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Abstract
Positron emission tomography and computed tomography (PET-CT) dual-modality imaging 
provides critical diagnostic information in modern cancer diagnosis and therapy. Automated 
accurate tumor delineation is essentially important in computer-assisted tumor reading and 
interpretation based on PET-CT. In this paper, we propose a novel approach for the segmentation 
of lung tumors that combines the powerful fully convolutional networks (FCN) based semantic 
segmentation framework (3D-UNet) and the graph cut based co-segmentation model. First, two 
separate deep UNets are trained on PET and CT, separately, to learn high level discriminative 
features to generate tumor/non-tumor masks and probability maps for PET and CT images. Then, 
the two probability maps on PET and CT are further simultaneously employed in a graph cut 
based co-segmentation model to produce the final tumor segmentation results. Comparative 
experiments on 32 PET-CT scans of lung cancer patients demonstrate the effectiveness of our 
method.

Index Terms—
image segmentation; lung tumor segmentation; co-segmentation; fully convolutional networks; 
deep learning

1. INTRODUCTION
PET-CT imaging has been a highly thriving and successful research field in medical image 
processing. A lot of research endeavors have been devoted for its clinical use, such as 
radiation therapy treatment planning [1]. A key and challenging step is the automated and 
accurate tumor delineation, which plays a vital role for subsequently determining the 
therapeutic option to achieve improved prognoses [1, 2].

Recently, the co-segmentation technique for tumor delineation using both PET-CT has 
attracted great attentions [3, 4, 5, 6, 7], where tumor contours on PET and on CT are 
segmented simultaneously while admitting their possible differences to accommodate the 
registration inaccuracy and imaging uncertainty. It has demonstrated in those previous works 
that the design of cost functions in the framework of graph-cut based co-segmentation is 
critical to achieve good segmentation performance. How to design efficient cost functions is 
still an open problem and many efforts have been devoted to tackle this challenge. 
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Representative work on cost function design include using sophisticated image priors (e.g., 
Gaussian mixture models [3, 4], texture information [6], shape prior [7], etc.) and/or clinical 
information [4, 5, 6, 7]. More recently, Zhong et al. [8] have introduced the 3D alpha 
matting technique to compute the region costs for co-segmentation on PET-CT images and 
validate the efficiency. Although these methods have achieved good performance, they are 
mostly semi-automatic which need a number of specific user-defined seeds, which may limit 
their usages in clinical practices.

In this paper, to address this challenge with a more intelligent way, we resort to data-driven 
deep learning technique to pursue better region costs and attempt to develop a computer-
aided automatic processing pipeline for tumor segmentation. Specifically, we propose to 
integrate the 3D fully convolutional networks (3D-UNet) and the graph cut based co-
segmentation model to simultaneously segment lung tumors on PET-CT scans. For the co-
registered PET or CT scans, two independent deep 3D-UNets are first trained separately for 
PET and CT, respectively. Owing to their powerful descriptive capability, both networks can 
learn high level discriminative features that help generate high quality voxel-level tumor/
non-tumor masks and probability maps. Then, the two probability maps, one on PET and the 
other on CT, are further employed in the graph cut based co-segmentation model [4] with 
label-consistency constraints to simultaneously produce the final tumor segmentation results 
on both PET and CT images. Our contribution of this work mainly lies in the following two 
points:

1. We propose to combine the 3D-UNet and graph cut based co-segmentation for 
tumors on PET-CT images. The advantage lies in automated localization of 
tumors, i.e., no need of manually defined object seeds compared to previous 
semi-automatic methods, which largely facilitates the subsequent clinical 
processing in diagnosis procedure that may be prone to errors.

2. In our experiments, we evaluate and validate in detail the proposed 3D-UNet 
based co-segmentation method by comparing with two state-of-the-art semi-
automatic methods on 32 PET-CT image datasets.

2. METHODOLOGY
In recent years, deep learning has been proven to significantly outperform conventional 
statistical learning based approaches combined with manually-designed features from 
image, text or multi-modality inputs [9]. The medical imaging community has been rapidly 
entering the arena, and deep learning is quickly demonstrated to be the state-of-the-art tool 
for a wide variety of medical tasks, including segmentation [10, 11]. In this paper, we focus 
on investigating the FCN based semantic segmentation for tumor delineation on PET-CT 
scans. In literature, since the original FCN is proposed in [12], a number of variants have 
been developed in medical community, including 2D-UNet [13], 3D-UNet [14], 3D-DSN 
[15], etc. We attempt to utilize the 3D-UNet with an encoder-decoder architecture on our 
task owing to its powerful performance.

Our segmentation pipeline mainly consists of three steps (Fig. 1): data preprocessing, 3D 
UNets based FCN for probability maps generation, and graph-cut based co-segmentation. 
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Step (1): Data preprocessing is a basic yet vital step in medical image segmentation. 
Common operations include image registration, spatial resampling, image intensity value 
thresholding, etc. We will present details of this step in Section 3.1. Step (2): Two 3D-UNets 
are separately trained on preprocessed inputs, one on CT and one on PET. The 3D-UNets 
allows for capturing implicit and informative high-level features of tumors/non-tumors, 
which, however, usually produce coarse segmentation results that may not precisely localize 
tumor boundaries. Consequently, we perform Step (3) to further adopt the graph based co-
segmentation model to refine the segmentation by considering potential label consistency 
between the dual-modality PET and CT images. Due to the space limit, we mainly present 
Step (2) in detail.

In our 3D-UNet framework, the encoder module contains 4 convolutional and max-pooling 
layers with 32, 64, 128, 256 feature maps, respectively, the decoder module contains 4 
deconvolutional and convolutional layers with 256, 128, 64, 32 feature maps, respectively. In 
convolutional layers, the size of all convolutional kernels is 3 × 3 × 3. For all max-pooling 
layers, the pooling size is 2 × 2 × 2 with stride 2. For all deconvolutional layers, we 
upsample the input features maps with factor 2. Similar to [14], we conconcate the feature 
maps after the deconvolutional with those corresponding features in encoder module. After 
the decoder, a softmax classifier is used to generate voxel-level probability maps and 
predictions.

Finally, with the high-quality probability maps obtained from the 3D-UNets on PET and CT, 
a graph cut based co-segmentation model [4] is constructed and optimized to obtain the final 
segmentation results. The detail procedure and description are referred to [4].

3. EXPERIMENTS
3.1. Experimental Settings

32 co-registered PET-CT scan pairs from different patients with primary non-small cell lung 
cancer were obtained. The image spacing varies from 0.78 × 0.78 × 2mm3 to 1.27 ×1.27 × 
3.4mm3. The image slice image size is 512 × 512. The number of slices varies from 112 to 
293. The tumor contour on each of the PET and CT scans are labeled by two physicians and 
we adopted the Simultaneous Truth And Performance Level Estimation (STAPLE) 
algorithm [16] to generate the reference standard for each PET and CT scan.

In our experiments, we first resampled all scans with an isotropic spacing of 1 × 1 × 1 in 
voxels and then cropped fixed size of 3D volumes (128 × 128 × 64) centered on the mass 
gravity of each tumor. Additionally, in order to remove uncorrelated image details, we took 
similar image intensity value thresholding strategy as that in [8]. All 32 PET-CT scan pairs 
were split into two sets: 20 for training and 12 for testing. Several simple translation, 
rotation and flip operations were adopted for data augmentation and the final training set 
contains 3000 3D PET-CT scan pairs.

The 3D-UNet was implemented using open source TensorFlow package and ran on NVIDIA 
GeForce GTX 1080 Ti GPU with 11GB of memory. 3D-UNet was trained by Adam 
optimization method with a mini-batch size of 1 and for 20 epochs. To prevent from 
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overfitting, the weight decay and early-stop techniques were adopted to obtain the best 
performance on test set where the Dice coefficient (DSC) was evaluated and reported as 
adopted in [8]. We conducted quantitative comparisons to Song et al.’s [4] and our previous 
matting-based co-segmentation method [8]. And for the co-segmentation method, the 
parameters were selected based on the similar strategy as that in [8].

3.2. Results and Analysis

Table 1 reports the mean DSCs and standard deviations for the evaluated methods on the test 
scans. In addition to co-segmentation, we also report those results from the traditional graph-
cut based segmentation methods using their respective manually-crafted region costs [4, 8]. 
From these quantitative results, we have the following observations. First, compared to the 
two previous semi-automatic methods [4, 8], the proposed 3D-UNet based co-segmentation 
approach has achieved significantly better DSCs either with or without uisng the co-
segmentation model on PET and CT scans. This demonstrates that the trained 3D-UNets can 
learn more descriptive yet discriminative features over the other methods to distinguish 
between tumor and non-tumor voxels. Second, when incorporated with the co-segmentation 
model, the performance of all methods can be consistently improved, which also proves the 
efficiency of co-segmentation by considering the potential label-consistency constraint on 
dual-modality PET-CT scans. Third, we observe that the segmentation performance on PET 
is inferior to those on CT. The main reason could be due to the different imaging principles 
between PET and CT. In general, the tumor boundaries on PET are gradually varied cross a 
wide image intensity range, and are not obvious as those on CT. This could become a main 
challenge on PET based medical information extraction. Finally, the proposed method does 
not need any specific manually-defined object seeds, this advantage over the previous semi-
automatic methods can largely help alleviate doctors’ burdens and consequently facilitate 
clinical usages.

Fig. 2 shows the segmentation results of three evaluated methods on two PET-CT scan pairs. 
Due to the space limit, we only show the contours obtained from co-segmentation. Those 
example results demonstrated that our 3D-UNets based method can locate tumor boundaries 
more accurately than the compared methods.

4. CONCLUSION
In this paper, we have developed an integrated image segmentation system that combines the 
powerful fully convolutional networks (3D UNets) and the graph-cut based co-segmentation 
method, in which the UNet based FCN can generate high quality voxel-level tumor 
confidences that were further used to locate the tumor boundary with the powerful co-
segmentation model. Experiments on 32 datasets demonstrated the effectiveness of the 
proposed method with higher performance compared to the state-of-the-art methods.
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Fig. 1. 
The flowchart of proposed 3D-UNet based PET-CT co-segmentation framework. Note that 
we designed two independent 3D-UNets for PET and CT, respectively, to produce high-
quality regions costs for subsequent graph-based co-segmentation.
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Fig. 2. 
Segmentation results of compared methods on two PET-CT scans: No. 0002122 and No. 
002110. Red: ground truth, Green: Song’s method [4], Blue: Zhong’s method [8], Yellow: 
Proposed method.
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Table 1.

Average DSC’s and standard deviations of three compared methods on test set. Bolded numbers mean 
statistically significant (under p < 0.5) over the compared methods.

Methods Modalities No-CoSeg CoSeg

Song et al. [4]
CT 0.577 ± 0.349 0.624 ± 0.240

PET 0.607 ± 0.151 0.642 ± 0.148

Zhong et al. [8]
CT 0.767 ± 0.108 0.781 ± 0.099

PET 0.697 ± 0.146 0.722 ± 0.120

Proposed
CT 0.856 ± 0.074 0.869 ± 0.049

PET 0.757 ± 0.088 0.760 ± 0.088
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