved until it converges. The initial α and β are computed 
by solely solving alpha matting problem for the CT and PET images, respectively (i.e., set 
λ3 to zero). In practice, the convergence speed is very fast (less than 5 iterations in our 
experiments). The proposed method is summarized in Algorithm 1.

Algorithm 1 3-D Co-Matting algorithm.

Input: CT image XCT, PET image XPET; User-defined seeds bS; size of neighborhood window r; number of maximum 
iterations T; converge precision ϵ; parameters λ1, λ2, λ3.

Output: Alpha mattes α and β.

1: Compute the L1 and L2 as that in [8];

2: Compute the α0 and β0 by (1);

3: for t = 1, ⋯ ,T do

4:   1) Set αold = αt−1

5:   2) Solve αt-subproblem by Eqn. (2)

6:   3) Solve βt-subproblem by Eqn. (3)

7:   if ∥αt — αt-i∥F ≤ ϵ then

8:    break

9:   end if

10: end for

Finally, two alpha matte maps for PET and CT with consistency constraints are obtained 
from the 3-D co-matting procedure. We then utilize the alpha mattes obtained from PET and 
CT images to compute the unary costs and give them as inputs to a graph cut based co-
segmentation model [4] to obtain the final segmentation results.

3. EXPERIMENTS
3.1. Datasets

A total of 32 PET-CT scan pairs from different patients with primary non-small cell lung 
cancer were obtained. The image spacing varies from 0.78 × 0.78 × 2mm3 to 1.27 × 1.27 × 
3.4mm3. The intra slice image size is 512 × 512. The number of slices varies from 112 to 
293. Two manual contours for each scan on both PET and CT images were provided by two 
physicians and we utilized the Simultaneous Truth And Performance Level Estimation 
(STAPLE) algorithm [10] to generate the reference standard for each scan of PET and CT.

3.2. Experiment Settings

All 32 PET-CT scans are separated disjoint as a training set (8 scans) and a testing set (24 
scans) according to the similar strategy in [8]. All parameters are tuned on the training set. 
All reported results are from the testing set.
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The same initialization procedure as in [8] is employed. A grid search strategy is used to 
tune the parameters. The parameters returning highest segmentation performance on training 
set are used to run the co-segmentation on the test set. In experiments, we select the λ1, λ2, 
and λ3 from a specific range of [1, 10, 100, 1000, 10000]. Their final values are empirically 
set to all 1000, respectively. All other parameters are selected according to the similar 
strategy as those in [8].

The segmentation accuracy is measured by the Dice coefficient (DSC) as adopted in [8]. The 
higher the DSC is, the better volume overlap the two segmentations have. We conduct 
quantitative comparisons to the matting-based PET-CT co-segmentation methods of Song et 
al.’s [4] and Zhong et al.’s [8].

3.3. Results and analysis

Table 1 reports the mean DSCs and standard deviations of the evaluated methods on the test 
scans. From these results, we have the following observations. First, compared to Song’s co-
segmentation method, our 3D matting based methods can achieve much better performance 
with higher DSCs (on average, 10% or more improvements) with significant confidences (if 
p-values is thresholded by 0.005). Second, compared to our previous method studied in [8], 
the proposed co-matting based segmentation method achieves a comparable or even better 
average performance, which validates the efficiency of the proposed 3D co-matting 
procedure. This is mainly owing to that our co-matting based co-segmentation method 
considers multi-level intra-modality information interaction. Fig. 1 shows the segmentation 
results of the compared methods on two PET-CT scans. From those figures, we can see our 
matting or co-matting based methods are able to locate tumor boundaries more accurately in 
these scans.

Fig. 2 shows the convergence curves when solving the problem of (2) with different 
regularization parameters. First we select the values of λ1 and λ2 as suggested in [8], then 
draw the convergence curves with variable λ3s. In our experiments, we found the proposed 
approach achieves better average performance with a relatively large value of λ3. Note that 
although our method can achieve better performance over the previous methods on most 
scans, the hyperparameter selection is still relatively difficult given the limited number of 
training scans, especially when there are much different volume sizes of tumors in the data 
sets. The parameters selected on those fixed training scans might not perform well on other 
scans. How to automatically, adaptively and effectively determine these hyperparameters 
according to input images is still actively challenging in this field.

On the other hand, in our experiments, we can also observe that, on PET images with 
relatively small tumors, our results seems to be not significant compared to others. And the 
average performance on these scans is overal inferior to those with big tumors. The main 
reason lies in that when the tumor is too small, it is commonly difficult to determine the 
tumor boundary accurately, and consequently small changes on segmentation results may 
lead to significantly corrupt performances evaluated by DSC. In the future, we will resort to 
more intelligent solutions on these challenges for tumor segmentation task on PET-CT 
image pairs, e.g. the recently-boomed deep learning technique [11].
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4. CONCLUSION
In this paper, we have developed a 3D co-matting approach to generate high-quality region 
cost for both PET and CT images by considering the inter-modality context information 
during the matting process. When integrated with the powerful graph-cut based PET-CT co-
segmentation model, our proposed method is able to detect highly accurate tumor 
boundaries from both PET and CT. The experimental results on 32 non-small cell lung 
cancer PET-CT image scan pairs demonstrated the effectiveness of the proposed method.
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Fig. 1. 
Segmentation results of compared methods on two PET-CT scans: No. 0002118 and No. 
002133. Red: ground truth, Green: Song’s method [4], Blue: Zhong’s method [8], Yellow: 
Proposed method.
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Fig. 2. 
Convergence curves for different λ3s.
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Table 1.

Average DSC’s and standard deviations of three compared methods.

Methods Modalities DSC p-values

Song et al. [4]
CT 0.620 ± 0.229

PET 0.668 ± 0.134

Zhong et al. [8]
CT 0.752 ± 0.102 0.0038

PET 0.762 ± 0.079 0.0005

Proposed
CT 0.778 ± 0.109 0.0009

PET 0.811 ± 0.064 0.0001
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