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Abstract

Deep networks have been used in a growing trend in medical image analysis with the remarkable
progress in deep learning. In this paper, we formulate the multi-scale segmentation as a Markov
Random Field (MRF) energy minimization problem in a deep network (graph), which can be
efficiently and exactly solved by computing a minimum s-# cut in an appropriately constructed
graph. The performance of the proposed method is assessed on the application of lung tumor
segmentation in 38 mega-voltage cone-beam computed tomography datasets.
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1. INTRODUCTION

As we enter the era of precision medicine, imaging is playing an increasingly significant role
with a substantially large amount of new and improved medical image data used in clinic,
creating a demand for novel automated segmentation methods which can process this data
faster and more thoroughly. With the recent revival of deep learning, deep networks have
been used in a growing trend in medical image analysis, including deep convolutional neural
networks (CNNss) based medical image segmentation. In this paper, we develop a new
segmentation approach which formulates the multi-scale segmentation as a Markov Random
Field (MRF) energy minimization problem in a deep network (graph), whose globally
optimal solution can be achieved efficiently by graph cuts [1].

Machine learning has been widely used as a pixel classification method for medical image
segmentation. Very recently, deep learning is emerging as the leading learning technique
using deep networks in the imaging and computer vision field. The medical imaging
community has been rapidly entering the arena, and deep learning is quickly proving to be
the state-of-the-art tool for a wide variety of medical tasks, including segmentation (cf. [2, 3,
4, 5]), with the capacity of automatic discovery of relevant image features, from low-level to
higher order. Deep learning is most effective when applied to large training sets, but in the
medical imaging domain obtaining such a large training dataset as ImageNet (http://
www.image-net.org) in computer vision poses a tremendous challenge due to the scarce and
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expensive medical expertise, privacy issues, funding, and the breadth of medical applications
[6, 5]. In addition, training a deep learning network requires significant computational
powers, especially in 3D medical imaging, and is often complicated by overfitting and
convergence issues, requiring repetitive adjustment in the architecture or learning
parameters. It is envisioned that semi-supervised and unsupervised learning may
continuously play an important role especially for those applications where hand annotations
are not available or intractable to obtain [6].

Multi-scale methods have been employed to speed up some existing segmentation methods
[7, 8, 9]. These methods usually work sequentially on different scales. As an effective way
of image feature extraction, they were also shown to be useful for improving segmentation
accuracy [10, 11, 12]. Cour et al. [11] proposed enforcing the cross-scale constraint so that
segmentation at the coarse scale should reflect a local average at the fine scales by using
affinity matrices at different scales. The multi-scale segmentation is then conducted
simultaneously over all scales by solving an approximate eigenvector problem. The
information across different scales is propagated to reach a consistent segmentation at all
scales. Their method coarsens an image based on a regular grid, which may blur details at
the coarse levels. Using a data-driven coarsening scheme, such as over-segmentation, may
better preserve details at the coarse levels. Kim et al [10] used regions/supervoxels in an
over-segmented image (obtained by using methods such as mean shift) as nodes in the
coarse level. Each voxel at the original resolution is viewed as nodes in the fine level. A soft
label consistency constraint is enforced between the nodes at the coarse level and the fine
level. The segmentation is computed by a convex optimization technique on both levels
simultaneously. For 3D medical image applications, the computation of eigenvector
problems [11] and matrix inversions [10] are too expensive. A more efficient method is
needed to take advantage of both voxel and supervoxel level information. In addition, all
those multi-scale segmentation methods based on spectral graph theory or convex
optimization require a heuristic rounding scheme to achieve final results, which has no
guarantee of global optimality.

In this paper, inspired by the successful use of layered networks in deep learning, we
develop a deep graph cut method to segment the target object in different scales
simultaneously in a single optimization process to maintain the scale-wise consistency. Each
scale is modeled as a separate network (graph). The image features used in each scale can be
computed with different methods, such as mean shift [13], watershed [14], and other
supervoxel techniques [15]. All the networks for different scales form a deep layered graph
with connections introduced to enforce the segmentation consistency across all the scales.
The graph cut method is then used to compute a globally optimal segmentation of the target
object. Our method enables to explore diverse image features and to represent them with
multiple layered networks. As the image features used in each network layer can be
computed independently, it does not require a large training dataset, which alleviates the big
challenge posed by the deep learning method in medical imaging. In deep learning, the
image cue information flows forward and backward between multilayers by convolution/
pooling and backpropagation, respectively. In our work, as the multi-scale segmentation is
modeled as a deep network with each layer representing one image scale, the bidirectional
information propagation between coarse and fine scales is ensured by segmenting the object

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 November 26.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wu et al. Page 3

over all scales simultaneously. Many previous methods (cf. [7, 8, 9, 16]) segment the object
sequentially from coarse to fine scales, with image cue information propagating in just one
direction.

2. METHOD

The proposed method formulates the multi-scale segmentation problem as an Markov
Random Field (MRF) energy minimization problem in a layered graph, which can be
optimized by computing a minimum s- cut. We first introduce the MRF energy for the
multi-scale segmentation of the target object. A novel graph transformation is then presented
to encode the energy function.

2.1. Modeling the multi-scale image segmentation

This section presents a novel multi-scale segmentation energy which incorporates the voxel-
wise information from the original image, as well as other scaled image information, such as
region-wise information and/or a data-driven over-segmentation of the original image.

Given an image .7, denote by Sy the finest scale of the image (i.e., S, = .7), and by S; (7= 1,

2, ..., N) the derived image in different scales. Note that S;’s can be computed using
different methods and can be in the same level of scale. Each entity in S;is called a
supervoxel. Each supervoxel in a coarse scale level may consist of a set of (super)voxels in a
fine scale. A scaled image S;is said to be hierarchically interacted with S;if each supervoxel
in S; consists of only supervoxels (voxels if /= 0) in S;. Denote by % all hierarchically
interacted image pairs (S S)). This hierarchical interaction relations among S;’s clearly form
a tree structure with S being the root (Fig. 1(a)). In Fig. 1(a), S0-S3-S6-S7 represent the
target object in multiple different scales, while S1-S2-S3 can be used to explore different
features of the target object.

For each (super)voxel p € S; a label _fp € & =1{0,1} is assigned. If a (super)voxel is labeled
as 1, then it is assigned the “object” label in the segmentation; otherwise, it is assigned the
“background” label. A scaled image S; can be viewed as a partition of a scaled image S into
many self-coherent regions or segments if (Sl., Sj) € . For instance, a single meaningful
object, such as a tumor, can be divided into multiple regions instead of being segmented as a
single object. Techniques such as mean shift [13], watershed [14] can be used to generate
scaled images in different levels of scale. An over-segmentation example by watershed is

shown in Fig.1(b). Although the supervoxels may not directly correspond to anatomically
meaningful objects, it groups portions of image into meaningful and self-homogeneous

regions. For any pair (Sl., Sj) € ¥, we use Rj{p) to denote the set of (super)voxels in S;

corresponding to each supervoxel p € S;.

The multi-scale segmentation energy takes the following form.
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%(Si’ Sj) = Z Z O, q(f r/ q)
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pE Sl.q S Rij(p) c Sj

The graph-cut segmentation energy term %(Si) is used for segmenting the target object in the
scaled image S;. It consists of a data term D) ;) — measuring the inverse likelihood of
(super)voxel p belonging to the object, and a boundary term V), (7, f5) — penalizing the

boundary discontinuity [1]. We adopt 6-neighborhood setting ¥/, for Sp. In general, two
supervoxels p, g€ S; (7= 1,2, ..., N) are said to be adjacent, i.e., (p,q) € ./, if the

Euclidean distance between their centroids is within a certain threshold. The data term
Dy(1y) for a supervoxel p can be computed from some aggregate statistics of its comprised
(super)voxels, such as the average data term over them. It can also incorporate more
sophisticated information such as texture description within the supervoxel. For a pair of
neighboring (super)voxels (p,q) € N, V1, 1) = 0if £, = fgand V(£ 1) > 0 if 1, # 1,

This encourages neighboring voxels to have the same label, yielding spatially more coherent
segmentation. a;is the balancing coefficient between the data term and the smoothness term
for segmenting the target object in S;.

The label consistency term %(Si, Sj) (Eq.(3)) penalizes the label difference between any two

corresponding (super)voxels of two hierarchically interacted image pairs (Sl., Sj) € #. That

is, for any p € S;and g € Ri(p) C S, If 1,= 1, then ©, (1, 1) = 0; while if £, # 1, then
©, (1 1z) > 0. This encourages the segmentations at the coarse level and the fine level
should be consistent as much as possible.

2.2. Optimization using deep graph cuts

A graph consisting of deep hierarchical subgraphs is first constructed encoding the multi-
scale segmentation energy function in Eq.(1). Then, compute a minimum s-£ cut in the
constructed deep graph, which exactly minimizes the objective function for the
segmentation.

For each scaled image S}, a subgraph G;= (V}, E)) is constructed using the graph-cut method
[1]. Every (super)voxel p € S;exactly has a corresponding node v, € V;in G;. A common
source node s and sink node #are introduced for all G;’s. To encode the data term

Zp c SiDp( f p), we add a #link arc from source s to each node v, with the weight Dy(£,= 0)

and a #link arc from each node v, to the sink #with the weight D,(#,= 1). The boundary
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term Z(p’ Des, qu( fp, fq) is enforced by introducing n-links, as follows. For each pair of

neighboring voxels (p,q) € & » tWo n-link arcs are added: one from Vpto vg and the other in

the opposite direction from v, to v, The weight of each arc is set as V), (1, fg) while 1, # 1
Fig.1(c) shows an example graph construction for S;and S; with (Sl., Sj) € # in which the red

edges (in G)) and the blue edges (in G)) are added to enforce the boundary smoothness in the
respective images.

Then, the inter-subgraph edges £j;are introduced between Gjand Gj for each pair
(Sl., Sj) € Z to encode the label consistency term %(Si, Sj). For every (super)voxel p € S;and

g€ Ri(p) C S, an edge from node v, in G;to the node v, in G;is added with a weight of
04 (1g= 1, 1,=0). An edge from node v, to node v, is also added with a weight of ® (7,
=0, 1,= 1) (green arcs between two subgraphs in Fig.1(c)). When a (super)voxel g € S;has
the same label as its corresponding (super)voxel p € S;according to the s-£cut, then no
penalty is enforced. If a (super)voxel g € S;is labeled as object but its corresponding
(super)voxel p € S;is labeled as background, then the edge (v, v)) is in the s-Z cut and the
penalty ® (7= 1, 1,= 0) is correctly enforced. Similarly, if a (super)voxel g € S;is labeled
as background but its corresponding (super)voxel p € §;is labeled as object, then the arc (v,
V) is in the s-fcut and the penalty ®, (1, = 0, £, = 1) is correctly enforced.

This completes the graph construction for the multi-scale object segmentation. The resulting
graph G consists of hierarchical subgraphs G;'s. We thus term it as a deep graph. A
minimum s-fcut in G gives an optimal labeling f*. The target object is the volume of voxels
PE Sywith £ =1.

3. EXPERIMENT

We assess the performance of the proposed method on the application of primary lung tumor
segmentation using mega-voltage cone-beam computed tomography (MVCBCT). This
application is challenging because of the poor image quality (high noise), similar intensity
profiles of the tumor and surrounding normal tissue, and the close proximity of the tumor to
the lung boundary. Although our validation was done on two scales, the method is ready to
use deep layers.

3.1. Data

Thirty-eight volumetric MVCBCT datasets were obtained to evaluate the performance of the
proposed method. The datasets were acquired from patients with non-small cell lung cancer
over eight weeks of radiation therapy. Each image contained 128 x 128 x 128 voxels with a
voxel size of 1.07 x 1.07 x 1.07 mn?. Manual tracings of the lung tumor boundaries were
obtained from an expert and were used as the reference standard when assessing the
performance of the proposed approach.

3.2. Experiment Settings

The segmentation performance was assessed using two metrics: Dice similarity coefficient
(DSC) and the average symmetric surface distance (ASSD). The Dice similarity coefficient
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is used to measure how well two volumes A and B overlap with each other, with

2|ANn B|

DSC = AT+ Bl

The larger the DSC is, the better the two volumes are aligned, with 1

indicating a perfect overlap. The average symmetric surface distance (ASSD) is used to
measure how close the boundary surfaces $4 and S7 are for two objects A and B. Let d(x, .S)
denote the minumum distance between a point x and any point on the surface S. Then,
B A
dla,S7 )+ d\b,S
E _adas)rz, _ pdes?)

ASSD = —4E5 . The smaller the ASSD is, the better the two

557

segmented contours agree with each other.

We report the DSC’s and ASSD’s between the manually traced tumor contours and the
segmentations returned by the traditional graph cut method (GC) and the proposed deep
graph cut method (dGC). A two-tailed student t-test was conducted between the two
methods. A p-value smaller than 0.05 is considered to be statistically significant.

For initialization, The user manually specified two concentric spheres, so that all voxels
within the small sphere belong to the object, and all voxels outside the large sphere belong to
the background. The segmentation was then conducted in the bounding box of the large
sphere.

3.3. Energy Term Design

In this experiment, we only consider two hierarchical scales of the image: one is in the
original voxel scale and the other is in the regional scale with over-segmentation.

The data term and the boundary term in the voxel scale are designed in the same way as
those in the traditional graph cut method [1]. We applied the watershed method to generate
the over-segmentation [14] to obtain the regional scale of the image. Two regions are defined
as neighboring if the Euclidean distance between the centroids of the two regions is within
10 mm. Each region in the over-segmentation defines a supervoxel. The data term is
computed based on the standard deviation of voxel intensities in each supervoxel, which
serves as a rough texture descriptor about how homogeneous each supervoxel is. Suppose
the mean standard deviation of all the object seed voxels is Sob, then the

- |12 . ..
Dp( fp= 1) o« 1- exp(— ||5p =3, /ai), where 6, is the standard deviation of supervoxel p
and oy is a parameter controlling the deviation of object intensities from SOb. The boundary

term is defined, as follows. If 7, = 1, then V), (£, 1) = 0. If £, # £, then

Vpﬂ(fp,fq) o« exp(”Dp(fp = 1) - Dq(fq = 1))”2/%. In our experiment, we use o = 50 and
og=1000.
3.4. Results

The quantitative comparisons between the proposed multiscale deep graph-cut segmentation
method (dGC) and the traditional graph-cut method (GC) on the validation volumes is
summarized in Table 1. For the entire validation data, the proposed dGC method produced
significantly higher DSC (p < 0.01) and lower ASSD (p < 0.01), compared to the

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 November 26.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wu et al. Page 7

segmentation results of the traditional GC method. Illustrative results of segmentations from
the proposed dGC and the traditional GC methods are shown in Fig. 2. Due to the weak
boundary and similar intensity profiles of the tumor and the surrounding healthy tissues, the
traditional GC method produced unsatisfying segmentation. By using the multi-scale
information with the proposed dGC method, we can differentiate the tumor from the
surrounding tissues, as shown in the first two rows of Fig.2.

4. CONCLUSION

We propose a novel segmentation method in which the hierarchical image features in
different scale levels can be modeled in a deep graph consisting of multiple interacting
subgraphs, and the segmentation is performed with a single minimum s-f cut computation.
The performance of the proposed method is assessed on 38 MVCBCT datasets to segment
primary lung tumors, which is superior to the traditional graph cut method.
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Fig. 1.

(a)g The hierarchical interaction structure of an image in different scale levels forms a tree.
(b) An example image in the original voxel level of scale (lower panel) and in the regional
level of scale with over-segmentation (upper panel). (c) Illustrating the graph construction
for two hierarchically interacted images S;and S in different scale levels.
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Reference standard Graph cut method Propos

ed deep graph cut

Fig. 2.
Ilustrative segmentation results. The proposed deep graph cut method enables to use
multiple scale levels of image features, thus avoiding segmentation leakage.
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Table 1.
Average DSC and ASSD of the proposed dGC method and the graph-cut method (GC)

traditional GC  proposed dGC

DSC 0.76 £0.12 0.84 £0.06
ASSD (mm)  4.42+3.04 2.32+2.34
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