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Abstract
Deep networks have been used in a growing trend in medical image analysis with the remarkable 
progress in deep learning. In this paper, we formulate the multi-scale segmentation as a Markov 
Random Field (MRF) energy minimization problem in a deep network (graph), which can be 
efficiently and exactly solved by computing a minimum s-t cut in an appropriately constructed 
graph. The performance of the proposed method is assessed on the application of lung tumor 
segmentation in 38 mega-voltage cone-beam computed tomography datasets.

Index Terms—
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1. INTRODUCTION
As we enter the era of precision medicine, imaging is playing an increasingly significant role 
with a substantially large amount of new and improved medical image data used in clinic, 
creating a demand for novel automated segmentation methods which can process this data 
faster and more thoroughly. With the recent revival of deep learning, deep networks have 
been used in a growing trend in medical image analysis, including deep convolutional neural 
networks (CNNs) based medical image segmentation. In this paper, we develop a new 
segmentation approach which formulates the multi-scale segmentation as a Markov Random 
Field (MRF) energy minimization problem in a deep network (graph), whose globally 
optimal solution can be achieved efficiently by graph cuts [1].

Machine learning has been widely used as a pixel classification method for medical image 
segmentation. Very recently, deep learning is emerging as the leading learning technique 
using deep networks in the imaging and computer vision field. The medical imaging 
community has been rapidly entering the arena, and deep learning is quickly proving to be 
the state-of-the-art tool for a wide variety of medical tasks, including segmentation (cf. [2, 3, 
4, 5]), with the capacity of automatic discovery of relevant image features, from low-level to 
higher order. Deep learning is most effective when applied to large training sets, but in the 
medical imaging domain obtaining such a large training dataset as ImageNet (http://
www.image-net.org) in computer vision poses a tremendous challenge due to the scarce and 
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expensive medical expertise, privacy issues, funding, and the breadth of medical applications 
[6, 5]. In addition, training a deep learning network requires significant computational 
powers, especially in 3D medical imaging, and is often complicated by overfitting and 
convergence issues, requiring repetitive adjustment in the architecture or learning 
parameters. It is envisioned that semi-supervised and unsupervised learning may 
continuously play an important role especially for those applications where hand annotations 
are not available or intractable to obtain [6].

Multi-scale methods have been employed to speed up some existing segmentation methods 
[7, 8, 9]. These methods usually work sequentially on different scales. As an effective way 
of image feature extraction, they were also shown to be useful for improving segmentation 
accuracy [10, 11, 12]. Cour et al. [11] proposed enforcing the cross-scale constraint so that 
segmentation at the coarse scale should reflect a local average at the fine scales by using 
affinity matrices at different scales. The multi-scale segmentation is then conducted 
simultaneously over all scales by solving an approximate eigenvector problem. The 
information across different scales is propagated to reach a consistent segmentation at all 
scales. Their method coarsens an image based on a regular grid, which may blur details at 
the coarse levels. Using a data-driven coarsening scheme, such as over-segmentation, may 
better preserve details at the coarse levels. Kim et al. [10] used regions/supervoxels in an 
over-segmented image (obtained by using methods such as mean shift) as nodes in the 
coarse level. Each voxel at the original resolution is viewed as nodes in the fine level. A soft 
label consistency constraint is enforced between the nodes at the coarse level and the fine 
level. The segmentation is computed by a convex optimization technique on both levels 
simultaneously. For 3D medical image applications, the computation of eigenvector 
problems [11] and matrix inversions [10] are too expensive. A more efficient method is 
needed to take advantage of both voxel and supervoxel level information. In addition, all 
those multi-scale segmentation methods based on spectral graph theory or convex 
optimization require a heuristic rounding scheme to achieve final results, which has no 
guarantee of global optimality.

In this paper, inspired by the successful use of layered networks in deep learning, we 
develop a deep graph cut method to segment the target object in different scales 
simultaneously in a single optimization process to maintain the scale-wise consistency. Each 
scale is modeled as a separate network (graph). The image features used in each scale can be 
computed with different methods, such as mean shift [13], watershed [14], and other 
supervoxel techniques [15]. All the networks for different scales form a deep layered graph 
with connections introduced to enforce the segmentation consistency across all the scales. 
The graph cut method is then used to compute a globally optimal segmentation of the target 
object. Our method enables to explore diverse image features and to represent them with 
multiple layered networks. As the image features used in each network layer can be 
computed independently, it does not require a large training dataset, which alleviates the big 
challenge posed by the deep learning method in medical imaging. In deep learning, the 
image cue information flows forward and backward between multilayers by convolution/
pooling and backpropagation, respectively. In our work, as the multi-scale segmentation is 
modeled as a deep network with each layer representing one image scale, the bidirectional 
information propagation between coarse and fine scales is ensured by segmenting the object 
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over all scales simultaneously. Many previous methods (cf. [7, 8, 9, 16]) segment the object 
sequentially from coarse to fine scales, with image cue information propagating in just one 
direction.

2. METHOD
The proposed method formulates the multi-scale segmentation problem as an Markov 
Random Field (MRF) energy minimization problem in a layered graph, which can be 
optimized by computing a minimum s-t cut. We first introduce the MRF energy for the 
multi-scale segmentation of the target object. A novel graph transformation is then presented 
to encode the energy function.

2.1. Modeling the multi-scale image segmentation

This section presents a novel multi-scale segmentation energy which incorporates the voxel-
wise information from the original image, as well as other scaled image information, such as 
region-wise information and/or a data-driven over-segmentation of the original image.

Given an image ℐ, denote by S0 the finest scale of the image (i.e., S0 = ℐ), and by Si (i = 1, 

2, …, N) the derived image in different scales. Note that Si’s can be computed using 
different methods and can be in the same level of scale. Each entity in Si is called a 
supervoxel. Each supervoxel in a coarse scale level may consist of a set of (super)voxels in a 
fine scale. A scaled image Si is said to be hierarchically interacted with Sj if each supervoxel 
in Si consists of only supervoxels (voxels if j = 0) in Sj. Denote by ℋ all hierarchically 
interacted image pairs (Si, Sj). This hierarchical interaction relations among Si’s clearly form 
a tree structure with S0 being the root (Fig. 1(a)). In Fig. 1(a), S0-S3-S6-S7 represent the 
target object in multiple different scales, while S1-S2-S3 can be used to explore different 
features of the target object.

For each (super)voxel p ∈ Si, a label f p ∈ ℒ = 0, 1  is assigned. If a (super)voxel is labeled 

as 1, then it is assigned the “object” label in the segmentation; otherwise, it is assigned the 
“background” label. A scaled image Si can be viewed as a partition of a scaled image Sj into 
many self-coherent regions or segments if Si, S j ∈ ℋ. For instance, a single meaningful 

object, such as a tumor, can be divided into multiple regions instead of being segmented as a 
single object. Techniques such as mean shift [13], watershed [14] can be used to generate 
scaled images in different levels of scale. An over-segmentation example by watershed is 
shown in Fig.1(b). Although the supervoxels may not directly correspond to anatomically 
meaningful objects, it groups portions of image into meaningful and self-homogeneous 
regions. For any pair Si, S j ∈ ℋ, we use Rij(p) to denote the set of (super)voxels in Sj 

corresponding to each supervoxel p ∈ Si.

The multi-scale segmentation energy takes the following form.
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EMS(f) = ∑
i = 0

N
ℰ Si + ∑

Si, S j ∈ ℋ
𝒞 Si, S j (1)

ℰ Si = ∑
p ∈ Si

Dp f p + αi ∑
(p, q) ∈ 𝒩i

V pq f p, f q (2)

𝒞 Si, S j = ∑
p ∈ Si

∑
q ∈ Ri j(p) ⊂ S j

Θp, q f p, f q (3)

The graph-cut segmentation energy term ℰ Si  is used for segmenting the target object in the 

scaled image Si. It consists of a data term Dp(fp) – measuring the inverse likelihood of 
(super)voxel p belonging to the object, and a boundary term Vpq(fp, fq) – penalizing the 
boundary discontinuity [1]. We adopt 6-neighborhood setting 𝒩0 for S0. In general, two 

supervoxels p, q ∈ Si (i = 1, 2, …, N) are said to be adjacent, i.e., (p, q) ∈ 𝒩i, if the 

Euclidean distance between their centroids is within a certain threshold. The data term 
Dp(fp) for a supervoxel p can be computed from some aggregate statistics of its comprised 
(super)voxels, such as the average data term over them. It can also incorporate more 
sophisticated information such as texture description within the supervoxel. For a pair of 
neighboring (super)voxels (p, q) ∈ 𝒩i, Vpq(fp, fq) = 0 if fp = fq and Vpq(fp, fq) > 0 if fp ≠ fq. 

This encourages neighboring voxels to have the same label, yielding spatially more coherent 
segmentation. αi is the balancing coefficient between the data term and the smoothness term 
for segmenting the target object in Si.

The label consistency term 𝒞 Si, S j  (Eq.(3)) penalizes the label difference between any two 

corresponding (super)voxels of two hierarchically interacted image pairs Si, S j ∈ ℋ. That 

is, for any p ∈ Si and q ∈ Rij(p) ⊂ Sj, If fp = fq, then Θp,q(fp, fq) = 0; while if fp ≠ fq, then 
Θp,q(fp, fq) > 0. This encourages the segmentations at the coarse level and the fine level 
should be consistent as much as possible.

2.2. Optimization using deep graph cuts

A graph consisting of deep hierarchical subgraphs is first constructed encoding the multi-
scale segmentation energy function in Eq.(1). Then, compute a minimum s-t cut in the 
constructed deep graph, which exactly minimizes the objective function for the 
segmentation.

For each scaled image Si, a subgraph Gi = (Vi, Ei) is constructed using the graph-cut method 
[1]. Every (super)voxel p ∈ Si exactly has a corresponding node vp ∈ Vi in Gi. A common 
source node s and sink node t are introduced for all Gi’s. To encode the data term 
∑p ∈ Si

Dp f p , we add a t-link arc from source s to each node vp with the weight Dp(fp = 0) 

and a t-link arc from each node vp to the sink t with the weight Dp(fp = 1). The boundary 
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term ∑(p, q) ∈ 𝒩i
V pq f p, f q  is enforced by introducing n-links, as follows. For each pair of 

neighboring voxels (p, q) ∈ 𝒩i, two n-link arcs are added: one from vp to vq and the other in 

the opposite direction from vq to vp. The weight of each arc is set as Vpq(fp, fq) while fp ≠ fq. 
Fig.1(c) shows an example graph construction for Si and Sj with Si, S j ∈ ℋ in which the red 

edges (in Gi) and the blue edges (in Gj) are added to enforce the boundary smoothness in the 
respective images.

Then, the inter-subgraph edges Eij are introduced between Gi and Gj for each pair 
Si, S j ∈ ℋ to encode the label consistency term 𝒞 Si, S j . For every (super)voxel p ∈ Si and 

q ∈ Rij(p) ⊂ Sj, an edge from node vp in Gi to the node vq in Gj is added with a weight of 
Θq,p(fq = 1, fp = 0). An edge from node vp to node vq is also added with a weight of Θq,p(fq 
= 0, fp = 1) (green arcs between two subgraphs in Fig.1(c)). When a (super)voxel q ∈ Sj has 
the same label as its corresponding (super)voxel p ∈ Si according to the s-t cut, then no 
penalty is enforced. If a (super)voxel q ∈ Sj is labeled as object but its corresponding 
(super)voxel p ∈ Si is labeled as background, then the edge (vq, vp) is in the s-t cut and the 
penalty Θq,p(fq = 1, fp = 0) is correctly enforced. Similarly, if a (super)voxel q ∈ Sj is labeled 
as background but its corresponding (super)voxel p ∈ Si is labeled as object, then the arc (vp, 
vq) is in the s-t cut and the penalty Θq,p(fq = 0, fp = 1) is correctly enforced.

This completes the graph construction for the multi-scale object segmentation. The resulting 
graph G consists of hierarchical subgraphs Gi’s. We thus term it as a deep graph. A 
minimum s-t cut in G gives an optimal labeling f*. The target object is the volume of voxels 
p ∈ S0 with f p* = 1.

3. EXPERIMENT
We assess the performance of the proposed method on the application of primary lung tumor 
segmentation using mega-voltage cone-beam computed tomography (MVCBCT). This 
application is challenging because of the poor image quality (high noise), similar intensity 
profiles of the tumor and surrounding normal tissue, and the close proximity of the tumor to 
the lung boundary. Although our validation was done on two scales, the method is ready to 
use deep layers.

3.1. Data

Thirty-eight volumetric MVCBCT datasets were obtained to evaluate the performance of the 
proposed method. The datasets were acquired from patients with non-small cell lung cancer 
over eight weeks of radiation therapy. Each image contained 128 × 128 × 128 voxels with a 
voxel size of 1.07 × 1.07 × 1.07 mm3. Manual tracings of the lung tumor boundaries were 
obtained from an expert and were used as the reference standard when assessing the 
performance of the proposed approach.

3.2. Experiment Settings

The segmentation performance was assessed using two metrics: Dice similarity coefficient 
(DSC) and the average symmetric surface distance (ASSD). The Dice similarity coefficient 
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is used to measure how well two volumes A and B overlap with each other, with 

DSC = 2 A ∩ B
A + B . The larger the DSC is, the better the two volumes are aligned, with 1 

indicating a perfect overlap. The average symmetric surface distance (ASSD) is used to 
measure how close the boundary surfaces SA and SB are for two objects A and B. Let d(x, S) 
denote the minumum distance between a point x and any point on the surface S. Then, 

ASSD =
∑
a ∈ SA

d a, SB + ∑
b ∈ SB

d b, SA

SA + SB
. The smaller the ASSD is, the better the two 

segmented contours agree with each other.

We report the DSC’s and ASSD’s between the manually traced tumor contours and the 
segmentations returned by the traditional graph cut method (GC) and the proposed deep 
graph cut method (dGC). A two-tailed student t-test was conducted between the two 
methods. A p-value smaller than 0.05 is considered to be statistically significant.

For initialization, The user manually specified two concentric spheres, so that all voxels 
within the small sphere belong to the object, and all voxels outside the large sphere belong to 
the background. The segmentation was then conducted in the bounding box of the large 
sphere.

3.3. Energy Term Design

In this experiment, we only consider two hierarchical scales of the image: one is in the 
original voxel scale and the other is in the regional scale with over-segmentation.

The data term and the boundary term in the voxel scale are designed in the same way as 
those in the traditional graph cut method [1]. We applied the watershed method to generate 
the over-segmentation [14] to obtain the regional scale of the image. Two regions are defined 
as neighboring if the Euclidean distance between the centroids of the two regions is within 
10 mm. Each region in the over-segmentation defines a supervoxel. The data term is 
computed based on the standard deviation of voxel intensities in each supervoxel, which 
serves as a rough texture descriptor about how homogeneous each supervoxel is. Suppose 
the mean standard deviation of all the object seed voxels is δob, then the 

Dp f p = 1 ∝ 1 − exp − δp − δob
2/σΔ

2 , where δp is the standard deviation of supervoxel p 

and σΔ is a parameter controlling the deviation of object intensities from δob. The boundary 

term is defined, as follows. If fp = fq, then Vp,q(fp, fq) = 0. If fp ≠ fq, then 

V p, q f p, f q ∝ exp Dp f p = 1 − Dq f q = 1 2/σR
2 . In our experiment, we use σΔ = 50 and 

σR = 1000.

3.4. Results

The quantitative comparisons between the proposed multiscale deep graph-cut segmentation 
method (dGC) and the traditional graph-cut method (GC) on the validation volumes is 
summarized in Table 1. For the entire validation data, the proposed dGC method produced 
significantly higher DSC (p < 0.01) and lower ASSD (p < 0.01), compared to the 
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segmentation results of the traditional GC method. Illustrative results of segmentations from 
the proposed dGC and the traditional GC methods are shown in Fig. 2. Due to the weak 
boundary and similar intensity profiles of the tumor and the surrounding healthy tissues, the 
traditional GC method produced unsatisfying segmentation. By using the multi-scale 
information with the proposed dGC method, we can differentiate the tumor from the 
surrounding tissues, as shown in the first two rows of Fig.2.

4. CONCLUSION
We propose a novel segmentation method in which the hierarchical image features in 
different scale levels can be modeled in a deep graph consisting of multiple interacting 
subgraphs, and the segmentation is performed with a single minimum s-t cut computation. 
The performance of the proposed method is assessed on 38 MVCBCT datasets to segment 
primary lung tumors, which is superior to the traditional graph cut method.
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Fig. 1. 
(a) The hierarchical interaction structure of an image in different scale levels forms a tree. 
(b) An example image in the original voxel level of scale (lower panel) and in the regional 
level of scale with over-segmentation (upper panel). (c) Illustrating the graph construction 
for two hierarchically interacted images Si and Sj in different scale levels.
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Fig. 2. 
Illustrative segmentation results. The proposed deep graph cut method enables to use 
multiple scale levels of image features, thus avoiding segmentation leakage.
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Table 1.

Average DSC and ASSD of the proposed dGC method and the graph-cut method (GC)

traditional GC proposed dGC

DSC 0.76 ± 0.12 0.84 ± 0.06

ASSD (mm) 4.42 ± 3.04 2.32 ± 2.34
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